xref: /dflybsd-src/sys/kern/sys_pipe.c (revision 65c62024e97be0964ff6de261081aec59a904f78)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63 
64 #include <sys/file2.h>
65 #include <sys/signal2.h>
66 
67 #include <machine/cpufunc.h>
68 
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio,
73 		struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio,
75 		struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
79 static int pipe_kqfilter (struct file *fp, struct knote *kn);
80 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
81 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
82 		struct ucred *cred, struct sysmsg *msg);
83 
84 static struct fileops pipeops = {
85 	.fo_read = pipe_read,
86 	.fo_write = pipe_write,
87 	.fo_ioctl = pipe_ioctl,
88 	.fo_poll = pipe_poll,
89 	.fo_kqfilter = pipe_kqfilter,
90 	.fo_stat = pipe_stat,
91 	.fo_close = pipe_close,
92 	.fo_shutdown = pipe_shutdown
93 };
94 
95 static void	filt_pipedetach(struct knote *kn);
96 static int	filt_piperead(struct knote *kn, long hint);
97 static int	filt_pipewrite(struct knote *kn, long hint);
98 
99 static struct filterops pipe_rfiltops =
100 	{ 1, NULL, filt_pipedetach, filt_piperead };
101 static struct filterops pipe_wfiltops =
102 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
103 
104 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
105 
106 /*
107  * Default pipe buffer size(s), this can be kind-of large now because pipe
108  * space is pageable.  The pipe code will try to maintain locality of
109  * reference for performance reasons, so small amounts of outstanding I/O
110  * will not wipe the cache.
111  */
112 #define MINPIPESIZE (PIPE_SIZE/3)
113 #define MAXPIPESIZE (2*PIPE_SIZE/3)
114 
115 /*
116  * Limit the number of "big" pipes
117  */
118 #define LIMITBIGPIPES	64
119 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
120 
121 static int pipe_maxbig = LIMITBIGPIPES;
122 static int pipe_maxcache = PIPEQ_MAX_CACHE;
123 static int pipe_bigcount;
124 static int pipe_nbig;
125 static int pipe_bcache_alloc;
126 static int pipe_bkmem_alloc;
127 static int pipe_rblocked_count;
128 static int pipe_wblocked_count;
129 
130 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
132         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
134         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
136         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
138         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
140         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
141 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
142         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
143 #ifdef SMP
144 static int pipe_delay = 5000;	/* 5uS default */
145 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
146         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
147 static int pipe_mpsafe = 1;
148 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
149         CTLFLAG_RW, &pipe_mpsafe, 0, "");
150 #endif
151 #if !defined(NO_PIPE_SYSCTL_STATS)
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
153         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
154 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
155         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
156 #endif
157 
158 static void pipeclose (struct pipe *cpipe);
159 static void pipe_free_kmem (struct pipe *cpipe);
160 static int pipe_create (struct pipe **cpipep);
161 static __inline void pipeselwakeup (struct pipe *cpipe);
162 static int pipespace (struct pipe *cpipe, int size);
163 
164 static __inline void
165 pipeselwakeup(struct pipe *cpipe)
166 {
167 	if (cpipe->pipe_state & PIPE_SEL) {
168 		get_mplock();
169 		cpipe->pipe_state &= ~PIPE_SEL;
170 		selwakeup(&cpipe->pipe_sel);
171 		rel_mplock();
172 	}
173 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
174 		get_mplock();
175 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
176 		rel_mplock();
177 	}
178 	if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
179 		get_mplock();
180 		KNOTE(&cpipe->pipe_sel.si_note, 0);
181 		rel_mplock();
182 	}
183 }
184 
185 /*
186  * These routines are called before and after a UIO.  The UIO
187  * may block, causing our held tokens to be lost temporarily.
188  *
189  * We use these routines to serialize reads against other reads
190  * and writes against other writes.
191  *
192  * The read token is held on entry so *ipp does not race.
193  */
194 static __inline int
195 pipe_start_uio(struct pipe *cpipe, int *ipp)
196 {
197 	int error;
198 
199 	while (*ipp) {
200 		*ipp = -1;
201 		error = tsleep(ipp, PCATCH, "pipexx", 0);
202 		if (error)
203 			return (error);
204 	}
205 	*ipp = 1;
206 	return (0);
207 }
208 
209 static __inline void
210 pipe_end_uio(struct pipe *cpipe, int *ipp)
211 {
212 	if (*ipp < 0) {
213 		*ipp = 0;
214 		wakeup(ipp);
215 	} else {
216 		KKASSERT(*ipp > 0);
217 		*ipp = 0;
218 	}
219 }
220 
221 static __inline void
222 pipe_get_mplock(int *save)
223 {
224 #ifdef SMP
225 	if (pipe_mpsafe == 0) {
226 		get_mplock();
227 		*save = 1;
228 	} else
229 #endif
230 	{
231 		*save = 0;
232 	}
233 }
234 
235 static __inline void
236 pipe_rel_mplock(int *save)
237 {
238 #ifdef SMP
239 	if (*save)
240 		rel_mplock();
241 #endif
242 }
243 
244 
245 /*
246  * The pipe system call for the DTYPE_PIPE type of pipes
247  *
248  * pipe_ARgs(int dummy)
249  */
250 
251 /* ARGSUSED */
252 int
253 sys_pipe(struct pipe_args *uap)
254 {
255 	struct thread *td = curthread;
256 	struct proc *p = td->td_proc;
257 	struct file *rf, *wf;
258 	struct pipe *rpipe, *wpipe;
259 	int fd1, fd2, error;
260 
261 	KKASSERT(p);
262 
263 	rpipe = wpipe = NULL;
264 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
265 		pipeclose(rpipe);
266 		pipeclose(wpipe);
267 		return (ENFILE);
268 	}
269 
270 	error = falloc(p, &rf, &fd1);
271 	if (error) {
272 		pipeclose(rpipe);
273 		pipeclose(wpipe);
274 		return (error);
275 	}
276 	uap->sysmsg_fds[0] = fd1;
277 
278 	/*
279 	 * Warning: once we've gotten past allocation of the fd for the
280 	 * read-side, we can only drop the read side via fdrop() in order
281 	 * to avoid races against processes which manage to dup() the read
282 	 * side while we are blocked trying to allocate the write side.
283 	 */
284 	rf->f_type = DTYPE_PIPE;
285 	rf->f_flag = FREAD | FWRITE;
286 	rf->f_ops = &pipeops;
287 	rf->f_data = rpipe;
288 	error = falloc(p, &wf, &fd2);
289 	if (error) {
290 		fsetfd(p, NULL, fd1);
291 		fdrop(rf);
292 		/* rpipe has been closed by fdrop(). */
293 		pipeclose(wpipe);
294 		return (error);
295 	}
296 	wf->f_type = DTYPE_PIPE;
297 	wf->f_flag = FREAD | FWRITE;
298 	wf->f_ops = &pipeops;
299 	wf->f_data = wpipe;
300 	uap->sysmsg_fds[1] = fd2;
301 
302 	rpipe->pipe_slock = kmalloc(sizeof(struct lock),
303 				    M_PIPE, M_WAITOK|M_ZERO);
304 	wpipe->pipe_slock = rpipe->pipe_slock;
305 	rpipe->pipe_peer = wpipe;
306 	wpipe->pipe_peer = rpipe;
307 	lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
308 
309 	/*
310 	 * Once activated the peer relationship remains valid until
311 	 * both sides are closed.
312 	 */
313 	fsetfd(p, rf, fd1);
314 	fsetfd(p, wf, fd2);
315 	fdrop(rf);
316 	fdrop(wf);
317 
318 	return (0);
319 }
320 
321 /*
322  * Allocate kva for pipe circular buffer, the space is pageable
323  * This routine will 'realloc' the size of a pipe safely, if it fails
324  * it will retain the old buffer.
325  * If it fails it will return ENOMEM.
326  */
327 static int
328 pipespace(struct pipe *cpipe, int size)
329 {
330 	struct vm_object *object;
331 	caddr_t buffer;
332 	int npages, error;
333 
334 	npages = round_page(size) / PAGE_SIZE;
335 	object = cpipe->pipe_buffer.object;
336 
337 	/*
338 	 * [re]create the object if necessary and reserve space for it
339 	 * in the kernel_map.  The object and memory are pageable.  On
340 	 * success, free the old resources before assigning the new
341 	 * ones.
342 	 */
343 	if (object == NULL || object->size != npages) {
344 		get_mplock();
345 		object = vm_object_allocate(OBJT_DEFAULT, npages);
346 		buffer = (caddr_t)vm_map_min(&kernel_map);
347 
348 		error = vm_map_find(&kernel_map, object, 0,
349 				    (vm_offset_t *)&buffer, size,
350 				    1,
351 				    VM_MAPTYPE_NORMAL,
352 				    VM_PROT_ALL, VM_PROT_ALL,
353 				    0);
354 
355 		if (error != KERN_SUCCESS) {
356 			vm_object_deallocate(object);
357 			rel_mplock();
358 			return (ENOMEM);
359 		}
360 		pipe_free_kmem(cpipe);
361 		rel_mplock();
362 		cpipe->pipe_buffer.object = object;
363 		cpipe->pipe_buffer.buffer = buffer;
364 		cpipe->pipe_buffer.size = size;
365 		++pipe_bkmem_alloc;
366 	} else {
367 		++pipe_bcache_alloc;
368 	}
369 	cpipe->pipe_buffer.rindex = 0;
370 	cpipe->pipe_buffer.windex = 0;
371 	return (0);
372 }
373 
374 /*
375  * Initialize and allocate VM and memory for pipe, pulling the pipe from
376  * our per-cpu cache if possible.  For now make sure it is sized for the
377  * smaller PIPE_SIZE default.
378  */
379 static int
380 pipe_create(struct pipe **cpipep)
381 {
382 	globaldata_t gd = mycpu;
383 	struct pipe *cpipe;
384 	int error;
385 
386 	if ((cpipe = gd->gd_pipeq) != NULL) {
387 		gd->gd_pipeq = cpipe->pipe_peer;
388 		--gd->gd_pipeqcount;
389 		cpipe->pipe_peer = NULL;
390 		cpipe->pipe_wantwcnt = 0;
391 	} else {
392 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
393 	}
394 	*cpipep = cpipe;
395 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
396 		return (error);
397 	vfs_timestamp(&cpipe->pipe_ctime);
398 	cpipe->pipe_atime = cpipe->pipe_ctime;
399 	cpipe->pipe_mtime = cpipe->pipe_ctime;
400 	lwkt_token_init(&cpipe->pipe_rlock);
401 	lwkt_token_init(&cpipe->pipe_wlock);
402 	return (0);
403 }
404 
405 /*
406  * MPALMOSTSAFE (acquires mplock)
407  */
408 static int
409 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
410 {
411 	struct pipe *rpipe;
412 	int error;
413 	size_t nread = 0;
414 	int nbio;
415 	u_int size;	/* total bytes available */
416 	u_int nsize;	/* total bytes to read */
417 	u_int rindex;	/* contiguous bytes available */
418 	int notify_writer;
419 	lwkt_tokref rlock;
420 	lwkt_tokref wlock;
421 	int mpsave;
422 	int bigread;
423 	int bigcount;
424 
425 	if (uio->uio_resid == 0)
426 		return(0);
427 
428 	/*
429 	 * Setup locks, calculate nbio
430 	 */
431 	pipe_get_mplock(&mpsave);
432 	rpipe = (struct pipe *)fp->f_data;
433 	lwkt_gettoken(&rlock, &rpipe->pipe_rlock);
434 
435 	if (fflags & O_FBLOCKING)
436 		nbio = 0;
437 	else if (fflags & O_FNONBLOCKING)
438 		nbio = 1;
439 	else if (fp->f_flag & O_NONBLOCK)
440 		nbio = 1;
441 	else
442 		nbio = 0;
443 
444 	/*
445 	 * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
446 	 * pipe_buffer.size can change out from under us when the number
447 	 * of bytes in the buffer are zero due to the write-side doing a
448 	 * pipespace().
449 	 */
450 	error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
451 	if (error) {
452 		pipe_rel_mplock(&mpsave);
453 		lwkt_reltoken(&rlock);
454 		return (error);
455 	}
456 	notify_writer = 0;
457 
458 	bigread = (uio->uio_resid > 10 * 1024 * 1024);
459 	bigcount = 10;
460 
461 	while (uio->uio_resid) {
462 		/*
463 		 * Don't hog the cpu.
464 		 */
465 		if (bigread && --bigcount == 0) {
466 			lwkt_user_yield();
467 			bigcount = 10;
468 			if (CURSIG(curthread->td_lwp)) {
469 				error = EINTR;
470 				break;
471 			}
472 		}
473 
474 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
475 		cpu_lfence();
476 		if (size) {
477 			rindex = rpipe->pipe_buffer.rindex &
478 				 (rpipe->pipe_buffer.size - 1);
479 			nsize = size;
480 			if (nsize > rpipe->pipe_buffer.size - rindex)
481 				nsize = rpipe->pipe_buffer.size - rindex;
482 			nsize = szmin(nsize, uio->uio_resid);
483 
484 			error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
485 					nsize, uio);
486 			if (error)
487 				break;
488 			cpu_mfence();
489 			rpipe->pipe_buffer.rindex += nsize;
490 			nread += nsize;
491 
492 			/*
493 			 * If the FIFO is still over half full just continue
494 			 * and do not try to notify the writer yet.
495 			 */
496 			if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
497 				notify_writer = 0;
498 				continue;
499 			}
500 
501 			/*
502 			 * When the FIFO is less then half full notify any
503 			 * waiting writer.  WANTW can be checked while
504 			 * holding just the rlock.
505 			 */
506 			notify_writer = 1;
507 			if ((rpipe->pipe_state & PIPE_WANTW) == 0)
508 				continue;
509 		}
510 
511 		/*
512 		 * If the "write-side" was blocked we wake it up.  This code
513 		 * is reached either when the buffer is completely emptied
514 		 * or if it becomes more then half-empty.
515 		 *
516 		 * Pipe_state can only be modified if both the rlock and
517 		 * wlock are held.
518 		 */
519 		if (rpipe->pipe_state & PIPE_WANTW) {
520 			lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
521 			if (rpipe->pipe_state & PIPE_WANTW) {
522 				notify_writer = 0;
523 				rpipe->pipe_state &= ~PIPE_WANTW;
524 				lwkt_reltoken(&wlock);
525 				wakeup(rpipe);
526 			} else {
527 				lwkt_reltoken(&wlock);
528 			}
529 		}
530 
531 		/*
532 		 * Pick up our copy loop again if the writer sent data to
533 		 * us while we were messing around.
534 		 *
535 		 * On a SMP box poll up to pipe_delay nanoseconds for new
536 		 * data.  Typically a value of 2000 to 4000 is sufficient
537 		 * to eradicate most IPIs/tsleeps/wakeups when a pipe
538 		 * is used for synchronous communications with small packets,
539 		 * and 8000 or so (8uS) will pipeline large buffer xfers
540 		 * between cpus over a pipe.
541 		 *
542 		 * For synchronous communications a hit means doing a
543 		 * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
544 		 * where as miss requiring a tsleep/wakeup sequence
545 		 * will take 7uS or more.
546 		 */
547 		if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
548 			continue;
549 
550 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
551 		if (pipe_delay) {
552 			int64_t tsc_target;
553 			int good = 0;
554 
555 			tsc_target = tsc_get_target(pipe_delay);
556 			while (tsc_test_target(tsc_target) == 0) {
557 				if (rpipe->pipe_buffer.windex !=
558 				    rpipe->pipe_buffer.rindex) {
559 					good = 1;
560 					break;
561 				}
562 			}
563 			if (good)
564 				continue;
565 		}
566 #endif
567 
568 		/*
569 		 * Detect EOF condition, do not set error.
570 		 */
571 		if (rpipe->pipe_state & PIPE_REOF)
572 			break;
573 
574 		/*
575 		 * Break if some data was read, or if this was a non-blocking
576 		 * read.
577 		 */
578 		if (nread > 0)
579 			break;
580 
581 		if (nbio) {
582 			error = EAGAIN;
583 			break;
584 		}
585 
586 		/*
587 		 * Last chance, interlock with WANTR.
588 		 */
589 		lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
590 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
591 		if (size) {
592 			lwkt_reltoken(&wlock);
593 			continue;
594 		}
595 
596 		/*
597 		 * If there is no more to read in the pipe, reset its
598 		 * pointers to the beginning.  This improves cache hit
599 		 * stats.
600 		 *
601 		 * We need both locks to modify both pointers, and there
602 		 * must also not be a write in progress or the uiomove()
603 		 * in the write might block and temporarily release
604 		 * its wlock, then reacquire and update windex.  We are
605 		 * only serialized against reads, not writes.
606 		 *
607 		 * XXX should we even bother resetting the indices?  It
608 		 *     might actually be more cache efficient not to.
609 		 */
610 		if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
611 		    rpipe->pipe_wip == 0) {
612 			rpipe->pipe_buffer.rindex = 0;
613 			rpipe->pipe_buffer.windex = 0;
614 		}
615 
616 		/*
617 		 * Wait for more data.
618 		 *
619 		 * Pipe_state can only be set if both the rlock and wlock
620 		 * are held.
621 		 */
622 		rpipe->pipe_state |= PIPE_WANTR;
623 		tsleep_interlock(rpipe, PCATCH);
624 		lwkt_reltoken(&wlock);
625 		error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
626 		++pipe_rblocked_count;
627 		if (error)
628 			break;
629 	}
630 	pipe_end_uio(rpipe, &rpipe->pipe_rip);
631 
632 	/*
633 	 * Uptime last access time
634 	 */
635 	if (error == 0 && nread)
636 		vfs_timestamp(&rpipe->pipe_atime);
637 
638 	/*
639 	 * If we drained the FIFO more then half way then handle
640 	 * write blocking hysteresis.
641 	 *
642 	 * Note that PIPE_WANTW cannot be set by the writer without
643 	 * it holding both rlock and wlock, so we can test it
644 	 * while holding just rlock.
645 	 */
646 	if (notify_writer) {
647 		if (rpipe->pipe_state & PIPE_WANTW) {
648 			lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
649 			if (rpipe->pipe_state & PIPE_WANTW) {
650 				rpipe->pipe_state &= ~PIPE_WANTW;
651 				lwkt_reltoken(&wlock);
652 				wakeup(rpipe);
653 			} else {
654 				lwkt_reltoken(&wlock);
655 			}
656 		}
657 	}
658 	size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
659 	lwkt_reltoken(&rlock);
660 
661 	/*
662 	 * If enough space is available in buffer then wakeup sel writers?
663 	 */
664 	if ((rpipe->pipe_buffer.size - size) >= PIPE_BUF)
665 		pipeselwakeup(rpipe);
666 	pipe_rel_mplock(&mpsave);
667 	return (error);
668 }
669 
670 /*
671  * MPALMOSTSAFE - acquires mplock
672  */
673 static int
674 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
675 {
676 	int error;
677 	int orig_resid;
678 	int nbio;
679 	struct pipe *wpipe, *rpipe;
680 	lwkt_tokref rlock;
681 	lwkt_tokref wlock;
682 	u_int windex;
683 	u_int space;
684 	u_int wcount;
685 	int mpsave;
686 	int bigwrite;
687 	int bigcount;
688 
689 	pipe_get_mplock(&mpsave);
690 
691 	/*
692 	 * Writes go to the peer.  The peer will always exist.
693 	 */
694 	rpipe = (struct pipe *) fp->f_data;
695 	wpipe = rpipe->pipe_peer;
696 	lwkt_gettoken(&wlock, &wpipe->pipe_wlock);
697 	if (wpipe->pipe_state & PIPE_WEOF) {
698 		pipe_rel_mplock(&mpsave);
699 		lwkt_reltoken(&wlock);
700 		return (EPIPE);
701 	}
702 
703 	/*
704 	 * Degenerate case (EPIPE takes prec)
705 	 */
706 	if (uio->uio_resid == 0) {
707 		pipe_rel_mplock(&mpsave);
708 		lwkt_reltoken(&wlock);
709 		return(0);
710 	}
711 
712 	/*
713 	 * Writes are serialized (start_uio must be called with wlock)
714 	 */
715 	error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
716 	if (error) {
717 		pipe_rel_mplock(&mpsave);
718 		lwkt_reltoken(&wlock);
719 		return (error);
720 	}
721 
722 	if (fflags & O_FBLOCKING)
723 		nbio = 0;
724 	else if (fflags & O_FNONBLOCKING)
725 		nbio = 1;
726 	else if (fp->f_flag & O_NONBLOCK)
727 		nbio = 1;
728 	else
729 		nbio = 0;
730 
731 	/*
732 	 * If it is advantageous to resize the pipe buffer, do
733 	 * so.  We are write-serialized so we can block safely.
734 	 */
735 	if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
736 	    (pipe_nbig < pipe_maxbig) &&
737 	    wpipe->pipe_wantwcnt > 4 &&
738 	    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
739 		/*
740 		 * Recheck after lock.
741 		 */
742 		lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
743 		if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
744 		    (pipe_nbig < pipe_maxbig) &&
745 		    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
746 			atomic_add_int(&pipe_nbig, 1);
747 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
748 				++pipe_bigcount;
749 			else
750 				atomic_subtract_int(&pipe_nbig, 1);
751 		}
752 		lwkt_reltoken(&rlock);
753 	}
754 
755 	orig_resid = uio->uio_resid;
756 	wcount = 0;
757 
758 	bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
759 	bigcount = 10;
760 
761 	while (uio->uio_resid) {
762 		if (wpipe->pipe_state & PIPE_WEOF) {
763 			error = EPIPE;
764 			break;
765 		}
766 
767 		/*
768 		 * Don't hog the cpu.
769 		 */
770 		if (bigwrite && --bigcount == 0) {
771 			lwkt_user_yield();
772 			bigcount = 10;
773 			if (CURSIG(curthread->td_lwp)) {
774 				error = EINTR;
775 				break;
776 			}
777 		}
778 
779 		windex = wpipe->pipe_buffer.windex &
780 			 (wpipe->pipe_buffer.size - 1);
781 		space = wpipe->pipe_buffer.size -
782 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
783 		cpu_lfence();
784 
785 		/* Writes of size <= PIPE_BUF must be atomic. */
786 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
787 			space = 0;
788 
789 		/*
790 		 * Write to fill, read size handles write hysteresis.  Also
791 		 * additional restrictions can cause select-based non-blocking
792 		 * writes to spin.
793 		 */
794 		if (space > 0) {
795 			u_int segsize;
796 
797 			/*
798 			 * Transfer size is minimum of uio transfer
799 			 * and free space in pipe buffer.
800 			 *
801 			 * Limit each uiocopy to no more then PIPE_SIZE
802 			 * so we can keep the gravy train going on a
803 			 * SMP box.  This doubles the performance for
804 			 * write sizes > 16K.  Otherwise large writes
805 			 * wind up doing an inefficient synchronous
806 			 * ping-pong.
807 			 */
808 			space = szmin(space, uio->uio_resid);
809 			if (space > PIPE_SIZE)
810 				space = PIPE_SIZE;
811 
812 			/*
813 			 * First segment to transfer is minimum of
814 			 * transfer size and contiguous space in
815 			 * pipe buffer.  If first segment to transfer
816 			 * is less than the transfer size, we've got
817 			 * a wraparound in the buffer.
818 			 */
819 			segsize = wpipe->pipe_buffer.size - windex;
820 			if (segsize > space)
821 				segsize = space;
822 
823 #ifdef SMP
824 			/*
825 			 * If this is the first loop and the reader is
826 			 * blocked, do a preemptive wakeup of the reader.
827 			 *
828 			 * On SMP the IPI latency plus the wlock interlock
829 			 * on the reader side is the fastest way to get the
830 			 * reader going.  (The scheduler will hard loop on
831 			 * lock tokens).
832 			 *
833 			 * NOTE: We can't clear WANTR here without acquiring
834 			 * the rlock, which we don't want to do here!
835 			 */
836 			if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
837 				wakeup(wpipe);
838 #endif
839 
840 			/*
841 			 * Transfer segment, which may include a wrap-around.
842 			 * Update windex to account for both all in one go
843 			 * so the reader can read() the data atomically.
844 			 */
845 			error = uiomove(&wpipe->pipe_buffer.buffer[windex],
846 					segsize, uio);
847 			if (error == 0 && segsize < space) {
848 				segsize = space - segsize;
849 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
850 						segsize, uio);
851 			}
852 			if (error)
853 				break;
854 			cpu_mfence();
855 			wpipe->pipe_buffer.windex += space;
856 			wcount += space;
857 			continue;
858 		}
859 
860 		/*
861 		 * We need both the rlock and the wlock to interlock against
862 		 * the EOF, WANTW, and size checks, and to modify pipe_state.
863 		 *
864 		 * These are token locks so we do not have to worry about
865 		 * deadlocks.
866 		 */
867 		lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
868 
869 		/*
870 		 * If the "read-side" has been blocked, wake it up now
871 		 * and yield to let it drain synchronously rather
872 		 * then block.
873 		 */
874 		if (wpipe->pipe_state & PIPE_WANTR) {
875 			wpipe->pipe_state &= ~PIPE_WANTR;
876 			wakeup(wpipe);
877 		}
878 
879 		/*
880 		 * don't block on non-blocking I/O
881 		 */
882 		if (nbio) {
883 			lwkt_reltoken(&rlock);
884 			error = EAGAIN;
885 			break;
886 		}
887 
888 		/*
889 		 * re-test whether we have to block in the writer after
890 		 * acquiring both locks, in case the reader opened up
891 		 * some space.
892 		 */
893 		space = wpipe->pipe_buffer.size -
894 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
895 		cpu_lfence();
896 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
897 			space = 0;
898 
899 		/*
900 		 * We have no more space and have something to offer,
901 		 * wake up select/poll.
902 		 */
903 		if (space == 0) {
904 			wpipe->pipe_state |= PIPE_WANTW;
905 			++wpipe->pipe_wantwcnt;
906 			pipeselwakeup(wpipe);
907 			if (wpipe->pipe_state & PIPE_WANTW)
908 				error = tsleep(wpipe, PCATCH, "pipewr", 0);
909 			++pipe_wblocked_count;
910 		}
911 		lwkt_reltoken(&rlock);
912 
913 		/*
914 		 * Break out if we errored or the read side wants us to go
915 		 * away.
916 		 */
917 		if (error)
918 			break;
919 		if (wpipe->pipe_state & PIPE_WEOF) {
920 			error = EPIPE;
921 			break;
922 		}
923 	}
924 	pipe_end_uio(wpipe, &wpipe->pipe_wip);
925 
926 	/*
927 	 * If we have put any characters in the buffer, we wake up
928 	 * the reader.
929 	 *
930 	 * Both rlock and wlock are required to be able to modify pipe_state.
931 	 */
932 	if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
933 		if (wpipe->pipe_state & PIPE_WANTR) {
934 			lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
935 			if (wpipe->pipe_state & PIPE_WANTR) {
936 				wpipe->pipe_state &= ~PIPE_WANTR;
937 				lwkt_reltoken(&rlock);
938 				wakeup(wpipe);
939 			} else {
940 				lwkt_reltoken(&rlock);
941 			}
942 		}
943 	}
944 
945 	/*
946 	 * Don't return EPIPE if I/O was successful
947 	 */
948 	if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
949 	    (uio->uio_resid == 0) &&
950 	    (error == EPIPE)) {
951 		error = 0;
952 	}
953 
954 	if (error == 0)
955 		vfs_timestamp(&wpipe->pipe_mtime);
956 
957 	/*
958 	 * We have something to offer,
959 	 * wake up select/poll.
960 	 */
961 	space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;
962 	lwkt_reltoken(&wlock);
963 	if (space)
964 		pipeselwakeup(wpipe);
965 	pipe_rel_mplock(&mpsave);
966 	return (error);
967 }
968 
969 /*
970  * MPALMOSTSAFE - acquires mplock
971  *
972  * we implement a very minimal set of ioctls for compatibility with sockets.
973  */
974 int
975 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
976 	   struct ucred *cred, struct sysmsg *msg)
977 {
978 	struct pipe *mpipe;
979 	lwkt_tokref rlock;
980 	lwkt_tokref wlock;
981 	int error;
982 	int mpsave;
983 
984 	pipe_get_mplock(&mpsave);
985 	mpipe = (struct pipe *)fp->f_data;
986 
987 	lwkt_gettoken(&rlock, &mpipe->pipe_rlock);
988 	lwkt_gettoken(&wlock, &mpipe->pipe_wlock);
989 
990 	switch (cmd) {
991 	case FIOASYNC:
992 		if (*(int *)data) {
993 			mpipe->pipe_state |= PIPE_ASYNC;
994 		} else {
995 			mpipe->pipe_state &= ~PIPE_ASYNC;
996 		}
997 		error = 0;
998 		break;
999 	case FIONREAD:
1000 		*(int *)data = mpipe->pipe_buffer.windex -
1001 				mpipe->pipe_buffer.rindex;
1002 		error = 0;
1003 		break;
1004 	case FIOSETOWN:
1005 		get_mplock();
1006 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1007 		rel_mplock();
1008 		break;
1009 	case FIOGETOWN:
1010 		*(int *)data = fgetown(mpipe->pipe_sigio);
1011 		error = 0;
1012 		break;
1013 	case TIOCSPGRP:
1014 		/* This is deprecated, FIOSETOWN should be used instead. */
1015 		get_mplock();
1016 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1017 		rel_mplock();
1018 		break;
1019 
1020 	case TIOCGPGRP:
1021 		/* This is deprecated, FIOGETOWN should be used instead. */
1022 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1023 		error = 0;
1024 		break;
1025 	default:
1026 		error = ENOTTY;
1027 		break;
1028 	}
1029 	lwkt_reltoken(&rlock);
1030 	lwkt_reltoken(&wlock);
1031 	pipe_rel_mplock(&mpsave);
1032 
1033 	return (error);
1034 }
1035 
1036 /*
1037  * MPALMOSTSAFE - acquires mplock
1038  */
1039 int
1040 pipe_poll(struct file *fp, int events, struct ucred *cred)
1041 {
1042 	struct pipe *rpipe;
1043 	struct pipe *wpipe;
1044 	int revents = 0;
1045 	u_int space;
1046 	int mpsave;
1047 
1048 	pipe_get_mplock(&mpsave);
1049 	rpipe = (struct pipe *)fp->f_data;
1050 	wpipe = rpipe->pipe_peer;
1051 	if (events & (POLLIN | POLLRDNORM)) {
1052 		if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1053 		    (rpipe->pipe_state & PIPE_REOF)) {
1054 			revents |= events & (POLLIN | POLLRDNORM);
1055 		}
1056 	}
1057 
1058 	if (events & (POLLOUT | POLLWRNORM)) {
1059 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1060 			revents |= events & (POLLOUT | POLLWRNORM);
1061 		} else {
1062 			space = wpipe->pipe_buffer.windex -
1063 				wpipe->pipe_buffer.rindex;
1064 			space = wpipe->pipe_buffer.size - space;
1065 			if (space >= PIPE_BUF)
1066 				revents |= events & (POLLOUT | POLLWRNORM);
1067 		}
1068 	}
1069 
1070 	if ((rpipe->pipe_state & PIPE_REOF) ||
1071 	    (wpipe == NULL) ||
1072 	    (wpipe->pipe_state & PIPE_WEOF))
1073 		revents |= POLLHUP;
1074 
1075 	if (revents == 0) {
1076 		if (events & (POLLIN | POLLRDNORM)) {
1077 			selrecord(curthread, &rpipe->pipe_sel);
1078 			rpipe->pipe_state |= PIPE_SEL;
1079 		}
1080 
1081 		if (events & (POLLOUT | POLLWRNORM)) {
1082 			selrecord(curthread, &wpipe->pipe_sel);
1083 			wpipe->pipe_state |= PIPE_SEL;
1084 		}
1085 	}
1086 	pipe_rel_mplock(&mpsave);
1087 	return (revents);
1088 }
1089 
1090 /*
1091  * MPSAFE
1092  */
1093 static int
1094 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1095 {
1096 	struct pipe *pipe;
1097 	int mpsave;
1098 
1099 	pipe_get_mplock(&mpsave);
1100 	pipe = (struct pipe *)fp->f_data;
1101 
1102 	bzero((caddr_t)ub, sizeof(*ub));
1103 	ub->st_mode = S_IFIFO;
1104 	ub->st_blksize = pipe->pipe_buffer.size;
1105 	ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1106 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1107 	ub->st_atimespec = pipe->pipe_atime;
1108 	ub->st_mtimespec = pipe->pipe_mtime;
1109 	ub->st_ctimespec = pipe->pipe_ctime;
1110 	/*
1111 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1112 	 * st_flags, st_gen.
1113 	 * XXX (st_dev, st_ino) should be unique.
1114 	 */
1115 	pipe_rel_mplock(&mpsave);
1116 	return (0);
1117 }
1118 
1119 /*
1120  * MPALMOSTSAFE - acquires mplock
1121  */
1122 static int
1123 pipe_close(struct file *fp)
1124 {
1125 	struct pipe *cpipe;
1126 
1127 	get_mplock();
1128 	cpipe = (struct pipe *)fp->f_data;
1129 	fp->f_ops = &badfileops;
1130 	fp->f_data = NULL;
1131 	funsetown(cpipe->pipe_sigio);
1132 	pipeclose(cpipe);
1133 	rel_mplock();
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Shutdown one or both directions of a full-duplex pipe.
1139  *
1140  * MPALMOSTSAFE - acquires mplock
1141  */
1142 static int
1143 pipe_shutdown(struct file *fp, int how)
1144 {
1145 	struct pipe *rpipe;
1146 	struct pipe *wpipe;
1147 	int error = EPIPE;
1148 	lwkt_tokref rpipe_rlock;
1149 	lwkt_tokref rpipe_wlock;
1150 	lwkt_tokref wpipe_rlock;
1151 	lwkt_tokref wpipe_wlock;
1152 	int mpsave;
1153 
1154 	pipe_get_mplock(&mpsave);
1155 	rpipe = (struct pipe *)fp->f_data;
1156 	wpipe = rpipe->pipe_peer;
1157 
1158 	/*
1159 	 * We modify pipe_state on both pipes, which means we need
1160 	 * all four tokens!
1161 	 */
1162 	lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1163 	lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1164 	lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1165 	lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1166 
1167 	switch(how) {
1168 	case SHUT_RDWR:
1169 	case SHUT_RD:
1170 		rpipe->pipe_state |= PIPE_REOF;		/* my reads */
1171 		rpipe->pipe_state |= PIPE_WEOF;		/* peer writes */
1172 		if (rpipe->pipe_state & PIPE_WANTR) {
1173 			rpipe->pipe_state &= ~PIPE_WANTR;
1174 			wakeup(rpipe);
1175 		}
1176 		if (rpipe->pipe_state & PIPE_WANTW) {
1177 			rpipe->pipe_state &= ~PIPE_WANTW;
1178 			wakeup(rpipe);
1179 		}
1180 		error = 0;
1181 		if (how == SHUT_RD)
1182 			break;
1183 		/* fall through */
1184 	case SHUT_WR:
1185 		wpipe->pipe_state |= PIPE_REOF;		/* peer reads */
1186 		wpipe->pipe_state |= PIPE_WEOF;		/* my writes */
1187 		if (wpipe->pipe_state & PIPE_WANTR) {
1188 			wpipe->pipe_state &= ~PIPE_WANTR;
1189 			wakeup(wpipe);
1190 		}
1191 		if (wpipe->pipe_state & PIPE_WANTW) {
1192 			wpipe->pipe_state &= ~PIPE_WANTW;
1193 			wakeup(wpipe);
1194 		}
1195 		error = 0;
1196 		break;
1197 	}
1198 	pipeselwakeup(rpipe);
1199 	pipeselwakeup(wpipe);
1200 
1201 	lwkt_reltoken(&rpipe_rlock);
1202 	lwkt_reltoken(&rpipe_wlock);
1203 	lwkt_reltoken(&wpipe_rlock);
1204 	lwkt_reltoken(&wpipe_wlock);
1205 
1206 	pipe_rel_mplock(&mpsave);
1207 	return (error);
1208 }
1209 
1210 static void
1211 pipe_free_kmem(struct pipe *cpipe)
1212 {
1213 	if (cpipe->pipe_buffer.buffer != NULL) {
1214 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1215 			atomic_subtract_int(&pipe_nbig, 1);
1216 		kmem_free(&kernel_map,
1217 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1218 			cpipe->pipe_buffer.size);
1219 		cpipe->pipe_buffer.buffer = NULL;
1220 		cpipe->pipe_buffer.object = NULL;
1221 	}
1222 }
1223 
1224 /*
1225  * Close the pipe.  The slock must be held to interlock against simultanious
1226  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1227  */
1228 static void
1229 pipeclose(struct pipe *cpipe)
1230 {
1231 	globaldata_t gd;
1232 	struct pipe *ppipe;
1233 	lwkt_tokref cpipe_rlock;
1234 	lwkt_tokref cpipe_wlock;
1235 	lwkt_tokref ppipe_rlock;
1236 	lwkt_tokref ppipe_wlock;
1237 
1238 	if (cpipe == NULL)
1239 		return;
1240 
1241 	/*
1242 	 * The slock may not have been allocated yet (close during
1243 	 * initialization)
1244 	 *
1245 	 * We need both the read and write tokens to modify pipe_state.
1246 	 */
1247 	if (cpipe->pipe_slock)
1248 		lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1249 	lwkt_gettoken(&cpipe_rlock, &cpipe->pipe_rlock);
1250 	lwkt_gettoken(&cpipe_wlock, &cpipe->pipe_wlock);
1251 
1252 	/*
1253 	 * Set our state, wakeup anyone waiting in select, and
1254 	 * wakeup anyone blocked on our pipe.
1255 	 */
1256 	cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1257 	pipeselwakeup(cpipe);
1258 	if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1259 		cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1260 		wakeup(cpipe);
1261 	}
1262 
1263 	/*
1264 	 * Disconnect from peer.
1265 	 */
1266 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1267 		lwkt_gettoken(&ppipe_rlock, &ppipe->pipe_rlock);
1268 		lwkt_gettoken(&ppipe_wlock, &ppipe->pipe_wlock);
1269 		ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1270 		pipeselwakeup(ppipe);
1271 		if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1272 			ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1273 			wakeup(ppipe);
1274 		}
1275 		if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1276 			get_mplock();
1277 			KNOTE(&ppipe->pipe_sel.si_note, 0);
1278 			rel_mplock();
1279 		}
1280 		lwkt_reltoken(&ppipe_rlock);
1281 		lwkt_reltoken(&ppipe_wlock);
1282 	}
1283 
1284 	/*
1285 	 * If the peer is also closed we can free resources for both
1286 	 * sides, otherwise we leave our side intact to deal with any
1287 	 * races (since we only have the slock).
1288 	 */
1289 	if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1290 		cpipe->pipe_peer = NULL;
1291 		ppipe->pipe_peer = NULL;
1292 		ppipe->pipe_slock = NULL;	/* we will free the slock */
1293 		pipeclose(ppipe);
1294 		ppipe = NULL;
1295 	}
1296 
1297 	lwkt_reltoken(&cpipe_rlock);
1298 	lwkt_reltoken(&cpipe_wlock);
1299 	if (cpipe->pipe_slock)
1300 		lockmgr(cpipe->pipe_slock, LK_RELEASE);
1301 
1302 	/*
1303 	 * If we disassociated from our peer we can free resources
1304 	 */
1305 	if (ppipe == NULL) {
1306 		gd = mycpu;
1307 		if (cpipe->pipe_slock) {
1308 			kfree(cpipe->pipe_slock, M_PIPE);
1309 			cpipe->pipe_slock = NULL;
1310 		}
1311 		if (gd->gd_pipeqcount >= pipe_maxcache ||
1312 		    cpipe->pipe_buffer.size != PIPE_SIZE
1313 		) {
1314 			pipe_free_kmem(cpipe);
1315 			kfree(cpipe, M_PIPE);
1316 		} else {
1317 			cpipe->pipe_state = 0;
1318 			cpipe->pipe_peer = gd->gd_pipeq;
1319 			gd->gd_pipeq = cpipe;
1320 			++gd->gd_pipeqcount;
1321 		}
1322 	}
1323 }
1324 
1325 /*
1326  * MPALMOSTSAFE - acquires mplock
1327  */
1328 static int
1329 pipe_kqfilter(struct file *fp, struct knote *kn)
1330 {
1331 	struct pipe *cpipe;
1332 
1333 	get_mplock();
1334 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1335 
1336 	switch (kn->kn_filter) {
1337 	case EVFILT_READ:
1338 		kn->kn_fop = &pipe_rfiltops;
1339 		break;
1340 	case EVFILT_WRITE:
1341 		kn->kn_fop = &pipe_wfiltops;
1342 		cpipe = cpipe->pipe_peer;
1343 		if (cpipe == NULL) {
1344 			/* other end of pipe has been closed */
1345 			rel_mplock();
1346 			return (EPIPE);
1347 		}
1348 		break;
1349 	default:
1350 		return (1);
1351 	}
1352 	kn->kn_hook = (caddr_t)cpipe;
1353 
1354 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1355 	rel_mplock();
1356 	return (0);
1357 }
1358 
1359 static void
1360 filt_pipedetach(struct knote *kn)
1361 {
1362 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1363 
1364 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1365 }
1366 
1367 /*ARGSUSED*/
1368 static int
1369 filt_piperead(struct knote *kn, long hint)
1370 {
1371 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1372 
1373 	kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1374 
1375 	/* XXX RACE */
1376 	if (rpipe->pipe_state & PIPE_REOF) {
1377 		kn->kn_flags |= EV_EOF;
1378 		return (1);
1379 	}
1380 	return (kn->kn_data > 0);
1381 }
1382 
1383 /*ARGSUSED*/
1384 static int
1385 filt_pipewrite(struct knote *kn, long hint)
1386 {
1387 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1388 	struct pipe *wpipe = rpipe->pipe_peer;
1389 	u_int32_t space;
1390 
1391 	/* XXX RACE */
1392 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1393 		kn->kn_data = 0;
1394 		kn->kn_flags |= EV_EOF;
1395 		return (1);
1396 	}
1397 	space = wpipe->pipe_buffer.windex -
1398 		wpipe->pipe_buffer.rindex;
1399 	space = wpipe->pipe_buffer.size - space;
1400 	kn->kn_data = space;
1401 	return (kn->kn_data >= PIPE_BUF);
1402 }
1403