xref: /dflybsd-src/sys/kern/sys_pipe.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.30 2005/07/04 18:39:16 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/file2.h>
88 
89 #include <machine/cpufunc.h>
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	NULL,	/* clone */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
122 
123 /*
124  * Default pipe buffer size(s), this can be kind-of large now because pipe
125  * space is pageable.  The pipe code will try to maintain locality of
126  * reference for performance reasons, so small amounts of outstanding I/O
127  * will not wipe the cache.
128  */
129 #define MINPIPESIZE (PIPE_SIZE/3)
130 #define MAXPIPESIZE (2*PIPE_SIZE/3)
131 
132 /*
133  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
134  * is there so that on large systems, we don't exhaust it.
135  */
136 #define MAXPIPEKVA (8*1024*1024)
137 
138 /*
139  * Limit for direct transfers, we cannot, of course limit
140  * the amount of kva for pipes in general though.
141  */
142 #define LIMITPIPEKVA (16*1024*1024)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define LIMITBIGPIPES	32
148 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
149 
150 static int pipe_maxbig = LIMITBIGPIPES;
151 static int pipe_maxcache = PIPEQ_MAX_CACHE;
152 static int pipe_nbig;
153 static int pipe_bcache_alloc;
154 static int pipe_bkmem_alloc;
155 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
156 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
157 					/* 3:sfbuf_dmap w/ forced invlpg */
158 
159 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
160 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
161         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
163         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
165         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
167         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
169         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
170 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
171 #if !defined(NO_PIPE_SYSCTL_STATS)
172 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
173         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
174 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
175         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
176 #endif
177 
178 static void pipeclose (struct pipe *cpipe);
179 static void pipe_free_kmem (struct pipe *cpipe);
180 static int pipe_create (struct pipe **cpipep);
181 static __inline int pipelock (struct pipe *cpipe, int catch);
182 static __inline void pipeunlock (struct pipe *cpipe);
183 static __inline void pipeselwakeup (struct pipe *cpipe);
184 #ifndef PIPE_NODIRECT
185 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
186 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
187 static void pipe_clone_write_buffer (struct pipe *wpipe);
188 #endif
189 static int pipespace (struct pipe *cpipe, int size);
190 
191 /*
192  * The pipe system call for the DTYPE_PIPE type of pipes
193  *
194  * pipe_ARgs(int dummy)
195  */
196 
197 /* ARGSUSED */
198 int
199 pipe(struct pipe_args *uap)
200 {
201 	struct thread *td = curthread;
202 	struct proc *p = td->td_proc;
203 	struct filedesc *fdp;
204 	struct file *rf, *wf;
205 	struct pipe *rpipe, *wpipe;
206 	int fd1, fd2, error;
207 
208 	KKASSERT(p);
209 	fdp = p->p_fd;
210 
211 	rpipe = wpipe = NULL;
212 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
213 		pipeclose(rpipe);
214 		pipeclose(wpipe);
215 		return (ENFILE);
216 	}
217 
218 	rpipe->pipe_state |= PIPE_DIRECTOK;
219 	wpipe->pipe_state |= PIPE_DIRECTOK;
220 
221 	/*
222 	 * Select the direct-map features to use for this pipe.  Since the
223 	 * sysctl's can change on the fly we record the settings when the
224 	 * pipe is created.
225 	 *
226 	 * Generally speaking the system will default to what we consider
227 	 * to be the best-balanced and most stable option.  Right now this
228 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
229 	 * moment.
230 	 */
231 	wpipe->pipe_feature = PIPE_COPY;
232 	if (pipe_dwrite_enable) {
233 		switch(pipe_dwrite_sfbuf) {
234 		case 0:
235 			wpipe->pipe_feature = PIPE_KMEM;
236 			break;
237 		case 1:
238 			wpipe->pipe_feature = PIPE_SFBUF1;
239 			break;
240 		case 2:
241 		case 3:
242 			wpipe->pipe_feature = PIPE_SFBUF2;
243 			break;
244 		}
245 	}
246 	rpipe->pipe_feature = wpipe->pipe_feature;
247 
248 	error = falloc(p, &rf, &fd1);
249 	if (error) {
250 		pipeclose(rpipe);
251 		pipeclose(wpipe);
252 		return (error);
253 	}
254 	uap->sysmsg_fds[0] = fd1;
255 
256 	/*
257 	 * Warning: once we've gotten past allocation of the fd for the
258 	 * read-side, we can only drop the read side via fdrop() in order
259 	 * to avoid races against processes which manage to dup() the read
260 	 * side while we are blocked trying to allocate the write side.
261 	 */
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_type = DTYPE_PIPE;
264 	rf->f_data = (caddr_t)rpipe;
265 	rf->f_ops = &pipeops;
266 	error = falloc(p, &wf, &fd2);
267 	if (error) {
268 		if (fdp->fd_files[fd1].fp == rf) {
269 			funsetfd(fdp, fd1);
270 			fdrop(rf, td);
271 		}
272 		fdrop(rf, td);
273 		/* rpipe has been closed by fdrop(). */
274 		pipeclose(wpipe);
275 		return (error);
276 	}
277 	wf->f_flag = FREAD | FWRITE;
278 	wf->f_type = DTYPE_PIPE;
279 	wf->f_data = (caddr_t)wpipe;
280 	wf->f_ops = &pipeops;
281 	uap->sysmsg_fds[1] = fd2;
282 
283 	rpipe->pipe_peer = wpipe;
284 	wpipe->pipe_peer = rpipe;
285 	fdrop(rf, td);
286 	fdrop(wf, td);
287 
288 	return (0);
289 }
290 
291 /*
292  * Allocate kva for pipe circular buffer, the space is pageable
293  * This routine will 'realloc' the size of a pipe safely, if it fails
294  * it will retain the old buffer.
295  * If it fails it will return ENOMEM.
296  */
297 static int
298 pipespace(struct pipe *cpipe, int size)
299 {
300 	struct vm_object *object;
301 	caddr_t buffer;
302 	int npages, error;
303 
304 	npages = round_page(size) / PAGE_SIZE;
305 	object = cpipe->pipe_buffer.object;
306 
307 	/*
308 	 * [re]create the object if necessary and reserve space for it
309 	 * in the kernel_map.  The object and memory are pageable.  On
310 	 * success, free the old resources before assigning the new
311 	 * ones.
312 	 */
313 	if (object == NULL || object->size != npages) {
314 		object = vm_object_allocate(OBJT_DEFAULT, npages);
315 		buffer = (caddr_t) vm_map_min(kernel_map);
316 
317 		error = vm_map_find(kernel_map, object, 0,
318 			(vm_offset_t *) &buffer, size, 1,
319 			VM_PROT_ALL, VM_PROT_ALL, 0);
320 
321 		if (error != KERN_SUCCESS) {
322 			vm_object_deallocate(object);
323 			return (ENOMEM);
324 		}
325 		pipe_free_kmem(cpipe);
326 		cpipe->pipe_buffer.object = object;
327 		cpipe->pipe_buffer.buffer = buffer;
328 		cpipe->pipe_buffer.size = size;
329 		++pipe_bkmem_alloc;
330 	} else {
331 		++pipe_bcache_alloc;
332 	}
333 	cpipe->pipe_buffer.in = 0;
334 	cpipe->pipe_buffer.out = 0;
335 	cpipe->pipe_buffer.cnt = 0;
336 	return (0);
337 }
338 
339 /*
340  * Initialize and allocate VM and memory for pipe, pulling the pipe from
341  * our per-cpu cache if possible.  For now make sure it is sized for the
342  * smaller PIPE_SIZE default.
343  */
344 static int
345 pipe_create(cpipep)
346 	struct pipe **cpipep;
347 {
348 	globaldata_t gd = mycpu;
349 	struct pipe *cpipe;
350 	int error;
351 
352 	if ((cpipe = gd->gd_pipeq) != NULL) {
353 		gd->gd_pipeq = cpipe->pipe_peer;
354 		--gd->gd_pipeqcount;
355 		cpipe->pipe_peer = NULL;
356 	} else {
357 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
358 	}
359 	*cpipep = cpipe;
360 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
361 		return (error);
362 	vfs_timestamp(&cpipe->pipe_ctime);
363 	cpipe->pipe_atime = cpipe->pipe_ctime;
364 	cpipe->pipe_mtime = cpipe->pipe_ctime;
365 	return (0);
366 }
367 
368 
369 /*
370  * lock a pipe for I/O, blocking other access
371  */
372 static __inline int
373 pipelock(cpipe, catch)
374 	struct pipe *cpipe;
375 	int catch;
376 {
377 	int error;
378 
379 	while (cpipe->pipe_state & PIPE_LOCK) {
380 		cpipe->pipe_state |= PIPE_LWANT;
381 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
382 		if (error != 0)
383 			return (error);
384 	}
385 	cpipe->pipe_state |= PIPE_LOCK;
386 	return (0);
387 }
388 
389 /*
390  * unlock a pipe I/O lock
391  */
392 static __inline void
393 pipeunlock(cpipe)
394 	struct pipe *cpipe;
395 {
396 
397 	cpipe->pipe_state &= ~PIPE_LOCK;
398 	if (cpipe->pipe_state & PIPE_LWANT) {
399 		cpipe->pipe_state &= ~PIPE_LWANT;
400 		wakeup(cpipe);
401 	}
402 }
403 
404 static __inline void
405 pipeselwakeup(cpipe)
406 	struct pipe *cpipe;
407 {
408 
409 	if (cpipe->pipe_state & PIPE_SEL) {
410 		cpipe->pipe_state &= ~PIPE_SEL;
411 		selwakeup(&cpipe->pipe_sel);
412 	}
413 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
414 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
415 	KNOTE(&cpipe->pipe_sel.si_note, 0);
416 }
417 
418 /* ARGSUSED */
419 static int
420 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
421 	int flags, struct thread *td)
422 {
423 	struct pipe *rpipe = (struct pipe *) fp->f_data;
424 	int error;
425 	int nread = 0;
426 	u_int size;
427 
428 	++rpipe->pipe_busy;
429 	error = pipelock(rpipe, 1);
430 	if (error)
431 		goto unlocked_error;
432 
433 	while (uio->uio_resid) {
434 		caddr_t va;
435 
436 		if (rpipe->pipe_buffer.cnt > 0) {
437 			/*
438 			 * normal pipe buffer receive
439 			 */
440 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
441 			if (size > rpipe->pipe_buffer.cnt)
442 				size = rpipe->pipe_buffer.cnt;
443 			if (size > (u_int) uio->uio_resid)
444 				size = (u_int) uio->uio_resid;
445 
446 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
447 					size, uio);
448 			if (error)
449 				break;
450 
451 			rpipe->pipe_buffer.out += size;
452 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
453 				rpipe->pipe_buffer.out = 0;
454 
455 			rpipe->pipe_buffer.cnt -= size;
456 
457 			/*
458 			 * If there is no more to read in the pipe, reset
459 			 * its pointers to the beginning.  This improves
460 			 * cache hit stats.
461 			 */
462 			if (rpipe->pipe_buffer.cnt == 0) {
463 				rpipe->pipe_buffer.in = 0;
464 				rpipe->pipe_buffer.out = 0;
465 			}
466 			nread += size;
467 #ifndef PIPE_NODIRECT
468 		} else if (rpipe->pipe_kva &&
469 			   rpipe->pipe_feature == PIPE_KMEM &&
470 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
471 			       == PIPE_DIRECTW
472 		) {
473 			/*
474 			 * Direct copy using source-side kva mapping
475 			 */
476 			size = rpipe->pipe_map.xio_bytes -
477 				rpipe->pipe_buffer.out;
478 			if (size > (u_int)uio->uio_resid)
479 				size = (u_int)uio->uio_resid;
480 			va = (caddr_t)rpipe->pipe_kva +
481 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
482 			error = uiomove(va, size, uio);
483 			if (error)
484 				break;
485 			nread += size;
486 			rpipe->pipe_buffer.out += size;
487 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
488 				rpipe->pipe_state |= PIPE_DIRECTIP;
489 				rpipe->pipe_state &= ~PIPE_DIRECTW;
490 				/* reset out index for copy mode */
491 				rpipe->pipe_buffer.out = 0;
492 				wakeup(rpipe);
493 			}
494 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
495 			   rpipe->pipe_kva &&
496 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
497 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
498 			       == PIPE_DIRECTW
499 		) {
500 			/*
501 			 * Direct copy, bypassing a kernel buffer.  We cannot
502 			 * mess with the direct-write buffer until
503 			 * PIPE_DIRECTIP is cleared.  In order to prevent
504 			 * the pipe_write code from racing itself in
505 			 * direct_write, we set DIRECTIP when we clear
506 			 * DIRECTW after we have exhausted the buffer.
507 			 */
508 			if (pipe_dwrite_sfbuf == 3)
509 				rpipe->pipe_kvamask = 0;
510 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
511 				    rpipe->pipe_map.xio_npages,
512 				    &rpipe->pipe_kvamask);
513 			size = rpipe->pipe_map.xio_bytes -
514 				rpipe->pipe_buffer.out;
515 			if (size > (u_int)uio->uio_resid)
516 				size = (u_int)uio->uio_resid;
517 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
518 			error = uiomove(va, size, uio);
519 			if (error)
520 				break;
521 			nread += size;
522 			rpipe->pipe_buffer.out += size;
523 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
524 				rpipe->pipe_state |= PIPE_DIRECTIP;
525 				rpipe->pipe_state &= ~PIPE_DIRECTW;
526 				/* reset out index for copy mode */
527 				rpipe->pipe_buffer.out = 0;
528 				wakeup(rpipe);
529 			}
530 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
531 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
532 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
533 				== PIPE_DIRECTW
534 		) {
535 			/*
536 			 * Direct copy, bypassing a kernel buffer.  We cannot
537 			 * mess with the direct-write buffer until
538 			 * PIPE_DIRECTIP is cleared.  In order to prevent
539 			 * the pipe_write code from racing itself in
540 			 * direct_write, we set DIRECTIP when we clear
541 			 * DIRECTW after we have exhausted the buffer.
542 			 */
543 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
544 			if (error)
545 				break;
546 			nread += size;
547 			rpipe->pipe_buffer.out += size;
548 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
549 				rpipe->pipe_state |= PIPE_DIRECTIP;
550 				rpipe->pipe_state &= ~PIPE_DIRECTW;
551 				/* reset out index for copy mode */
552 				rpipe->pipe_buffer.out = 0;
553 				wakeup(rpipe);
554 			}
555 #endif
556 		} else {
557 			/*
558 			 * detect EOF condition
559 			 * read returns 0 on EOF, no need to set error
560 			 */
561 			if (rpipe->pipe_state & PIPE_EOF)
562 				break;
563 
564 			/*
565 			 * If the "write-side" has been blocked, wake it up now.
566 			 */
567 			if (rpipe->pipe_state & PIPE_WANTW) {
568 				rpipe->pipe_state &= ~PIPE_WANTW;
569 				wakeup(rpipe);
570 			}
571 
572 			/*
573 			 * Break if some data was read.
574 			 */
575 			if (nread > 0)
576 				break;
577 
578 			/*
579 			 * Unlock the pipe buffer for our remaining
580 			 * processing.  We will either break out with an
581 			 * error or we will sleep and relock to loop.
582 			 */
583 			pipeunlock(rpipe);
584 
585 			/*
586 			 * Handle non-blocking mode operation or
587 			 * wait for more data.
588 			 */
589 			if (fp->f_flag & FNONBLOCK) {
590 				error = EAGAIN;
591 			} else {
592 				rpipe->pipe_state |= PIPE_WANTR;
593 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
594 				    "piperd", 0)) == 0) {
595 					error = pipelock(rpipe, 1);
596 				}
597 			}
598 			if (error)
599 				goto unlocked_error;
600 		}
601 	}
602 	pipeunlock(rpipe);
603 
604 	if (error == 0)
605 		vfs_timestamp(&rpipe->pipe_atime);
606 unlocked_error:
607 	--rpipe->pipe_busy;
608 
609 	/*
610 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
611 	 */
612 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
613 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
614 		wakeup(rpipe);
615 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
616 		/*
617 		 * Handle write blocking hysteresis.
618 		 */
619 		if (rpipe->pipe_state & PIPE_WANTW) {
620 			rpipe->pipe_state &= ~PIPE_WANTW;
621 			wakeup(rpipe);
622 		}
623 	}
624 
625 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
626 		pipeselwakeup(rpipe);
627 	return (error);
628 }
629 
630 #ifndef PIPE_NODIRECT
631 /*
632  * Map the sending processes' buffer into kernel space and wire it.
633  * This is similar to a physical write operation.
634  */
635 static int
636 pipe_build_write_buffer(wpipe, uio)
637 	struct pipe *wpipe;
638 	struct uio *uio;
639 {
640 	int error;
641 	u_int size;
642 
643 	size = (u_int) uio->uio_iov->iov_len;
644 	if (size > wpipe->pipe_buffer.size)
645 		size = wpipe->pipe_buffer.size;
646 
647 	if (uio->uio_segflg == UIO_SYSSPACE) {
648 		error = xio_init_kbuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
649 					size);
650 	} else {
651 		error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
652 					size, XIOF_READ);
653 	}
654 	wpipe->pipe_buffer.out = 0;
655 	if (error)
656 		return(error);
657 
658 	/*
659 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
660 	 * map the pages on the target while KMEM maps the pages now.
661 	 */
662 	switch(wpipe->pipe_feature) {
663 	case PIPE_KMEM:
664 	case PIPE_SFBUF2:
665 		if (wpipe->pipe_kva == NULL) {
666 			wpipe->pipe_kva =
667 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
668 			wpipe->pipe_kvamask = 0;
669 		}
670 		if (wpipe->pipe_feature == PIPE_KMEM) {
671 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
672 				    wpipe->pipe_map.xio_npages);
673 		}
674 		break;
675 	default:
676 		break;
677 	}
678 
679 	/*
680 	 * And update the uio data.  The XIO might have loaded fewer bytes
681 	 * then requested so reload 'size'.
682 	 */
683 	size = wpipe->pipe_map.xio_bytes;
684 	uio->uio_iov->iov_len -= size;
685 	uio->uio_iov->iov_base += size;
686 	if (uio->uio_iov->iov_len == 0)
687 		uio->uio_iov++;
688 	uio->uio_resid -= size;
689 	uio->uio_offset += size;
690 	return (0);
691 }
692 
693 /*
694  * In the case of a signal, the writing process might go away.  This
695  * code copies the data into the circular buffer so that the source
696  * pages can be freed without loss of data.
697  *
698  * Note that in direct mode pipe_buffer.out is used to track the
699  * XIO offset.  We are converting the direct mode into buffered mode
700  * which changes the meaning of pipe_buffer.out.
701  */
702 static void
703 pipe_clone_write_buffer(wpipe)
704 	struct pipe *wpipe;
705 {
706 	int size;
707 	int offset;
708 
709 	offset = wpipe->pipe_buffer.out;
710 	size = wpipe->pipe_map.xio_bytes - offset;
711 
712 	KKASSERT(size <= wpipe->pipe_buffer.size);
713 
714 	wpipe->pipe_buffer.in = size;
715 	wpipe->pipe_buffer.out = 0;
716 	wpipe->pipe_buffer.cnt = size;
717 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
718 
719 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
720 	xio_release(&wpipe->pipe_map);
721 	if (wpipe->pipe_kva) {
722 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
723 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
724 		wpipe->pipe_kva = NULL;
725 	}
726 }
727 
728 /*
729  * This implements the pipe buffer write mechanism.  Note that only
730  * a direct write OR a normal pipe write can be pending at any given time.
731  * If there are any characters in the pipe buffer, the direct write will
732  * be deferred until the receiving process grabs all of the bytes from
733  * the pipe buffer.  Then the direct mapping write is set-up.
734  */
735 static int
736 pipe_direct_write(wpipe, uio)
737 	struct pipe *wpipe;
738 	struct uio *uio;
739 {
740 	int error;
741 
742 retry:
743 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
744 		if (wpipe->pipe_state & PIPE_WANTR) {
745 			wpipe->pipe_state &= ~PIPE_WANTR;
746 			wakeup(wpipe);
747 		}
748 		wpipe->pipe_state |= PIPE_WANTW;
749 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
750 		if (error)
751 			goto error2;
752 		if (wpipe->pipe_state & PIPE_EOF) {
753 			error = EPIPE;
754 			goto error2;
755 		}
756 	}
757 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
758 	if (wpipe->pipe_buffer.cnt > 0) {
759 		if (wpipe->pipe_state & PIPE_WANTR) {
760 			wpipe->pipe_state &= ~PIPE_WANTR;
761 			wakeup(wpipe);
762 		}
763 
764 		wpipe->pipe_state |= PIPE_WANTW;
765 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
766 		if (error)
767 			goto error2;
768 		if (wpipe->pipe_state & PIPE_EOF) {
769 			error = EPIPE;
770 			goto error2;
771 		}
772 		goto retry;
773 	}
774 
775 	/*
776 	 * Build our direct-write buffer
777 	 */
778 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
779 	error = pipe_build_write_buffer(wpipe, uio);
780 	if (error)
781 		goto error1;
782 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
783 
784 	/*
785 	 * Wait until the receiver has snarfed the data.  Since we are likely
786 	 * going to sleep we optimize the case and yield synchronously,
787 	 * possibly avoiding the tsleep().
788 	 */
789 	error = 0;
790 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
791 		if (wpipe->pipe_state & PIPE_EOF) {
792 			pipelock(wpipe, 0);
793 			xio_release(&wpipe->pipe_map);
794 			if (wpipe->pipe_kva) {
795 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
796 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
797 				wpipe->pipe_kva = NULL;
798 			}
799 			pipeunlock(wpipe);
800 			pipeselwakeup(wpipe);
801 			error = EPIPE;
802 			goto error1;
803 		}
804 		if (wpipe->pipe_state & PIPE_WANTR) {
805 			wpipe->pipe_state &= ~PIPE_WANTR;
806 			wakeup(wpipe);
807 		}
808 		pipeselwakeup(wpipe);
809 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
810 	}
811 	pipelock(wpipe,0);
812 	if (wpipe->pipe_state & PIPE_DIRECTW) {
813 		/*
814 		 * this bit of trickery substitutes a kernel buffer for
815 		 * the process that might be going away.
816 		 */
817 		pipe_clone_write_buffer(wpipe);
818 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
819 	} else {
820 		/*
821 		 * note: The pipe_kva mapping is not qremove'd here.  For
822 		 * legacy PIPE_KMEM mode this constitutes an improvement
823 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
824 		 * mode the kva mapping must not be removed to get the
825 		 * caching benefit.
826 		 *
827 		 * For testing purposes we will give the original algorithm
828 		 * the benefit of the doubt 'what it could have been', and
829 		 * keep the optimization.
830 		 */
831 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
832 		xio_release(&wpipe->pipe_map);
833 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
834 	}
835 	pipeunlock(wpipe);
836 	return (error);
837 
838 	/*
839 	 * Direct-write error, clear the direct write flags.
840 	 */
841 error1:
842 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
843 	/* fallthrough */
844 
845 	/*
846 	 * General error, wakeup the other side if it happens to be sleeping.
847 	 */
848 error2:
849 	wakeup(wpipe);
850 	return (error);
851 }
852 #endif
853 
854 static int
855 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
856 	int flags, struct thread *td)
857 {
858 	int error = 0;
859 	int orig_resid;
860 	struct pipe *wpipe, *rpipe;
861 
862 	rpipe = (struct pipe *) fp->f_data;
863 	wpipe = rpipe->pipe_peer;
864 
865 	/*
866 	 * detect loss of pipe read side, issue SIGPIPE if lost.
867 	 */
868 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
869 		return (EPIPE);
870 	}
871 	++wpipe->pipe_busy;
872 
873 	/*
874 	 * If it is advantageous to resize the pipe buffer, do
875 	 * so.
876 	 */
877 	if ((uio->uio_resid > PIPE_SIZE) &&
878 		(pipe_nbig < pipe_maxbig) &&
879 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
880 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
881 		(wpipe->pipe_buffer.cnt == 0)) {
882 
883 		if ((error = pipelock(wpipe,1)) == 0) {
884 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
885 				pipe_nbig++;
886 			pipeunlock(wpipe);
887 		}
888 	}
889 
890 	/*
891 	 * If an early error occured unbusy and return, waking up any pending
892 	 * readers.
893 	 */
894 	if (error) {
895 		--wpipe->pipe_busy;
896 		if ((wpipe->pipe_busy == 0) &&
897 		    (wpipe->pipe_state & PIPE_WANT)) {
898 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
899 			wakeup(wpipe);
900 		}
901 		return(error);
902 	}
903 
904 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
905 
906 	orig_resid = uio->uio_resid;
907 
908 	while (uio->uio_resid) {
909 		int space;
910 
911 #ifndef PIPE_NODIRECT
912 		/*
913 		 * If the transfer is large, we can gain performance if
914 		 * we do process-to-process copies directly.
915 		 * If the write is non-blocking, we don't use the
916 		 * direct write mechanism.
917 		 *
918 		 * The direct write mechanism will detect the reader going
919 		 * away on us.
920 		 */
921 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
922 		    pipe_dwrite_enable > 1) &&
923 		    (fp->f_flag & FNONBLOCK) == 0 &&
924 		    pipe_dwrite_enable) {
925 			error = pipe_direct_write( wpipe, uio);
926 			if (error)
927 				break;
928 			continue;
929 		}
930 #endif
931 
932 		/*
933 		 * Pipe buffered writes cannot be coincidental with
934 		 * direct writes.  We wait until the currently executing
935 		 * direct write is completed before we start filling the
936 		 * pipe buffer.  We break out if a signal occurs or the
937 		 * reader goes away.
938 		 */
939 	retrywrite:
940 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
941 			if (wpipe->pipe_state & PIPE_WANTR) {
942 				wpipe->pipe_state &= ~PIPE_WANTR;
943 				wakeup(wpipe);
944 			}
945 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
946 			if (wpipe->pipe_state & PIPE_EOF)
947 				break;
948 			if (error)
949 				break;
950 		}
951 		if (wpipe->pipe_state & PIPE_EOF) {
952 			error = EPIPE;
953 			break;
954 		}
955 
956 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
957 
958 		/* Writes of size <= PIPE_BUF must be atomic. */
959 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
960 			space = 0;
961 
962 		/*
963 		 * Write to fill, read size handles write hysteresis.  Also
964 		 * additional restrictions can cause select-based non-blocking
965 		 * writes to spin.
966 		 */
967 		if (space > 0) {
968 			if ((error = pipelock(wpipe,1)) == 0) {
969 				int size;	/* Transfer size */
970 				int segsize;	/* first segment to transfer */
971 
972 				/*
973 				 * It is possible for a direct write to
974 				 * slip in on us... handle it here...
975 				 */
976 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
977 					pipeunlock(wpipe);
978 					goto retrywrite;
979 				}
980 				/*
981 				 * If a process blocked in uiomove, our
982 				 * value for space might be bad.
983 				 *
984 				 * XXX will we be ok if the reader has gone
985 				 * away here?
986 				 */
987 				if (space > wpipe->pipe_buffer.size -
988 				    wpipe->pipe_buffer.cnt) {
989 					pipeunlock(wpipe);
990 					goto retrywrite;
991 				}
992 
993 				/*
994 				 * Transfer size is minimum of uio transfer
995 				 * and free space in pipe buffer.
996 				 */
997 				if (space > uio->uio_resid)
998 					size = uio->uio_resid;
999 				else
1000 					size = space;
1001 				/*
1002 				 * First segment to transfer is minimum of
1003 				 * transfer size and contiguous space in
1004 				 * pipe buffer.  If first segment to transfer
1005 				 * is less than the transfer size, we've got
1006 				 * a wraparound in the buffer.
1007 				 */
1008 				segsize = wpipe->pipe_buffer.size -
1009 					wpipe->pipe_buffer.in;
1010 				if (segsize > size)
1011 					segsize = size;
1012 
1013 				/* Transfer first segment */
1014 
1015 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1016 						segsize, uio);
1017 
1018 				if (error == 0 && segsize < size) {
1019 					/*
1020 					 * Transfer remaining part now, to
1021 					 * support atomic writes.  Wraparound
1022 					 * happened.
1023 					 */
1024 					if (wpipe->pipe_buffer.in + segsize !=
1025 					    wpipe->pipe_buffer.size)
1026 						panic("Expected pipe buffer wraparound disappeared");
1027 
1028 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1029 							size - segsize, uio);
1030 				}
1031 				if (error == 0) {
1032 					wpipe->pipe_buffer.in += size;
1033 					if (wpipe->pipe_buffer.in >=
1034 					    wpipe->pipe_buffer.size) {
1035 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1036 							panic("Expected wraparound bad");
1037 						wpipe->pipe_buffer.in = size - segsize;
1038 					}
1039 
1040 					wpipe->pipe_buffer.cnt += size;
1041 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1042 						panic("Pipe buffer overflow");
1043 
1044 				}
1045 				pipeunlock(wpipe);
1046 			}
1047 			if (error)
1048 				break;
1049 
1050 		} else {
1051 			/*
1052 			 * If the "read-side" has been blocked, wake it up now
1053 			 * and yield to let it drain synchronously rather
1054 			 * then block.
1055 			 */
1056 			if (wpipe->pipe_state & PIPE_WANTR) {
1057 				wpipe->pipe_state &= ~PIPE_WANTR;
1058 				wakeup(wpipe);
1059 			}
1060 
1061 			/*
1062 			 * don't block on non-blocking I/O
1063 			 */
1064 			if (fp->f_flag & FNONBLOCK) {
1065 				error = EAGAIN;
1066 				break;
1067 			}
1068 
1069 			/*
1070 			 * We have no more space and have something to offer,
1071 			 * wake up select/poll.
1072 			 */
1073 			pipeselwakeup(wpipe);
1074 
1075 			wpipe->pipe_state |= PIPE_WANTW;
1076 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1077 			if (error != 0)
1078 				break;
1079 			/*
1080 			 * If read side wants to go away, we just issue a signal
1081 			 * to ourselves.
1082 			 */
1083 			if (wpipe->pipe_state & PIPE_EOF) {
1084 				error = EPIPE;
1085 				break;
1086 			}
1087 		}
1088 	}
1089 
1090 	--wpipe->pipe_busy;
1091 
1092 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1093 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1094 		wakeup(wpipe);
1095 	} else if (wpipe->pipe_buffer.cnt > 0) {
1096 		/*
1097 		 * If we have put any characters in the buffer, we wake up
1098 		 * the reader.
1099 		 */
1100 		if (wpipe->pipe_state & PIPE_WANTR) {
1101 			wpipe->pipe_state &= ~PIPE_WANTR;
1102 			wakeup(wpipe);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Don't return EPIPE if I/O was successful
1108 	 */
1109 	if ((wpipe->pipe_buffer.cnt == 0) &&
1110 	    (uio->uio_resid == 0) &&
1111 	    (error == EPIPE)) {
1112 		error = 0;
1113 	}
1114 
1115 	if (error == 0)
1116 		vfs_timestamp(&wpipe->pipe_mtime);
1117 
1118 	/*
1119 	 * We have something to offer,
1120 	 * wake up select/poll.
1121 	 */
1122 	if (wpipe->pipe_buffer.cnt)
1123 		pipeselwakeup(wpipe);
1124 
1125 	return (error);
1126 }
1127 
1128 /*
1129  * we implement a very minimal set of ioctls for compatibility with sockets.
1130  */
1131 int
1132 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1133 {
1134 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1135 
1136 	switch (cmd) {
1137 
1138 	case FIONBIO:
1139 		return (0);
1140 
1141 	case FIOASYNC:
1142 		if (*(int *)data) {
1143 			mpipe->pipe_state |= PIPE_ASYNC;
1144 		} else {
1145 			mpipe->pipe_state &= ~PIPE_ASYNC;
1146 		}
1147 		return (0);
1148 
1149 	case FIONREAD:
1150 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1151 			*(int *)data = mpipe->pipe_map.xio_bytes -
1152 					mpipe->pipe_buffer.out;
1153 		} else {
1154 			*(int *)data = mpipe->pipe_buffer.cnt;
1155 		}
1156 		return (0);
1157 
1158 	case FIOSETOWN:
1159 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1160 
1161 	case FIOGETOWN:
1162 		*(int *)data = fgetown(mpipe->pipe_sigio);
1163 		return (0);
1164 
1165 	/* This is deprecated, FIOSETOWN should be used instead. */
1166 	case TIOCSPGRP:
1167 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1168 
1169 	/* This is deprecated, FIOGETOWN should be used instead. */
1170 	case TIOCGPGRP:
1171 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1172 		return (0);
1173 
1174 	}
1175 	return (ENOTTY);
1176 }
1177 
1178 int
1179 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1180 {
1181 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1182 	struct pipe *wpipe;
1183 	int revents = 0;
1184 
1185 	wpipe = rpipe->pipe_peer;
1186 	if (events & (POLLIN | POLLRDNORM))
1187 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1188 		    (rpipe->pipe_buffer.cnt > 0) ||
1189 		    (rpipe->pipe_state & PIPE_EOF))
1190 			revents |= events & (POLLIN | POLLRDNORM);
1191 
1192 	if (events & (POLLOUT | POLLWRNORM))
1193 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1194 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1195 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1196 			revents |= events & (POLLOUT | POLLWRNORM);
1197 
1198 	if ((rpipe->pipe_state & PIPE_EOF) ||
1199 	    (wpipe == NULL) ||
1200 	    (wpipe->pipe_state & PIPE_EOF))
1201 		revents |= POLLHUP;
1202 
1203 	if (revents == 0) {
1204 		if (events & (POLLIN | POLLRDNORM)) {
1205 			selrecord(td, &rpipe->pipe_sel);
1206 			rpipe->pipe_state |= PIPE_SEL;
1207 		}
1208 
1209 		if (events & (POLLOUT | POLLWRNORM)) {
1210 			selrecord(td, &wpipe->pipe_sel);
1211 			wpipe->pipe_state |= PIPE_SEL;
1212 		}
1213 	}
1214 
1215 	return (revents);
1216 }
1217 
1218 static int
1219 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1220 {
1221 	struct pipe *pipe = (struct pipe *)fp->f_data;
1222 
1223 	bzero((caddr_t)ub, sizeof(*ub));
1224 	ub->st_mode = S_IFIFO;
1225 	ub->st_blksize = pipe->pipe_buffer.size;
1226 	ub->st_size = pipe->pipe_buffer.cnt;
1227 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1228 		ub->st_size = pipe->pipe_map.xio_bytes -
1229 				pipe->pipe_buffer.out;
1230 	}
1231 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1232 	ub->st_atimespec = pipe->pipe_atime;
1233 	ub->st_mtimespec = pipe->pipe_mtime;
1234 	ub->st_ctimespec = pipe->pipe_ctime;
1235 	/*
1236 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1237 	 * st_flags, st_gen.
1238 	 * XXX (st_dev, st_ino) should be unique.
1239 	 */
1240 	return (0);
1241 }
1242 
1243 /* ARGSUSED */
1244 static int
1245 pipe_close(struct file *fp, struct thread *td)
1246 {
1247 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1248 
1249 	fp->f_ops = &badfileops;
1250 	fp->f_data = NULL;
1251 	funsetown(cpipe->pipe_sigio);
1252 	pipeclose(cpipe);
1253 	return (0);
1254 }
1255 
1256 static void
1257 pipe_free_kmem(struct pipe *cpipe)
1258 {
1259 	if (cpipe->pipe_buffer.buffer != NULL) {
1260 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1261 			--pipe_nbig;
1262 		kmem_free(kernel_map,
1263 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1264 			cpipe->pipe_buffer.size);
1265 		cpipe->pipe_buffer.buffer = NULL;
1266 		cpipe->pipe_buffer.object = NULL;
1267 	}
1268 #ifndef PIPE_NODIRECT
1269 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1270 		cpipe->pipe_map.xio_offset == 0 &&
1271 		cpipe->pipe_map.xio_npages == 0);
1272 #endif
1273 }
1274 
1275 /*
1276  * shutdown the pipe
1277  */
1278 static void
1279 pipeclose(struct pipe *cpipe)
1280 {
1281 	globaldata_t gd;
1282 	struct pipe *ppipe;
1283 
1284 	if (cpipe == NULL)
1285 		return;
1286 
1287 	pipeselwakeup(cpipe);
1288 
1289 	/*
1290 	 * If the other side is blocked, wake it up saying that
1291 	 * we want to close it down.
1292 	 */
1293 	while (cpipe->pipe_busy) {
1294 		wakeup(cpipe);
1295 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1296 		tsleep(cpipe, 0, "pipecl", 0);
1297 	}
1298 
1299 	/*
1300 	 * Disconnect from peer
1301 	 */
1302 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1303 		pipeselwakeup(ppipe);
1304 
1305 		ppipe->pipe_state |= PIPE_EOF;
1306 		wakeup(ppipe);
1307 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1308 		ppipe->pipe_peer = NULL;
1309 	}
1310 
1311 	if (cpipe->pipe_kva) {
1312 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1313 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1314 		cpipe->pipe_kva = NULL;
1315 	}
1316 
1317 	/*
1318 	 * free or cache resources
1319 	 */
1320 	gd = mycpu;
1321 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1322 	    cpipe->pipe_buffer.size != PIPE_SIZE
1323 	) {
1324 		pipe_free_kmem(cpipe);
1325 		free(cpipe, M_PIPE);
1326 	} else {
1327 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1328 			cpipe->pipe_map.xio_bytes == 0 &&
1329 			cpipe->pipe_map.xio_offset == 0);
1330 		cpipe->pipe_state = 0;
1331 		cpipe->pipe_busy = 0;
1332 		cpipe->pipe_peer = gd->gd_pipeq;
1333 		gd->gd_pipeq = cpipe;
1334 		++gd->gd_pipeqcount;
1335 	}
1336 }
1337 
1338 /*ARGSUSED*/
1339 static int
1340 pipe_kqfilter(struct file *fp, struct knote *kn)
1341 {
1342 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1343 
1344 	switch (kn->kn_filter) {
1345 	case EVFILT_READ:
1346 		kn->kn_fop = &pipe_rfiltops;
1347 		break;
1348 	case EVFILT_WRITE:
1349 		kn->kn_fop = &pipe_wfiltops;
1350 		cpipe = cpipe->pipe_peer;
1351 		if (cpipe == NULL)
1352 			/* other end of pipe has been closed */
1353 			return (EPIPE);
1354 		break;
1355 	default:
1356 		return (1);
1357 	}
1358 	kn->kn_hook = (caddr_t)cpipe;
1359 
1360 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1361 	return (0);
1362 }
1363 
1364 static void
1365 filt_pipedetach(struct knote *kn)
1366 {
1367 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1368 
1369 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1370 }
1371 
1372 /*ARGSUSED*/
1373 static int
1374 filt_piperead(struct knote *kn, long hint)
1375 {
1376 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1377 	struct pipe *wpipe = rpipe->pipe_peer;
1378 
1379 	kn->kn_data = rpipe->pipe_buffer.cnt;
1380 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1381 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1382 				rpipe->pipe_buffer.out;
1383 	}
1384 
1385 	if ((rpipe->pipe_state & PIPE_EOF) ||
1386 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1387 		kn->kn_flags |= EV_EOF;
1388 		return (1);
1389 	}
1390 	return (kn->kn_data > 0);
1391 }
1392 
1393 /*ARGSUSED*/
1394 static int
1395 filt_pipewrite(struct knote *kn, long hint)
1396 {
1397 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1398 	struct pipe *wpipe = rpipe->pipe_peer;
1399 
1400 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1401 		kn->kn_data = 0;
1402 		kn->kn_flags |= EV_EOF;
1403 		return (1);
1404 	}
1405 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1406 	if (wpipe->pipe_state & PIPE_DIRECTW)
1407 		kn->kn_data = 0;
1408 
1409 	return (kn->kn_data >= PIPE_BUF);
1410 }
1411