xref: /dflybsd-src/sys/kern/sysv_shm.c (revision d78d3a2272f5ecf9e0b570e362128240417a1b85)
1 /*
2  * Copyright (c) 1994 Adam Glass and Charles Hannum.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. All advertising materials mentioning features or use of this software
13  *    must display the following acknowledgement:
14  *	This product includes software developed by Adam Glass and Charles
15  *	Hannum.
16  * 4. The names of the authors may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "opt_sysvipc.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sysproto.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/shm.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/sysent.h>
44 #include <sys/jail.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_param.h>
48 #include <sys/lock.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pager.h>
54 
55 static MALLOC_DEFINE(M_SHM, "shm", "SVID compatible shared memory segments");
56 
57 static int shmget_allocate_segment (struct proc *p, struct shmget_args *uap, int mode);
58 static int shmget_existing (struct proc *p, struct shmget_args *uap, int mode, int segnum);
59 
60 #define	SHMSEG_FREE     	0x0200
61 #define	SHMSEG_REMOVED  	0x0400
62 #define	SHMSEG_ALLOCATED	0x0800
63 #define	SHMSEG_WANTED		0x1000
64 
65 static int shm_last_free, shm_committed, shmalloced;
66 int shm_nused;
67 static struct shmid_ds	*shmsegs;
68 static struct lwkt_token shm_token = LWKT_TOKEN_INITIALIZER(shm_token);
69 
70 struct shm_handle {
71 	/* vm_offset_t kva; */
72 	vm_object_t shm_object;
73 };
74 
75 struct shmmap_state {
76 	vm_offset_t va;
77 	int shmid;
78 	int reserved;
79 };
80 
81 static void shm_deallocate_segment (struct shmid_ds *);
82 static int shm_find_segment_by_key (key_t);
83 static struct shmid_ds *shm_find_segment_by_shmid (int);
84 static int shm_delete_mapping (struct vmspace *vm, struct shmmap_state *);
85 static void shmrealloc (void);
86 static void shminit (void *);
87 
88 /*
89  * Tuneable values
90  */
91 #ifndef SHMMIN
92 #define	SHMMIN	1
93 #endif
94 #ifndef SHMMNI
95 #define	SHMMNI	512
96 #endif
97 #ifndef SHMSEG
98 #define	SHMSEG	1024
99 #endif
100 
101 struct	shminfo shminfo = {
102 	0,
103 	SHMMIN,
104 	SHMMNI,
105 	SHMSEG,
106 	0
107 };
108 
109 /*
110  * allow-removed    Allow a shared memory segment to be attached by its shmid
111  *		    even after it has been deleted, as long as it was still
112  *		    being referenced by someone.  This is a trick used by
113  *		    chrome and other applications to avoid leaving shm
114  *		    segments hanging around after the application is killed
115  *		    or seg-faults unexpectedly.
116  *
117  * use-phys	    Shared memory segments are to use physical memory by
118  *		    default, which may allow the kernel to better-optimize
119  *		    the pmap and reduce overhead.  The pages are effectively
120  *		    wired.
121  */
122 static int shm_allow_removed = 1;
123 static int shm_use_phys = 1;
124 
125 TUNABLE_LONG("kern.ipc.shmmin", &shminfo.shmmin);
126 TUNABLE_LONG("kern.ipc.shmmni", &shminfo.shmmni);
127 TUNABLE_LONG("kern.ipc.shmseg", &shminfo.shmseg);
128 TUNABLE_LONG("kern.ipc.shmmaxpgs", &shminfo.shmall);
129 TUNABLE_INT("kern.ipc.shm_use_phys", &shm_use_phys);
130 
131 SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmax, CTLFLAG_RW, &shminfo.shmmax, 0,
132     "Max shared memory segment size");
133 SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmin, CTLFLAG_RW, &shminfo.shmmin, 0,
134     "Min shared memory segment size");
135 SYSCTL_LONG(_kern_ipc, OID_AUTO, shmmni, CTLFLAG_RD, &shminfo.shmmni, 0,
136     "Max number of shared memory identifiers");
137 SYSCTL_LONG(_kern_ipc, OID_AUTO, shmseg, CTLFLAG_RW, &shminfo.shmseg, 0,
138     "Max shared memory segments per process");
139 SYSCTL_LONG(_kern_ipc, OID_AUTO, shmall, CTLFLAG_RW, &shminfo.shmall, 0,
140     "Max pages of shared memory");
141 SYSCTL_INT(_kern_ipc, OID_AUTO, shm_use_phys, CTLFLAG_RW, &shm_use_phys, 0,
142     "Use phys pager allocation instead of swap pager allocation");
143 SYSCTL_INT(_kern_ipc, OID_AUTO, shm_allow_removed, CTLFLAG_RW,
144     &shm_allow_removed, 0,
145     "Enable/Disable attachment to attached segments marked for removal");
146 
147 static int
148 shm_find_segment_by_key(key_t key)
149 {
150 	int i;
151 
152 	for (i = 0; i < shmalloced; i++) {
153 		if ((shmsegs[i].shm_perm.mode & SHMSEG_ALLOCATED) &&
154 		    shmsegs[i].shm_perm.key == key)
155 			return i;
156 	}
157 	return -1;
158 }
159 
160 static struct shmid_ds *
161 shm_find_segment_by_shmid(int shmid)
162 {
163 	int segnum;
164 	struct shmid_ds *shmseg;
165 
166 	segnum = IPCID_TO_IX(shmid);
167 	if (segnum < 0 || segnum >= shmalloced)
168 		return NULL;
169 	shmseg = &shmsegs[segnum];
170 	if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0 ||
171 	    (!shm_allow_removed &&
172 	    (shmseg->shm_perm.mode & SHMSEG_REMOVED) != 0) ||
173 	    shmseg->shm_perm.seq != IPCID_TO_SEQ(shmid)) {
174 		return NULL;
175 	}
176 	return shmseg;
177 }
178 
179 static void
180 shm_deallocate_segment(struct shmid_ds *shmseg)
181 {
182 	struct shm_handle *shm_handle;
183 	size_t size;
184 
185 	shm_handle = shmseg->shm_internal;
186 	vm_object_deallocate(shm_handle->shm_object);
187 	kfree((caddr_t)shm_handle, M_SHM);
188 	shmseg->shm_internal = NULL;
189 	size = round_page(shmseg->shm_segsz);
190 	shm_committed -= btoc(size);
191 	shm_nused--;
192 	shmseg->shm_perm.mode = SHMSEG_FREE;
193 }
194 
195 static int
196 shm_delete_mapping(struct vmspace *vm, struct shmmap_state *shmmap_s)
197 {
198 	struct shmid_ds *shmseg;
199 	int segnum, result;
200 	size_t size;
201 
202 	segnum = IPCID_TO_IX(shmmap_s->shmid);
203 	shmseg = &shmsegs[segnum];
204 	size = round_page(shmseg->shm_segsz);
205 	result = vm_map_remove(&vm->vm_map, shmmap_s->va, shmmap_s->va + size);
206 	if (result != KERN_SUCCESS)
207 		return EINVAL;
208 	shmmap_s->shmid = -1;
209 	shmseg->shm_dtime = time_second;
210 	if ((--shmseg->shm_nattch <= 0) &&
211 	    (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
212 		shm_deallocate_segment(shmseg);
213 		shm_last_free = segnum;
214 	}
215 	return 0;
216 }
217 
218 /*
219  * MPALMOSTSAFE
220  */
221 int
222 sys_shmdt(struct shmdt_args *uap)
223 {
224 	struct thread *td = curthread;
225 	struct proc *p = td->td_proc;
226 	struct shmmap_state *shmmap_s;
227 	long i;
228 	int error;
229 
230 	if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL)
231 		return (ENOSYS);
232 
233 	lwkt_gettoken(&shm_token);
234 	shmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
235 	if (shmmap_s == NULL) {
236 		error = EINVAL;
237 		goto done;
238 	}
239 	for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) {
240 		if (shmmap_s->shmid != -1 &&
241 		    shmmap_s->va == (vm_offset_t)uap->shmaddr)
242 			break;
243 	}
244 	if (i == shminfo.shmseg)
245 		error = EINVAL;
246 	else
247 		error = shm_delete_mapping(p->p_vmspace, shmmap_s);
248 done:
249 	lwkt_reltoken(&shm_token);
250 
251 	return (error);
252 }
253 
254 /*
255  * MPALMOSTSAFE
256  */
257 int
258 sys_shmat(struct shmat_args *uap)
259 {
260 	struct thread *td = curthread;
261 	struct proc *p = td->td_proc;
262 	int error, flags;
263 	long i;
264 	struct shmid_ds *shmseg;
265 	struct shmmap_state *shmmap_s = NULL;
266 	struct shm_handle *shm_handle;
267 	vm_offset_t attach_va;
268 	vm_prot_t prot;
269 	vm_size_t size;
270 	vm_size_t align;
271 	int rv;
272 
273 	if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL)
274 		return (ENOSYS);
275 
276 	lwkt_gettoken(&shm_token);
277 again:
278 	shmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
279 	if (shmmap_s == NULL) {
280 		size = shminfo.shmseg * sizeof(struct shmmap_state);
281 		shmmap_s = kmalloc(size, M_SHM, M_WAITOK);
282 		for (i = 0; i < shminfo.shmseg; i++) {
283 			shmmap_s[i].shmid = -1;
284 			shmmap_s[i].reserved = 0;
285 		}
286 		if (p->p_vmspace->vm_shm != NULL) {
287 			kfree(shmmap_s, M_SHM);
288 			goto again;
289 		}
290 		p->p_vmspace->vm_shm = (caddr_t)shmmap_s;
291 	}
292 	shmseg = shm_find_segment_by_shmid(uap->shmid);
293 	if (shmseg == NULL) {
294 		error = EINVAL;
295 		goto done;
296 	}
297 	error = ipcperm(p, &shmseg->shm_perm,
298 			(uap->shmflg & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
299 	if (error)
300 		goto done;
301 
302 	/*
303 	 * Find a free element and mark reserved.  This fixes races
304 	 * against concurrent allocations due to the token being
305 	 * interrupted by blocking operations.  The shmmap_s reservation
306 	 * will be cleared upon completion or error.
307 	 */
308 	for (i = 0; i < shminfo.shmseg; i++) {
309 		if (shmmap_s->shmid == -1 && shmmap_s->reserved == 0) {
310 			shmmap_s->reserved = 1;
311 			break;
312 		}
313 		shmmap_s++;
314 	}
315 	if (i >= shminfo.shmseg) {
316 		error = EMFILE;
317 		goto done;
318 	}
319 	size = round_page(shmseg->shm_segsz);
320 #ifdef VM_PROT_READ_IS_EXEC
321 	prot = VM_PROT_READ | VM_PROT_EXECUTE;
322 #else
323 	prot = VM_PROT_READ;
324 #endif
325 	if ((uap->shmflg & SHM_RDONLY) == 0)
326 		prot |= VM_PROT_WRITE;
327 	flags = MAP_ANON | MAP_SHARED;
328 	if (uap->shmaddr) {
329 		flags |= MAP_FIXED;
330 		if (uap->shmflg & SHM_RND) {
331 			attach_va = (vm_offset_t)uap->shmaddr & ~(SHMLBA-1);
332 		} else if (((vm_offset_t)uap->shmaddr & (SHMLBA-1)) == 0) {
333 			attach_va = (vm_offset_t)uap->shmaddr;
334 		} else {
335 			error = EINVAL;
336 			shmmap_s->reserved = 0;
337 			goto done;
338 		}
339 	} else {
340 		/*
341 		 * This is just a hint to vm_map_find() about where to put it.
342 		 */
343 		attach_va = round_page((vm_offset_t)p->p_vmspace->vm_taddr +
344 				       maxtsiz + maxdsiz);
345 	}
346 
347 	/*
348 	 * Handle alignment.  For large memory maps it is possible
349 	 * that the MMU can optimize the page table so align anything
350 	 * that is a multiple of SEG_SIZE to SEG_SIZE.
351 	 */
352 	if ((flags & MAP_FIXED) == 0 && (size & SEG_MASK) == 0)
353 		align = SEG_SIZE;
354 	else
355 		align = PAGE_SIZE;
356 
357 	shm_handle = shmseg->shm_internal;
358 	vm_object_hold(shm_handle->shm_object);
359 	vm_object_reference_locked(shm_handle->shm_object);
360 	rv = vm_map_find(&p->p_vmspace->vm_map,
361 			 shm_handle->shm_object, NULL,
362 			 0, &attach_va, size,
363 			 align,
364 			 ((flags & MAP_FIXED) ? 0 : 1),
365 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_SHMEM,
366 			 prot, prot, 0);
367 	vm_object_drop(shm_handle->shm_object);
368 	if (rv != KERN_SUCCESS) {
369                 vm_object_deallocate(shm_handle->shm_object);
370 		shmmap_s->reserved = 0;
371 		error = ENOMEM;
372 		goto done;
373 	}
374 	vm_map_inherit(&p->p_vmspace->vm_map,
375 		       attach_va, attach_va + size, VM_INHERIT_SHARE);
376 
377 	KKASSERT(shmmap_s->shmid == -1);
378 	shmmap_s->va = attach_va;
379 	shmmap_s->shmid = uap->shmid;
380 	shmmap_s->reserved = 0;
381 	shmseg->shm_lpid = p->p_pid;
382 	shmseg->shm_atime = time_second;
383 	shmseg->shm_nattch++;
384 	uap->sysmsg_resultp = (void *)attach_va;
385 	error = 0;
386 done:
387 	lwkt_reltoken(&shm_token);
388 
389 	return error;
390 }
391 
392 /*
393  * MPALMOSTSAFE
394  */
395 int
396 sys_shmctl(struct shmctl_args *uap)
397 {
398 	struct thread *td = curthread;
399 	struct proc *p = td->td_proc;
400 	int error;
401 	struct shmid_ds inbuf;
402 	struct shmid_ds *shmseg;
403 
404 	if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL)
405 		return (ENOSYS);
406 
407 	lwkt_gettoken(&shm_token);
408 	shmseg = shm_find_segment_by_shmid(uap->shmid);
409 	if (shmseg == NULL) {
410 		error = EINVAL;
411 		goto done;
412 	}
413 
414 	switch (uap->cmd) {
415 	case IPC_STAT:
416 		error = ipcperm(p, &shmseg->shm_perm, IPC_R);
417 		if (error == 0)
418 			error = copyout(shmseg, uap->buf, sizeof(inbuf));
419 		break;
420 	case IPC_SET:
421 		error = ipcperm(p, &shmseg->shm_perm, IPC_M);
422 		if (error == 0)
423 			error = copyin(uap->buf, &inbuf, sizeof(inbuf));
424 		if (error == 0) {
425 			shmseg->shm_perm.uid = inbuf.shm_perm.uid;
426 			shmseg->shm_perm.gid = inbuf.shm_perm.gid;
427 			shmseg->shm_perm.mode =
428 			    (shmseg->shm_perm.mode & ~ACCESSPERMS) |
429 			    (inbuf.shm_perm.mode & ACCESSPERMS);
430 			shmseg->shm_ctime = time_second;
431 		}
432 		break;
433 	case IPC_RMID:
434 		error = ipcperm(p, &shmseg->shm_perm, IPC_M);
435 		if (error == 0) {
436 			shmseg->shm_perm.key = IPC_PRIVATE;
437 			shmseg->shm_perm.mode |= SHMSEG_REMOVED;
438 			if (shmseg->shm_nattch <= 0) {
439 				shm_deallocate_segment(shmseg);
440 				shm_last_free = IPCID_TO_IX(uap->shmid);
441 			}
442 		}
443 		break;
444 #if 0
445 	case SHM_LOCK:
446 	case SHM_UNLOCK:
447 #endif
448 	default:
449 		error = EINVAL;
450 		break;
451 	}
452 done:
453 	lwkt_reltoken(&shm_token);
454 
455 	return error;
456 }
457 
458 static int
459 shmget_existing(struct proc *p, struct shmget_args *uap, int mode, int segnum)
460 {
461 	struct shmid_ds *shmseg;
462 	int error;
463 
464 	shmseg = &shmsegs[segnum];
465 	if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
466 		/*
467 		 * This segment is in the process of being allocated.  Wait
468 		 * until it's done, and look the key up again (in case the
469 		 * allocation failed or it was freed).
470 		 */
471 		shmseg->shm_perm.mode |= SHMSEG_WANTED;
472 		error = tsleep((caddr_t)shmseg, PCATCH, "shmget", 0);
473 		if (error)
474 			return error;
475 		return EAGAIN;
476 	}
477 	if ((uap->shmflg & (IPC_CREAT | IPC_EXCL)) == (IPC_CREAT | IPC_EXCL))
478 		return EEXIST;
479 	error = ipcperm(p, &shmseg->shm_perm, mode);
480 	if (error)
481 		return error;
482 	if (uap->size && uap->size > shmseg->shm_segsz)
483 		return EINVAL;
484 	uap->sysmsg_result = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
485 	return 0;
486 }
487 
488 static int
489 shmget_allocate_segment(struct proc *p, struct shmget_args *uap, int mode)
490 {
491 	int i, segnum, shmid;
492 	size_t size;
493 	struct ucred *cred = p->p_ucred;
494 	struct shmid_ds *shmseg;
495 	struct shm_handle *shm_handle;
496 
497 	if (uap->size < shminfo.shmmin || uap->size > shminfo.shmmax)
498 		return EINVAL;
499 	if (shm_nused >= shminfo.shmmni) /* any shmids left? */
500 		return ENOSPC;
501 	size = round_page(uap->size);
502 	if (shm_committed + btoc(size) > shminfo.shmall)
503 		return ENOMEM;
504 	if (shm_last_free < 0) {
505 		shmrealloc();	/* maybe expand the shmsegs[] array */
506 		for (i = 0; i < shmalloced; i++) {
507 			if (shmsegs[i].shm_perm.mode & SHMSEG_FREE)
508 				break;
509 		}
510 		if (i == shmalloced)
511 			return ENOSPC;
512 		segnum = i;
513 	} else  {
514 		segnum = shm_last_free;
515 		shm_last_free = -1;
516 	}
517 	shmseg = &shmsegs[segnum];
518 	/*
519 	 * In case we sleep in malloc(), mark the segment present but deleted
520 	 * so that noone else tries to create the same key.
521 	 */
522 	shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
523 	shmseg->shm_perm.key = uap->key;
524 	shmseg->shm_perm.seq = (shmseg->shm_perm.seq + 1) & 0x7fff;
525 	shm_handle = kmalloc(sizeof(struct shm_handle), M_SHM, M_WAITOK);
526 	shmid = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
527 
528 	/*
529 	 * We make sure that we have allocated a pager before we need
530 	 * to.
531 	 */
532 	if (shm_use_phys) {
533 		shm_handle->shm_object =
534 		   phys_pager_alloc(NULL, size, VM_PROT_DEFAULT, 0);
535 	} else {
536 		shm_handle->shm_object =
537 		   swap_pager_alloc(NULL, size, VM_PROT_DEFAULT, 0);
538 	}
539 	vm_object_clear_flag(shm_handle->shm_object, OBJ_ONEMAPPING);
540 	vm_object_set_flag(shm_handle->shm_object, OBJ_NOSPLIT);
541 
542 	shmseg->shm_internal = shm_handle;
543 	shmseg->shm_perm.cuid = shmseg->shm_perm.uid = cred->cr_uid;
544 	shmseg->shm_perm.cgid = shmseg->shm_perm.gid = cred->cr_gid;
545 	shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
546 	    (mode & ACCESSPERMS) | SHMSEG_ALLOCATED;
547 	shmseg->shm_segsz = uap->size;
548 	shmseg->shm_cpid = p->p_pid;
549 	shmseg->shm_lpid = shmseg->shm_nattch = 0;
550 	shmseg->shm_atime = shmseg->shm_dtime = 0;
551 	shmseg->shm_ctime = time_second;
552 	shm_committed += btoc(size);
553 	shm_nused++;
554 
555 	/*
556 	 * If a physical mapping is desired and we have a ton of free pages
557 	 * we pre-allocate the pages here in order to avoid on-the-fly
558 	 * allocation later.  This has a big effect on database warm-up
559 	 * times since DFly supports concurrent page faults coming from the
560 	 * same VM object for pages which already exist.
561 	 *
562 	 * This can hang the kernel for a while so only do it if shm_use_phys
563 	 * is set to 2 or higher.
564 	 */
565 	if (shm_use_phys > 1) {
566 		vm_pindex_t pi, pmax;
567 		vm_page_t m;
568 
569 		pmax = round_page(shmseg->shm_segsz) >> PAGE_SHIFT;
570 		vm_object_hold(shm_handle->shm_object);
571 		if (pmax > vmstats.v_free_count)
572 			pmax = vmstats.v_free_count;
573 		for (pi = 0; pi < pmax; ++pi) {
574 			m = vm_page_grab(shm_handle->shm_object, pi,
575 					 VM_ALLOC_SYSTEM | VM_ALLOC_NULL_OK |
576 					 VM_ALLOC_ZERO);
577 			if (m == NULL)
578 				break;
579 			vm_pager_get_page(shm_handle->shm_object, &m, 1);
580 			vm_page_activate(m);
581 			vm_page_wakeup(m);
582 			lwkt_yield();
583 		}
584 		vm_object_drop(shm_handle->shm_object);
585 	}
586 
587 	if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
588 		/*
589 		 * Somebody else wanted this key while we were asleep.  Wake
590 		 * them up now.
591 		 */
592 		shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
593 		wakeup((caddr_t)shmseg);
594 	}
595 	uap->sysmsg_result = shmid;
596 	return 0;
597 }
598 
599 /*
600  * MPALMOSTSAFE
601  */
602 int
603 sys_shmget(struct shmget_args *uap)
604 {
605 	struct thread *td = curthread;
606 	struct proc *p = td->td_proc;
607 	int segnum, mode, error;
608 
609 	if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL)
610 		return (ENOSYS);
611 
612 	mode = uap->shmflg & ACCESSPERMS;
613 
614 	lwkt_gettoken(&shm_token);
615 
616 	if (uap->key != IPC_PRIVATE) {
617 	again:
618 		segnum = shm_find_segment_by_key(uap->key);
619 		if (segnum >= 0) {
620 			error = shmget_existing(p, uap, mode, segnum);
621 			if (error == EAGAIN)
622 				goto again;
623 			goto done;
624 		}
625 		if ((uap->shmflg & IPC_CREAT) == 0) {
626 			error = ENOENT;
627 			goto done;
628 		}
629 	}
630 	error = shmget_allocate_segment(p, uap, mode);
631 done:
632 	lwkt_reltoken(&shm_token);
633 
634 	return (error);
635 }
636 
637 void
638 shmfork(struct proc *p1, struct proc *p2)
639 {
640 	struct shmmap_state *shmmap_s;
641 	size_t size;
642 	int i;
643 
644 	lwkt_gettoken(&shm_token);
645 	size = shminfo.shmseg * sizeof(struct shmmap_state);
646 	shmmap_s = kmalloc(size, M_SHM, M_WAITOK);
647 	bcopy((caddr_t)p1->p_vmspace->vm_shm, (caddr_t)shmmap_s, size);
648 	p2->p_vmspace->vm_shm = (caddr_t)shmmap_s;
649 	for (i = 0; i < shminfo.shmseg; i++, shmmap_s++) {
650 		if (shmmap_s->shmid != -1)
651 			shmsegs[IPCID_TO_IX(shmmap_s->shmid)].shm_nattch++;
652 	}
653 	lwkt_reltoken(&shm_token);
654 }
655 
656 void
657 shmexit(struct vmspace *vm)
658 {
659 	struct shmmap_state *base, *shm;
660 	int i;
661 
662 	if ((base = (struct shmmap_state *)vm->vm_shm) != NULL) {
663 		vm->vm_shm = NULL;
664 		lwkt_gettoken(&shm_token);
665 		for (i = 0, shm = base; i < shminfo.shmseg; i++, shm++) {
666 			if (shm->shmid != -1)
667 				shm_delete_mapping(vm, shm);
668 		}
669 		kfree(base, M_SHM);
670 		lwkt_reltoken(&shm_token);
671 	}
672 }
673 
674 static void
675 shmrealloc(void)
676 {
677 	int i;
678 	struct shmid_ds *newsegs;
679 
680 	if (shmalloced >= shminfo.shmmni)
681 		return;
682 
683 	newsegs = kmalloc(shminfo.shmmni * sizeof(*newsegs), M_SHM, M_WAITOK);
684 	for (i = 0; i < shmalloced; i++)
685 		bcopy(&shmsegs[i], &newsegs[i], sizeof(newsegs[0]));
686 	for (; i < shminfo.shmmni; i++) {
687 		shmsegs[i].shm_perm.mode = SHMSEG_FREE;
688 		shmsegs[i].shm_perm.seq = 0;
689 	}
690 	kfree(shmsegs, M_SHM);
691 	shmsegs = newsegs;
692 	shmalloced = shminfo.shmmni;
693 }
694 
695 static void
696 shminit(void *dummy)
697 {
698 	int i;
699 
700 	/*
701 	 * If not overridden by a tunable set the maximum shm to
702 	 * 2/3 of main memory.
703 	 */
704 	if (shminfo.shmall == 0)
705 		shminfo.shmall = (size_t)vmstats.v_page_count * 2 / 3;
706 
707 	shminfo.shmmax = shminfo.shmall * PAGE_SIZE;
708 	shmalloced = shminfo.shmmni;
709 	shmsegs = kmalloc(shmalloced * sizeof(shmsegs[0]), M_SHM, M_WAITOK);
710 	for (i = 0; i < shmalloced; i++) {
711 		shmsegs[i].shm_perm.mode = SHMSEG_FREE;
712 		shmsegs[i].shm_perm.seq = 0;
713 	}
714 	shm_last_free = 0;
715 	shm_nused = 0;
716 	shm_committed = 0;
717 }
718 SYSINIT(sysv_shm, SI_SUB_SYSV_SHM, SI_ORDER_FIRST, shminit, NULL);
719