1 /* 2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/msgport.h> 38 #include <sys/protosw.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/socketops.h> 42 #include <sys/thread.h> 43 #include <sys/thread2.h> 44 #include <sys/msgport2.h> 45 #include <sys/spinlock2.h> 46 #include <sys/mbuf.h> 47 #include <vm/pmap.h> 48 49 #include <net/netmsg2.h> 50 #include <sys/socketvar2.h> 51 52 #include <net/netisr.h> 53 #include <net/netmsg.h> 54 55 /* 56 * Abort a socket and free it. Called from soabort() only. soabort() 57 * got a ref on the socket which we must free on reply. 58 */ 59 void 60 so_pru_abort(struct socket *so) 61 { 62 struct netmsg_pru_abort msg; 63 64 netmsg_init(&msg.base, so, &curthread->td_msgport, 65 0, so->so_proto->pr_usrreqs->pru_abort); 66 (void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 67 sofree(msg.base.nm_so); 68 } 69 70 /* 71 * Abort a socket and free it, asynchronously. Called from 72 * soaborta() only. soaborta() got a ref on the socket which we must 73 * free on reply. 74 */ 75 void 76 so_pru_aborta(struct socket *so) 77 { 78 struct netmsg_pru_abort *msg; 79 80 msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO); 81 netmsg_init(&msg->base, so, &netisr_afree_free_so_rport, 82 0, so->so_proto->pr_usrreqs->pru_abort); 83 lwkt_sendmsg(so->so_port, &msg->base.lmsg); 84 } 85 86 /* 87 * Abort a socket and free it. Called from soabort_oncpu() only. 88 * Caller must make sure that the current CPU is inpcb's owner CPU. 89 */ 90 void 91 so_pru_abort_oncpu(struct socket *so) 92 { 93 struct netmsg_pru_abort msg; 94 netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort; 95 96 netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func); 97 msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE); 98 msg.base.lmsg.ms_flags |= MSGF_SYNC; 99 func((netmsg_t)&msg); 100 KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE); 101 sofree(msg.base.nm_so); 102 } 103 104 int 105 so_pru_accept(struct socket *so, struct sockaddr **nam) 106 { 107 struct netmsg_pru_accept msg; 108 109 netmsg_init(&msg.base, so, &curthread->td_msgport, 110 0, so->so_proto->pr_usrreqs->pru_accept); 111 msg.nm_nam = nam; 112 113 return lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 114 } 115 116 int 117 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai) 118 { 119 struct netmsg_pru_attach msg; 120 int error; 121 122 netmsg_init(&msg.base, so, &curthread->td_msgport, 123 0, so->so_proto->pr_usrreqs->pru_attach); 124 msg.nm_proto = proto; 125 msg.nm_ai = ai; 126 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 127 return (error); 128 } 129 130 int 131 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai) 132 { 133 struct netmsg_pru_attach msg; 134 netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach; 135 136 netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func); 137 msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE); 138 msg.base.lmsg.ms_flags |= MSGF_SYNC; 139 msg.nm_proto = proto; 140 msg.nm_ai = ai; 141 func((netmsg_t)&msg); 142 KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE); 143 return(msg.base.lmsg.ms_error); 144 } 145 146 /* 147 * NOTE: If the target port changes the bind operation will deal with it. 148 */ 149 int 150 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 151 { 152 struct netmsg_pru_bind msg; 153 int error; 154 155 netmsg_init(&msg.base, so, &curthread->td_msgport, 156 0, so->so_proto->pr_usrreqs->pru_bind); 157 msg.nm_nam = nam; 158 msg.nm_td = td; /* used only for prison_ip() */ 159 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 160 return (error); 161 } 162 163 int 164 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 165 { 166 struct netmsg_pru_connect msg; 167 int error; 168 169 netmsg_init(&msg.base, so, &curthread->td_msgport, 170 0, so->so_proto->pr_usrreqs->pru_connect); 171 msg.nm_nam = nam; 172 msg.nm_td = td; 173 msg.nm_m = NULL; 174 msg.nm_flags = 0; 175 msg.nm_reconnect = 0; 176 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 177 return (error); 178 } 179 180 int 181 so_pru_connect2(struct socket *so1, struct socket *so2) 182 { 183 struct netmsg_pru_connect2 msg; 184 int error; 185 186 netmsg_init(&msg.base, so1, &curthread->td_msgport, 187 0, so1->so_proto->pr_usrreqs->pru_connect2); 188 msg.nm_so1 = so1; 189 msg.nm_so2 = so2; 190 error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0); 191 return (error); 192 } 193 194 /* 195 * WARNING! Synchronous call from user context. Control function may do 196 * copyin/copyout. 197 */ 198 int 199 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data, 200 struct ifnet *ifp) 201 { 202 struct netmsg_pru_control msg; 203 netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control; 204 205 netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func); 206 msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE); 207 msg.base.lmsg.ms_flags |= MSGF_SYNC; 208 msg.nm_cmd = cmd; 209 msg.nm_data = data; 210 msg.nm_ifp = ifp; 211 msg.nm_td = curthread; 212 func((netmsg_t)&msg); 213 KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE); 214 return(msg.base.lmsg.ms_error); 215 } 216 217 int 218 so_pru_detach(struct socket *so) 219 { 220 struct netmsg_pru_detach msg; 221 int error; 222 223 netmsg_init(&msg.base, so, &curthread->td_msgport, 224 0, so->so_proto->pr_usrreqs->pru_detach); 225 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 226 return (error); 227 } 228 229 void 230 so_pru_detach_direct(struct socket *so) 231 { 232 struct netmsg_pru_detach msg; 233 netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach; 234 235 netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func); 236 msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE); 237 msg.base.lmsg.ms_flags |= MSGF_SYNC; 238 func((netmsg_t)&msg); 239 KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE); 240 } 241 242 int 243 so_pru_disconnect(struct socket *so) 244 { 245 struct netmsg_pru_disconnect msg; 246 int error; 247 248 netmsg_init(&msg.base, so, &curthread->td_msgport, 249 0, so->so_proto->pr_usrreqs->pru_disconnect); 250 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 251 return (error); 252 } 253 254 void 255 so_pru_disconnect_direct(struct socket *so) 256 { 257 struct netmsg_pru_disconnect msg; 258 netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect; 259 260 netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func); 261 msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE); 262 msg.base.lmsg.ms_flags |= MSGF_SYNC; 263 func((netmsg_t)&msg); 264 KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE); 265 } 266 267 int 268 so_pru_listen(struct socket *so, struct thread *td) 269 { 270 struct netmsg_pru_listen msg; 271 int error; 272 273 netmsg_init(&msg.base, so, &curthread->td_msgport, 274 0, so->so_proto->pr_usrreqs->pru_listen); 275 msg.nm_td = td; /* used only for prison_ip() XXX JH */ 276 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 277 return (error); 278 } 279 280 int 281 so_pru_peeraddr(struct socket *so, struct sockaddr **nam) 282 { 283 struct netmsg_pru_peeraddr msg; 284 int error; 285 286 netmsg_init(&msg.base, so, &curthread->td_msgport, 287 0, so->so_proto->pr_usrreqs->pru_peeraddr); 288 msg.nm_nam = nam; 289 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 290 return (error); 291 } 292 293 int 294 so_pru_rcvd(struct socket *so, int flags) 295 { 296 struct netmsg_pru_rcvd msg; 297 int error; 298 299 netmsg_init(&msg.base, so, &curthread->td_msgport, 300 0, so->so_proto->pr_usrreqs->pru_rcvd); 301 msg.nm_flags = flags; 302 msg.nm_pru_flags = 0; 303 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 304 return (error); 305 } 306 307 void 308 so_pru_rcvd_async(struct socket *so) 309 { 310 lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg; 311 312 KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD, 313 ("async pru_rcvd is not supported")); 314 315 /* 316 * WARNING! Spinlock is a bit dodgy, use hacked up sendmsg 317 * to avoid deadlocking. 318 */ 319 spin_lock(&so->so_rcvd_spin); 320 if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) { 321 if (lmsg->ms_flags & MSGF_DONE) { 322 soreference(so); 323 lwkt_sendmsg_stage1(so->so_port, lmsg); 324 spin_unlock(&so->so_rcvd_spin); 325 lwkt_sendmsg_stage2(so->so_port, lmsg); 326 } else { 327 spin_unlock(&so->so_rcvd_spin); 328 } 329 } else { 330 static int deadlog = 0; 331 332 if (!deadlog) { 333 kprintf("async rcvd is dead\n"); 334 deadlog = 1; 335 } 336 spin_unlock(&so->so_rcvd_spin); 337 } 338 } 339 340 int 341 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags) 342 { 343 struct netmsg_pru_rcvoob msg; 344 int error; 345 346 netmsg_init(&msg.base, so, &curthread->td_msgport, 347 0, so->so_proto->pr_usrreqs->pru_rcvoob); 348 msg.nm_m = m; 349 msg.nm_flags = flags; 350 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 351 return (error); 352 } 353 354 /* 355 * NOTE: If the target port changes the implied connect will deal with it. 356 */ 357 int 358 so_pru_send(struct socket *so, int flags, struct mbuf *m, 359 struct sockaddr *addr, struct mbuf *control, struct thread *td) 360 { 361 struct netmsg_pru_send msg; 362 int error; 363 364 netmsg_init(&msg.base, so, &curthread->td_msgport, 365 0, so->so_proto->pr_usrreqs->pru_send); 366 msg.nm_flags = flags; 367 msg.nm_m = m; 368 msg.nm_addr = addr; 369 msg.nm_control = control; 370 msg.nm_td = td; 371 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 372 return (error); 373 } 374 375 void 376 so_pru_sync(struct socket *so) 377 { 378 struct netmsg_base msg; 379 380 netmsg_init(&msg, so, &curthread->td_msgport, 0, 381 netmsg_sync_handler); 382 lwkt_domsg(so->so_port, &msg.lmsg, 0); 383 } 384 385 void 386 so_pru_send_async(struct socket *so, int flags, struct mbuf *m, 387 struct sockaddr *addr0, struct mbuf *control, struct thread *td) 388 { 389 struct netmsg_pru_send *msg; 390 struct sockaddr *addr = NULL; 391 392 KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND, 393 ("async pru_send is not supported")); 394 395 flags |= PRUS_NOREPLY; 396 if (addr0 != NULL) { 397 addr = kmalloc(addr0->sa_len, M_SONAME, M_WAITOK); 398 memcpy(addr, addr0, addr0->sa_len); 399 flags |= PRUS_FREEADDR; 400 } 401 402 msg = &m->m_hdr.mh_sndmsg; 403 netmsg_init(&msg->base, so, &netisr_apanic_rport, 404 0, so->so_proto->pr_usrreqs->pru_send); 405 msg->nm_flags = flags; 406 msg->nm_m = m; 407 msg->nm_addr = addr; 408 msg->nm_control = control; 409 msg->nm_td = td; 410 lwkt_sendmsg(so->so_port, &msg->base.lmsg); 411 } 412 413 int 414 so_pru_sense(struct socket *so, struct stat *sb) 415 { 416 struct netmsg_pru_sense msg; 417 int error; 418 419 netmsg_init(&msg.base, so, &curthread->td_msgport, 420 0, so->so_proto->pr_usrreqs->pru_sense); 421 msg.nm_stat = sb; 422 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 423 return (error); 424 } 425 426 int 427 so_pru_shutdown(struct socket *so) 428 { 429 struct netmsg_pru_shutdown msg; 430 int error; 431 432 netmsg_init(&msg.base, so, &curthread->td_msgport, 433 0, so->so_proto->pr_usrreqs->pru_shutdown); 434 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 435 return (error); 436 } 437 438 int 439 so_pru_sockaddr(struct socket *so, struct sockaddr **nam) 440 { 441 struct netmsg_pru_sockaddr msg; 442 int error; 443 444 netmsg_init(&msg.base, so, &curthread->td_msgport, 445 0, so->so_proto->pr_usrreqs->pru_sockaddr); 446 msg.nm_nam = nam; 447 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 448 return (error); 449 } 450 451 int 452 so_pr_ctloutput(struct socket *so, struct sockopt *sopt) 453 { 454 struct netmsg_pr_ctloutput msg; 455 int error; 456 457 KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val)); 458 netmsg_init(&msg.base, so, &curthread->td_msgport, 459 0, so->so_proto->pr_ctloutput); 460 msg.nm_sopt = sopt; 461 error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0); 462 return (error); 463 } 464 465 /* 466 * Protocol control input, typically via icmp. 467 * 468 * If the protocol pr_ctlport is not NULL we call it to figure out the 469 * protocol port. If NULL is returned we can just return, otherwise 470 * we issue a netmsg to call pr_ctlinput in the proper thread. 471 * 472 * This must be done synchronously as arg and/or extra may point to 473 * temporary data. 474 */ 475 void 476 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra) 477 { 478 struct netmsg_pru_ctlinput msg; 479 lwkt_port_t port; 480 481 if (pr->pr_ctlport == NULL) 482 return; 483 KKASSERT(pr->pr_ctlinput != NULL); 484 port = pr->pr_ctlport(cmd, arg, extra); 485 if (port == NULL) 486 return; 487 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 488 0, pr->pr_ctlinput); 489 msg.nm_cmd = cmd; 490 msg.nm_arg = arg; 491 msg.nm_extra = extra; 492 lwkt_domsg(port, &msg.base.lmsg, 0); 493 } 494 495 /* 496 * If we convert all the protosw pr_ functions for all the protocols 497 * to take a message directly, this layer can go away. For the moment 498 * our dispatcher ignores the return value, but since we are handling 499 * the replymsg ourselves we return EASYNC by convention. 500 */ 501 502 /* 503 * Handle a predicate event request. This function is only called once 504 * when the predicate message queueing request is received. 505 */ 506 void 507 netmsg_so_notify(netmsg_t msg) 508 { 509 struct lwkt_token *tok; 510 struct signalsockbuf *ssb; 511 512 ssb = (msg->notify.nm_etype & NM_REVENT) ? 513 &msg->base.nm_so->so_rcv : 514 &msg->base.nm_so->so_snd; 515 516 /* 517 * Reply immediately if the event has occured, otherwise queue the 518 * request. 519 * 520 * NOTE: Socket can change if this is an accept predicate so cache 521 * the token. 522 */ 523 tok = lwkt_token_pool_lookup(msg->base.nm_so); 524 lwkt_gettoken(tok); 525 if (msg->notify.nm_predicate(&msg->notify)) { 526 lwkt_reltoken(tok); 527 lwkt_replymsg(&msg->base.lmsg, 528 msg->base.lmsg.ms_error); 529 } else { 530 TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list); 531 atomic_set_int(&ssb->ssb_flags, SSB_MEVENT); 532 lwkt_reltoken(tok); 533 } 534 } 535 536 /* 537 * Called by doio when trying to abort a netmsg_so_notify message. 538 * Unlike the other functions this one is dispatched directly by 539 * the LWKT subsystem, so it takes a lwkt_msg_t as an argument. 540 * 541 * The original message, lmsg, is under the control of the caller and 542 * will not be destroyed until we return so we can safely reference it 543 * in our synchronous abort request. 544 * 545 * This part of the abort request occurs on the originating cpu which 546 * means we may race the message flags and the original message may 547 * not even have been processed by the target cpu yet. 548 */ 549 void 550 netmsg_so_notify_doabort(lwkt_msg_t lmsg) 551 { 552 struct netmsg_so_notify_abort msg; 553 554 if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) { 555 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 556 0, netmsg_so_notify_abort); 557 msg.nm_notifymsg = (void *)lmsg; 558 lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0); 559 } 560 } 561 562 /* 563 * Predicate requests can be aborted. This function is only called once 564 * and will interlock against processing/reply races (since such races 565 * occur on the same thread that controls the port where the abort is 566 * requeued). 567 * 568 * This part of the abort request occurs on the target cpu. The message 569 * flags must be tested again in case the test that we did on the 570 * originating cpu raced. Since messages are handled in sequence, the 571 * original message will have already been handled by the loop and either 572 * replied to or queued. 573 * 574 * We really only need to interlock with MSGF_REPLY (a bit that is set on 575 * our cpu when we reply). Note that MSGF_DONE is not set until the 576 * reply reaches the originating cpu. Test both bits anyway. 577 */ 578 void 579 netmsg_so_notify_abort(netmsg_t msg) 580 { 581 struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort; 582 struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg; 583 struct signalsockbuf *ssb; 584 585 /* 586 * The original notify message is not destroyed until after the 587 * abort request is returned, so we can check its state. 588 */ 589 lwkt_getpooltoken(nmsg->base.nm_so); 590 if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) { 591 ssb = (nmsg->nm_etype & NM_REVENT) ? 592 &nmsg->base.nm_so->so_rcv : 593 &nmsg->base.nm_so->so_snd; 594 TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list); 595 lwkt_relpooltoken(nmsg->base.nm_so); 596 lwkt_replymsg(&nmsg->base.lmsg, EINTR); 597 } else { 598 lwkt_relpooltoken(nmsg->base.nm_so); 599 } 600 601 /* 602 * Reply to the abort message 603 */ 604 lwkt_replymsg(&abrtmsg->base.lmsg, 0); 605 } 606 607 void 608 so_async_rcvd_reply(struct socket *so) 609 { 610 /* 611 * Spinlock safe, reply runs to degenerate lwkt_null_replyport() 612 */ 613 spin_lock(&so->so_rcvd_spin); 614 lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0); 615 spin_unlock(&so->so_rcvd_spin); 616 sofree(so); 617 } 618 619 void 620 so_async_rcvd_drop(struct socket *so) 621 { 622 lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg; 623 624 again: 625 /* 626 * Spinlock safe, reply runs to degenerate lwkt_spin_dropmsg() 627 */ 628 spin_lock(&so->so_rcvd_spin); 629 if (lwkt_dropmsg(lmsg) == 0) 630 sofree(so); 631 so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD; 632 spin_unlock(&so->so_rcvd_spin); 633 if ((lmsg->ms_flags & MSGF_DONE) == 0) { 634 kprintf("Warning: tcp: so_async_rcvd_drop() raced message\n"); 635 tsleep(so, 0, "soadrop", 1); 636 goto again; 637 } 638 } 639