xref: /dflybsd-src/sys/kern/sys_pipe.c (revision bf22d4c1f95f57623b2b3030738e116d3a547284)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.21 2004/05/11 22:48:53 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/file2.h>
88 
89 #include <machine/cpufunc.h>
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	0,	/* autoq */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
122 
123 /*
124  * Default pipe buffer size(s), this can be kind-of large now because pipe
125  * space is pageable.  The pipe code will try to maintain locality of
126  * reference for performance reasons, so small amounts of outstanding I/O
127  * will not wipe the cache.
128  */
129 #define MINPIPESIZE (PIPE_SIZE/3)
130 #define MAXPIPESIZE (2*PIPE_SIZE/3)
131 
132 /*
133  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
134  * is there so that on large systems, we don't exhaust it.
135  */
136 #define MAXPIPEKVA (8*1024*1024)
137 
138 /*
139  * Limit for direct transfers, we cannot, of course limit
140  * the amount of kva for pipes in general though.
141  */
142 #define LIMITPIPEKVA (16*1024*1024)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define LIMITBIGPIPES	32
148 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
149 
150 static int pipe_maxbig = LIMITBIGPIPES;
151 static int pipe_maxcache = PIPEQ_MAX_CACHE;
152 static int pipe_nbig;
153 static int pipe_bcache_alloc;
154 static int pipe_bkmem_alloc;
155 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
156 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
157 					/* 3:sfbuf_dmap w/ forced invlpg */
158 
159 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
160 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
161         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
163         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
165         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
167         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
169         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0, "(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
170 #if !defined(NO_PIPE_SYSCTL_STATS)
171 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
172         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
173 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
174         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
175 #endif
176 
177 static void pipeclose (struct pipe *cpipe);
178 static void pipe_free_kmem (struct pipe *cpipe);
179 static int pipe_create (struct pipe **cpipep);
180 static __inline int pipelock (struct pipe *cpipe, int catch);
181 static __inline void pipeunlock (struct pipe *cpipe);
182 static __inline void pipeselwakeup (struct pipe *cpipe);
183 #ifndef PIPE_NODIRECT
184 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
185 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
186 static void pipe_clone_write_buffer (struct pipe *wpipe);
187 #endif
188 static int pipespace (struct pipe *cpipe, int size);
189 
190 /*
191  * The pipe system call for the DTYPE_PIPE type of pipes
192  *
193  * pipe_ARgs(int dummy)
194  */
195 
196 /* ARGSUSED */
197 int
198 pipe(struct pipe_args *uap)
199 {
200 	struct thread *td = curthread;
201 	struct proc *p = td->td_proc;
202 	struct filedesc *fdp;
203 	struct file *rf, *wf;
204 	struct pipe *rpipe, *wpipe;
205 	int fd1, fd2, error;
206 
207 	KKASSERT(p);
208 	fdp = p->p_fd;
209 
210 	rpipe = wpipe = NULL;
211 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
212 		pipeclose(rpipe);
213 		pipeclose(wpipe);
214 		return (ENFILE);
215 	}
216 
217 	rpipe->pipe_state |= PIPE_DIRECTOK;
218 	wpipe->pipe_state |= PIPE_DIRECTOK;
219 
220 	/*
221 	 * Select the direct-map features to use for this pipe.  Since the
222 	 * sysctl's can change on the fly we record the settings when the
223 	 * pipe is created.
224 	 *
225 	 * Generally speaking the system will default to what we consider
226 	 * to be the best-balanced and most stable option.  Right now this
227 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
228 	 * moment.
229 	 */
230 	wpipe->pipe_feature = PIPE_COPY;
231 	if (pipe_dwrite_enable) {
232 		switch(pipe_dwrite_sfbuf) {
233 		case 0:
234 			wpipe->pipe_feature = PIPE_KMEM;
235 			break;
236 		case 1:
237 			wpipe->pipe_feature = PIPE_SFBUF1;
238 			break;
239 		case 2:
240 		case 3:
241 			wpipe->pipe_feature = PIPE_SFBUF2;
242 			break;
243 		}
244 	}
245 	rpipe->pipe_feature = wpipe->pipe_feature;
246 
247 	error = falloc(p, &rf, &fd1);
248 	if (error) {
249 		pipeclose(rpipe);
250 		pipeclose(wpipe);
251 		return (error);
252 	}
253 	fhold(rf);
254 	uap->sysmsg_fds[0] = fd1;
255 
256 	/*
257 	 * Warning: once we've gotten past allocation of the fd for the
258 	 * read-side, we can only drop the read side via fdrop() in order
259 	 * to avoid races against processes which manage to dup() the read
260 	 * side while we are blocked trying to allocate the write side.
261 	 */
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_type = DTYPE_PIPE;
264 	rf->f_data = (caddr_t)rpipe;
265 	rf->f_ops = &pipeops;
266 	error = falloc(p, &wf, &fd2);
267 	if (error) {
268 		if (fdp->fd_ofiles[fd1] == rf) {
269 			fdp->fd_ofiles[fd1] = NULL;
270 			fdrop(rf, td);
271 		}
272 		fdrop(rf, td);
273 		/* rpipe has been closed by fdrop(). */
274 		pipeclose(wpipe);
275 		return (error);
276 	}
277 	wf->f_flag = FREAD | FWRITE;
278 	wf->f_type = DTYPE_PIPE;
279 	wf->f_data = (caddr_t)wpipe;
280 	wf->f_ops = &pipeops;
281 	uap->sysmsg_fds[1] = fd2;
282 
283 	rpipe->pipe_peer = wpipe;
284 	wpipe->pipe_peer = rpipe;
285 	fdrop(rf, td);
286 
287 	return (0);
288 }
289 
290 /*
291  * Allocate kva for pipe circular buffer, the space is pageable
292  * This routine will 'realloc' the size of a pipe safely, if it fails
293  * it will retain the old buffer.
294  * If it fails it will return ENOMEM.
295  */
296 static int
297 pipespace(struct pipe *cpipe, int size)
298 {
299 	struct vm_object *object;
300 	caddr_t buffer;
301 	int npages, error;
302 
303 	npages = round_page(size) / PAGE_SIZE;
304 	object = cpipe->pipe_buffer.object;
305 
306 	/*
307 	 * [re]create the object if necessary and reserve space for it
308 	 * in the kernel_map.  The object and memory are pageable.  On
309 	 * success, free the old resources before assigning the new
310 	 * ones.
311 	 */
312 	if (object == NULL || object->size != npages) {
313 		object = vm_object_allocate(OBJT_DEFAULT, npages);
314 		buffer = (caddr_t) vm_map_min(kernel_map);
315 
316 		error = vm_map_find(kernel_map, object, 0,
317 			(vm_offset_t *) &buffer, size, 1,
318 			VM_PROT_ALL, VM_PROT_ALL, 0);
319 
320 		if (error != KERN_SUCCESS) {
321 			vm_object_deallocate(object);
322 			return (ENOMEM);
323 		}
324 		pipe_free_kmem(cpipe);
325 		cpipe->pipe_buffer.object = object;
326 		cpipe->pipe_buffer.buffer = buffer;
327 		cpipe->pipe_buffer.size = size;
328 		++pipe_bkmem_alloc;
329 	} else {
330 		++pipe_bcache_alloc;
331 	}
332 	cpipe->pipe_buffer.in = 0;
333 	cpipe->pipe_buffer.out = 0;
334 	cpipe->pipe_buffer.cnt = 0;
335 	return (0);
336 }
337 
338 /*
339  * Initialize and allocate VM and memory for pipe, pulling the pipe from
340  * our per-cpu cache if possible.  For now make sure it is sized for the
341  * smaller PIPE_SIZE default.
342  */
343 static int
344 pipe_create(cpipep)
345 	struct pipe **cpipep;
346 {
347 	globaldata_t gd = mycpu;
348 	struct pipe *cpipe;
349 	int error;
350 
351 	if ((cpipe = gd->gd_pipeq) != NULL) {
352 		gd->gd_pipeq = cpipe->pipe_peer;
353 		--gd->gd_pipeqcount;
354 		cpipe->pipe_peer = NULL;
355 	} else {
356 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
357 	}
358 	*cpipep = cpipe;
359 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
360 		return (error);
361 	vfs_timestamp(&cpipe->pipe_ctime);
362 	cpipe->pipe_atime = cpipe->pipe_ctime;
363 	cpipe->pipe_mtime = cpipe->pipe_ctime;
364 	return (0);
365 }
366 
367 
368 /*
369  * lock a pipe for I/O, blocking other access
370  */
371 static __inline int
372 pipelock(cpipe, catch)
373 	struct pipe *cpipe;
374 	int catch;
375 {
376 	int error;
377 
378 	while (cpipe->pipe_state & PIPE_LOCK) {
379 		cpipe->pipe_state |= PIPE_LWANT;
380 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
381 		if (error != 0)
382 			return (error);
383 	}
384 	cpipe->pipe_state |= PIPE_LOCK;
385 	return (0);
386 }
387 
388 /*
389  * unlock a pipe I/O lock
390  */
391 static __inline void
392 pipeunlock(cpipe)
393 	struct pipe *cpipe;
394 {
395 
396 	cpipe->pipe_state &= ~PIPE_LOCK;
397 	if (cpipe->pipe_state & PIPE_LWANT) {
398 		cpipe->pipe_state &= ~PIPE_LWANT;
399 		wakeup(cpipe);
400 	}
401 }
402 
403 static __inline void
404 pipeselwakeup(cpipe)
405 	struct pipe *cpipe;
406 {
407 
408 	if (cpipe->pipe_state & PIPE_SEL) {
409 		cpipe->pipe_state &= ~PIPE_SEL;
410 		selwakeup(&cpipe->pipe_sel);
411 	}
412 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
413 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
414 	KNOTE(&cpipe->pipe_sel.si_note, 0);
415 }
416 
417 /* ARGSUSED */
418 static int
419 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
420 	int flags, struct thread *td)
421 {
422 	struct pipe *rpipe = (struct pipe *) fp->f_data;
423 	int error;
424 	int nread = 0;
425 	u_int size;
426 
427 	++rpipe->pipe_busy;
428 	error = pipelock(rpipe, 1);
429 	if (error)
430 		goto unlocked_error;
431 
432 	while (uio->uio_resid) {
433 		caddr_t va;
434 
435 		if (rpipe->pipe_buffer.cnt > 0) {
436 			/*
437 			 * normal pipe buffer receive
438 			 */
439 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
440 			if (size > rpipe->pipe_buffer.cnt)
441 				size = rpipe->pipe_buffer.cnt;
442 			if (size > (u_int) uio->uio_resid)
443 				size = (u_int) uio->uio_resid;
444 
445 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
446 					size, uio);
447 			if (error)
448 				break;
449 
450 			rpipe->pipe_buffer.out += size;
451 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
452 				rpipe->pipe_buffer.out = 0;
453 
454 			rpipe->pipe_buffer.cnt -= size;
455 
456 			/*
457 			 * If there is no more to read in the pipe, reset
458 			 * its pointers to the beginning.  This improves
459 			 * cache hit stats.
460 			 */
461 			if (rpipe->pipe_buffer.cnt == 0) {
462 				rpipe->pipe_buffer.in = 0;
463 				rpipe->pipe_buffer.out = 0;
464 			}
465 			nread += size;
466 #ifndef PIPE_NODIRECT
467 		} else if (rpipe->pipe_kva &&
468 			   rpipe->pipe_feature == PIPE_KMEM &&
469 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
470 			       == PIPE_DIRECTW
471 		) {
472 			/*
473 			 * Direct copy using source-side kva mapping
474 			 */
475 			size = rpipe->pipe_map.xio_bytes;
476 			if (size > (u_int)uio->uio_resid)
477 				size = (u_int)uio->uio_resid;
478 			va = (caddr_t)rpipe->pipe_kva + rpipe->pipe_map.xio_offset;
479 			error = uiomove(va, size, uio);
480 			if (error)
481 				break;
482 			nread += size;
483 			rpipe->pipe_map.xio_offset += size;
484 			rpipe->pipe_map.xio_bytes -= size;
485 			if (rpipe->pipe_map.xio_bytes == 0) {
486 				rpipe->pipe_state |= PIPE_DIRECTIP;
487 				rpipe->pipe_state &= ~PIPE_DIRECTW;
488 				wakeup(rpipe);
489 			}
490 		} else if (rpipe->pipe_map.xio_bytes &&
491 			   rpipe->pipe_kva &&
492 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
493 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
494 			       == PIPE_DIRECTW
495 		) {
496 			/*
497 			 * Direct copy, bypassing a kernel buffer.  We cannot
498 			 * mess with the direct-write buffer until
499 			 * PIPE_DIRECTIP is cleared.  In order to prevent
500 			 * the pipe_write code from racing itself in
501 			 * direct_write, we set DIRECTIP when we clear
502 			 * DIRECTW after we have exhausted the buffer.
503 			 */
504 			if (pipe_dwrite_sfbuf == 3)
505 				rpipe->pipe_kvamask = 0;
506 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
507 				    rpipe->pipe_map.xio_npages,
508 				    &rpipe->pipe_kvamask);
509 			size = rpipe->pipe_map.xio_bytes;
510 			if (size > (u_int)uio->uio_resid)
511 				size = (u_int)uio->uio_resid;
512 			va = (caddr_t)rpipe->pipe_kva +
513 				rpipe->pipe_map.xio_offset;
514 			error = uiomove(va, size, uio);
515 			if (error)
516 				break;
517 			nread += size;
518 			rpipe->pipe_map.xio_offset += size;
519 			rpipe->pipe_map.xio_bytes -= size;
520 			if (rpipe->pipe_map.xio_bytes == 0) {
521 				rpipe->pipe_state |= PIPE_DIRECTIP;
522 				rpipe->pipe_state &= ~PIPE_DIRECTW;
523 				wakeup(rpipe);
524 			}
525 		} else if (rpipe->pipe_map.xio_bytes &&
526 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
527 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
528 				== PIPE_DIRECTW
529 		) {
530 			/*
531 			 * Direct copy, bypassing a kernel buffer.  We cannot
532 			 * mess with the direct-write buffer until
533 			 * PIPE_DIRECTIP is cleared.  In order to prevent
534 			 * the pipe_write code from racing itself in
535 			 * direct_write, we set DIRECTIP when we clear
536 			 * DIRECTW after we have exhausted the buffer.
537 			 */
538 			error = xio_uio_copy(&rpipe->pipe_map, uio, &size);
539 			if (error)
540 				break;
541 			nread += size;
542 			if (rpipe->pipe_map.xio_bytes == 0) {
543 				rpipe->pipe_state |= PIPE_DIRECTIP;
544 				rpipe->pipe_state &= ~PIPE_DIRECTW;
545 				wakeup(rpipe);
546 			}
547 #endif
548 		} else {
549 			/*
550 			 * detect EOF condition
551 			 * read returns 0 on EOF, no need to set error
552 			 */
553 			if (rpipe->pipe_state & PIPE_EOF)
554 				break;
555 
556 			/*
557 			 * If the "write-side" has been blocked, wake it up now.
558 			 */
559 			if (rpipe->pipe_state & PIPE_WANTW) {
560 				rpipe->pipe_state &= ~PIPE_WANTW;
561 				wakeup(rpipe);
562 			}
563 
564 			/*
565 			 * Break if some data was read.
566 			 */
567 			if (nread > 0)
568 				break;
569 
570 			/*
571 			 * Unlock the pipe buffer for our remaining
572 			 * processing.  We will either break out with an
573 			 * error or we will sleep and relock to loop.
574 			 */
575 			pipeunlock(rpipe);
576 
577 			/*
578 			 * Handle non-blocking mode operation or
579 			 * wait for more data.
580 			 */
581 			if (fp->f_flag & FNONBLOCK) {
582 				error = EAGAIN;
583 			} else {
584 				rpipe->pipe_state |= PIPE_WANTR;
585 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
586 				    "piperd", 0)) == 0) {
587 					error = pipelock(rpipe, 1);
588 				}
589 			}
590 			if (error)
591 				goto unlocked_error;
592 		}
593 	}
594 	pipeunlock(rpipe);
595 
596 	if (error == 0)
597 		vfs_timestamp(&rpipe->pipe_atime);
598 unlocked_error:
599 	--rpipe->pipe_busy;
600 
601 	/*
602 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
603 	 */
604 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
605 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
606 		wakeup(rpipe);
607 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
608 		/*
609 		 * Handle write blocking hysteresis.
610 		 */
611 		if (rpipe->pipe_state & PIPE_WANTW) {
612 			rpipe->pipe_state &= ~PIPE_WANTW;
613 			wakeup(rpipe);
614 		}
615 	}
616 
617 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
618 		pipeselwakeup(rpipe);
619 	return (error);
620 }
621 
622 #ifndef PIPE_NODIRECT
623 /*
624  * Map the sending processes' buffer into kernel space and wire it.
625  * This is similar to a physical write operation.
626  */
627 static int
628 pipe_build_write_buffer(wpipe, uio)
629 	struct pipe *wpipe;
630 	struct uio *uio;
631 {
632 	int error;
633 	u_int size;
634 
635 	size = (u_int) uio->uio_iov->iov_len;
636 	if (size > wpipe->pipe_buffer.size)
637 		size = wpipe->pipe_buffer.size;
638 
639 	error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
640 				size, XIOF_READ);
641 	if (error)
642 		return(error);
643 
644 	/*
645 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
646 	 * map the pages on the target while KMEM maps the pages now.
647 	 */
648 	switch(wpipe->pipe_feature) {
649 	case PIPE_KMEM:
650 	case PIPE_SFBUF2:
651 		if (wpipe->pipe_kva == NULL) {
652 			wpipe->pipe_kva =
653 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
654 			wpipe->pipe_kvamask = 0;
655 		}
656 		if (wpipe->pipe_feature == PIPE_KMEM) {
657 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
658 				    wpipe->pipe_map.xio_npages);
659 		}
660 		break;
661 	default:
662 		break;
663 	}
664 
665 	/*
666 	 * And update the uio data.  The XIO might have loaded fewer bytes
667 	 * then requested so reload 'size'.
668 	 */
669 	size = wpipe->pipe_map.xio_bytes;
670 	uio->uio_iov->iov_len -= size;
671 	uio->uio_iov->iov_base += size;
672 	if (uio->uio_iov->iov_len == 0)
673 		uio->uio_iov++;
674 	uio->uio_resid -= size;
675 	uio->uio_offset += size;
676 	return (0);
677 }
678 
679 /*
680  * In the case of a signal, the writing process might go away.  This
681  * code copies the data into the circular buffer so that the source
682  * pages can be freed without loss of data.
683  */
684 static void
685 pipe_clone_write_buffer(wpipe)
686 	struct pipe *wpipe;
687 {
688 	int size;
689 
690 	size = wpipe->pipe_map.xio_bytes;
691 
692 	KKASSERT(size <= wpipe->pipe_buffer.size);
693 
694 	wpipe->pipe_buffer.in = size;
695 	wpipe->pipe_buffer.out = 0;
696 	wpipe->pipe_buffer.cnt = size;
697 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
698 
699 	xio_copy_xtok(&wpipe->pipe_map, wpipe->pipe_buffer.buffer, size);
700 	xio_release(&wpipe->pipe_map);
701 	if (wpipe->pipe_kva) {
702 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
703 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
704 		wpipe->pipe_kva = NULL;
705 	}
706 }
707 
708 /*
709  * This implements the pipe buffer write mechanism.  Note that only
710  * a direct write OR a normal pipe write can be pending at any given time.
711  * If there are any characters in the pipe buffer, the direct write will
712  * be deferred until the receiving process grabs all of the bytes from
713  * the pipe buffer.  Then the direct mapping write is set-up.
714  */
715 static int
716 pipe_direct_write(wpipe, uio)
717 	struct pipe *wpipe;
718 	struct uio *uio;
719 {
720 	int error;
721 
722 retry:
723 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
724 		if (wpipe->pipe_state & PIPE_WANTR) {
725 			wpipe->pipe_state &= ~PIPE_WANTR;
726 			wakeup(wpipe);
727 		}
728 		wpipe->pipe_state |= PIPE_WANTW;
729 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
730 		if (error)
731 			goto error2;
732 		if (wpipe->pipe_state & PIPE_EOF) {
733 			error = EPIPE;
734 			goto error2;
735 		}
736 	}
737 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
738 	if (wpipe->pipe_buffer.cnt > 0) {
739 		if (wpipe->pipe_state & PIPE_WANTR) {
740 			wpipe->pipe_state &= ~PIPE_WANTR;
741 			wakeup(wpipe);
742 		}
743 
744 		wpipe->pipe_state |= PIPE_WANTW;
745 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
746 		if (error)
747 			goto error2;
748 		if (wpipe->pipe_state & PIPE_EOF) {
749 			error = EPIPE;
750 			goto error2;
751 		}
752 		goto retry;
753 	}
754 
755 	/*
756 	 * Build our direct-write buffer
757 	 */
758 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
759 	error = pipe_build_write_buffer(wpipe, uio);
760 	if (error)
761 		goto error1;
762 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
763 
764 	/*
765 	 * Wait until the receiver has snarfed the data.  Since we are likely
766 	 * going to sleep we optimize the case and yield synchronously,
767 	 * possibly avoiding the tsleep().
768 	 */
769 	error = 0;
770 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
771 		if (wpipe->pipe_state & PIPE_EOF) {
772 			pipelock(wpipe, 0);
773 			xio_release(&wpipe->pipe_map);
774 			if (wpipe->pipe_kva) {
775 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
776 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
777 				wpipe->pipe_kva = NULL;
778 			}
779 			pipeunlock(wpipe);
780 			pipeselwakeup(wpipe);
781 			error = EPIPE;
782 			goto error1;
783 		}
784 		if (wpipe->pipe_state & PIPE_WANTR) {
785 			wpipe->pipe_state &= ~PIPE_WANTR;
786 			wakeup(wpipe);
787 		}
788 		pipeselwakeup(wpipe);
789 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
790 	}
791 	pipelock(wpipe,0);
792 	if (wpipe->pipe_state & PIPE_DIRECTW) {
793 		/*
794 		 * this bit of trickery substitutes a kernel buffer for
795 		 * the process that might be going away.
796 		 */
797 		pipe_clone_write_buffer(wpipe);
798 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
799 	} else {
800 		/*
801 		 * note: The pipe_kva mapping is not qremove'd here.  For
802 		 * legacy PIPE_KMEM mode this constitutes an improvement
803 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
804 		 * mode the kva mapping must not be removed to get the
805 		 * caching benefit.
806 		 *
807 		 * For testing purposes we will give the original algorithm
808 		 * the benefit of the doubt 'what it could have been', and
809 		 * keep the optimization.
810 		 */
811 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
812 		xio_release(&wpipe->pipe_map);
813 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
814 	}
815 	pipeunlock(wpipe);
816 	return (error);
817 
818 	/*
819 	 * Direct-write error, clear the direct write flags.
820 	 */
821 error1:
822 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
823 	/* fallthrough */
824 
825 	/*
826 	 * General error, wakeup the other side if it happens to be sleeping.
827 	 */
828 error2:
829 	wakeup(wpipe);
830 	return (error);
831 }
832 #endif
833 
834 static int
835 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
836 	int flags, struct thread *td)
837 {
838 	int error = 0;
839 	int orig_resid;
840 	struct pipe *wpipe, *rpipe;
841 
842 	rpipe = (struct pipe *) fp->f_data;
843 	wpipe = rpipe->pipe_peer;
844 
845 	/*
846 	 * detect loss of pipe read side, issue SIGPIPE if lost.
847 	 */
848 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
849 		return (EPIPE);
850 	}
851 	++wpipe->pipe_busy;
852 
853 	/*
854 	 * If it is advantageous to resize the pipe buffer, do
855 	 * so.
856 	 */
857 	if ((uio->uio_resid > PIPE_SIZE) &&
858 		(pipe_nbig < pipe_maxbig) &&
859 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
860 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
861 		(wpipe->pipe_buffer.cnt == 0)) {
862 
863 		if ((error = pipelock(wpipe,1)) == 0) {
864 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
865 				pipe_nbig++;
866 			pipeunlock(wpipe);
867 		}
868 	}
869 
870 	/*
871 	 * If an early error occured unbusy and return, waking up any pending
872 	 * readers.
873 	 */
874 	if (error) {
875 		--wpipe->pipe_busy;
876 		if ((wpipe->pipe_busy == 0) &&
877 		    (wpipe->pipe_state & PIPE_WANT)) {
878 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
879 			wakeup(wpipe);
880 		}
881 		return(error);
882 	}
883 
884 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
885 
886 	orig_resid = uio->uio_resid;
887 
888 	while (uio->uio_resid) {
889 		int space;
890 
891 #ifndef PIPE_NODIRECT
892 		/*
893 		 * If the transfer is large, we can gain performance if
894 		 * we do process-to-process copies directly.
895 		 * If the write is non-blocking, we don't use the
896 		 * direct write mechanism.
897 		 *
898 		 * The direct write mechanism will detect the reader going
899 		 * away on us.
900 		 */
901 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
902 		    pipe_dwrite_enable > 1) &&
903 		    (fp->f_flag & FNONBLOCK) == 0 &&
904 		    pipe_dwrite_enable) {
905 			error = pipe_direct_write( wpipe, uio);
906 			if (error)
907 				break;
908 			continue;
909 		}
910 #endif
911 
912 		/*
913 		 * Pipe buffered writes cannot be coincidental with
914 		 * direct writes.  We wait until the currently executing
915 		 * direct write is completed before we start filling the
916 		 * pipe buffer.  We break out if a signal occurs or the
917 		 * reader goes away.
918 		 */
919 	retrywrite:
920 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
921 			if (wpipe->pipe_state & PIPE_WANTR) {
922 				wpipe->pipe_state &= ~PIPE_WANTR;
923 				wakeup(wpipe);
924 			}
925 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
926 			if (wpipe->pipe_state & PIPE_EOF)
927 				break;
928 			if (error)
929 				break;
930 		}
931 		if (wpipe->pipe_state & PIPE_EOF) {
932 			error = EPIPE;
933 			break;
934 		}
935 
936 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
937 
938 		/* Writes of size <= PIPE_BUF must be atomic. */
939 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
940 			space = 0;
941 
942 		/*
943 		 * Write to fill, read size handles write hysteresis.  Also
944 		 * additional restrictions can cause select-based non-blocking
945 		 * writes to spin.
946 		 */
947 		if (space > 0) {
948 			if ((error = pipelock(wpipe,1)) == 0) {
949 				int size;	/* Transfer size */
950 				int segsize;	/* first segment to transfer */
951 
952 				/*
953 				 * It is possible for a direct write to
954 				 * slip in on us... handle it here...
955 				 */
956 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
957 					pipeunlock(wpipe);
958 					goto retrywrite;
959 				}
960 				/*
961 				 * If a process blocked in uiomove, our
962 				 * value for space might be bad.
963 				 *
964 				 * XXX will we be ok if the reader has gone
965 				 * away here?
966 				 */
967 				if (space > wpipe->pipe_buffer.size -
968 				    wpipe->pipe_buffer.cnt) {
969 					pipeunlock(wpipe);
970 					goto retrywrite;
971 				}
972 
973 				/*
974 				 * Transfer size is minimum of uio transfer
975 				 * and free space in pipe buffer.
976 				 */
977 				if (space > uio->uio_resid)
978 					size = uio->uio_resid;
979 				else
980 					size = space;
981 				/*
982 				 * First segment to transfer is minimum of
983 				 * transfer size and contiguous space in
984 				 * pipe buffer.  If first segment to transfer
985 				 * is less than the transfer size, we've got
986 				 * a wraparound in the buffer.
987 				 */
988 				segsize = wpipe->pipe_buffer.size -
989 					wpipe->pipe_buffer.in;
990 				if (segsize > size)
991 					segsize = size;
992 
993 				/* Transfer first segment */
994 
995 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
996 						segsize, uio);
997 
998 				if (error == 0 && segsize < size) {
999 					/*
1000 					 * Transfer remaining part now, to
1001 					 * support atomic writes.  Wraparound
1002 					 * happened.
1003 					 */
1004 					if (wpipe->pipe_buffer.in + segsize !=
1005 					    wpipe->pipe_buffer.size)
1006 						panic("Expected pipe buffer wraparound disappeared");
1007 
1008 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1009 							size - segsize, uio);
1010 				}
1011 				if (error == 0) {
1012 					wpipe->pipe_buffer.in += size;
1013 					if (wpipe->pipe_buffer.in >=
1014 					    wpipe->pipe_buffer.size) {
1015 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1016 							panic("Expected wraparound bad");
1017 						wpipe->pipe_buffer.in = size - segsize;
1018 					}
1019 
1020 					wpipe->pipe_buffer.cnt += size;
1021 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1022 						panic("Pipe buffer overflow");
1023 
1024 				}
1025 				pipeunlock(wpipe);
1026 			}
1027 			if (error)
1028 				break;
1029 
1030 		} else {
1031 			/*
1032 			 * If the "read-side" has been blocked, wake it up now
1033 			 * and yield to let it drain synchronously rather
1034 			 * then block.
1035 			 */
1036 			if (wpipe->pipe_state & PIPE_WANTR) {
1037 				wpipe->pipe_state &= ~PIPE_WANTR;
1038 				wakeup(wpipe);
1039 			}
1040 
1041 			/*
1042 			 * don't block on non-blocking I/O
1043 			 */
1044 			if (fp->f_flag & FNONBLOCK) {
1045 				error = EAGAIN;
1046 				break;
1047 			}
1048 
1049 			/*
1050 			 * We have no more space and have something to offer,
1051 			 * wake up select/poll.
1052 			 */
1053 			pipeselwakeup(wpipe);
1054 
1055 			wpipe->pipe_state |= PIPE_WANTW;
1056 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1057 			if (error != 0)
1058 				break;
1059 			/*
1060 			 * If read side wants to go away, we just issue a signal
1061 			 * to ourselves.
1062 			 */
1063 			if (wpipe->pipe_state & PIPE_EOF) {
1064 				error = EPIPE;
1065 				break;
1066 			}
1067 		}
1068 	}
1069 
1070 	--wpipe->pipe_busy;
1071 
1072 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1073 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1074 		wakeup(wpipe);
1075 	} else if (wpipe->pipe_buffer.cnt > 0) {
1076 		/*
1077 		 * If we have put any characters in the buffer, we wake up
1078 		 * the reader.
1079 		 */
1080 		if (wpipe->pipe_state & PIPE_WANTR) {
1081 			wpipe->pipe_state &= ~PIPE_WANTR;
1082 			wakeup(wpipe);
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Don't return EPIPE if I/O was successful
1088 	 */
1089 	if ((wpipe->pipe_buffer.cnt == 0) &&
1090 	    (uio->uio_resid == 0) &&
1091 	    (error == EPIPE)) {
1092 		error = 0;
1093 	}
1094 
1095 	if (error == 0)
1096 		vfs_timestamp(&wpipe->pipe_mtime);
1097 
1098 	/*
1099 	 * We have something to offer,
1100 	 * wake up select/poll.
1101 	 */
1102 	if (wpipe->pipe_buffer.cnt)
1103 		pipeselwakeup(wpipe);
1104 
1105 	return (error);
1106 }
1107 
1108 /*
1109  * we implement a very minimal set of ioctls for compatibility with sockets.
1110  */
1111 int
1112 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1113 {
1114 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1115 
1116 	switch (cmd) {
1117 
1118 	case FIONBIO:
1119 		return (0);
1120 
1121 	case FIOASYNC:
1122 		if (*(int *)data) {
1123 			mpipe->pipe_state |= PIPE_ASYNC;
1124 		} else {
1125 			mpipe->pipe_state &= ~PIPE_ASYNC;
1126 		}
1127 		return (0);
1128 
1129 	case FIONREAD:
1130 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1131 			*(int *)data = mpipe->pipe_map.xio_bytes;
1132 		} else {
1133 			*(int *)data = mpipe->pipe_buffer.cnt;
1134 		}
1135 		return (0);
1136 
1137 	case FIOSETOWN:
1138 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1139 
1140 	case FIOGETOWN:
1141 		*(int *)data = fgetown(mpipe->pipe_sigio);
1142 		return (0);
1143 
1144 	/* This is deprecated, FIOSETOWN should be used instead. */
1145 	case TIOCSPGRP:
1146 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1147 
1148 	/* This is deprecated, FIOGETOWN should be used instead. */
1149 	case TIOCGPGRP:
1150 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1151 		return (0);
1152 
1153 	}
1154 	return (ENOTTY);
1155 }
1156 
1157 int
1158 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1159 {
1160 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1161 	struct pipe *wpipe;
1162 	int revents = 0;
1163 
1164 	wpipe = rpipe->pipe_peer;
1165 	if (events & (POLLIN | POLLRDNORM))
1166 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1167 		    (rpipe->pipe_buffer.cnt > 0) ||
1168 		    (rpipe->pipe_state & PIPE_EOF))
1169 			revents |= events & (POLLIN | POLLRDNORM);
1170 
1171 	if (events & (POLLOUT | POLLWRNORM))
1172 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1173 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1174 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1175 			revents |= events & (POLLOUT | POLLWRNORM);
1176 
1177 	if ((rpipe->pipe_state & PIPE_EOF) ||
1178 	    (wpipe == NULL) ||
1179 	    (wpipe->pipe_state & PIPE_EOF))
1180 		revents |= POLLHUP;
1181 
1182 	if (revents == 0) {
1183 		if (events & (POLLIN | POLLRDNORM)) {
1184 			selrecord(td, &rpipe->pipe_sel);
1185 			rpipe->pipe_state |= PIPE_SEL;
1186 		}
1187 
1188 		if (events & (POLLOUT | POLLWRNORM)) {
1189 			selrecord(td, &wpipe->pipe_sel);
1190 			wpipe->pipe_state |= PIPE_SEL;
1191 		}
1192 	}
1193 
1194 	return (revents);
1195 }
1196 
1197 static int
1198 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1199 {
1200 	struct pipe *pipe = (struct pipe *)fp->f_data;
1201 
1202 	bzero((caddr_t)ub, sizeof(*ub));
1203 	ub->st_mode = S_IFIFO;
1204 	ub->st_blksize = pipe->pipe_buffer.size;
1205 	ub->st_size = pipe->pipe_buffer.cnt;
1206 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1207 	ub->st_atimespec = pipe->pipe_atime;
1208 	ub->st_mtimespec = pipe->pipe_mtime;
1209 	ub->st_ctimespec = pipe->pipe_ctime;
1210 	/*
1211 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1212 	 * st_flags, st_gen.
1213 	 * XXX (st_dev, st_ino) should be unique.
1214 	 */
1215 	return (0);
1216 }
1217 
1218 /* ARGSUSED */
1219 static int
1220 pipe_close(struct file *fp, struct thread *td)
1221 {
1222 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1223 
1224 	fp->f_ops = &badfileops;
1225 	fp->f_data = NULL;
1226 	funsetown(cpipe->pipe_sigio);
1227 	pipeclose(cpipe);
1228 	return (0);
1229 }
1230 
1231 static void
1232 pipe_free_kmem(struct pipe *cpipe)
1233 {
1234 	if (cpipe->pipe_buffer.buffer != NULL) {
1235 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1236 			--pipe_nbig;
1237 		kmem_free(kernel_map,
1238 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1239 			cpipe->pipe_buffer.size);
1240 		cpipe->pipe_buffer.buffer = NULL;
1241 		cpipe->pipe_buffer.object = NULL;
1242 	}
1243 #ifndef PIPE_NODIRECT
1244 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1245 		cpipe->pipe_map.xio_offset == 0 &&
1246 		cpipe->pipe_map.xio_npages == 0);
1247 #endif
1248 }
1249 
1250 /*
1251  * shutdown the pipe
1252  */
1253 static void
1254 pipeclose(struct pipe *cpipe)
1255 {
1256 	globaldata_t gd;
1257 	struct pipe *ppipe;
1258 
1259 	if (cpipe == NULL)
1260 		return;
1261 
1262 	pipeselwakeup(cpipe);
1263 
1264 	/*
1265 	 * If the other side is blocked, wake it up saying that
1266 	 * we want to close it down.
1267 	 */
1268 	while (cpipe->pipe_busy) {
1269 		wakeup(cpipe);
1270 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1271 		tsleep(cpipe, 0, "pipecl", 0);
1272 	}
1273 
1274 	/*
1275 	 * Disconnect from peer
1276 	 */
1277 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1278 		pipeselwakeup(ppipe);
1279 
1280 		ppipe->pipe_state |= PIPE_EOF;
1281 		wakeup(ppipe);
1282 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1283 		ppipe->pipe_peer = NULL;
1284 	}
1285 
1286 	if (cpipe->pipe_kva) {
1287 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1288 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1289 		cpipe->pipe_kva = NULL;
1290 	}
1291 
1292 	/*
1293 	 * free or cache resources
1294 	 */
1295 	gd = mycpu;
1296 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1297 	    cpipe->pipe_buffer.size != PIPE_SIZE
1298 	) {
1299 		pipe_free_kmem(cpipe);
1300 		free(cpipe, M_PIPE);
1301 	} else {
1302 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1303 			cpipe->pipe_map.xio_bytes == 0 &&
1304 			cpipe->pipe_map.xio_offset == 0);
1305 		cpipe->pipe_state = 0;
1306 		cpipe->pipe_busy = 0;
1307 		cpipe->pipe_peer = gd->gd_pipeq;
1308 		gd->gd_pipeq = cpipe;
1309 		++gd->gd_pipeqcount;
1310 	}
1311 }
1312 
1313 /*ARGSUSED*/
1314 static int
1315 pipe_kqfilter(struct file *fp, struct knote *kn)
1316 {
1317 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1318 
1319 	switch (kn->kn_filter) {
1320 	case EVFILT_READ:
1321 		kn->kn_fop = &pipe_rfiltops;
1322 		break;
1323 	case EVFILT_WRITE:
1324 		kn->kn_fop = &pipe_wfiltops;
1325 		cpipe = cpipe->pipe_peer;
1326 		if (cpipe == NULL)
1327 			/* other end of pipe has been closed */
1328 			return (EPIPE);
1329 		break;
1330 	default:
1331 		return (1);
1332 	}
1333 	kn->kn_hook = (caddr_t)cpipe;
1334 
1335 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1336 	return (0);
1337 }
1338 
1339 static void
1340 filt_pipedetach(struct knote *kn)
1341 {
1342 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1343 
1344 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1345 }
1346 
1347 /*ARGSUSED*/
1348 static int
1349 filt_piperead(struct knote *kn, long hint)
1350 {
1351 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1352 	struct pipe *wpipe = rpipe->pipe_peer;
1353 
1354 	kn->kn_data = rpipe->pipe_buffer.cnt;
1355 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1356 		kn->kn_data = rpipe->pipe_map.xio_bytes;
1357 
1358 	if ((rpipe->pipe_state & PIPE_EOF) ||
1359 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1360 		kn->kn_flags |= EV_EOF;
1361 		return (1);
1362 	}
1363 	return (kn->kn_data > 0);
1364 }
1365 
1366 /*ARGSUSED*/
1367 static int
1368 filt_pipewrite(struct knote *kn, long hint)
1369 {
1370 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1371 	struct pipe *wpipe = rpipe->pipe_peer;
1372 
1373 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1374 		kn->kn_data = 0;
1375 		kn->kn_flags |= EV_EOF;
1376 		return (1);
1377 	}
1378 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1379 	if (wpipe->pipe_state & PIPE_DIRECTW)
1380 		kn->kn_data = 0;
1381 
1382 	return (kn->kn_data >= PIPE_BUF);
1383 }
1384