xref: /dflybsd-src/sys/kern/sys_process.c (revision 4bfff613235390e418af6fe340d465e53afba83a)
1 /*
2  * Copyright (c) 1994, Sean Eric Fagan
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Sean Eric Fagan.
16  * 4. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD: src/sys/kern/sys_process.c,v 1.51.2.6 2003/01/08 03:06:45 kan Exp $
32  * $DragonFly: src/sys/kern/sys_process.c,v 1.30 2007/02/19 01:14:23 corecode Exp $
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sysproto.h>
38 #include <sys/proc.h>
39 #include <sys/priv.h>
40 #include <sys/vnode.h>
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43 #include <sys/lock.h>
44 
45 #include <vm/vm.h>
46 #include <vm/pmap.h>
47 #include <vm/vm_map.h>
48 #include <vm/vm_page.h>
49 
50 #include <sys/user.h>
51 #include <vfs/procfs/procfs.h>
52 
53 #include <sys/thread2.h>
54 #include <sys/spinlock2.h>
55 
56 /* use the equivalent procfs code */
57 #if 0
58 static int
59 pread (struct proc *procp, unsigned int addr, unsigned int *retval) {
60 	int		rv;
61 	vm_map_t	map, tmap;
62 	vm_object_t	object;
63 	vm_offset_t	kva = 0;
64 	int		page_offset;	/* offset into page */
65 	vm_offset_t	pageno;		/* page number */
66 	vm_map_entry_t	out_entry;
67 	vm_prot_t	out_prot;
68 	boolean_t	wired;
69 	vm_pindex_t	pindex;
70 
71 	/* Map page into kernel space */
72 
73 	map = &procp->p_vmspace->vm_map;
74 
75 	page_offset = addr - trunc_page(addr);
76 	pageno = trunc_page(addr);
77 
78 	tmap = map;
79 	rv = vm_map_lookup (&tmap, pageno, VM_PROT_READ, &out_entry,
80 		&object, &pindex, &out_prot, &wired);
81 
82 	if (rv != KERN_SUCCESS)
83 		return EINVAL;
84 
85 	vm_map_lookup_done (tmap, out_entry, 0);
86 
87 	/* Find space in kernel_map for the page we're interested in */
88 	rv = vm_map_find (&kernel_map, object, IDX_TO_OFF(pindex),
89 			  &kva,
90 			  PAGE_SIZE, PAGE_SIZE,
91 			  0, VM_MAPTYPE_NORMAL,
92 			  VM_PROT_ALL, VM_PROT_ALL,
93 			  0);
94 
95 	if (!rv) {
96 		vm_object_reference (object);
97 
98 		rv = vm_map_wire (&kernel_map, kva, kva + PAGE_SIZE, 0);
99 		if (!rv) {
100 			*retval = 0;
101 			bcopy ((caddr_t)kva + page_offset,
102 			       retval, sizeof *retval);
103 		}
104 		vm_map_remove (&kernel_map, kva, kva + PAGE_SIZE);
105 	}
106 
107 	return rv;
108 }
109 
110 static int
111 pwrite (struct proc *procp, unsigned int addr, unsigned int datum) {
112 	int		rv;
113 	vm_map_t	map, tmap;
114 	vm_object_t	object;
115 	vm_offset_t	kva = 0;
116 	int		page_offset;	/* offset into page */
117 	vm_offset_t	pageno;		/* page number */
118 	vm_map_entry_t	out_entry;
119 	vm_prot_t	out_prot;
120 	boolean_t	wired;
121 	vm_pindex_t	pindex;
122 	boolean_t	fix_prot = 0;
123 
124 	/* Map page into kernel space */
125 
126 	map = &procp->p_vmspace->vm_map;
127 
128 	page_offset = addr - trunc_page(addr);
129 	pageno = trunc_page(addr);
130 
131 	/*
132 	 * Check the permissions for the area we're interested in.
133 	 */
134 
135 	if (vm_map_check_protection (map, pageno, pageno + PAGE_SIZE,
136 				     VM_PROT_WRITE, FALSE) == FALSE) {
137 		/*
138 		 * If the page was not writable, we make it so.
139 		 * XXX It is possible a page may *not* be read/executable,
140 		 * if a process changes that!
141 		 */
142 		fix_prot = 1;
143 		/* The page isn't writable, so let's try making it so... */
144 		if ((rv = vm_map_protect (map, pageno, pageno + PAGE_SIZE,
145 			VM_PROT_ALL, 0)) != KERN_SUCCESS)
146 		  return EFAULT;	/* I guess... */
147 	}
148 
149 	/*
150 	 * Now we need to get the page.  out_entry, out_prot, wired, and
151 	 * single_use aren't used.  One would think the vm code would be
152 	 * a *bit* nicer...  We use tmap because vm_map_lookup() can
153 	 * change the map argument.
154 	 */
155 
156 	tmap = map;
157 	rv = vm_map_lookup (&tmap, pageno, VM_PROT_WRITE, &out_entry,
158 		&object, &pindex, &out_prot, &wired);
159 	if (rv != KERN_SUCCESS) {
160 		return EINVAL;
161 	}
162 
163 	/*
164 	 * Okay, we've got the page.  Let's release tmap.
165 	 */
166 
167 	vm_map_lookup_done (tmap, out_entry, 0);
168 
169 	/*
170 	 * Fault the page in...
171 	 */
172 
173 	rv = vm_fault(map, pageno, VM_PROT_WRITE|VM_PROT_READ, FALSE);
174 	if (rv != KERN_SUCCESS)
175 		return EFAULT;
176 
177 	/* Find space in kernel_map for the page we're interested in */
178 	rv = vm_map_find (&kernel_map, object, IDX_TO_OFF(pindex),
179 			  &kva,
180 			  PAGE_SIZE, PAGE_SIZE,
181 			  0, VM_MAPTYPE_NORMAL,
182 			  VM_PROT_ALL, VM_PROT_ALL,
183 			  0);
184 	if (!rv) {
185 		vm_object_reference (object);
186 
187 		rv = vm_map_wire (&kernel_map, kva, kva + PAGE_SIZE, 0);
188 		if (!rv) {
189 		  bcopy (&datum, (caddr_t)kva + page_offset, sizeof datum);
190 		}
191 		vm_map_remove (&kernel_map, kva, kva + PAGE_SIZE);
192 	}
193 
194 	if (fix_prot)
195 		vm_map_protect (map, pageno, pageno + PAGE_SIZE,
196 			VM_PROT_READ|VM_PROT_EXECUTE, 0);
197 	return rv;
198 }
199 #endif
200 
201 /*
202  * Process debugging system call.
203  *
204  * MPALMOSTSAFE
205  */
206 int
207 sys_ptrace(struct ptrace_args *uap)
208 {
209 	struct proc *p = curproc;
210 
211 	/*
212 	 * XXX this obfuscation is to reduce stack usage, but the register
213 	 * structs may be too large to put on the stack anyway.
214 	 */
215 	union {
216 		struct ptrace_io_desc piod;
217 		struct dbreg dbreg;
218 		struct fpreg fpreg;
219 		struct reg reg;
220 	} r;
221 	void *addr;
222 	int error = 0;
223 
224 	addr = &r;
225 	switch (uap->req) {
226 	case PT_GETREGS:
227 	case PT_GETFPREGS:
228 #ifdef PT_GETDBREGS
229 	case PT_GETDBREGS:
230 #endif
231 		break;
232 	case PT_SETREGS:
233 		error = copyin(uap->addr, &r.reg, sizeof r.reg);
234 		break;
235 	case PT_SETFPREGS:
236 		error = copyin(uap->addr, &r.fpreg, sizeof r.fpreg);
237 		break;
238 #ifdef PT_SETDBREGS
239 	case PT_SETDBREGS:
240 		error = copyin(uap->addr, &r.dbreg, sizeof r.dbreg);
241 		break;
242 #endif
243 	case PT_IO:
244 		error = copyin(uap->addr, &r.piod, sizeof r.piod);
245 		break;
246 	default:
247 		addr = uap->addr;
248 	}
249 	if (error)
250 		return (error);
251 
252 	error = kern_ptrace(p, uap->req, uap->pid, addr, uap->data,
253 			&uap->sysmsg_result);
254 	if (error)
255 		return (error);
256 
257 	switch (uap->req) {
258 	case PT_IO:
259 		(void)copyout(&r.piod, uap->addr, sizeof r.piod);
260 		break;
261 	case PT_GETREGS:
262 		error = copyout(&r.reg, uap->addr, sizeof r.reg);
263 		break;
264 	case PT_GETFPREGS:
265 		error = copyout(&r.fpreg, uap->addr, sizeof r.fpreg);
266 		break;
267 #ifdef PT_GETDBREGS
268 	case PT_GETDBREGS:
269 		error = copyout(&r.dbreg, uap->addr, sizeof r.dbreg);
270 		break;
271 #endif
272 	}
273 
274 	return (error);
275 }
276 
277 int
278 kern_ptrace(struct proc *curp, int req, pid_t pid, void *addr,
279 	    int data, int *res)
280 {
281 	struct proc *p, *pp;
282 	struct lwp *lp;
283 	struct iovec iov;
284 	struct uio uio;
285 	struct ptrace_io_desc *piod;
286 	int error = 0;
287 	int write, tmp;
288 	int t;
289 
290 	lwkt_gettoken(&proc_token);
291 
292 	write = 0;
293 	if (req == PT_TRACE_ME) {
294 		p = curp;
295 		PHOLD(p);
296 	} else {
297 		if ((p = pfind(pid)) == NULL) {
298 			lwkt_reltoken(&proc_token);
299 			return ESRCH;
300 		}
301 	}
302 	if (!PRISON_CHECK(curp->p_ucred, p->p_ucred)) {
303 		PRELE(p);
304 		lwkt_reltoken(&proc_token);
305 		return (ESRCH);
306 	}
307 
308 	lwkt_gettoken(&p->p_token);
309 	/* Can't trace a process that's currently exec'ing. */
310 	if ((p->p_flag & P_INEXEC) != 0) {
311 		lwkt_reltoken(&p->p_token);
312 		PRELE(p);
313 		lwkt_reltoken(&proc_token);
314 		return EAGAIN;
315 	}
316 
317 	/*
318 	 * Permissions check
319 	 */
320 	switch (req) {
321 	case PT_TRACE_ME:
322 		/* Always legal. */
323 		break;
324 
325 	case PT_ATTACH:
326 		/* Self */
327 		if (p->p_pid == curp->p_pid) {
328 			lwkt_reltoken(&p->p_token);
329 			PRELE(p);
330 			lwkt_reltoken(&proc_token);
331 			return EINVAL;
332 		}
333 
334 		/* Already traced */
335 		if (p->p_flag & P_TRACED) {
336 			lwkt_reltoken(&p->p_token);
337 			PRELE(p);
338 			lwkt_reltoken(&proc_token);
339 			return EBUSY;
340 		}
341 
342 		if (curp->p_flag & P_TRACED)
343 			for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr)
344 				if (pp == p) {
345 					lwkt_reltoken(&p->p_token);
346 					PRELE(p);
347 					lwkt_reltoken(&proc_token);
348 					return (EINVAL);
349 				}
350 
351 		/* not owned by you, has done setuid (unless you're root) */
352 		if ((p->p_ucred->cr_ruid != curp->p_ucred->cr_ruid) ||
353 		     (p->p_flag & P_SUGID)) {
354 			if ((error = priv_check_cred(curp->p_ucred, PRIV_ROOT, 0)) != 0) {
355 				lwkt_reltoken(&p->p_token);
356 				PRELE(p);
357 				lwkt_reltoken(&proc_token);
358 				return error;
359 			}
360 		}
361 
362 		/* can't trace init when securelevel > 0 */
363 		if (securelevel > 0 && p->p_pid == 1) {
364 			lwkt_reltoken(&p->p_token);
365 			PRELE(p);
366 			lwkt_reltoken(&proc_token);
367 			return EPERM;
368 		}
369 
370 		/* OK */
371 		break;
372 
373 	case PT_READ_I:
374 	case PT_READ_D:
375 	case PT_WRITE_I:
376 	case PT_WRITE_D:
377 	case PT_IO:
378 	case PT_CONTINUE:
379 	case PT_KILL:
380 	case PT_STEP:
381 	case PT_DETACH:
382 #ifdef PT_GETREGS
383 	case PT_GETREGS:
384 #endif
385 #ifdef PT_SETREGS
386 	case PT_SETREGS:
387 #endif
388 #ifdef PT_GETFPREGS
389 	case PT_GETFPREGS:
390 #endif
391 #ifdef PT_SETFPREGS
392 	case PT_SETFPREGS:
393 #endif
394 #ifdef PT_GETDBREGS
395 	case PT_GETDBREGS:
396 #endif
397 #ifdef PT_SETDBREGS
398 	case PT_SETDBREGS:
399 #endif
400 		/* not being traced... */
401 		if ((p->p_flag & P_TRACED) == 0) {
402 			lwkt_reltoken(&p->p_token);
403 			PRELE(p);
404 			lwkt_reltoken(&proc_token);
405 			return EPERM;
406 		}
407 
408 		/* not being traced by YOU */
409 		if (p->p_pptr != curp) {
410 			lwkt_reltoken(&p->p_token);
411 			PRELE(p);
412 			lwkt_reltoken(&proc_token);
413 			return EBUSY;
414 		}
415 
416 		/* not currently stopped */
417 		if (p->p_stat != SSTOP ||
418 		    (p->p_flag & P_WAITED) == 0) {
419 			lwkt_reltoken(&p->p_token);
420 			PRELE(p);
421 			lwkt_reltoken(&proc_token);
422 			return EBUSY;
423 		}
424 
425 		/* OK */
426 		break;
427 
428 	default:
429 		lwkt_reltoken(&p->p_token);
430 		PRELE(p);
431 		lwkt_reltoken(&proc_token);
432 		return EINVAL;
433 	}
434 
435 	/* XXX lwp */
436 	lp = FIRST_LWP_IN_PROC(p);
437 #ifdef FIX_SSTEP
438 	/*
439 	 * Single step fixup ala procfs
440 	 */
441 	FIX_SSTEP(lp);
442 #endif
443 
444 	/*
445 	 * Actually do the requests
446 	 */
447 
448 	*res = 0;
449 
450 	switch (req) {
451 	case PT_TRACE_ME:
452 		/* set my trace flag and "owner" so it can read/write me */
453 		p->p_flag |= P_TRACED;
454 		p->p_oppid = p->p_pptr->p_pid;
455 		lwkt_reltoken(&p->p_token);
456 		PRELE(p);
457 		lwkt_reltoken(&proc_token);
458 		return 0;
459 
460 	case PT_ATTACH:
461 		/* security check done above */
462 		p->p_flag |= P_TRACED;
463 		p->p_oppid = p->p_pptr->p_pid;
464 		if (p->p_pptr != curp)
465 			proc_reparent(p, curp);
466 		data = SIGSTOP;
467 		goto sendsig;	/* in PT_CONTINUE below */
468 
469 	case PT_STEP:
470 	case PT_CONTINUE:
471 	case PT_DETACH:
472 		/* Zero means do not send any signal */
473 		if (data < 0 || data > _SIG_MAXSIG) {
474 			lwkt_reltoken(&p->p_token);
475 			PRELE(p);
476 			lwkt_reltoken(&proc_token);
477 			return EINVAL;
478 		}
479 
480 		LWPHOLD(lp);
481 
482 		if (req == PT_STEP) {
483 			if ((error = ptrace_single_step (lp))) {
484 				LWPRELE(lp);
485 				lwkt_reltoken(&p->p_token);
486 				PRELE(p);
487 				lwkt_reltoken(&proc_token);
488 				return error;
489 			}
490 		}
491 
492 		if (addr != (void *)1) {
493 			if ((error = ptrace_set_pc (lp,
494 			    (u_long)(uintfptr_t)addr))) {
495 				LWPRELE(lp);
496 				lwkt_reltoken(&p->p_token);
497 				PRELE(p);
498 				lwkt_reltoken(&proc_token);
499 				return error;
500 			}
501 		}
502 		LWPRELE(lp);
503 
504 		if (req == PT_DETACH) {
505 			/* reset process parent */
506 			if (p->p_oppid != p->p_pptr->p_pid) {
507 				struct proc *pp;
508 
509 				pp = pfind(p->p_oppid);
510 				proc_reparent(p, pp ? pp : initproc);
511 			}
512 
513 			p->p_flag &= ~(P_TRACED | P_WAITED);
514 			p->p_oppid = 0;
515 
516 			/* should we send SIGCHLD? */
517 		}
518 
519 	sendsig:
520 		/*
521 		 * Deliver or queue signal.  If the process is stopped
522 		 * force it to be SACTIVE again.
523 		 */
524 		crit_enter();
525 		if (p->p_stat == SSTOP) {
526 			p->p_xstat = data;
527 			lp->lwp_flag |= LWP_BREAKTSLEEP;
528 			proc_unstop(p);
529 		} else if (data) {
530 			ksignal(p, data);
531 		}
532 		crit_exit();
533 		lwkt_reltoken(&p->p_token);
534 		PRELE(p);
535 		lwkt_reltoken(&proc_token);
536 		return 0;
537 
538 	case PT_WRITE_I:
539 	case PT_WRITE_D:
540 		write = 1;
541 		/* fallthrough */
542 	case PT_READ_I:
543 	case PT_READ_D:
544 		/*
545 		 * NOTE! uio_offset represents the offset in the target
546 		 * process.  The iov is in the current process (the guy
547 		 * making the ptrace call) so uio_td must be the current
548 		 * process (though for a SYSSPACE transfer it doesn't
549 		 * really matter).
550 		 */
551 		tmp = 0;
552 		/* write = 0 set above */
553 		iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp;
554 		iov.iov_len = sizeof(int);
555 		uio.uio_iov = &iov;
556 		uio.uio_iovcnt = 1;
557 		uio.uio_offset = (off_t)(uintptr_t)addr;
558 		uio.uio_resid = sizeof(int);
559 		uio.uio_segflg = UIO_SYSSPACE;
560 		uio.uio_rw = write ? UIO_WRITE : UIO_READ;
561 		uio.uio_td = curthread;
562 		error = procfs_domem(curp, lp, NULL, &uio);
563 		if (uio.uio_resid != 0) {
564 			/*
565 			 * XXX procfs_domem() doesn't currently return ENOSPC,
566 			 * so I think write() can bogusly return 0.
567 			 * XXX what happens for short writes?  We don't want
568 			 * to write partial data.
569 			 * XXX procfs_domem() returns EPERM for other invalid
570 			 * addresses.  Convert this to EINVAL.  Does this
571 			 * clobber returns of EPERM for other reasons?
572 			 */
573 			if (error == 0 || error == ENOSPC || error == EPERM)
574 				error = EINVAL;	/* EOF */
575 		}
576 		if (!write)
577 			*res = tmp;
578 		lwkt_reltoken(&p->p_token);
579 		PRELE(p);
580 		lwkt_reltoken(&proc_token);
581 		return (error);
582 
583 	case PT_IO:
584 		/*
585 		 * NOTE! uio_offset represents the offset in the target
586 		 * process.  The iov is in the current process (the guy
587 		 * making the ptrace call) so uio_td must be the current
588 		 * process.
589 		 */
590 		piod = addr;
591 		iov.iov_base = piod->piod_addr;
592 		iov.iov_len = piod->piod_len;
593 		uio.uio_iov = &iov;
594 		uio.uio_iovcnt = 1;
595 		uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
596 		uio.uio_resid = piod->piod_len;
597 		uio.uio_segflg = UIO_USERSPACE;
598 		uio.uio_td = curthread;
599 		switch (piod->piod_op) {
600 		case PIOD_READ_D:
601 		case PIOD_READ_I:
602 			uio.uio_rw = UIO_READ;
603 			break;
604 		case PIOD_WRITE_D:
605 		case PIOD_WRITE_I:
606 			uio.uio_rw = UIO_WRITE;
607 			break;
608 		default:
609 			lwkt_reltoken(&p->p_token);
610 			PRELE(p);
611 			lwkt_reltoken(&proc_token);
612 			return (EINVAL);
613 		}
614 		error = procfs_domem(curp, lp, NULL, &uio);
615 		piod->piod_len -= uio.uio_resid;
616 		lwkt_reltoken(&p->p_token);
617 		PRELE(p);
618 		lwkt_reltoken(&proc_token);
619 		return (error);
620 
621 	case PT_KILL:
622 		data = SIGKILL;
623 		goto sendsig;	/* in PT_CONTINUE above */
624 
625 #ifdef PT_SETREGS
626 	case PT_SETREGS:
627 		write = 1;
628 		/* fallthrough */
629 #endif /* PT_SETREGS */
630 #ifdef PT_GETREGS
631 	case PT_GETREGS:
632 		/* write = 0 above */
633 #endif /* PT_SETREGS */
634 #if defined(PT_SETREGS) || defined(PT_GETREGS)
635 		if (!procfs_validregs(lp)) {	/* no P_SYSTEM procs please */
636 			lwkt_reltoken(&p->p_token);
637 			PRELE(p);
638 			lwkt_reltoken(&proc_token);
639 			return EINVAL;
640 		} else {
641 			iov.iov_base = addr;
642 			iov.iov_len = sizeof(struct reg);
643 			uio.uio_iov = &iov;
644 			uio.uio_iovcnt = 1;
645 			uio.uio_offset = 0;
646 			uio.uio_resid = sizeof(struct reg);
647 			uio.uio_segflg = UIO_SYSSPACE;
648 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
649 			uio.uio_td = curthread;
650 			t = procfs_doregs(curp, lp, NULL, &uio);
651 			lwkt_reltoken(&p->p_token);
652 			PRELE(p);
653 			lwkt_reltoken(&proc_token);
654 			return t;
655 		}
656 #endif /* defined(PT_SETREGS) || defined(PT_GETREGS) */
657 
658 #ifdef PT_SETFPREGS
659 	case PT_SETFPREGS:
660 		write = 1;
661 		/* fallthrough */
662 #endif /* PT_SETFPREGS */
663 #ifdef PT_GETFPREGS
664 	case PT_GETFPREGS:
665 		/* write = 0 above */
666 #endif /* PT_SETFPREGS */
667 #if defined(PT_SETFPREGS) || defined(PT_GETFPREGS)
668 		if (!procfs_validfpregs(lp)) {	/* no P_SYSTEM procs please */
669 			lwkt_reltoken(&p->p_token);
670 			PRELE(p);
671 			lwkt_reltoken(&proc_token);
672 			return EINVAL;
673 		} else {
674 			iov.iov_base = addr;
675 			iov.iov_len = sizeof(struct fpreg);
676 			uio.uio_iov = &iov;
677 			uio.uio_iovcnt = 1;
678 			uio.uio_offset = 0;
679 			uio.uio_resid = sizeof(struct fpreg);
680 			uio.uio_segflg = UIO_SYSSPACE;
681 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
682 			uio.uio_td = curthread;
683 			t = procfs_dofpregs(curp, lp, NULL, &uio);
684 			lwkt_reltoken(&p->p_token);
685 			PRELE(p);
686 			lwkt_reltoken(&proc_token);
687 			return t;
688 		}
689 #endif /* defined(PT_SETFPREGS) || defined(PT_GETFPREGS) */
690 
691 #ifdef PT_SETDBREGS
692 	case PT_SETDBREGS:
693 		write = 1;
694 		/* fallthrough */
695 #endif /* PT_SETDBREGS */
696 #ifdef PT_GETDBREGS
697 	case PT_GETDBREGS:
698 		/* write = 0 above */
699 #endif /* PT_SETDBREGS */
700 #if defined(PT_SETDBREGS) || defined(PT_GETDBREGS)
701 		if (!procfs_validdbregs(lp)) {	/* no P_SYSTEM procs please */
702 			lwkt_reltoken(&p->p_token);
703 			PRELE(p);
704 			lwkt_reltoken(&proc_token);
705 			return EINVAL;
706 		} else {
707 			iov.iov_base = addr;
708 			iov.iov_len = sizeof(struct dbreg);
709 			uio.uio_iov = &iov;
710 			uio.uio_iovcnt = 1;
711 			uio.uio_offset = 0;
712 			uio.uio_resid = sizeof(struct dbreg);
713 			uio.uio_segflg = UIO_SYSSPACE;
714 			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
715 			uio.uio_td = curthread;
716 			t = procfs_dodbregs(curp, lp, NULL, &uio);
717 			lwkt_reltoken(&p->p_token);
718 			PRELE(p);
719 			lwkt_reltoken(&proc_token);
720 			return t;
721 		}
722 #endif /* defined(PT_SETDBREGS) || defined(PT_GETDBREGS) */
723 
724 	default:
725 		break;
726 	}
727 
728 	lwkt_reltoken(&p->p_token);
729 	PRELE(p);
730 	lwkt_reltoken(&proc_token);
731 
732 	return 0;
733 }
734 
735 int
736 trace_req(struct proc *p)
737 {
738 	return 1;
739 }
740 
741 /*
742  * stopevent()
743  *
744  * Stop a process because of a procfs event.  Stay stopped until p->p_step
745  * is cleared (cleared by PIOCCONT in procfs).
746  *
747  * MPSAFE
748  */
749 void
750 stopevent(struct proc *p, unsigned int event, unsigned int val)
751 {
752 	/*
753 	 * Set event info.  Recheck p_stops in case we are
754 	 * racing a close() on procfs.
755 	 */
756 	spin_lock(&p->p_spin);
757 	if ((p->p_stops & event) == 0) {
758 		spin_unlock(&p->p_spin);
759 		return;
760 	}
761 	p->p_xstat = val;
762 	p->p_stype = event;
763 	p->p_step = 1;
764 	tsleep_interlock(&p->p_step, 0);
765 	spin_unlock(&p->p_spin);
766 
767 	/*
768 	 * Wakeup any PIOCWAITing procs and wait for p_step to
769 	 * be cleared.
770 	 */
771 	for (;;) {
772 		wakeup(&p->p_stype);
773 		tsleep(&p->p_step, PINTERLOCKED, "stopevent", 0);
774 		spin_lock(&p->p_spin);
775 		if (p->p_step == 0) {
776 			spin_unlock(&p->p_spin);
777 			break;
778 		}
779 		tsleep_interlock(&p->p_step, 0);
780 		spin_unlock(&p->p_spin);
781 	}
782 }
783 
784