xref: /dflybsd-src/sys/kern/sys_pipe.c (revision b721b9ee4205a28b1f2d01b5c95851add56bf82b)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.27 2005/03/09 02:22:31 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
36  * the receiving process can copy it directly from the pages in the sending
37  * process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.  PIPE_SIZE is constrained by the
50  * amount of kernel virtual memory.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/fcntl.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/filio.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/poll.h>
64 #include <sys/select.h>
65 #include <sys/signalvar.h>
66 #include <sys/sysproto.h>
67 #include <sys/pipe.h>
68 #include <sys/vnode.h>
69 #include <sys/uio.h>
70 #include <sys/event.h>
71 #include <sys/globaldata.h>
72 #include <sys/module.h>
73 #include <sys/malloc.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/file2.h>
88 
89 #include <machine/cpufunc.h>
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read (struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write (struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close (struct file *fp, struct thread *td);
99 static int pipe_poll (struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter (struct file *fp, struct knote *kn);
102 static int pipe_stat (struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct thread *td);
104 
105 static struct fileops pipeops = {
106 	NULL,	/* port */
107 	NULL,	/* clone */
108 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
109 	pipe_stat, pipe_close
110 };
111 
112 static void	filt_pipedetach(struct knote *kn);
113 static int	filt_piperead(struct knote *kn, long hint);
114 static int	filt_pipewrite(struct knote *kn, long hint);
115 
116 static struct filterops pipe_rfiltops =
117 	{ 1, NULL, filt_pipedetach, filt_piperead };
118 static struct filterops pipe_wfiltops =
119 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
120 
121 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
122 
123 /*
124  * Default pipe buffer size(s), this can be kind-of large now because pipe
125  * space is pageable.  The pipe code will try to maintain locality of
126  * reference for performance reasons, so small amounts of outstanding I/O
127  * will not wipe the cache.
128  */
129 #define MINPIPESIZE (PIPE_SIZE/3)
130 #define MAXPIPESIZE (2*PIPE_SIZE/3)
131 
132 /*
133  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
134  * is there so that on large systems, we don't exhaust it.
135  */
136 #define MAXPIPEKVA (8*1024*1024)
137 
138 /*
139  * Limit for direct transfers, we cannot, of course limit
140  * the amount of kva for pipes in general though.
141  */
142 #define LIMITPIPEKVA (16*1024*1024)
143 
144 /*
145  * Limit the number of "big" pipes
146  */
147 #define LIMITBIGPIPES	32
148 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
149 
150 static int pipe_maxbig = LIMITBIGPIPES;
151 static int pipe_maxcache = PIPEQ_MAX_CACHE;
152 static int pipe_nbig;
153 static int pipe_bcache_alloc;
154 static int pipe_bkmem_alloc;
155 static int pipe_dwrite_enable = 1;	/* 0:copy, 1:kmem/sfbuf 2:force */
156 static int pipe_dwrite_sfbuf = 1;	/* 0:kmem_map 1:sfbufs 2:sfbufs_dmap */
157 					/* 3:sfbuf_dmap w/ forced invlpg */
158 
159 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
160 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
161         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
162 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
163         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
164 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
165         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
166 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_enable,
167         CTLFLAG_RW, &pipe_dwrite_enable, 0, "1:enable/2:force direct writes");
168 SYSCTL_INT(_kern_pipe, OID_AUTO, dwrite_sfbuf,
169         CTLFLAG_RW, &pipe_dwrite_sfbuf, 0,
170 	"(if dwrite_enable) 0:kmem 1:sfbuf 2:sfbuf_dmap 3:sfbuf_dmap_forceinvlpg");
171 #if !defined(NO_PIPE_SYSCTL_STATS)
172 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
173         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
174 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
175         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
176 #endif
177 
178 static void pipeclose (struct pipe *cpipe);
179 static void pipe_free_kmem (struct pipe *cpipe);
180 static int pipe_create (struct pipe **cpipep);
181 static __inline int pipelock (struct pipe *cpipe, int catch);
182 static __inline void pipeunlock (struct pipe *cpipe);
183 static __inline void pipeselwakeup (struct pipe *cpipe);
184 #ifndef PIPE_NODIRECT
185 static int pipe_build_write_buffer (struct pipe *wpipe, struct uio *uio);
186 static int pipe_direct_write (struct pipe *wpipe, struct uio *uio);
187 static void pipe_clone_write_buffer (struct pipe *wpipe);
188 #endif
189 static int pipespace (struct pipe *cpipe, int size);
190 
191 /*
192  * The pipe system call for the DTYPE_PIPE type of pipes
193  *
194  * pipe_ARgs(int dummy)
195  */
196 
197 /* ARGSUSED */
198 int
199 pipe(struct pipe_args *uap)
200 {
201 	struct thread *td = curthread;
202 	struct proc *p = td->td_proc;
203 	struct filedesc *fdp;
204 	struct file *rf, *wf;
205 	struct pipe *rpipe, *wpipe;
206 	int fd1, fd2, error;
207 
208 	KKASSERT(p);
209 	fdp = p->p_fd;
210 
211 	rpipe = wpipe = NULL;
212 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
213 		pipeclose(rpipe);
214 		pipeclose(wpipe);
215 		return (ENFILE);
216 	}
217 
218 	rpipe->pipe_state |= PIPE_DIRECTOK;
219 	wpipe->pipe_state |= PIPE_DIRECTOK;
220 
221 	/*
222 	 * Select the direct-map features to use for this pipe.  Since the
223 	 * sysctl's can change on the fly we record the settings when the
224 	 * pipe is created.
225 	 *
226 	 * Generally speaking the system will default to what we consider
227 	 * to be the best-balanced and most stable option.  Right now this
228 	 * is SFBUF1.  Modes 2 and 3 are considered experiemental at the
229 	 * moment.
230 	 */
231 	wpipe->pipe_feature = PIPE_COPY;
232 	if (pipe_dwrite_enable) {
233 		switch(pipe_dwrite_sfbuf) {
234 		case 0:
235 			wpipe->pipe_feature = PIPE_KMEM;
236 			break;
237 		case 1:
238 			wpipe->pipe_feature = PIPE_SFBUF1;
239 			break;
240 		case 2:
241 		case 3:
242 			wpipe->pipe_feature = PIPE_SFBUF2;
243 			break;
244 		}
245 	}
246 	rpipe->pipe_feature = wpipe->pipe_feature;
247 
248 	error = falloc(p, &rf, &fd1);
249 	if (error) {
250 		pipeclose(rpipe);
251 		pipeclose(wpipe);
252 		return (error);
253 	}
254 	uap->sysmsg_fds[0] = fd1;
255 
256 	/*
257 	 * Warning: once we've gotten past allocation of the fd for the
258 	 * read-side, we can only drop the read side via fdrop() in order
259 	 * to avoid races against processes which manage to dup() the read
260 	 * side while we are blocked trying to allocate the write side.
261 	 */
262 	rf->f_flag = FREAD | FWRITE;
263 	rf->f_type = DTYPE_PIPE;
264 	rf->f_data = (caddr_t)rpipe;
265 	rf->f_ops = &pipeops;
266 	error = falloc(p, &wf, &fd2);
267 	if (error) {
268 		if (fdp->fd_ofiles[fd1] == rf) {
269 			fdp->fd_ofiles[fd1] = NULL;
270 			fdrop(rf, td);
271 		}
272 		fdrop(rf, td);
273 		/* rpipe has been closed by fdrop(). */
274 		pipeclose(wpipe);
275 		return (error);
276 	}
277 	wf->f_flag = FREAD | FWRITE;
278 	wf->f_type = DTYPE_PIPE;
279 	wf->f_data = (caddr_t)wpipe;
280 	wf->f_ops = &pipeops;
281 	uap->sysmsg_fds[1] = fd2;
282 
283 	rpipe->pipe_peer = wpipe;
284 	wpipe->pipe_peer = rpipe;
285 	fdrop(rf, td);
286 	fdrop(wf, td);
287 
288 	return (0);
289 }
290 
291 /*
292  * Allocate kva for pipe circular buffer, the space is pageable
293  * This routine will 'realloc' the size of a pipe safely, if it fails
294  * it will retain the old buffer.
295  * If it fails it will return ENOMEM.
296  */
297 static int
298 pipespace(struct pipe *cpipe, int size)
299 {
300 	struct vm_object *object;
301 	caddr_t buffer;
302 	int npages, error;
303 
304 	npages = round_page(size) / PAGE_SIZE;
305 	object = cpipe->pipe_buffer.object;
306 
307 	/*
308 	 * [re]create the object if necessary and reserve space for it
309 	 * in the kernel_map.  The object and memory are pageable.  On
310 	 * success, free the old resources before assigning the new
311 	 * ones.
312 	 */
313 	if (object == NULL || object->size != npages) {
314 		object = vm_object_allocate(OBJT_DEFAULT, npages);
315 		buffer = (caddr_t) vm_map_min(kernel_map);
316 
317 		error = vm_map_find(kernel_map, object, 0,
318 			(vm_offset_t *) &buffer, size, 1,
319 			VM_PROT_ALL, VM_PROT_ALL, 0);
320 
321 		if (error != KERN_SUCCESS) {
322 			vm_object_deallocate(object);
323 			return (ENOMEM);
324 		}
325 		pipe_free_kmem(cpipe);
326 		cpipe->pipe_buffer.object = object;
327 		cpipe->pipe_buffer.buffer = buffer;
328 		cpipe->pipe_buffer.size = size;
329 		++pipe_bkmem_alloc;
330 	} else {
331 		++pipe_bcache_alloc;
332 	}
333 	cpipe->pipe_buffer.in = 0;
334 	cpipe->pipe_buffer.out = 0;
335 	cpipe->pipe_buffer.cnt = 0;
336 	return (0);
337 }
338 
339 /*
340  * Initialize and allocate VM and memory for pipe, pulling the pipe from
341  * our per-cpu cache if possible.  For now make sure it is sized for the
342  * smaller PIPE_SIZE default.
343  */
344 static int
345 pipe_create(cpipep)
346 	struct pipe **cpipep;
347 {
348 	globaldata_t gd = mycpu;
349 	struct pipe *cpipe;
350 	int error;
351 
352 	if ((cpipe = gd->gd_pipeq) != NULL) {
353 		gd->gd_pipeq = cpipe->pipe_peer;
354 		--gd->gd_pipeqcount;
355 		cpipe->pipe_peer = NULL;
356 	} else {
357 		cpipe = malloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
358 	}
359 	*cpipep = cpipe;
360 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
361 		return (error);
362 	vfs_timestamp(&cpipe->pipe_ctime);
363 	cpipe->pipe_atime = cpipe->pipe_ctime;
364 	cpipe->pipe_mtime = cpipe->pipe_ctime;
365 	return (0);
366 }
367 
368 
369 /*
370  * lock a pipe for I/O, blocking other access
371  */
372 static __inline int
373 pipelock(cpipe, catch)
374 	struct pipe *cpipe;
375 	int catch;
376 {
377 	int error;
378 
379 	while (cpipe->pipe_state & PIPE_LOCK) {
380 		cpipe->pipe_state |= PIPE_LWANT;
381 		error = tsleep(cpipe, (catch ? PCATCH : 0), "pipelk", 0);
382 		if (error != 0)
383 			return (error);
384 	}
385 	cpipe->pipe_state |= PIPE_LOCK;
386 	return (0);
387 }
388 
389 /*
390  * unlock a pipe I/O lock
391  */
392 static __inline void
393 pipeunlock(cpipe)
394 	struct pipe *cpipe;
395 {
396 
397 	cpipe->pipe_state &= ~PIPE_LOCK;
398 	if (cpipe->pipe_state & PIPE_LWANT) {
399 		cpipe->pipe_state &= ~PIPE_LWANT;
400 		wakeup(cpipe);
401 	}
402 }
403 
404 static __inline void
405 pipeselwakeup(cpipe)
406 	struct pipe *cpipe;
407 {
408 
409 	if (cpipe->pipe_state & PIPE_SEL) {
410 		cpipe->pipe_state &= ~PIPE_SEL;
411 		selwakeup(&cpipe->pipe_sel);
412 	}
413 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
414 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
415 	KNOTE(&cpipe->pipe_sel.si_note, 0);
416 }
417 
418 /* ARGSUSED */
419 static int
420 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred,
421 	int flags, struct thread *td)
422 {
423 	struct pipe *rpipe = (struct pipe *) fp->f_data;
424 	int error;
425 	int nread = 0;
426 	u_int size;
427 
428 	++rpipe->pipe_busy;
429 	error = pipelock(rpipe, 1);
430 	if (error)
431 		goto unlocked_error;
432 
433 	while (uio->uio_resid) {
434 		caddr_t va;
435 
436 		if (rpipe->pipe_buffer.cnt > 0) {
437 			/*
438 			 * normal pipe buffer receive
439 			 */
440 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
441 			if (size > rpipe->pipe_buffer.cnt)
442 				size = rpipe->pipe_buffer.cnt;
443 			if (size > (u_int) uio->uio_resid)
444 				size = (u_int) uio->uio_resid;
445 
446 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
447 					size, uio);
448 			if (error)
449 				break;
450 
451 			rpipe->pipe_buffer.out += size;
452 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
453 				rpipe->pipe_buffer.out = 0;
454 
455 			rpipe->pipe_buffer.cnt -= size;
456 
457 			/*
458 			 * If there is no more to read in the pipe, reset
459 			 * its pointers to the beginning.  This improves
460 			 * cache hit stats.
461 			 */
462 			if (rpipe->pipe_buffer.cnt == 0) {
463 				rpipe->pipe_buffer.in = 0;
464 				rpipe->pipe_buffer.out = 0;
465 			}
466 			nread += size;
467 #ifndef PIPE_NODIRECT
468 		} else if (rpipe->pipe_kva &&
469 			   rpipe->pipe_feature == PIPE_KMEM &&
470 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
471 			       == PIPE_DIRECTW
472 		) {
473 			/*
474 			 * Direct copy using source-side kva mapping
475 			 */
476 			size = rpipe->pipe_map.xio_bytes -
477 				rpipe->pipe_buffer.out;
478 			if (size > (u_int)uio->uio_resid)
479 				size = (u_int)uio->uio_resid;
480 			va = (caddr_t)rpipe->pipe_kva +
481 				xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
482 			error = uiomove(va, size, uio);
483 			if (error)
484 				break;
485 			nread += size;
486 			rpipe->pipe_buffer.out += size;
487 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
488 				rpipe->pipe_state |= PIPE_DIRECTIP;
489 				rpipe->pipe_state &= ~PIPE_DIRECTW;
490 				/* reset out index for copy mode */
491 				rpipe->pipe_buffer.out = 0;
492 				wakeup(rpipe);
493 			}
494 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
495 			   rpipe->pipe_kva &&
496 			   rpipe->pipe_feature == PIPE_SFBUF2 &&
497 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
498 			       == PIPE_DIRECTW
499 		) {
500 			/*
501 			 * Direct copy, bypassing a kernel buffer.  We cannot
502 			 * mess with the direct-write buffer until
503 			 * PIPE_DIRECTIP is cleared.  In order to prevent
504 			 * the pipe_write code from racing itself in
505 			 * direct_write, we set DIRECTIP when we clear
506 			 * DIRECTW after we have exhausted the buffer.
507 			 */
508 			if (pipe_dwrite_sfbuf == 3)
509 				rpipe->pipe_kvamask = 0;
510 			pmap_qenter2(rpipe->pipe_kva, rpipe->pipe_map.xio_pages,
511 				    rpipe->pipe_map.xio_npages,
512 				    &rpipe->pipe_kvamask);
513 			size = rpipe->pipe_map.xio_bytes -
514 				rpipe->pipe_buffer.out;
515 			if (size > (u_int)uio->uio_resid)
516 				size = (u_int)uio->uio_resid;
517 			va = (caddr_t)rpipe->pipe_kva + xio_kvaoffset(&rpipe->pipe_map, rpipe->pipe_buffer.out);
518 			error = uiomove(va, size, uio);
519 			if (error)
520 				break;
521 			nread += size;
522 			rpipe->pipe_buffer.out += size;
523 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
524 				rpipe->pipe_state |= PIPE_DIRECTIP;
525 				rpipe->pipe_state &= ~PIPE_DIRECTW;
526 				/* reset out index for copy mode */
527 				rpipe->pipe_buffer.out = 0;
528 				wakeup(rpipe);
529 			}
530 		} else if (rpipe->pipe_buffer.out != rpipe->pipe_map.xio_bytes &&
531 			   rpipe->pipe_feature == PIPE_SFBUF1 &&
532 			   (rpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP))
533 				== PIPE_DIRECTW
534 		) {
535 			/*
536 			 * Direct copy, bypassing a kernel buffer.  We cannot
537 			 * mess with the direct-write buffer until
538 			 * PIPE_DIRECTIP is cleared.  In order to prevent
539 			 * the pipe_write code from racing itself in
540 			 * direct_write, we set DIRECTIP when we clear
541 			 * DIRECTW after we have exhausted the buffer.
542 			 */
543 			error = xio_uio_copy(&rpipe->pipe_map, rpipe->pipe_buffer.out, uio, &size);
544 			if (error)
545 				break;
546 			nread += size;
547 			rpipe->pipe_buffer.out += size;
548 			if (rpipe->pipe_buffer.out == rpipe->pipe_map.xio_bytes) {
549 				rpipe->pipe_state |= PIPE_DIRECTIP;
550 				rpipe->pipe_state &= ~PIPE_DIRECTW;
551 				/* reset out index for copy mode */
552 				rpipe->pipe_buffer.out = 0;
553 				wakeup(rpipe);
554 			}
555 #endif
556 		} else {
557 			/*
558 			 * detect EOF condition
559 			 * read returns 0 on EOF, no need to set error
560 			 */
561 			if (rpipe->pipe_state & PIPE_EOF)
562 				break;
563 
564 			/*
565 			 * If the "write-side" has been blocked, wake it up now.
566 			 */
567 			if (rpipe->pipe_state & PIPE_WANTW) {
568 				rpipe->pipe_state &= ~PIPE_WANTW;
569 				wakeup(rpipe);
570 			}
571 
572 			/*
573 			 * Break if some data was read.
574 			 */
575 			if (nread > 0)
576 				break;
577 
578 			/*
579 			 * Unlock the pipe buffer for our remaining
580 			 * processing.  We will either break out with an
581 			 * error or we will sleep and relock to loop.
582 			 */
583 			pipeunlock(rpipe);
584 
585 			/*
586 			 * Handle non-blocking mode operation or
587 			 * wait for more data.
588 			 */
589 			if (fp->f_flag & FNONBLOCK) {
590 				error = EAGAIN;
591 			} else {
592 				rpipe->pipe_state |= PIPE_WANTR;
593 				if ((error = tsleep(rpipe, PCATCH|PNORESCHED,
594 				    "piperd", 0)) == 0) {
595 					error = pipelock(rpipe, 1);
596 				}
597 			}
598 			if (error)
599 				goto unlocked_error;
600 		}
601 	}
602 	pipeunlock(rpipe);
603 
604 	if (error == 0)
605 		vfs_timestamp(&rpipe->pipe_atime);
606 unlocked_error:
607 	--rpipe->pipe_busy;
608 
609 	/*
610 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
611 	 */
612 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
613 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
614 		wakeup(rpipe);
615 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
616 		/*
617 		 * Handle write blocking hysteresis.
618 		 */
619 		if (rpipe->pipe_state & PIPE_WANTW) {
620 			rpipe->pipe_state &= ~PIPE_WANTW;
621 			wakeup(rpipe);
622 		}
623 	}
624 
625 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
626 		pipeselwakeup(rpipe);
627 	return (error);
628 }
629 
630 #ifndef PIPE_NODIRECT
631 /*
632  * Map the sending processes' buffer into kernel space and wire it.
633  * This is similar to a physical write operation.
634  */
635 static int
636 pipe_build_write_buffer(wpipe, uio)
637 	struct pipe *wpipe;
638 	struct uio *uio;
639 {
640 	int error;
641 	u_int size;
642 
643 	size = (u_int) uio->uio_iov->iov_len;
644 	if (size > wpipe->pipe_buffer.size)
645 		size = wpipe->pipe_buffer.size;
646 
647 	error = xio_init_ubuf(&wpipe->pipe_map, uio->uio_iov->iov_base,
648 				size, XIOF_READ);
649 	wpipe->pipe_buffer.out = 0;
650 	if (error)
651 		return(error);
652 
653 	/*
654 	 * Create a kernel map for KMEM and SFBUF2 copy modes.  SFBUF2 will
655 	 * map the pages on the target while KMEM maps the pages now.
656 	 */
657 	switch(wpipe->pipe_feature) {
658 	case PIPE_KMEM:
659 	case PIPE_SFBUF2:
660 		if (wpipe->pipe_kva == NULL) {
661 			wpipe->pipe_kva =
662 			    kmem_alloc_nofault(kernel_map, XIO_INTERNAL_SIZE);
663 			wpipe->pipe_kvamask = 0;
664 		}
665 		if (wpipe->pipe_feature == PIPE_KMEM) {
666 			pmap_qenter(wpipe->pipe_kva, wpipe->pipe_map.xio_pages,
667 				    wpipe->pipe_map.xio_npages);
668 		}
669 		break;
670 	default:
671 		break;
672 	}
673 
674 	/*
675 	 * And update the uio data.  The XIO might have loaded fewer bytes
676 	 * then requested so reload 'size'.
677 	 */
678 	size = wpipe->pipe_map.xio_bytes;
679 	uio->uio_iov->iov_len -= size;
680 	uio->uio_iov->iov_base += size;
681 	if (uio->uio_iov->iov_len == 0)
682 		uio->uio_iov++;
683 	uio->uio_resid -= size;
684 	uio->uio_offset += size;
685 	return (0);
686 }
687 
688 /*
689  * In the case of a signal, the writing process might go away.  This
690  * code copies the data into the circular buffer so that the source
691  * pages can be freed without loss of data.
692  *
693  * Note that in direct mode pipe_buffer.out is used to track the
694  * XIO offset.  We are converting the direct mode into buffered mode
695  * which changes the meaning of pipe_buffer.out.
696  */
697 static void
698 pipe_clone_write_buffer(wpipe)
699 	struct pipe *wpipe;
700 {
701 	int size;
702 	int offset;
703 
704 	offset = wpipe->pipe_buffer.out;
705 	size = wpipe->pipe_map.xio_bytes - offset;
706 
707 	KKASSERT(size <= wpipe->pipe_buffer.size);
708 
709 	wpipe->pipe_buffer.in = size;
710 	wpipe->pipe_buffer.out = 0;
711 	wpipe->pipe_buffer.cnt = size;
712 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
713 
714 	xio_copy_xtok(&wpipe->pipe_map, offset, wpipe->pipe_buffer.buffer, size);
715 	xio_release(&wpipe->pipe_map);
716 	if (wpipe->pipe_kva) {
717 		pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
718 		kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
719 		wpipe->pipe_kva = NULL;
720 	}
721 }
722 
723 /*
724  * This implements the pipe buffer write mechanism.  Note that only
725  * a direct write OR a normal pipe write can be pending at any given time.
726  * If there are any characters in the pipe buffer, the direct write will
727  * be deferred until the receiving process grabs all of the bytes from
728  * the pipe buffer.  Then the direct mapping write is set-up.
729  */
730 static int
731 pipe_direct_write(wpipe, uio)
732 	struct pipe *wpipe;
733 	struct uio *uio;
734 {
735 	int error;
736 
737 retry:
738 	while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
739 		if (wpipe->pipe_state & PIPE_WANTR) {
740 			wpipe->pipe_state &= ~PIPE_WANTR;
741 			wakeup(wpipe);
742 		}
743 		wpipe->pipe_state |= PIPE_WANTW;
744 		error = tsleep(wpipe, PCATCH, "pipdww", 0);
745 		if (error)
746 			goto error2;
747 		if (wpipe->pipe_state & PIPE_EOF) {
748 			error = EPIPE;
749 			goto error2;
750 		}
751 	}
752 	KKASSERT(wpipe->pipe_map.xio_bytes == 0);
753 	if (wpipe->pipe_buffer.cnt > 0) {
754 		if (wpipe->pipe_state & PIPE_WANTR) {
755 			wpipe->pipe_state &= ~PIPE_WANTR;
756 			wakeup(wpipe);
757 		}
758 
759 		wpipe->pipe_state |= PIPE_WANTW;
760 		error = tsleep(wpipe, PCATCH, "pipdwc", 0);
761 		if (error)
762 			goto error2;
763 		if (wpipe->pipe_state & PIPE_EOF) {
764 			error = EPIPE;
765 			goto error2;
766 		}
767 		goto retry;
768 	}
769 
770 	/*
771 	 * Build our direct-write buffer
772 	 */
773 	wpipe->pipe_state |= PIPE_DIRECTW | PIPE_DIRECTIP;
774 	error = pipe_build_write_buffer(wpipe, uio);
775 	if (error)
776 		goto error1;
777 	wpipe->pipe_state &= ~PIPE_DIRECTIP;
778 
779 	/*
780 	 * Wait until the receiver has snarfed the data.  Since we are likely
781 	 * going to sleep we optimize the case and yield synchronously,
782 	 * possibly avoiding the tsleep().
783 	 */
784 	error = 0;
785 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
786 		if (wpipe->pipe_state & PIPE_EOF) {
787 			pipelock(wpipe, 0);
788 			xio_release(&wpipe->pipe_map);
789 			if (wpipe->pipe_kva) {
790 				pmap_qremove(wpipe->pipe_kva, XIO_INTERNAL_PAGES);
791 				kmem_free(kernel_map, wpipe->pipe_kva, XIO_INTERNAL_SIZE);
792 				wpipe->pipe_kva = NULL;
793 			}
794 			pipeunlock(wpipe);
795 			pipeselwakeup(wpipe);
796 			error = EPIPE;
797 			goto error1;
798 		}
799 		if (wpipe->pipe_state & PIPE_WANTR) {
800 			wpipe->pipe_state &= ~PIPE_WANTR;
801 			wakeup(wpipe);
802 		}
803 		pipeselwakeup(wpipe);
804 		error = tsleep(wpipe, PCATCH|PNORESCHED, "pipdwt", 0);
805 	}
806 	pipelock(wpipe,0);
807 	if (wpipe->pipe_state & PIPE_DIRECTW) {
808 		/*
809 		 * this bit of trickery substitutes a kernel buffer for
810 		 * the process that might be going away.
811 		 */
812 		pipe_clone_write_buffer(wpipe);
813 		KKASSERT((wpipe->pipe_state & PIPE_DIRECTIP) == 0);
814 	} else {
815 		/*
816 		 * note: The pipe_kva mapping is not qremove'd here.  For
817 		 * legacy PIPE_KMEM mode this constitutes an improvement
818 		 * over the original FreeBSD-4 algorithm.  For PIPE_SFBUF2
819 		 * mode the kva mapping must not be removed to get the
820 		 * caching benefit.
821 		 *
822 		 * For testing purposes we will give the original algorithm
823 		 * the benefit of the doubt 'what it could have been', and
824 		 * keep the optimization.
825 		 */
826 		KKASSERT(wpipe->pipe_state & PIPE_DIRECTIP);
827 		xio_release(&wpipe->pipe_map);
828 		wpipe->pipe_state &= ~PIPE_DIRECTIP;
829 	}
830 	pipeunlock(wpipe);
831 	return (error);
832 
833 	/*
834 	 * Direct-write error, clear the direct write flags.
835 	 */
836 error1:
837 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTIP);
838 	/* fallthrough */
839 
840 	/*
841 	 * General error, wakeup the other side if it happens to be sleeping.
842 	 */
843 error2:
844 	wakeup(wpipe);
845 	return (error);
846 }
847 #endif
848 
849 static int
850 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred,
851 	int flags, struct thread *td)
852 {
853 	int error = 0;
854 	int orig_resid;
855 	struct pipe *wpipe, *rpipe;
856 
857 	rpipe = (struct pipe *) fp->f_data;
858 	wpipe = rpipe->pipe_peer;
859 
860 	/*
861 	 * detect loss of pipe read side, issue SIGPIPE if lost.
862 	 */
863 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
864 		return (EPIPE);
865 	}
866 	++wpipe->pipe_busy;
867 
868 	/*
869 	 * If it is advantageous to resize the pipe buffer, do
870 	 * so.
871 	 */
872 	if ((uio->uio_resid > PIPE_SIZE) &&
873 		(pipe_nbig < pipe_maxbig) &&
874 		(wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) == 0 &&
875 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
876 		(wpipe->pipe_buffer.cnt == 0)) {
877 
878 		if ((error = pipelock(wpipe,1)) == 0) {
879 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
880 				pipe_nbig++;
881 			pipeunlock(wpipe);
882 		}
883 	}
884 
885 	/*
886 	 * If an early error occured unbusy and return, waking up any pending
887 	 * readers.
888 	 */
889 	if (error) {
890 		--wpipe->pipe_busy;
891 		if ((wpipe->pipe_busy == 0) &&
892 		    (wpipe->pipe_state & PIPE_WANT)) {
893 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
894 			wakeup(wpipe);
895 		}
896 		return(error);
897 	}
898 
899 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
900 
901 	orig_resid = uio->uio_resid;
902 
903 	while (uio->uio_resid) {
904 		int space;
905 
906 #ifndef PIPE_NODIRECT
907 		/*
908 		 * If the transfer is large, we can gain performance if
909 		 * we do process-to-process copies directly.
910 		 * If the write is non-blocking, we don't use the
911 		 * direct write mechanism.
912 		 *
913 		 * The direct write mechanism will detect the reader going
914 		 * away on us.
915 		 */
916 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT ||
917 		    pipe_dwrite_enable > 1) &&
918 		    (fp->f_flag & FNONBLOCK) == 0 &&
919 		    pipe_dwrite_enable) {
920 			error = pipe_direct_write( wpipe, uio);
921 			if (error)
922 				break;
923 			continue;
924 		}
925 #endif
926 
927 		/*
928 		 * Pipe buffered writes cannot be coincidental with
929 		 * direct writes.  We wait until the currently executing
930 		 * direct write is completed before we start filling the
931 		 * pipe buffer.  We break out if a signal occurs or the
932 		 * reader goes away.
933 		 */
934 	retrywrite:
935 		while (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
936 			if (wpipe->pipe_state & PIPE_WANTR) {
937 				wpipe->pipe_state &= ~PIPE_WANTR;
938 				wakeup(wpipe);
939 			}
940 			error = tsleep(wpipe, PCATCH, "pipbww", 0);
941 			if (wpipe->pipe_state & PIPE_EOF)
942 				break;
943 			if (error)
944 				break;
945 		}
946 		if (wpipe->pipe_state & PIPE_EOF) {
947 			error = EPIPE;
948 			break;
949 		}
950 
951 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
952 
953 		/* Writes of size <= PIPE_BUF must be atomic. */
954 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
955 			space = 0;
956 
957 		/*
958 		 * Write to fill, read size handles write hysteresis.  Also
959 		 * additional restrictions can cause select-based non-blocking
960 		 * writes to spin.
961 		 */
962 		if (space > 0) {
963 			if ((error = pipelock(wpipe,1)) == 0) {
964 				int size;	/* Transfer size */
965 				int segsize;	/* first segment to transfer */
966 
967 				/*
968 				 * It is possible for a direct write to
969 				 * slip in on us... handle it here...
970 				 */
971 				if (wpipe->pipe_state & (PIPE_DIRECTW|PIPE_DIRECTIP)) {
972 					pipeunlock(wpipe);
973 					goto retrywrite;
974 				}
975 				/*
976 				 * If a process blocked in uiomove, our
977 				 * value for space might be bad.
978 				 *
979 				 * XXX will we be ok if the reader has gone
980 				 * away here?
981 				 */
982 				if (space > wpipe->pipe_buffer.size -
983 				    wpipe->pipe_buffer.cnt) {
984 					pipeunlock(wpipe);
985 					goto retrywrite;
986 				}
987 
988 				/*
989 				 * Transfer size is minimum of uio transfer
990 				 * and free space in pipe buffer.
991 				 */
992 				if (space > uio->uio_resid)
993 					size = uio->uio_resid;
994 				else
995 					size = space;
996 				/*
997 				 * First segment to transfer is minimum of
998 				 * transfer size and contiguous space in
999 				 * pipe buffer.  If first segment to transfer
1000 				 * is less than the transfer size, we've got
1001 				 * a wraparound in the buffer.
1002 				 */
1003 				segsize = wpipe->pipe_buffer.size -
1004 					wpipe->pipe_buffer.in;
1005 				if (segsize > size)
1006 					segsize = size;
1007 
1008 				/* Transfer first segment */
1009 
1010 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1011 						segsize, uio);
1012 
1013 				if (error == 0 && segsize < size) {
1014 					/*
1015 					 * Transfer remaining part now, to
1016 					 * support atomic writes.  Wraparound
1017 					 * happened.
1018 					 */
1019 					if (wpipe->pipe_buffer.in + segsize !=
1020 					    wpipe->pipe_buffer.size)
1021 						panic("Expected pipe buffer wraparound disappeared");
1022 
1023 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1024 							size - segsize, uio);
1025 				}
1026 				if (error == 0) {
1027 					wpipe->pipe_buffer.in += size;
1028 					if (wpipe->pipe_buffer.in >=
1029 					    wpipe->pipe_buffer.size) {
1030 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1031 							panic("Expected wraparound bad");
1032 						wpipe->pipe_buffer.in = size - segsize;
1033 					}
1034 
1035 					wpipe->pipe_buffer.cnt += size;
1036 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1037 						panic("Pipe buffer overflow");
1038 
1039 				}
1040 				pipeunlock(wpipe);
1041 			}
1042 			if (error)
1043 				break;
1044 
1045 		} else {
1046 			/*
1047 			 * If the "read-side" has been blocked, wake it up now
1048 			 * and yield to let it drain synchronously rather
1049 			 * then block.
1050 			 */
1051 			if (wpipe->pipe_state & PIPE_WANTR) {
1052 				wpipe->pipe_state &= ~PIPE_WANTR;
1053 				wakeup(wpipe);
1054 			}
1055 
1056 			/*
1057 			 * don't block on non-blocking I/O
1058 			 */
1059 			if (fp->f_flag & FNONBLOCK) {
1060 				error = EAGAIN;
1061 				break;
1062 			}
1063 
1064 			/*
1065 			 * We have no more space and have something to offer,
1066 			 * wake up select/poll.
1067 			 */
1068 			pipeselwakeup(wpipe);
1069 
1070 			wpipe->pipe_state |= PIPE_WANTW;
1071 			error = tsleep(wpipe, PCATCH|PNORESCHED, "pipewr", 0);
1072 			if (error != 0)
1073 				break;
1074 			/*
1075 			 * If read side wants to go away, we just issue a signal
1076 			 * to ourselves.
1077 			 */
1078 			if (wpipe->pipe_state & PIPE_EOF) {
1079 				error = EPIPE;
1080 				break;
1081 			}
1082 		}
1083 	}
1084 
1085 	--wpipe->pipe_busy;
1086 
1087 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1088 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1089 		wakeup(wpipe);
1090 	} else if (wpipe->pipe_buffer.cnt > 0) {
1091 		/*
1092 		 * If we have put any characters in the buffer, we wake up
1093 		 * the reader.
1094 		 */
1095 		if (wpipe->pipe_state & PIPE_WANTR) {
1096 			wpipe->pipe_state &= ~PIPE_WANTR;
1097 			wakeup(wpipe);
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * Don't return EPIPE if I/O was successful
1103 	 */
1104 	if ((wpipe->pipe_buffer.cnt == 0) &&
1105 	    (uio->uio_resid == 0) &&
1106 	    (error == EPIPE)) {
1107 		error = 0;
1108 	}
1109 
1110 	if (error == 0)
1111 		vfs_timestamp(&wpipe->pipe_mtime);
1112 
1113 	/*
1114 	 * We have something to offer,
1115 	 * wake up select/poll.
1116 	 */
1117 	if (wpipe->pipe_buffer.cnt)
1118 		pipeselwakeup(wpipe);
1119 
1120 	return (error);
1121 }
1122 
1123 /*
1124  * we implement a very minimal set of ioctls for compatibility with sockets.
1125  */
1126 int
1127 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct thread *td)
1128 {
1129 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1130 
1131 	switch (cmd) {
1132 
1133 	case FIONBIO:
1134 		return (0);
1135 
1136 	case FIOASYNC:
1137 		if (*(int *)data) {
1138 			mpipe->pipe_state |= PIPE_ASYNC;
1139 		} else {
1140 			mpipe->pipe_state &= ~PIPE_ASYNC;
1141 		}
1142 		return (0);
1143 
1144 	case FIONREAD:
1145 		if (mpipe->pipe_state & PIPE_DIRECTW) {
1146 			*(int *)data = mpipe->pipe_map.xio_bytes -
1147 					mpipe->pipe_buffer.out;
1148 		} else {
1149 			*(int *)data = mpipe->pipe_buffer.cnt;
1150 		}
1151 		return (0);
1152 
1153 	case FIOSETOWN:
1154 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1155 
1156 	case FIOGETOWN:
1157 		*(int *)data = fgetown(mpipe->pipe_sigio);
1158 		return (0);
1159 
1160 	/* This is deprecated, FIOSETOWN should be used instead. */
1161 	case TIOCSPGRP:
1162 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1163 
1164 	/* This is deprecated, FIOGETOWN should be used instead. */
1165 	case TIOCGPGRP:
1166 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1167 		return (0);
1168 
1169 	}
1170 	return (ENOTTY);
1171 }
1172 
1173 int
1174 pipe_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1175 {
1176 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1177 	struct pipe *wpipe;
1178 	int revents = 0;
1179 
1180 	wpipe = rpipe->pipe_peer;
1181 	if (events & (POLLIN | POLLRDNORM))
1182 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1183 		    (rpipe->pipe_buffer.cnt > 0) ||
1184 		    (rpipe->pipe_state & PIPE_EOF))
1185 			revents |= events & (POLLIN | POLLRDNORM);
1186 
1187 	if (events & (POLLOUT | POLLWRNORM))
1188 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1189 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1190 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1191 			revents |= events & (POLLOUT | POLLWRNORM);
1192 
1193 	if ((rpipe->pipe_state & PIPE_EOF) ||
1194 	    (wpipe == NULL) ||
1195 	    (wpipe->pipe_state & PIPE_EOF))
1196 		revents |= POLLHUP;
1197 
1198 	if (revents == 0) {
1199 		if (events & (POLLIN | POLLRDNORM)) {
1200 			selrecord(td, &rpipe->pipe_sel);
1201 			rpipe->pipe_state |= PIPE_SEL;
1202 		}
1203 
1204 		if (events & (POLLOUT | POLLWRNORM)) {
1205 			selrecord(td, &wpipe->pipe_sel);
1206 			wpipe->pipe_state |= PIPE_SEL;
1207 		}
1208 	}
1209 
1210 	return (revents);
1211 }
1212 
1213 static int
1214 pipe_stat(struct file *fp, struct stat *ub, struct thread *td)
1215 {
1216 	struct pipe *pipe = (struct pipe *)fp->f_data;
1217 
1218 	bzero((caddr_t)ub, sizeof(*ub));
1219 	ub->st_mode = S_IFIFO;
1220 	ub->st_blksize = pipe->pipe_buffer.size;
1221 	ub->st_size = pipe->pipe_buffer.cnt;
1222 	if (ub->st_size == 0 && (pipe->pipe_state & PIPE_DIRECTW)) {
1223 		ub->st_size = pipe->pipe_map.xio_bytes -
1224 				pipe->pipe_buffer.out;
1225 	}
1226 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1227 	ub->st_atimespec = pipe->pipe_atime;
1228 	ub->st_mtimespec = pipe->pipe_mtime;
1229 	ub->st_ctimespec = pipe->pipe_ctime;
1230 	/*
1231 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1232 	 * st_flags, st_gen.
1233 	 * XXX (st_dev, st_ino) should be unique.
1234 	 */
1235 	return (0);
1236 }
1237 
1238 /* ARGSUSED */
1239 static int
1240 pipe_close(struct file *fp, struct thread *td)
1241 {
1242 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1243 
1244 	fp->f_ops = &badfileops;
1245 	fp->f_data = NULL;
1246 	funsetown(cpipe->pipe_sigio);
1247 	pipeclose(cpipe);
1248 	return (0);
1249 }
1250 
1251 static void
1252 pipe_free_kmem(struct pipe *cpipe)
1253 {
1254 	if (cpipe->pipe_buffer.buffer != NULL) {
1255 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1256 			--pipe_nbig;
1257 		kmem_free(kernel_map,
1258 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1259 			cpipe->pipe_buffer.size);
1260 		cpipe->pipe_buffer.buffer = NULL;
1261 		cpipe->pipe_buffer.object = NULL;
1262 	}
1263 #ifndef PIPE_NODIRECT
1264 	KKASSERT(cpipe->pipe_map.xio_bytes == 0 &&
1265 		cpipe->pipe_map.xio_offset == 0 &&
1266 		cpipe->pipe_map.xio_npages == 0);
1267 #endif
1268 }
1269 
1270 /*
1271  * shutdown the pipe
1272  */
1273 static void
1274 pipeclose(struct pipe *cpipe)
1275 {
1276 	globaldata_t gd;
1277 	struct pipe *ppipe;
1278 
1279 	if (cpipe == NULL)
1280 		return;
1281 
1282 	pipeselwakeup(cpipe);
1283 
1284 	/*
1285 	 * If the other side is blocked, wake it up saying that
1286 	 * we want to close it down.
1287 	 */
1288 	while (cpipe->pipe_busy) {
1289 		wakeup(cpipe);
1290 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1291 		tsleep(cpipe, 0, "pipecl", 0);
1292 	}
1293 
1294 	/*
1295 	 * Disconnect from peer
1296 	 */
1297 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1298 		pipeselwakeup(ppipe);
1299 
1300 		ppipe->pipe_state |= PIPE_EOF;
1301 		wakeup(ppipe);
1302 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1303 		ppipe->pipe_peer = NULL;
1304 	}
1305 
1306 	if (cpipe->pipe_kva) {
1307 		pmap_qremove(cpipe->pipe_kva, XIO_INTERNAL_PAGES);
1308 		kmem_free(kernel_map, cpipe->pipe_kva, XIO_INTERNAL_SIZE);
1309 		cpipe->pipe_kva = NULL;
1310 	}
1311 
1312 	/*
1313 	 * free or cache resources
1314 	 */
1315 	gd = mycpu;
1316 	if (gd->gd_pipeqcount >= pipe_maxcache ||
1317 	    cpipe->pipe_buffer.size != PIPE_SIZE
1318 	) {
1319 		pipe_free_kmem(cpipe);
1320 		free(cpipe, M_PIPE);
1321 	} else {
1322 		KKASSERT(cpipe->pipe_map.xio_npages == 0 &&
1323 			cpipe->pipe_map.xio_bytes == 0 &&
1324 			cpipe->pipe_map.xio_offset == 0);
1325 		cpipe->pipe_state = 0;
1326 		cpipe->pipe_busy = 0;
1327 		cpipe->pipe_peer = gd->gd_pipeq;
1328 		gd->gd_pipeq = cpipe;
1329 		++gd->gd_pipeqcount;
1330 	}
1331 }
1332 
1333 /*ARGSUSED*/
1334 static int
1335 pipe_kqfilter(struct file *fp, struct knote *kn)
1336 {
1337 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1338 
1339 	switch (kn->kn_filter) {
1340 	case EVFILT_READ:
1341 		kn->kn_fop = &pipe_rfiltops;
1342 		break;
1343 	case EVFILT_WRITE:
1344 		kn->kn_fop = &pipe_wfiltops;
1345 		cpipe = cpipe->pipe_peer;
1346 		if (cpipe == NULL)
1347 			/* other end of pipe has been closed */
1348 			return (EPIPE);
1349 		break;
1350 	default:
1351 		return (1);
1352 	}
1353 	kn->kn_hook = (caddr_t)cpipe;
1354 
1355 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1356 	return (0);
1357 }
1358 
1359 static void
1360 filt_pipedetach(struct knote *kn)
1361 {
1362 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1363 
1364 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1365 }
1366 
1367 /*ARGSUSED*/
1368 static int
1369 filt_piperead(struct knote *kn, long hint)
1370 {
1371 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1372 	struct pipe *wpipe = rpipe->pipe_peer;
1373 
1374 	kn->kn_data = rpipe->pipe_buffer.cnt;
1375 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) {
1376 		kn->kn_data = rpipe->pipe_map.xio_bytes -
1377 				rpipe->pipe_buffer.out;
1378 	}
1379 
1380 	if ((rpipe->pipe_state & PIPE_EOF) ||
1381 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1382 		kn->kn_flags |= EV_EOF;
1383 		return (1);
1384 	}
1385 	return (kn->kn_data > 0);
1386 }
1387 
1388 /*ARGSUSED*/
1389 static int
1390 filt_pipewrite(struct knote *kn, long hint)
1391 {
1392 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1393 	struct pipe *wpipe = rpipe->pipe_peer;
1394 
1395 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1396 		kn->kn_data = 0;
1397 		kn->kn_flags |= EV_EOF;
1398 		return (1);
1399 	}
1400 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1401 	if (wpipe->pipe_state & PIPE_DIRECTW)
1402 		kn->kn_data = 0;
1403 
1404 	return (kn->kn_data >= PIPE_BUF);
1405 }
1406