xref: /dflybsd-src/sys/kern/uipc_msg.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $DragonFly: src/sys/kern/uipc_msg.c,v 1.26 2008/10/27 02:56:30 sephe Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/msgport.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/socketops.h>
44 #include <sys/thread.h>
45 #include <sys/thread2.h>
46 #include <sys/msgport2.h>
47 #include <sys/mbuf.h>
48 #include <vm/pmap.h>
49 #include <net/netmsg2.h>
50 
51 #include <net/netisr.h>
52 #include <net/netmsg.h>
53 
54 /*
55  * Abort a socket and free it.  Called from soabort() only.  soabort()
56  * got a ref on the socket which we must free on reply.
57  */
58 void
59 so_pru_abort(struct socket *so)
60 {
61 	struct netmsg_pru_abort msg;
62 
63 	netmsg_init(&msg.base, so, &curthread->td_msgport,
64 		    0, so->so_proto->pr_usrreqs->pru_abort);
65 	(void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
66 	sofree(msg.base.nm_so);
67 }
68 
69 /*
70  * Abort a socket and free it, asynchronously.  Called from
71  * soaborta() only.  soaborta() got a ref on the socket which we must
72  * free on reply.
73  */
74 void
75 so_pru_aborta(struct socket *so)
76 {
77 	struct netmsg_pru_abort *msg;
78 
79 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
80 	netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
81 		    0, so->so_proto->pr_usrreqs->pru_abort);
82 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
83 }
84 
85 /*
86  * Abort a socket and free it.  Called from soabort_oncpu() only.
87  * Caller must make sure that the current CPU is inpcb's owner CPU.
88  */
89 void
90 so_pru_abort_oncpu(struct socket *so)
91 {
92 	struct netmsg_pru_abort msg;
93 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
94 
95 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
96 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
97 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
98 	func((netmsg_t)&msg);
99 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
100 	sofree(msg.base.nm_so);
101 }
102 
103 /*
104  * WARNING!  Synchronous call from user context
105  */
106 int
107 so_pru_accept_direct(struct socket *so, struct sockaddr **nam)
108 {
109 	struct netmsg_pru_accept msg;
110 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_accept;
111 
112 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
113 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
114 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
115 	msg.nm_nam = nam;
116 	func((netmsg_t)&msg);
117 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
118 	return(msg.base.lmsg.ms_error);
119 }
120 
121 int
122 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
123 {
124 	struct netmsg_pru_attach msg;
125 	int error;
126 
127 	netmsg_init(&msg.base, so, &curthread->td_msgport,
128 		    0, so->so_proto->pr_usrreqs->pru_attach);
129 	msg.nm_proto = proto;
130 	msg.nm_ai = ai;
131 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
132 	return (error);
133 }
134 
135 int
136 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
137 {
138 	struct netmsg_pru_attach msg;
139 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
140 
141 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
142 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
143 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
144 	msg.nm_proto = proto;
145 	msg.nm_ai = ai;
146 	func((netmsg_t)&msg);
147 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
148 	return(msg.base.lmsg.ms_error);
149 }
150 
151 /*
152  * NOTE: If the target port changes the bind operation will deal with it.
153  */
154 int
155 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
156 {
157 	struct netmsg_pru_bind msg;
158 	int error;
159 
160 	netmsg_init(&msg.base, so, &curthread->td_msgport,
161 		    0, so->so_proto->pr_usrreqs->pru_bind);
162 	msg.nm_nam = nam;
163 	msg.nm_td = td;		/* used only for prison_ip() */
164 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
165 	return (error);
166 }
167 
168 int
169 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
170 {
171 	struct netmsg_pru_connect msg;
172 	int error;
173 
174 	netmsg_init(&msg.base, so, &curthread->td_msgport,
175 		    0, so->so_proto->pr_usrreqs->pru_connect);
176 	msg.nm_nam = nam;
177 	msg.nm_td = td;
178 	msg.nm_m = NULL;
179 	msg.nm_flags = 0;
180 	msg.nm_reconnect = 0;
181 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
182 	return (error);
183 }
184 
185 int
186 so_pru_connect2(struct socket *so1, struct socket *so2)
187 {
188 	struct netmsg_pru_connect2 msg;
189 	int error;
190 
191 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
192 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
193 	msg.nm_so1 = so1;
194 	msg.nm_so2 = so2;
195 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
196 	return (error);
197 }
198 
199 /*
200  * WARNING!  Synchronous call from user context.  Control function may do
201  *	     copyin/copyout.
202  */
203 int
204 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
205 		      struct ifnet *ifp)
206 {
207 	struct netmsg_pru_control msg;
208 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
209 
210 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
211 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
212 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
213 	msg.nm_cmd = cmd;
214 	msg.nm_data = data;
215 	msg.nm_ifp = ifp;
216 	msg.nm_td = curthread;
217 	func((netmsg_t)&msg);
218 	KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
219 	return(msg.base.lmsg.ms_error);
220 }
221 
222 int
223 so_pru_detach(struct socket *so)
224 {
225 	struct netmsg_pru_detach msg;
226 	int error;
227 
228 	netmsg_init(&msg.base, so, &curthread->td_msgport,
229 		    0, so->so_proto->pr_usrreqs->pru_detach);
230 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
231 	return (error);
232 }
233 
234 int
235 so_pru_disconnect(struct socket *so)
236 {
237 	struct netmsg_pru_disconnect msg;
238 	int error;
239 
240 	netmsg_init(&msg.base, so, &curthread->td_msgport,
241 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
242 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
243 	return (error);
244 }
245 
246 int
247 so_pru_listen(struct socket *so, struct thread *td)
248 {
249 	struct netmsg_pru_listen msg;
250 	int error;
251 
252 	netmsg_init(&msg.base, so, &curthread->td_msgport,
253 		    0, so->so_proto->pr_usrreqs->pru_listen);
254 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
255 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
256 	return (error);
257 }
258 
259 int
260 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
261 {
262 	struct netmsg_pru_peeraddr msg;
263 	int error;
264 
265 	netmsg_init(&msg.base, so, &curthread->td_msgport,
266 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
267 	msg.nm_nam = nam;
268 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
269 	return (error);
270 }
271 
272 int
273 so_pru_rcvd(struct socket *so, int flags)
274 {
275 	struct netmsg_pru_rcvd msg;
276 	int error;
277 
278 	netmsg_init(&msg.base, so, &curthread->td_msgport,
279 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
280 	msg.nm_flags = flags;
281 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
282 	return (error);
283 }
284 
285 int
286 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
287 {
288 	struct netmsg_pru_rcvoob msg;
289 	int error;
290 
291 	netmsg_init(&msg.base, so, &curthread->td_msgport,
292 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
293 	msg.nm_m = m;
294 	msg.nm_flags = flags;
295 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
296 	return (error);
297 }
298 
299 /*
300  * NOTE: If the target port changes the implied connect will deal with it.
301  */
302 int
303 so_pru_send(struct socket *so, int flags, struct mbuf *m,
304 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
305 {
306 	struct netmsg_pru_send msg;
307 	int error;
308 
309 	netmsg_init(&msg.base, so, &curthread->td_msgport,
310 		    0, so->so_proto->pr_usrreqs->pru_send);
311 	msg.nm_flags = flags;
312 	msg.nm_m = m;
313 	msg.nm_addr = addr;
314 	msg.nm_control = control;
315 	msg.nm_td = td;
316 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
317 	return (error);
318 }
319 
320 static void
321 so_pru_sync_handler(netmsg_t msg)
322 {
323 	lwkt_replymsg(&msg->lmsg, 0);
324 }
325 
326 void
327 so_pru_sync(struct socket *so)
328 {
329 	struct netmsg_base msg;
330 
331 	netmsg_init(&msg, so, &curthread->td_msgport, 0,
332 	    so_pru_sync_handler);
333 	lwkt_domsg(so->so_port, &msg.lmsg, 0);
334 }
335 
336 void
337 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
338 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
339 {
340 	struct netmsg_pru_send *msg;
341 
342 	msg = &m->m_hdr.mh_sndmsg;
343 	netmsg_init(&msg->base, so, &netisr_apanic_rport,
344 		    0, so->so_proto->pr_usrreqs->pru_send);
345 	msg->nm_flags = flags | PRUS_NOREPLY;
346 	msg->nm_m = m;
347 	msg->nm_addr = addr;
348 	msg->nm_control = control;
349 	msg->nm_td = td;
350 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
351 }
352 
353 int
354 so_pru_sense(struct socket *so, struct stat *sb)
355 {
356 	struct netmsg_pru_sense msg;
357 	int error;
358 
359 	netmsg_init(&msg.base, so, &curthread->td_msgport,
360 		    0, so->so_proto->pr_usrreqs->pru_sense);
361 	msg.nm_stat = sb;
362 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
363 	return (error);
364 }
365 
366 int
367 so_pru_shutdown(struct socket *so)
368 {
369 	struct netmsg_pru_shutdown msg;
370 	int error;
371 
372 	netmsg_init(&msg.base, so, &curthread->td_msgport,
373 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
374 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
375 	return (error);
376 }
377 
378 int
379 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
380 {
381 	struct netmsg_pru_sockaddr msg;
382 	int error;
383 
384 	netmsg_init(&msg.base, so, &curthread->td_msgport,
385 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
386 	msg.nm_nam = nam;
387 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
388 	return (error);
389 }
390 
391 int
392 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
393 {
394 	struct netmsg_pr_ctloutput msg;
395 	int error;
396 
397 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
398 	netmsg_init(&msg.base, so, &curthread->td_msgport,
399 		    0, so->so_proto->pr_ctloutput);
400 	msg.nm_sopt = sopt;
401 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
402 	return (error);
403 }
404 
405 /*
406  * Protocol control input, typically via icmp.
407  *
408  * If the protocol pr_ctlport is not NULL we call it to figure out the
409  * protocol port.  If NULL is returned we can just return, otherwise
410  * we issue a netmsg to call pr_ctlinput in the proper thread.
411  *
412  * This must be done synchronously as arg and/or extra may point to
413  * temporary data.
414  */
415 void
416 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
417 {
418 	struct netmsg_pru_ctlinput msg;
419 	lwkt_port_t port;
420 
421 	if (pr->pr_ctlport == NULL)
422 		return;
423 	KKASSERT(pr->pr_ctlinput != NULL);
424 	port = pr->pr_ctlport(cmd, arg, extra);
425 	if (port == NULL)
426 		return;
427 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
428 		    0, pr->pr_ctlinput);
429 	msg.nm_cmd = cmd;
430 	msg.nm_arg = arg;
431 	msg.nm_extra = extra;
432 	lwkt_domsg(port, &msg.base.lmsg, 0);
433 }
434 
435 /*
436  * If we convert all the protosw pr_ functions for all the protocols
437  * to take a message directly, this layer can go away.  For the moment
438  * our dispatcher ignores the return value, but since we are handling
439  * the replymsg ourselves we return EASYNC by convention.
440  */
441 
442 /*
443  * Handle a predicate event request.  This function is only called once
444  * when the predicate message queueing request is received.
445  */
446 void
447 netmsg_so_notify(netmsg_t msg)
448 {
449 	struct lwkt_token *tok;
450 	struct signalsockbuf *ssb;
451 
452 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
453 			&msg->base.nm_so->so_rcv :
454 			&msg->base.nm_so->so_snd;
455 
456 	/*
457 	 * Reply immediately if the event has occured, otherwise queue the
458 	 * request.
459 	 *
460 	 * NOTE: Socket can change if this is an accept predicate so cache
461 	 *	 the token.
462 	 */
463 	tok = lwkt_token_pool_lookup(msg->base.nm_so);
464 	lwkt_gettoken(tok);
465 	if (msg->notify.nm_predicate(&msg->notify)) {
466 		lwkt_reltoken(tok);
467 		lwkt_replymsg(&msg->base.lmsg,
468 			      msg->base.lmsg.ms_error);
469 	} else {
470 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
471 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
472 		lwkt_reltoken(tok);
473 	}
474 }
475 
476 /*
477  * Called by doio when trying to abort a netmsg_so_notify message.
478  * Unlike the other functions this one is dispatched directly by
479  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
480  *
481  * The original message, lmsg, is under the control of the caller and
482  * will not be destroyed until we return so we can safely reference it
483  * in our synchronous abort request.
484  *
485  * This part of the abort request occurs on the originating cpu which
486  * means we may race the message flags and the original message may
487  * not even have been processed by the target cpu yet.
488  */
489 void
490 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
491 {
492 	struct netmsg_so_notify_abort msg;
493 
494 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
495 		netmsg_init(&msg.base, NULL, &curthread->td_msgport,
496 			    0, netmsg_so_notify_abort);
497 		msg.nm_notifymsg = (void *)lmsg;
498 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
499 	}
500 }
501 
502 /*
503  * Predicate requests can be aborted.  This function is only called once
504  * and will interlock against processing/reply races (since such races
505  * occur on the same thread that controls the port where the abort is
506  * requeued).
507  *
508  * This part of the abort request occurs on the target cpu.  The message
509  * flags must be tested again in case the test that we did on the
510  * originating cpu raced.  Since messages are handled in sequence, the
511  * original message will have already been handled by the loop and either
512  * replied to or queued.
513  *
514  * We really only need to interlock with MSGF_REPLY (a bit that is set on
515  * our cpu when we reply).  Note that MSGF_DONE is not set until the
516  * reply reaches the originating cpu.  Test both bits anyway.
517  */
518 void
519 netmsg_so_notify_abort(netmsg_t msg)
520 {
521 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
522 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
523 	struct signalsockbuf *ssb;
524 
525 	/*
526 	 * The original notify message is not destroyed until after the
527 	 * abort request is returned, so we can check its state.
528 	 */
529 	lwkt_getpooltoken(nmsg->base.nm_so);
530 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
531 		ssb = (nmsg->nm_etype & NM_REVENT) ?
532 				&nmsg->base.nm_so->so_rcv :
533 				&nmsg->base.nm_so->so_snd;
534 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
535 		lwkt_relpooltoken(nmsg->base.nm_so);
536 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
537 	} else {
538 		lwkt_relpooltoken(nmsg->base.nm_so);
539 	}
540 
541 	/*
542 	 * Reply to the abort message
543 	 */
544 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
545 }
546