1 /* 2 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 36 * 37 * License terms: all terms for the DragonFly license above plus the following: 38 * 39 * 4. All advertising materials mentioning features or use of this software 40 * must display the following acknowledgement: 41 * 42 * This product includes software developed by Jeffrey M. Hsu 43 * for the DragonFly Project. 44 * 45 * This requirement may be waived with permission from Jeffrey Hsu. 46 * This requirement will sunset and may be removed on July 8 2005, 47 * after which the standard DragonFly license (as shown above) will 48 * apply. 49 */ 50 51 /* 52 * Copyright (c) 1982, 1986, 1988, 1990, 1993 53 * The Regents of the University of California. All rights reserved. 54 * 55 * Redistribution and use in source and binary forms, with or without 56 * modification, are permitted provided that the following conditions 57 * are met: 58 * 1. Redistributions of source code must retain the above copyright 59 * notice, this list of conditions and the following disclaimer. 60 * 2. Redistributions in binary form must reproduce the above copyright 61 * notice, this list of conditions and the following disclaimer in the 62 * documentation and/or other materials provided with the distribution. 63 * 3. All advertising materials mentioning features or use of this software 64 * must display the following acknowledgement: 65 * This product includes software developed by the University of 66 * California, Berkeley and its contributors. 67 * 4. Neither the name of the University nor the names of its contributors 68 * may be used to endorse or promote products derived from this software 69 * without specific prior written permission. 70 * 71 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 74 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 81 * SUCH DAMAGE. 82 * 83 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 84 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $ 85 * $DragonFly: src/sys/kern/uipc_socket.c,v 1.31 2005/05/29 16:32:20 hsu Exp $ 86 */ 87 88 #include "opt_inet.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/fcntl.h> 93 #include <sys/malloc.h> 94 #include <sys/mbuf.h> 95 #include <sys/domain.h> 96 #include <sys/file.h> /* for struct knote */ 97 #include <sys/kernel.h> 98 #include <sys/malloc.h> 99 #include <sys/event.h> 100 #include <sys/poll.h> 101 #include <sys/proc.h> 102 #include <sys/protosw.h> 103 #include <sys/socket.h> 104 #include <sys/socketvar.h> 105 #include <sys/socketops.h> 106 #include <sys/resourcevar.h> 107 #include <sys/signalvar.h> 108 #include <sys/sysctl.h> 109 #include <sys/uio.h> 110 #include <sys/jail.h> 111 #include <vm/vm_zone.h> 112 113 #include <machine/limits.h> 114 115 #ifdef INET 116 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 117 #endif /* INET */ 118 119 static void filt_sordetach(struct knote *kn); 120 static int filt_soread(struct knote *kn, long hint); 121 static void filt_sowdetach(struct knote *kn); 122 static int filt_sowrite(struct knote *kn, long hint); 123 static int filt_solisten(struct knote *kn, long hint); 124 125 static struct filterops solisten_filtops = 126 { 1, NULL, filt_sordetach, filt_solisten }; 127 static struct filterops soread_filtops = 128 { 1, NULL, filt_sordetach, filt_soread }; 129 static struct filterops sowrite_filtops = 130 { 1, NULL, filt_sowdetach, filt_sowrite }; 131 132 struct vm_zone *socket_zone; 133 so_gen_t so_gencnt; /* generation count for sockets */ 134 135 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 136 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 137 138 139 static int somaxconn = SOMAXCONN; 140 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 141 &somaxconn, 0, "Maximum pending socket connection queue size"); 142 143 /* 144 * Socket operation routines. 145 * These routines are called by the routines in 146 * sys_socket.c or from a system process, and 147 * implement the semantics of socket operations by 148 * switching out to the protocol specific routines. 149 */ 150 151 /* 152 * Get a socket structure from our zone, and initialize it. 153 * We don't implement `waitok' yet (see comments in uipc_domain.c). 154 * Note that it would probably be better to allocate socket 155 * and PCB at the same time, but I'm not convinced that all 156 * the protocols can be easily modified to do this. 157 */ 158 struct socket * 159 soalloc(waitok) 160 int waitok; 161 { 162 struct socket *so; 163 164 so = zalloc(socket_zone); 165 if (so) { 166 /* XXX race condition for reentrant kernel */ 167 bzero(so, sizeof *so); 168 so->so_gencnt = ++so_gencnt; 169 TAILQ_INIT(&so->so_aiojobq); 170 TAILQ_INIT(&so->so_rcv.sb_sel.si_mlist); 171 TAILQ_INIT(&so->so_snd.sb_sel.si_mlist); 172 } 173 return so; 174 } 175 176 int 177 socreate(int dom, struct socket **aso, int type, 178 int proto, struct thread *td) 179 { 180 struct proc *p = td->td_proc; 181 struct protosw *prp; 182 struct socket *so; 183 struct pru_attach_info ai; 184 int error; 185 186 if (proto) 187 prp = pffindproto(dom, proto, type); 188 else 189 prp = pffindtype(dom, type); 190 191 if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) 192 return (EPROTONOSUPPORT); 193 194 if (p->p_ucred->cr_prison && jail_socket_unixiproute_only && 195 prp->pr_domain->dom_family != PF_LOCAL && 196 prp->pr_domain->dom_family != PF_INET && 197 prp->pr_domain->dom_family != PF_ROUTE) { 198 return (EPROTONOSUPPORT); 199 } 200 201 if (prp->pr_type != type) 202 return (EPROTOTYPE); 203 so = soalloc(p != 0); 204 if (so == 0) 205 return (ENOBUFS); 206 207 TAILQ_INIT(&so->so_incomp); 208 TAILQ_INIT(&so->so_comp); 209 so->so_type = type; 210 so->so_cred = crhold(p->p_ucred); 211 so->so_proto = prp; 212 ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE]; 213 ai.p_ucred = p->p_ucred; 214 ai.fd_rdir = p->p_fd->fd_rdir; 215 error = so_pru_attach(so, proto, &ai); 216 if (error) { 217 so->so_state |= SS_NOFDREF; 218 sofree(so); 219 return (error); 220 } 221 *aso = so; 222 return (0); 223 } 224 225 int 226 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 227 { 228 int s = splnet(); 229 int error; 230 231 error = so_pru_bind(so, nam, td); 232 splx(s); 233 return (error); 234 } 235 236 void 237 sodealloc(struct socket *so) 238 { 239 240 so->so_gencnt = ++so_gencnt; 241 if (so->so_rcv.sb_hiwat) 242 (void)chgsbsize(so->so_cred->cr_uidinfo, 243 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 244 if (so->so_snd.sb_hiwat) 245 (void)chgsbsize(so->so_cred->cr_uidinfo, 246 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 247 #ifdef INET 248 /* remove accept filter if present */ 249 if (so->so_accf != NULL) 250 do_setopt_accept_filter(so, NULL); 251 #endif /* INET */ 252 crfree(so->so_cred); 253 zfree(socket_zone, so); 254 } 255 256 int 257 solisten(struct socket *so, int backlog, struct thread *td) 258 { 259 int s, error; 260 261 s = splnet(); 262 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) { 263 splx(s); 264 return (EINVAL); 265 } 266 267 error = so_pru_listen(so, td); 268 if (error) { 269 splx(s); 270 return (error); 271 } 272 if (TAILQ_EMPTY(&so->so_comp)) 273 so->so_options |= SO_ACCEPTCONN; 274 if (backlog < 0 || backlog > somaxconn) 275 backlog = somaxconn; 276 so->so_qlimit = backlog; 277 splx(s); 278 return (0); 279 } 280 281 void 282 sofree(struct socket *so) 283 { 284 struct socket *head = so->so_head; 285 286 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 287 return; 288 if (head != NULL) { 289 if (so->so_state & SS_INCOMP) { 290 TAILQ_REMOVE(&head->so_incomp, so, so_list); 291 head->so_incqlen--; 292 } else if (so->so_state & SS_COMP) { 293 /* 294 * We must not decommission a socket that's 295 * on the accept(2) queue. If we do, then 296 * accept(2) may hang after select(2) indicated 297 * that the listening socket was ready. 298 */ 299 return; 300 } else { 301 panic("sofree: not queued"); 302 } 303 so->so_state &= ~SS_INCOMP; 304 so->so_head = NULL; 305 } 306 sbrelease(&so->so_snd, so); 307 sorflush(so); 308 sodealloc(so); 309 } 310 311 /* 312 * Close a socket on last file table reference removal. 313 * Initiate disconnect if connected. 314 * Free socket when disconnect complete. 315 */ 316 int 317 soclose(struct socket *so) 318 { 319 int s = splnet(); /* conservative */ 320 int error = 0; 321 322 funsetown(so->so_sigio); 323 if (so->so_pcb == NULL) 324 goto discard; 325 if (so->so_state & SS_ISCONNECTED) { 326 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 327 error = sodisconnect(so); 328 if (error) 329 goto drop; 330 } 331 if (so->so_options & SO_LINGER) { 332 if ((so->so_state & SS_ISDISCONNECTING) && 333 (so->so_state & SS_NBIO)) 334 goto drop; 335 while (so->so_state & SS_ISCONNECTED) { 336 error = tsleep((caddr_t)&so->so_timeo, 337 PCATCH, "soclos", so->so_linger * hz); 338 if (error) 339 break; 340 } 341 } 342 } 343 drop: 344 if (so->so_pcb) { 345 int error2; 346 347 error2 = so_pru_detach(so); 348 if (error == 0) 349 error = error2; 350 } 351 discard: 352 if (so->so_options & SO_ACCEPTCONN) { 353 struct socket *sp, *sonext; 354 355 sp = TAILQ_FIRST(&so->so_incomp); 356 for (; sp != NULL; sp = sonext) { 357 sonext = TAILQ_NEXT(sp, so_list); 358 (void) soabort(sp); 359 } 360 for (sp = TAILQ_FIRST(&so->so_comp); sp != NULL; sp = sonext) { 361 sonext = TAILQ_NEXT(sp, so_list); 362 /* Dequeue from so_comp since sofree() won't do it */ 363 TAILQ_REMOVE(&so->so_comp, sp, so_list); 364 so->so_qlen--; 365 sp->so_state &= ~SS_COMP; 366 sp->so_head = NULL; 367 (void) soabort(sp); 368 } 369 } 370 if (so->so_state & SS_NOFDREF) 371 panic("soclose: NOFDREF"); 372 so->so_state |= SS_NOFDREF; 373 sofree(so); 374 splx(s); 375 return (error); 376 } 377 378 /* 379 * Must be called at splnet... 380 */ 381 int 382 soabort(so) 383 struct socket *so; 384 { 385 int error; 386 387 error = so_pru_abort(so); 388 if (error) { 389 sofree(so); 390 return error; 391 } 392 return (0); 393 } 394 395 int 396 soaccept(struct socket *so, struct sockaddr **nam) 397 { 398 int s = splnet(); 399 int error; 400 401 if ((so->so_state & SS_NOFDREF) == 0) 402 panic("soaccept: !NOFDREF"); 403 so->so_state &= ~SS_NOFDREF; 404 error = so_pru_accept(so, nam); 405 splx(s); 406 return (error); 407 } 408 409 int 410 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 411 { 412 int s; 413 int error; 414 415 if (so->so_options & SO_ACCEPTCONN) 416 return (EOPNOTSUPP); 417 s = splnet(); 418 /* 419 * If protocol is connection-based, can only connect once. 420 * Otherwise, if connected, try to disconnect first. 421 * This allows user to disconnect by connecting to, e.g., 422 * a null address. 423 */ 424 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 425 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 426 (error = sodisconnect(so)))) { 427 error = EISCONN; 428 } else { 429 /* 430 * Prevent accumulated error from previous connection 431 * from biting us. 432 */ 433 so->so_error = 0; 434 error = so_pru_connect(so, nam, td); 435 } 436 splx(s); 437 return (error); 438 } 439 440 int 441 soconnect2(struct socket *so1, struct socket *so2) 442 { 443 int s = splnet(); 444 int error; 445 446 error = so_pru_connect2(so1, so2); 447 splx(s); 448 return (error); 449 } 450 451 int 452 sodisconnect(struct socket *so) 453 { 454 int s = splnet(); 455 int error; 456 457 if ((so->so_state & SS_ISCONNECTED) == 0) { 458 error = ENOTCONN; 459 goto bad; 460 } 461 if (so->so_state & SS_ISDISCONNECTING) { 462 error = EALREADY; 463 goto bad; 464 } 465 error = so_pru_disconnect(so); 466 bad: 467 splx(s); 468 return (error); 469 } 470 471 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 472 /* 473 * Send on a socket. 474 * If send must go all at once and message is larger than 475 * send buffering, then hard error. 476 * Lock against other senders. 477 * If must go all at once and not enough room now, then 478 * inform user that this would block and do nothing. 479 * Otherwise, if nonblocking, send as much as possible. 480 * The data to be sent is described by "uio" if nonzero, 481 * otherwise by the mbuf chain "top" (which must be null 482 * if uio is not). Data provided in mbuf chain must be small 483 * enough to send all at once. 484 * 485 * Returns nonzero on error, timeout or signal; callers 486 * must check for short counts if EINTR/ERESTART are returned. 487 * Data and control buffers are freed on return. 488 */ 489 int 490 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 491 struct mbuf *top, struct mbuf *control, int flags, 492 struct thread *td) 493 { 494 struct mbuf **mp; 495 struct mbuf *m; 496 long space, len, resid; 497 int clen = 0, error, s, dontroute, mlen; 498 int atomic = sosendallatonce(so) || top; 499 int pru_flags; 500 501 if (uio) 502 resid = uio->uio_resid; 503 else 504 resid = top->m_pkthdr.len; 505 /* 506 * In theory resid should be unsigned. 507 * However, space must be signed, as it might be less than 0 508 * if we over-committed, and we must use a signed comparison 509 * of space and resid. On the other hand, a negative resid 510 * causes us to loop sending 0-length segments to the protocol. 511 * 512 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 513 * type sockets since that's an error. 514 */ 515 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 516 error = EINVAL; 517 goto out; 518 } 519 520 dontroute = 521 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 522 (so->so_proto->pr_flags & PR_ATOMIC); 523 if (td->td_proc && td->td_proc->p_stats) 524 td->td_proc->p_stats->p_ru.ru_msgsnd++; 525 if (control) 526 clen = control->m_len; 527 #define gotoerr(errno) { error = errno; splx(s); goto release; } 528 529 restart: 530 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 531 if (error) 532 goto out; 533 do { 534 s = splnet(); 535 if (so->so_state & SS_CANTSENDMORE) 536 gotoerr(EPIPE); 537 if (so->so_error) { 538 error = so->so_error; 539 so->so_error = 0; 540 splx(s); 541 goto release; 542 } 543 if ((so->so_state & SS_ISCONNECTED) == 0) { 544 /* 545 * `sendto' and `sendmsg' is allowed on a connection- 546 * based socket if it supports implied connect. 547 * Return ENOTCONN if not connected and no address is 548 * supplied. 549 */ 550 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 551 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 552 if ((so->so_state & SS_ISCONFIRMING) == 0 && 553 !(resid == 0 && clen != 0)) 554 gotoerr(ENOTCONN); 555 } else if (addr == 0) 556 gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 557 ENOTCONN : EDESTADDRREQ); 558 } 559 space = sbspace(&so->so_snd); 560 if (flags & MSG_OOB) 561 space += 1024; 562 if ((atomic && resid > so->so_snd.sb_hiwat) || 563 clen > so->so_snd.sb_hiwat) 564 gotoerr(EMSGSIZE); 565 if (space < resid + clen && uio && 566 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 567 if (so->so_state & SS_NBIO) 568 gotoerr(EWOULDBLOCK); 569 sbunlock(&so->so_snd); 570 error = sbwait(&so->so_snd); 571 splx(s); 572 if (error) 573 goto out; 574 goto restart; 575 } 576 splx(s); 577 mp = ⊤ 578 space -= clen; 579 do { 580 if (uio == NULL) { 581 /* 582 * Data is prepackaged in "top". 583 */ 584 resid = 0; 585 if (flags & MSG_EOR) 586 top->m_flags |= M_EOR; 587 } else do { 588 m = m_getl(resid, MB_WAIT, MT_DATA, 589 top == NULL ? M_PKTHDR : 0, &mlen); 590 if (top == NULL) { 591 m->m_pkthdr.len = 0; 592 m->m_pkthdr.rcvif = (struct ifnet *)0; 593 } 594 len = min(min(mlen, resid), space); 595 if (resid < MINCLSIZE) { 596 /* 597 * For datagram protocols, leave room 598 * for protocol headers in first mbuf. 599 */ 600 if (atomic && top == 0 && len < mlen) 601 MH_ALIGN(m, len); 602 } 603 space -= len; 604 error = uiomove(mtod(m, caddr_t), (int)len, uio); 605 resid = uio->uio_resid; 606 m->m_len = len; 607 *mp = m; 608 top->m_pkthdr.len += len; 609 if (error) 610 goto release; 611 mp = &m->m_next; 612 if (resid <= 0) { 613 if (flags & MSG_EOR) 614 top->m_flags |= M_EOR; 615 break; 616 } 617 } while (space > 0 && atomic); 618 if (dontroute) 619 so->so_options |= SO_DONTROUTE; 620 if (flags & MSG_OOB) { 621 pru_flags = PRUS_OOB; 622 } else if ((flags & MSG_EOF) && 623 (so->so_proto->pr_flags & PR_IMPLOPCL) && 624 (resid <= 0)) { 625 /* 626 * If the user set MSG_EOF, the protocol 627 * understands this flag and nothing left to 628 * send then use PRU_SEND_EOF instead of PRU_SEND. 629 */ 630 pru_flags = PRUS_EOF; 631 } else if (resid > 0 && space > 0) { 632 /* If there is more to send, set PRUS_MORETOCOME */ 633 pru_flags = PRUS_MORETOCOME; 634 } else { 635 pru_flags = 0; 636 } 637 s = splnet(); /* XXX */ 638 /* 639 * XXX all the SS_CANTSENDMORE checks previously 640 * done could be out of date. We could have recieved 641 * a reset packet in an interrupt or maybe we slept 642 * while doing page faults in uiomove() etc. We could 643 * probably recheck again inside the splnet() protection 644 * here, but there are probably other places that this 645 * also happens. We must rethink this. 646 */ 647 error = so_pru_send(so, pru_flags, top, addr, control, td); 648 splx(s); 649 if (dontroute) 650 so->so_options &= ~SO_DONTROUTE; 651 clen = 0; 652 control = 0; 653 top = 0; 654 mp = ⊤ 655 if (error) 656 goto release; 657 } while (resid && space > 0); 658 } while (resid); 659 660 release: 661 sbunlock(&so->so_snd); 662 out: 663 if (top) 664 m_freem(top); 665 if (control) 666 m_freem(control); 667 return (error); 668 } 669 670 /* 671 * A specialization of sosend() for UDP based on protocol-specific knowledge: 672 * so->so_proto->pr_flags has the PR_ATOMIC field set. This means that 673 * sosendallatonce() returns true, 674 * the "atomic" variable is true, 675 * and sosendudp() blocks until space is available for the entire send. 676 * so->so_proto->pr_flags does not have the PR_CONNREQUIRED or 677 * PR_IMPLOPCL flags set. 678 * UDP has no out-of-band data. 679 * UDP has no control data. 680 * UDP does not support MSG_EOR. 681 */ 682 int 683 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio, 684 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 685 { 686 int resid, error, s; 687 boolean_t dontroute; /* temporary SO_DONTROUTE setting */ 688 689 if (td->td_proc && td->td_proc->p_stats) 690 td->td_proc->p_stats->p_ru.ru_msgsnd++; 691 if (control) 692 m_freem(control); 693 694 KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp")); 695 resid = uio ? uio->uio_resid : top->m_pkthdr.len; 696 697 restart: 698 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 699 if (error) 700 goto out; 701 702 s = splnet(); 703 if (so->so_state & SS_CANTSENDMORE) 704 gotoerr(EPIPE); 705 if (so->so_error) { 706 error = so->so_error; 707 so->so_error = 0; 708 splx(s); 709 goto release; 710 } 711 if (!(so->so_state & SS_ISCONNECTED) && addr == NULL) 712 gotoerr(EDESTADDRREQ); 713 if (resid > so->so_snd.sb_hiwat) 714 gotoerr(EMSGSIZE); 715 if (uio && sbspace(&so->so_snd) < resid) { 716 if (so->so_state & SS_NBIO) 717 gotoerr(EWOULDBLOCK); 718 sbunlock(&so->so_snd); 719 error = sbwait(&so->so_snd); 720 splx(s); 721 if (error) 722 goto out; 723 goto restart; 724 } 725 splx(s); 726 727 if (uio) { 728 top = m_uiomove(uio); 729 if (top == NULL) 730 goto release; 731 } 732 733 dontroute = (flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE); 734 if (dontroute) 735 so->so_options |= SO_DONTROUTE; 736 737 error = so_pru_send(so, 0, top, addr, NULL, td); 738 top = NULL; /* sent or freed in lower layer */ 739 740 if (dontroute) 741 so->so_options &= ~SO_DONTROUTE; 742 743 release: 744 sbunlock(&so->so_snd); 745 out: 746 if (top) 747 m_freem(top); 748 return (error); 749 } 750 751 /* 752 * Implement receive operations on a socket. 753 * We depend on the way that records are added to the sockbuf 754 * by sbappend*. In particular, each record (mbufs linked through m_next) 755 * must begin with an address if the protocol so specifies, 756 * followed by an optional mbuf or mbufs containing ancillary data, 757 * and then zero or more mbufs of data. 758 * In order to avoid blocking network interrupts for the entire time here, 759 * we splx() while doing the actual copy to user space. 760 * Although the sockbuf is locked, new data may still be appended, 761 * and thus we must maintain consistency of the sockbuf during that time. 762 * 763 * The caller may receive the data as a single mbuf chain by supplying 764 * an mbuf **mp0 for use in returning the chain. The uio is then used 765 * only for the count in uio_resid. 766 */ 767 int 768 soreceive(so, psa, uio, mp0, controlp, flagsp) 769 struct socket *so; 770 struct sockaddr **psa; 771 struct uio *uio; 772 struct mbuf **mp0; 773 struct mbuf **controlp; 774 int *flagsp; 775 { 776 struct mbuf *m, **mp; 777 int flags, len, error, s, offset; 778 struct protosw *pr = so->so_proto; 779 struct mbuf *nextrecord; 780 int moff, type = 0; 781 int orig_resid = uio->uio_resid; 782 783 mp = mp0; 784 if (psa) 785 *psa = 0; 786 if (controlp) 787 *controlp = 0; 788 if (flagsp) 789 flags = *flagsp &~ MSG_EOR; 790 else 791 flags = 0; 792 if (flags & MSG_OOB) { 793 m = m_get(MB_WAIT, MT_DATA); 794 if (m == NULL) 795 return (ENOBUFS); 796 error = so_pru_rcvoob(so, m, flags & MSG_PEEK); 797 if (error) 798 goto bad; 799 do { 800 error = uiomove(mtod(m, caddr_t), 801 (int) min(uio->uio_resid, m->m_len), uio); 802 m = m_free(m); 803 } while (uio->uio_resid && error == 0 && m); 804 bad: 805 if (m) 806 m_freem(m); 807 return (error); 808 } 809 if (mp) 810 *mp = (struct mbuf *)0; 811 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 812 so_pru_rcvd(so, 0); 813 814 restart: 815 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 816 if (error) 817 return (error); 818 s = splnet(); 819 820 m = so->so_rcv.sb_mb; 821 /* 822 * If we have less data than requested, block awaiting more 823 * (subject to any timeout) if: 824 * 1. the current count is less than the low water mark, or 825 * 2. MSG_WAITALL is set, and it is possible to do the entire 826 * receive operation at once if we block (resid <= hiwat). 827 * 3. MSG_DONTWAIT is not set 828 * If MSG_WAITALL is set but resid is larger than the receive buffer, 829 * we have to do the receive in sections, and thus risk returning 830 * a short count if a timeout or signal occurs after we start. 831 */ 832 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && 833 so->so_rcv.sb_cc < uio->uio_resid) && 834 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 835 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 836 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { 837 KASSERT(m != 0 || !so->so_rcv.sb_cc, ("receive 1")); 838 if (so->so_error) { 839 if (m) 840 goto dontblock; 841 error = so->so_error; 842 if ((flags & MSG_PEEK) == 0) 843 so->so_error = 0; 844 goto release; 845 } 846 if (so->so_state & SS_CANTRCVMORE) { 847 if (m) 848 goto dontblock; 849 else 850 goto release; 851 } 852 for (; m; m = m->m_next) 853 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 854 m = so->so_rcv.sb_mb; 855 goto dontblock; 856 } 857 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 858 (pr->pr_flags & PR_CONNREQUIRED)) { 859 error = ENOTCONN; 860 goto release; 861 } 862 if (uio->uio_resid == 0) 863 goto release; 864 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 865 error = EWOULDBLOCK; 866 goto release; 867 } 868 sbunlock(&so->so_rcv); 869 error = sbwait(&so->so_rcv); 870 splx(s); 871 if (error) 872 return (error); 873 goto restart; 874 } 875 dontblock: 876 if (uio->uio_td && uio->uio_td->td_proc) 877 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 878 nextrecord = m->m_nextpkt; 879 if (pr->pr_flags & PR_ADDR) { 880 KASSERT(m->m_type == MT_SONAME, ("receive 1a")); 881 orig_resid = 0; 882 if (psa) 883 *psa = dup_sockaddr(mtod(m, struct sockaddr *)); 884 if (flags & MSG_PEEK) { 885 m = m->m_next; 886 } else { 887 sbfree(&so->so_rcv, m); 888 so->so_rcv.sb_mb = m_free(m); 889 m = so->so_rcv.sb_mb; 890 } 891 } 892 while (m && m->m_type == MT_CONTROL && error == 0) { 893 if (flags & MSG_PEEK) { 894 if (controlp) 895 *controlp = m_copy(m, 0, m->m_len); 896 m = m->m_next; 897 } else { 898 sbfree(&so->so_rcv, m); 899 if (controlp) { 900 if (pr->pr_domain->dom_externalize && 901 mtod(m, struct cmsghdr *)->cmsg_type == 902 SCM_RIGHTS) 903 error = (*pr->pr_domain->dom_externalize)(m); 904 *controlp = m; 905 so->so_rcv.sb_mb = m->m_next; 906 m->m_next = 0; 907 m = so->so_rcv.sb_mb; 908 } else { 909 so->so_rcv.sb_mb = m_free(m); 910 m = so->so_rcv.sb_mb; 911 } 912 } 913 if (controlp) { 914 orig_resid = 0; 915 controlp = &(*controlp)->m_next; 916 } 917 } 918 if (m) { 919 if ((flags & MSG_PEEK) == 0) 920 m->m_nextpkt = nextrecord; 921 type = m->m_type; 922 if (type == MT_OOBDATA) 923 flags |= MSG_OOB; 924 } 925 moff = 0; 926 offset = 0; 927 while (m && uio->uio_resid > 0 && error == 0) { 928 if (m->m_type == MT_OOBDATA) { 929 if (type != MT_OOBDATA) 930 break; 931 } else if (type == MT_OOBDATA) 932 break; 933 else 934 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 935 ("receive 3")); 936 so->so_state &= ~SS_RCVATMARK; 937 len = uio->uio_resid; 938 if (so->so_oobmark && len > so->so_oobmark - offset) 939 len = so->so_oobmark - offset; 940 if (len > m->m_len - moff) 941 len = m->m_len - moff; 942 /* 943 * If mp is set, just pass back the mbufs. 944 * Otherwise copy them out via the uio, then free. 945 * Sockbuf must be consistent here (points to current mbuf, 946 * it points to next record) when we drop priority; 947 * we must note any additions to the sockbuf when we 948 * block interrupts again. 949 */ 950 if (mp == 0) { 951 splx(s); 952 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); 953 s = splnet(); 954 if (error) 955 goto release; 956 } else 957 uio->uio_resid -= len; 958 if (len == m->m_len - moff) { 959 if (m->m_flags & M_EOR) 960 flags |= MSG_EOR; 961 if (flags & MSG_PEEK) { 962 m = m->m_next; 963 moff = 0; 964 } else { 965 nextrecord = m->m_nextpkt; 966 sbfree(&so->so_rcv, m); 967 if (mp) { 968 *mp = m; 969 mp = &m->m_next; 970 so->so_rcv.sb_mb = m = m->m_next; 971 *mp = (struct mbuf *)0; 972 } else { 973 so->so_rcv.sb_mb = m = m_free(m); 974 } 975 if (m) 976 m->m_nextpkt = nextrecord; 977 else 978 so->so_rcv.sb_lastmbuf = NULL; 979 } 980 } else { 981 if (flags & MSG_PEEK) 982 moff += len; 983 else { 984 if (mp) 985 *mp = m_copym(m, 0, len, MB_WAIT); 986 m->m_data += len; 987 m->m_len -= len; 988 so->so_rcv.sb_cc -= len; 989 } 990 } 991 if (so->so_oobmark) { 992 if ((flags & MSG_PEEK) == 0) { 993 so->so_oobmark -= len; 994 if (so->so_oobmark == 0) { 995 so->so_state |= SS_RCVATMARK; 996 break; 997 } 998 } else { 999 offset += len; 1000 if (offset == so->so_oobmark) 1001 break; 1002 } 1003 } 1004 if (flags & MSG_EOR) 1005 break; 1006 /* 1007 * If the MSG_WAITALL flag is set (for non-atomic socket), 1008 * we must not quit until "uio->uio_resid == 0" or an error 1009 * termination. If a signal/timeout occurs, return 1010 * with a short count but without error. 1011 * Keep sockbuf locked against other readers. 1012 */ 1013 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && 1014 !sosendallatonce(so) && !nextrecord) { 1015 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1016 break; 1017 /* 1018 * The window might have closed to zero, make 1019 * sure we send an ack now that we've drained 1020 * the buffer or we might end up blocking until 1021 * the idle takes over (5 seconds). 1022 */ 1023 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1024 so_pru_rcvd(so, flags); 1025 error = sbwait(&so->so_rcv); 1026 if (error) { 1027 sbunlock(&so->so_rcv); 1028 splx(s); 1029 return (0); 1030 } 1031 m = so->so_rcv.sb_mb; 1032 if (m) 1033 nextrecord = m->m_nextpkt; 1034 } 1035 } 1036 1037 if (m && pr->pr_flags & PR_ATOMIC) 1038 flags |= MSG_TRUNC; 1039 if (!(flags & MSG_PEEK)) { 1040 if (m == NULL) { 1041 so->so_rcv.sb_mb = nextrecord; 1042 so->so_rcv.sb_lastmbuf = NULL; 1043 } else { 1044 if (pr->pr_flags & PR_ATOMIC) 1045 sbdroprecord(&so->so_rcv); 1046 else if (m->m_nextpkt == NULL) { 1047 KASSERT(so->so_rcv.sb_mb == m, 1048 ("sb_mb %p != m %p", so->so_rcv.sb_mb, m)); 1049 so->so_rcv.sb_lastrecord = m; 1050 } 1051 } 1052 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1053 so_pru_rcvd(so, flags); 1054 } 1055 1056 if (orig_resid == uio->uio_resid && orig_resid && 1057 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1058 sbunlock(&so->so_rcv); 1059 splx(s); 1060 goto restart; 1061 } 1062 1063 if (flagsp) 1064 *flagsp |= flags; 1065 release: 1066 sbunlock(&so->so_rcv); 1067 splx(s); 1068 return (error); 1069 } 1070 1071 int 1072 soshutdown(so, how) 1073 struct socket *so; 1074 int how; 1075 { 1076 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1077 return (EINVAL); 1078 1079 if (how != SHUT_WR) 1080 sorflush(so); 1081 if (how != SHUT_RD) 1082 return (so_pru_shutdown(so)); 1083 return (0); 1084 } 1085 1086 void 1087 sorflush(so) 1088 struct socket *so; 1089 { 1090 struct sockbuf *sb = &so->so_rcv; 1091 struct protosw *pr = so->so_proto; 1092 int s; 1093 struct sockbuf asb; 1094 1095 sb->sb_flags |= SB_NOINTR; 1096 (void) sblock(sb, M_WAITOK); 1097 s = splimp(); 1098 socantrcvmore(so); 1099 sbunlock(sb); 1100 asb = *sb; 1101 bzero((caddr_t)sb, sizeof (*sb)); 1102 if (asb.sb_flags & SB_KNOTE) { 1103 sb->sb_sel.si_note = asb.sb_sel.si_note; 1104 sb->sb_flags = SB_KNOTE; 1105 } 1106 splx(s); 1107 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1108 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1109 sbrelease(&asb, so); 1110 } 1111 1112 #ifdef INET 1113 static int 1114 do_setopt_accept_filter(so, sopt) 1115 struct socket *so; 1116 struct sockopt *sopt; 1117 { 1118 struct accept_filter_arg *afap = NULL; 1119 struct accept_filter *afp; 1120 struct so_accf *af = so->so_accf; 1121 int error = 0; 1122 1123 /* do not set/remove accept filters on non listen sockets */ 1124 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1125 error = EINVAL; 1126 goto out; 1127 } 1128 1129 /* removing the filter */ 1130 if (sopt == NULL) { 1131 if (af != NULL) { 1132 if (af->so_accept_filter != NULL && 1133 af->so_accept_filter->accf_destroy != NULL) { 1134 af->so_accept_filter->accf_destroy(so); 1135 } 1136 if (af->so_accept_filter_str != NULL) { 1137 FREE(af->so_accept_filter_str, M_ACCF); 1138 } 1139 FREE(af, M_ACCF); 1140 so->so_accf = NULL; 1141 } 1142 so->so_options &= ~SO_ACCEPTFILTER; 1143 return (0); 1144 } 1145 /* adding a filter */ 1146 /* must remove previous filter first */ 1147 if (af != NULL) { 1148 error = EINVAL; 1149 goto out; 1150 } 1151 /* don't put large objects on the kernel stack */ 1152 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK); 1153 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1154 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1155 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1156 if (error) 1157 goto out; 1158 afp = accept_filt_get(afap->af_name); 1159 if (afp == NULL) { 1160 error = ENOENT; 1161 goto out; 1162 } 1163 MALLOC(af, struct so_accf *, sizeof(*af), M_ACCF, M_WAITOK); 1164 bzero(af, sizeof(*af)); 1165 if (afp->accf_create != NULL) { 1166 if (afap->af_name[0] != '\0') { 1167 int len = strlen(afap->af_name) + 1; 1168 1169 MALLOC(af->so_accept_filter_str, char *, len, M_ACCF, M_WAITOK); 1170 strcpy(af->so_accept_filter_str, afap->af_name); 1171 } 1172 af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg); 1173 if (af->so_accept_filter_arg == NULL) { 1174 FREE(af->so_accept_filter_str, M_ACCF); 1175 FREE(af, M_ACCF); 1176 so->so_accf = NULL; 1177 error = EINVAL; 1178 goto out; 1179 } 1180 } 1181 af->so_accept_filter = afp; 1182 so->so_accf = af; 1183 so->so_options |= SO_ACCEPTFILTER; 1184 out: 1185 if (afap != NULL) 1186 FREE(afap, M_TEMP); 1187 return (error); 1188 } 1189 #endif /* INET */ 1190 1191 /* 1192 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1193 * an additional variant to handle the case where the option value needs 1194 * to be some kind of integer, but not a specific size. 1195 * In addition to their use here, these functions are also called by the 1196 * protocol-level pr_ctloutput() routines. 1197 */ 1198 int 1199 sooptcopyin(sopt, buf, len, minlen) 1200 struct sockopt *sopt; 1201 void *buf; 1202 size_t len; 1203 size_t minlen; 1204 { 1205 size_t valsize; 1206 1207 /* 1208 * If the user gives us more than we wanted, we ignore it, 1209 * but if we don't get the minimum length the caller 1210 * wants, we return EINVAL. On success, sopt->sopt_valsize 1211 * is set to however much we actually retrieved. 1212 */ 1213 if ((valsize = sopt->sopt_valsize) < minlen) 1214 return EINVAL; 1215 if (valsize > len) 1216 sopt->sopt_valsize = valsize = len; 1217 1218 if (sopt->sopt_td != NULL) 1219 return (copyin(sopt->sopt_val, buf, valsize)); 1220 1221 bcopy(sopt->sopt_val, buf, valsize); 1222 return 0; 1223 } 1224 1225 int 1226 sosetopt(so, sopt) 1227 struct socket *so; 1228 struct sockopt *sopt; 1229 { 1230 int error, optval; 1231 struct linger l; 1232 struct timeval tv; 1233 u_long val; 1234 1235 error = 0; 1236 sopt->sopt_dir = SOPT_SET; 1237 if (sopt->sopt_level != SOL_SOCKET) { 1238 if (so->so_proto && so->so_proto->pr_ctloutput) { 1239 return (so_pr_ctloutput(so, sopt)); 1240 } 1241 error = ENOPROTOOPT; 1242 } else { 1243 switch (sopt->sopt_name) { 1244 #ifdef INET 1245 case SO_ACCEPTFILTER: 1246 error = do_setopt_accept_filter(so, sopt); 1247 if (error) 1248 goto bad; 1249 break; 1250 #endif /* INET */ 1251 case SO_LINGER: 1252 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1253 if (error) 1254 goto bad; 1255 1256 so->so_linger = l.l_linger; 1257 if (l.l_onoff) 1258 so->so_options |= SO_LINGER; 1259 else 1260 so->so_options &= ~SO_LINGER; 1261 break; 1262 1263 case SO_DEBUG: 1264 case SO_KEEPALIVE: 1265 case SO_DONTROUTE: 1266 case SO_USELOOPBACK: 1267 case SO_BROADCAST: 1268 case SO_REUSEADDR: 1269 case SO_REUSEPORT: 1270 case SO_OOBINLINE: 1271 case SO_TIMESTAMP: 1272 error = sooptcopyin(sopt, &optval, sizeof optval, 1273 sizeof optval); 1274 if (error) 1275 goto bad; 1276 if (optval) 1277 so->so_options |= sopt->sopt_name; 1278 else 1279 so->so_options &= ~sopt->sopt_name; 1280 break; 1281 1282 case SO_SNDBUF: 1283 case SO_RCVBUF: 1284 case SO_SNDLOWAT: 1285 case SO_RCVLOWAT: 1286 error = sooptcopyin(sopt, &optval, sizeof optval, 1287 sizeof optval); 1288 if (error) 1289 goto bad; 1290 1291 /* 1292 * Values < 1 make no sense for any of these 1293 * options, so disallow them. 1294 */ 1295 if (optval < 1) { 1296 error = EINVAL; 1297 goto bad; 1298 } 1299 1300 switch (sopt->sopt_name) { 1301 case SO_SNDBUF: 1302 case SO_RCVBUF: 1303 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1304 &so->so_snd : &so->so_rcv, (u_long)optval, 1305 so, 1306 &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) { 1307 error = ENOBUFS; 1308 goto bad; 1309 } 1310 break; 1311 1312 /* 1313 * Make sure the low-water is never greater than 1314 * the high-water. 1315 */ 1316 case SO_SNDLOWAT: 1317 so->so_snd.sb_lowat = 1318 (optval > so->so_snd.sb_hiwat) ? 1319 so->so_snd.sb_hiwat : optval; 1320 break; 1321 case SO_RCVLOWAT: 1322 so->so_rcv.sb_lowat = 1323 (optval > so->so_rcv.sb_hiwat) ? 1324 so->so_rcv.sb_hiwat : optval; 1325 break; 1326 } 1327 break; 1328 1329 case SO_SNDTIMEO: 1330 case SO_RCVTIMEO: 1331 error = sooptcopyin(sopt, &tv, sizeof tv, 1332 sizeof tv); 1333 if (error) 1334 goto bad; 1335 1336 /* assert(hz > 0); */ 1337 if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz || 1338 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1339 error = EDOM; 1340 goto bad; 1341 } 1342 /* assert(tick > 0); */ 1343 /* assert(ULONG_MAX - SHRT_MAX >= 1000000); */ 1344 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1345 if (val > SHRT_MAX) { 1346 error = EDOM; 1347 goto bad; 1348 } 1349 if (val == 0 && tv.tv_usec != 0) 1350 val = 1; 1351 1352 switch (sopt->sopt_name) { 1353 case SO_SNDTIMEO: 1354 so->so_snd.sb_timeo = val; 1355 break; 1356 case SO_RCVTIMEO: 1357 so->so_rcv.sb_timeo = val; 1358 break; 1359 } 1360 break; 1361 default: 1362 error = ENOPROTOOPT; 1363 break; 1364 } 1365 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1366 (void) so_pr_ctloutput(so, sopt); 1367 } 1368 } 1369 bad: 1370 return (error); 1371 } 1372 1373 /* Helper routine for getsockopt */ 1374 int 1375 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1376 { 1377 int error; 1378 size_t valsize; 1379 1380 error = 0; 1381 1382 /* 1383 * Documented get behavior is that we always return a value, 1384 * possibly truncated to fit in the user's buffer. 1385 * Traditional behavior is that we always tell the user 1386 * precisely how much we copied, rather than something useful 1387 * like the total amount we had available for her. 1388 * Note that this interface is not idempotent; the entire answer must 1389 * generated ahead of time. 1390 */ 1391 valsize = min(len, sopt->sopt_valsize); 1392 sopt->sopt_valsize = valsize; 1393 if (sopt->sopt_val != 0) { 1394 if (sopt->sopt_td != NULL) 1395 error = copyout(buf, sopt->sopt_val, valsize); 1396 else 1397 bcopy(buf, sopt->sopt_val, valsize); 1398 } 1399 return error; 1400 } 1401 1402 int 1403 sogetopt(so, sopt) 1404 struct socket *so; 1405 struct sockopt *sopt; 1406 { 1407 int error, optval; 1408 struct linger l; 1409 struct timeval tv; 1410 #ifdef INET 1411 struct accept_filter_arg *afap; 1412 #endif 1413 1414 error = 0; 1415 sopt->sopt_dir = SOPT_GET; 1416 if (sopt->sopt_level != SOL_SOCKET) { 1417 if (so->so_proto && so->so_proto->pr_ctloutput) { 1418 return (so_pr_ctloutput(so, sopt)); 1419 } else 1420 return (ENOPROTOOPT); 1421 } else { 1422 switch (sopt->sopt_name) { 1423 #ifdef INET 1424 case SO_ACCEPTFILTER: 1425 if ((so->so_options & SO_ACCEPTCONN) == 0) 1426 return (EINVAL); 1427 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1428 M_TEMP, M_WAITOK); 1429 bzero(afap, sizeof(*afap)); 1430 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1431 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1432 if (so->so_accf->so_accept_filter_str != NULL) 1433 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1434 } 1435 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1436 FREE(afap, M_TEMP); 1437 break; 1438 #endif /* INET */ 1439 1440 case SO_LINGER: 1441 l.l_onoff = so->so_options & SO_LINGER; 1442 l.l_linger = so->so_linger; 1443 error = sooptcopyout(sopt, &l, sizeof l); 1444 break; 1445 1446 case SO_USELOOPBACK: 1447 case SO_DONTROUTE: 1448 case SO_DEBUG: 1449 case SO_KEEPALIVE: 1450 case SO_REUSEADDR: 1451 case SO_REUSEPORT: 1452 case SO_BROADCAST: 1453 case SO_OOBINLINE: 1454 case SO_TIMESTAMP: 1455 optval = so->so_options & sopt->sopt_name; 1456 integer: 1457 error = sooptcopyout(sopt, &optval, sizeof optval); 1458 break; 1459 1460 case SO_TYPE: 1461 optval = so->so_type; 1462 goto integer; 1463 1464 case SO_ERROR: 1465 optval = so->so_error; 1466 so->so_error = 0; 1467 goto integer; 1468 1469 case SO_SNDBUF: 1470 optval = so->so_snd.sb_hiwat; 1471 goto integer; 1472 1473 case SO_RCVBUF: 1474 optval = so->so_rcv.sb_hiwat; 1475 goto integer; 1476 1477 case SO_SNDLOWAT: 1478 optval = so->so_snd.sb_lowat; 1479 goto integer; 1480 1481 case SO_RCVLOWAT: 1482 optval = so->so_rcv.sb_lowat; 1483 goto integer; 1484 1485 case SO_SNDTIMEO: 1486 case SO_RCVTIMEO: 1487 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1488 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1489 1490 tv.tv_sec = optval / hz; 1491 tv.tv_usec = (optval % hz) * tick; 1492 error = sooptcopyout(sopt, &tv, sizeof tv); 1493 break; 1494 1495 default: 1496 error = ENOPROTOOPT; 1497 break; 1498 } 1499 return (error); 1500 } 1501 } 1502 1503 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1504 int 1505 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1506 { 1507 struct mbuf *m, *m_prev; 1508 int sopt_size = sopt->sopt_valsize; 1509 1510 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA); 1511 if (m == 0) 1512 return ENOBUFS; 1513 if (sopt_size > MLEN) { 1514 MCLGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT); 1515 if ((m->m_flags & M_EXT) == 0) { 1516 m_free(m); 1517 return ENOBUFS; 1518 } 1519 m->m_len = min(MCLBYTES, sopt_size); 1520 } else { 1521 m->m_len = min(MLEN, sopt_size); 1522 } 1523 sopt_size -= m->m_len; 1524 *mp = m; 1525 m_prev = m; 1526 1527 while (sopt_size) { 1528 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA); 1529 if (m == 0) { 1530 m_freem(*mp); 1531 return ENOBUFS; 1532 } 1533 if (sopt_size > MLEN) { 1534 MCLGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT); 1535 if ((m->m_flags & M_EXT) == 0) { 1536 m_freem(*mp); 1537 return ENOBUFS; 1538 } 1539 m->m_len = min(MCLBYTES, sopt_size); 1540 } else { 1541 m->m_len = min(MLEN, sopt_size); 1542 } 1543 sopt_size -= m->m_len; 1544 m_prev->m_next = m; 1545 m_prev = m; 1546 } 1547 return 0; 1548 } 1549 1550 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1551 int 1552 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1553 { 1554 struct mbuf *m0 = m; 1555 1556 if (sopt->sopt_val == NULL) 1557 return 0; 1558 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1559 if (sopt->sopt_td != NULL) { 1560 int error; 1561 1562 error = copyin(sopt->sopt_val, mtod(m, char *), 1563 m->m_len); 1564 if (error != 0) { 1565 m_freem(m0); 1566 return(error); 1567 } 1568 } else 1569 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1570 sopt->sopt_valsize -= m->m_len; 1571 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1572 m = m->m_next; 1573 } 1574 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1575 panic("ip6_sooptmcopyin"); 1576 return 0; 1577 } 1578 1579 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 1580 int 1581 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 1582 { 1583 struct mbuf *m0 = m; 1584 size_t valsize = 0; 1585 1586 if (sopt->sopt_val == NULL) 1587 return 0; 1588 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1589 if (sopt->sopt_td != NULL) { 1590 int error; 1591 1592 error = copyout(mtod(m, char *), sopt->sopt_val, 1593 m->m_len); 1594 if (error != 0) { 1595 m_freem(m0); 1596 return(error); 1597 } 1598 } else 1599 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 1600 sopt->sopt_valsize -= m->m_len; 1601 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1602 valsize += m->m_len; 1603 m = m->m_next; 1604 } 1605 if (m != NULL) { 1606 /* enough soopt buffer should be given from user-land */ 1607 m_freem(m0); 1608 return(EINVAL); 1609 } 1610 sopt->sopt_valsize = valsize; 1611 return 0; 1612 } 1613 1614 void 1615 sohasoutofband(so) 1616 struct socket *so; 1617 { 1618 if (so->so_sigio != NULL) 1619 pgsigio(so->so_sigio, SIGURG, 0); 1620 selwakeup(&so->so_rcv.sb_sel); 1621 } 1622 1623 int 1624 sopoll(struct socket *so, int events, struct ucred *cred, struct thread *td) 1625 { 1626 int revents = 0; 1627 int s = splnet(); 1628 1629 if (events & (POLLIN | POLLRDNORM)) 1630 if (soreadable(so)) 1631 revents |= events & (POLLIN | POLLRDNORM); 1632 1633 if (events & POLLINIGNEOF) 1634 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 1635 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 1636 revents |= POLLINIGNEOF; 1637 1638 if (events & (POLLOUT | POLLWRNORM)) 1639 if (sowriteable(so)) 1640 revents |= events & (POLLOUT | POLLWRNORM); 1641 1642 if (events & (POLLPRI | POLLRDBAND)) 1643 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 1644 revents |= events & (POLLPRI | POLLRDBAND); 1645 1646 if (revents == 0) { 1647 if (events & 1648 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 1649 POLLRDBAND)) { 1650 selrecord(td, &so->so_rcv.sb_sel); 1651 so->so_rcv.sb_flags |= SB_SEL; 1652 } 1653 1654 if (events & (POLLOUT | POLLWRNORM)) { 1655 selrecord(td, &so->so_snd.sb_sel); 1656 so->so_snd.sb_flags |= SB_SEL; 1657 } 1658 } 1659 1660 splx(s); 1661 return (revents); 1662 } 1663 1664 int 1665 sokqfilter(struct file *fp, struct knote *kn) 1666 { 1667 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1668 struct sockbuf *sb; 1669 int s; 1670 1671 switch (kn->kn_filter) { 1672 case EVFILT_READ: 1673 if (so->so_options & SO_ACCEPTCONN) 1674 kn->kn_fop = &solisten_filtops; 1675 else 1676 kn->kn_fop = &soread_filtops; 1677 sb = &so->so_rcv; 1678 break; 1679 case EVFILT_WRITE: 1680 kn->kn_fop = &sowrite_filtops; 1681 sb = &so->so_snd; 1682 break; 1683 default: 1684 return (1); 1685 } 1686 1687 s = splnet(); 1688 SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext); 1689 sb->sb_flags |= SB_KNOTE; 1690 splx(s); 1691 return (0); 1692 } 1693 1694 static void 1695 filt_sordetach(struct knote *kn) 1696 { 1697 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1698 int s = splnet(); 1699 1700 SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); 1701 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) 1702 so->so_rcv.sb_flags &= ~SB_KNOTE; 1703 splx(s); 1704 } 1705 1706 /*ARGSUSED*/ 1707 static int 1708 filt_soread(struct knote *kn, long hint) 1709 { 1710 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1711 1712 kn->kn_data = so->so_rcv.sb_cc; 1713 if (so->so_state & SS_CANTRCVMORE) { 1714 kn->kn_flags |= EV_EOF; 1715 kn->kn_fflags = so->so_error; 1716 return (1); 1717 } 1718 if (so->so_error) /* temporary udp error */ 1719 return (1); 1720 if (kn->kn_sfflags & NOTE_LOWAT) 1721 return (kn->kn_data >= kn->kn_sdata); 1722 return (kn->kn_data >= so->so_rcv.sb_lowat); 1723 } 1724 1725 static void 1726 filt_sowdetach(struct knote *kn) 1727 { 1728 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1729 int s = splnet(); 1730 1731 SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); 1732 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) 1733 so->so_snd.sb_flags &= ~SB_KNOTE; 1734 splx(s); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 filt_sowrite(struct knote *kn, long hint) 1740 { 1741 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1742 1743 kn->kn_data = sbspace(&so->so_snd); 1744 if (so->so_state & SS_CANTSENDMORE) { 1745 kn->kn_flags |= EV_EOF; 1746 kn->kn_fflags = so->so_error; 1747 return (1); 1748 } 1749 if (so->so_error) /* temporary udp error */ 1750 return (1); 1751 if (((so->so_state & SS_ISCONNECTED) == 0) && 1752 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1753 return (0); 1754 if (kn->kn_sfflags & NOTE_LOWAT) 1755 return (kn->kn_data >= kn->kn_sdata); 1756 return (kn->kn_data >= so->so_snd.sb_lowat); 1757 } 1758 1759 /*ARGSUSED*/ 1760 static int 1761 filt_solisten(struct knote *kn, long hint) 1762 { 1763 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1764 1765 kn->kn_data = so->so_qlen; 1766 return (! TAILQ_EMPTY(&so->so_comp)); 1767 } 1768