xref: /dflybsd-src/sys/kern/uipc_msg.c (revision 67bf99c4e3c62e257027c8f0d3b312f44cfe622f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $DragonFly: src/sys/kern/uipc_msg.c,v 1.26 2008/10/27 02:56:30 sephe Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/msgport.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/socketops.h>
44 #include <sys/thread.h>
45 #include <sys/thread2.h>
46 #include <sys/msgport2.h>
47 #include <vm/pmap.h>
48 #include <net/netmsg2.h>
49 
50 #include <net/netisr.h>
51 #include <net/netmsg.h>
52 
53 /*
54  * Abort a socket and free it.  Called from soabort() only.
55  */
56 void
57 so_pru_abort(struct socket *so)
58 {
59 	struct netmsg_pru_abort msg;
60 
61 	netmsg_init(&msg.base, so, &curthread->td_msgport,
62 		    0, so->so_proto->pr_usrreqs->pru_abort);
63 	(void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
64 }
65 
66 /*
67  * Abort a socket and free it, asynchronously.  Called from
68  * soaborta() only.
69  */
70 void
71 so_pru_aborta(struct socket *so)
72 {
73 	struct netmsg_pru_abort *msg;
74 
75 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
76 	netmsg_init(&msg->base, so, &netisr_afree_rport,
77 		    0, so->so_proto->pr_usrreqs->pru_abort);
78 	lwkt_sendmsg(so->so_port, &msg->base.lmsg);
79 }
80 
81 /*
82  * Abort a socket and free it.  Called from soabort_oncpu() only.
83  * Caller must make sure that the current CPU is inpcb's owner CPU.
84  */
85 void
86 so_pru_abort_oncpu(struct socket *so)
87 {
88 	struct netmsg_pru_abort msg;
89 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
90 
91 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
92 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
93 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
94 	func((netmsg_t)&msg);
95 }
96 
97 /*
98  * WARNING!  Synchronous call from user context
99  */
100 int
101 so_pru_accept_direct(struct socket *so, struct sockaddr **nam)
102 {
103 	struct netmsg_pru_accept msg;
104 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_accept;
105 
106 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
107 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
108 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
109 	msg.nm_nam = nam;
110 	func((netmsg_t)&msg);
111 	return(msg.base.lmsg.ms_error);
112 }
113 
114 int
115 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
116 {
117 	struct netmsg_pru_attach msg;
118 	int error;
119 
120 	netmsg_init(&msg.base, so, &curthread->td_msgport,
121 		    0, so->so_proto->pr_usrreqs->pru_attach);
122 	msg.nm_proto = proto;
123 	msg.nm_ai = ai;
124 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
125 	return (error);
126 }
127 
128 int
129 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
130 {
131 	struct netmsg_pru_attach msg;
132 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
133 
134 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
135 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
136 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
137 	msg.nm_proto = proto;
138 	msg.nm_ai = ai;
139 	func((netmsg_t)&msg);
140 	return(msg.base.lmsg.ms_error);
141 }
142 
143 /*
144  * NOTE: If the target port changes the bind operation will deal with it.
145  */
146 int
147 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
148 {
149 	struct netmsg_pru_bind msg;
150 	int error;
151 
152 	netmsg_init(&msg.base, so, &curthread->td_msgport,
153 		    0, so->so_proto->pr_usrreqs->pru_bind);
154 	msg.nm_nam = nam;
155 	msg.nm_td = td;		/* used only for prison_ip() */
156 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
157 	return (error);
158 }
159 
160 int
161 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
162 {
163 	struct netmsg_pru_connect msg;
164 	int error;
165 
166 	netmsg_init(&msg.base, so, &curthread->td_msgport,
167 		    0, so->so_proto->pr_usrreqs->pru_connect);
168 	msg.nm_nam = nam;
169 	msg.nm_td = td;
170 	msg.nm_m = NULL;
171 	msg.nm_flags = 0;
172 	msg.nm_reconnect = 0;
173 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
174 	return (error);
175 }
176 
177 int
178 so_pru_connect2(struct socket *so1, struct socket *so2)
179 {
180 	struct netmsg_pru_connect2 msg;
181 	int error;
182 
183 	netmsg_init(&msg.base, so1, &curthread->td_msgport,
184 		    0, so1->so_proto->pr_usrreqs->pru_connect2);
185 	msg.nm_so1 = so1;
186 	msg.nm_so2 = so2;
187 	error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
188 	return (error);
189 }
190 
191 /*
192  * WARNING!  Synchronous call from user context.  Control function may do
193  *	     copyin/copyout.
194  */
195 int
196 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
197 		      struct ifnet *ifp)
198 {
199 	struct netmsg_pru_control msg;
200 	netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
201 
202 	netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
203 	msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
204 	msg.base.lmsg.ms_flags |= MSGF_SYNC;
205 	msg.nm_cmd = cmd;
206 	msg.nm_data = data;
207 	msg.nm_ifp = ifp;
208 	msg.nm_td = curthread;
209 	func((netmsg_t)&msg);
210 	return(msg.base.lmsg.ms_error);
211 }
212 
213 int
214 so_pru_detach(struct socket *so)
215 {
216 	struct netmsg_pru_detach msg;
217 	int error;
218 
219 	netmsg_init(&msg.base, so, &curthread->td_msgport,
220 		    0, so->so_proto->pr_usrreqs->pru_detach);
221 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
222 	return (error);
223 }
224 
225 int
226 so_pru_disconnect(struct socket *so)
227 {
228 	struct netmsg_pru_disconnect msg;
229 	int error;
230 
231 	netmsg_init(&msg.base, so, &curthread->td_msgport,
232 		    0, so->so_proto->pr_usrreqs->pru_disconnect);
233 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
234 	return (error);
235 }
236 
237 int
238 so_pru_listen(struct socket *so, struct thread *td)
239 {
240 	struct netmsg_pru_listen msg;
241 	int error;
242 
243 	netmsg_init(&msg.base, so, &curthread->td_msgport,
244 		    0, so->so_proto->pr_usrreqs->pru_listen);
245 	msg.nm_td = td;		/* used only for prison_ip() XXX JH */
246 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
247 	return (error);
248 }
249 
250 int
251 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
252 {
253 	struct netmsg_pru_peeraddr msg;
254 	int error;
255 
256 	netmsg_init(&msg.base, so, &curthread->td_msgport,
257 		    0, so->so_proto->pr_usrreqs->pru_peeraddr);
258 	msg.nm_nam = nam;
259 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
260 	return (error);
261 }
262 
263 int
264 so_pru_rcvd(struct socket *so, int flags)
265 {
266 	struct netmsg_pru_rcvd msg;
267 	int error;
268 
269 	netmsg_init(&msg.base, so, &curthread->td_msgport,
270 		    0, so->so_proto->pr_usrreqs->pru_rcvd);
271 	msg.nm_flags = flags;
272 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
273 	return (error);
274 }
275 
276 int
277 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
278 {
279 	struct netmsg_pru_rcvoob msg;
280 	int error;
281 
282 	netmsg_init(&msg.base, so, &curthread->td_msgport,
283 		    0, so->so_proto->pr_usrreqs->pru_rcvoob);
284 	msg.nm_m = m;
285 	msg.nm_flags = flags;
286 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
287 	return (error);
288 }
289 
290 /*
291  * NOTE: If the target port changes the implied connect will deal with it.
292  */
293 int
294 so_pru_send(struct socket *so, int flags, struct mbuf *m,
295 	    struct sockaddr *addr, struct mbuf *control, struct thread *td)
296 {
297 	struct netmsg_pru_send msg;
298 	int error;
299 
300 	netmsg_init(&msg.base, so, &curthread->td_msgport,
301 		    0, so->so_proto->pr_usrreqs->pru_send);
302 	msg.nm_flags = flags;
303 	msg.nm_m = m;
304 	msg.nm_addr = addr;
305 	msg.nm_control = control;
306 	msg.nm_td = td;
307 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
308 	return (error);
309 }
310 
311 int
312 so_pru_sense(struct socket *so, struct stat *sb)
313 {
314 	struct netmsg_pru_sense msg;
315 	int error;
316 
317 	netmsg_init(&msg.base, so, &curthread->td_msgport,
318 		    0, so->so_proto->pr_usrreqs->pru_sense);
319 	msg.nm_stat = sb;
320 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
321 	return (error);
322 }
323 
324 int
325 so_pru_shutdown(struct socket *so)
326 {
327 	struct netmsg_pru_shutdown msg;
328 	int error;
329 
330 	netmsg_init(&msg.base, so, &curthread->td_msgport,
331 		    0, so->so_proto->pr_usrreqs->pru_shutdown);
332 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
333 	return (error);
334 }
335 
336 int
337 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
338 {
339 	struct netmsg_pru_sockaddr msg;
340 	int error;
341 
342 	netmsg_init(&msg.base, so, &curthread->td_msgport,
343 		    0, so->so_proto->pr_usrreqs->pru_sockaddr);
344 	msg.nm_nam = nam;
345 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
346 	return (error);
347 }
348 
349 int
350 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
351 {
352 	struct netmsg_pr_ctloutput msg;
353 	int error;
354 
355 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
356 	netmsg_init(&msg.base, so, &curthread->td_msgport,
357 		    0, so->so_proto->pr_ctloutput);
358 	msg.nm_sopt = sopt;
359 	error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
360 	return (error);
361 }
362 
363 /*
364  * Protocol control input, typically via icmp.
365  *
366  * If the protocol pr_ctlport is not NULL we call it to figure out the
367  * protocol port.  If NULL is returned we can just return, otherwise
368  * we issue a netmsg to call pr_ctlinput in the proper thread.
369  *
370  * This must be done synchronously as arg and/or extra may point to
371  * temporary data.
372  */
373 void
374 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
375 {
376 	struct netmsg_pru_ctlinput msg;
377 	lwkt_port_t port;
378 
379 	if (pr->pr_ctlport == NULL)
380 		return;
381 	KKASSERT(pr->pr_ctlinput != NULL);
382 	port = pr->pr_ctlport(cmd, arg, extra);
383 	if (port == NULL)
384 		return;
385 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
386 		    0, pr->pr_ctlinput);
387 	msg.nm_cmd = cmd;
388 	msg.nm_arg = arg;
389 	msg.nm_extra = extra;
390 	lwkt_domsg(port, &msg.base.lmsg, 0);
391 }
392 
393 /*
394  * If we convert all the protosw pr_ functions for all the protocols
395  * to take a message directly, this layer can go away.  For the moment
396  * our dispatcher ignores the return value, but since we are handling
397  * the replymsg ourselves we return EASYNC by convention.
398  */
399 
400 /*
401  * Handle a predicate event request.  This function is only called once
402  * when the predicate message queueing request is received.
403  */
404 void
405 netmsg_so_notify(netmsg_t msg)
406 {
407 	struct signalsockbuf *ssb;
408 
409 	ssb = (msg->notify.nm_etype & NM_REVENT) ?
410 			&msg->base.nm_so->so_rcv :
411 			&msg->base.nm_so->so_snd;
412 
413 	/*
414 	 * Reply immediately if the event has occured, otherwise queue the
415 	 * request.
416 	 */
417 	if (msg->notify.nm_predicate(&msg->notify)) {
418 		lwkt_replymsg(&msg->base.lmsg,
419 			      msg->base.lmsg.ms_error);
420 	} else {
421 		lwkt_gettoken(&kq_token);
422 		TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
423 		atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
424 		lwkt_reltoken(&kq_token);
425 	}
426 }
427 
428 /*
429  * Called by doio when trying to abort a netmsg_so_notify message.
430  * Unlike the other functions this one is dispatched directly by
431  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
432  *
433  * The original message, lmsg, is under the control of the caller and
434  * will not be destroyed until we return so we can safely reference it
435  * in our synchronous abort request.
436  *
437  * This part of the abort request occurs on the originating cpu which
438  * means we may race the message flags and the original message may
439  * not even have been processed by the target cpu yet.
440  */
441 void
442 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
443 {
444 	struct netmsg_so_notify_abort msg;
445 
446 	if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
447 		netmsg_init(&msg.base, NULL, &curthread->td_msgport,
448 			    0, netmsg_so_notify_abort);
449 		msg.nm_notifymsg = (void *)lmsg;
450 		lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
451 	}
452 }
453 
454 /*
455  * Predicate requests can be aborted.  This function is only called once
456  * and will interlock against processing/reply races (since such races
457  * occur on the same thread that controls the port where the abort is
458  * requeued).
459  *
460  * This part of the abort request occurs on the target cpu.  The message
461  * flags must be tested again in case the test that we did on the
462  * originating cpu raced.  Since messages are handled in sequence, the
463  * original message will have already been handled by the loop and either
464  * replied to or queued.
465  *
466  * We really only need to interlock with MSGF_REPLY (a bit that is set on
467  * our cpu when we reply).  Note that MSGF_DONE is not set until the
468  * reply reaches the originating cpu.  Test both bits anyway.
469  */
470 void
471 netmsg_so_notify_abort(netmsg_t msg)
472 {
473 	struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
474 	struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
475 	struct signalsockbuf *ssb;
476 
477 	/*
478 	 * The original notify message is not destroyed until after the
479 	 * abort request is returned, so we can check its state.
480 	 */
481 	if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
482 		ssb = (nmsg->nm_etype & NM_REVENT) ?
483 				&nmsg->base.nm_so->so_rcv :
484 				&nmsg->base.nm_so->so_snd;
485 		lwkt_gettoken(&kq_token);
486 		TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
487 		lwkt_reltoken(&kq_token);
488 		lwkt_replymsg(&nmsg->base.lmsg, EINTR);
489 	}
490 
491 	/*
492 	 * Reply to the abort message
493 	 */
494 	lwkt_replymsg(&abrtmsg->base.lmsg, 0);
495 }
496