xref: /dflybsd-src/sys/kern/sys_pipe.c (revision 635ed9ba8ad51007f4196e5625a17e8f2e1a8d0f)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/signalvar.h>
40 #include <sys/sysproto.h>
41 #include <sys/pipe.h>
42 #include <sys/vnode.h>
43 #include <sys/uio.h>
44 #include <sys/event.h>
45 #include <sys/globaldata.h>
46 #include <sys/module.h>
47 #include <sys/malloc.h>
48 #include <sys/sysctl.h>
49 #include <sys/socket.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <sys/lock.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vm_extern.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_zone.h>
61 
62 #include <sys/file2.h>
63 #include <sys/signal2.h>
64 #include <sys/mplock2.h>
65 
66 #include <machine/cpufunc.h>
67 
68 /*
69  * interfaces to the outside world
70  */
71 static int pipe_read (struct file *fp, struct uio *uio,
72 		struct ucred *cred, int flags);
73 static int pipe_write (struct file *fp, struct uio *uio,
74 		struct ucred *cred, int flags);
75 static int pipe_close (struct file *fp);
76 static int pipe_shutdown (struct file *fp, int how);
77 static int pipe_kqfilter (struct file *fp, struct knote *kn);
78 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
79 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
80 		struct ucred *cred, struct sysmsg *msg);
81 
82 static struct fileops pipeops = {
83 	.fo_read = pipe_read,
84 	.fo_write = pipe_write,
85 	.fo_ioctl = pipe_ioctl,
86 	.fo_kqfilter = pipe_kqfilter,
87 	.fo_stat = pipe_stat,
88 	.fo_close = pipe_close,
89 	.fo_shutdown = pipe_shutdown
90 };
91 
92 static void	filt_pipedetach(struct knote *kn);
93 static int	filt_piperead(struct knote *kn, long hint);
94 static int	filt_pipewrite(struct knote *kn, long hint);
95 
96 static struct filterops pipe_rfiltops =
97 	{ FILTEROP_ISFD, NULL, filt_pipedetach, filt_piperead };
98 static struct filterops pipe_wfiltops =
99 	{ FILTEROP_ISFD, NULL, filt_pipedetach, filt_pipewrite };
100 
101 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
102 
103 /*
104  * Default pipe buffer size(s), this can be kind-of large now because pipe
105  * space is pageable.  The pipe code will try to maintain locality of
106  * reference for performance reasons, so small amounts of outstanding I/O
107  * will not wipe the cache.
108  */
109 #define MINPIPESIZE (PIPE_SIZE/3)
110 #define MAXPIPESIZE (2*PIPE_SIZE/3)
111 
112 /*
113  * Limit the number of "big" pipes
114  */
115 #define LIMITBIGPIPES	64
116 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
117 
118 static int pipe_maxbig = LIMITBIGPIPES;
119 static int pipe_maxcache = PIPEQ_MAX_CACHE;
120 static int pipe_bigcount;
121 static int pipe_nbig;
122 static int pipe_bcache_alloc;
123 static int pipe_bkmem_alloc;
124 static int pipe_rblocked_count;
125 static int pipe_wblocked_count;
126 
127 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
128 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
129         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
130 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
131         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
132 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
133         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
134 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
135         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
136 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
137         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
138 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
139         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
140 #ifdef SMP
141 static int pipe_delay = 5000;	/* 5uS default */
142 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
143         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
144 static int pipe_mpsafe = 1;
145 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
146         CTLFLAG_RW, &pipe_mpsafe, 0, "");
147 #endif
148 #if !defined(NO_PIPE_SYSCTL_STATS)
149 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
150         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
151 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
152         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
153 #endif
154 
155 static void pipeclose (struct pipe *cpipe);
156 static void pipe_free_kmem (struct pipe *cpipe);
157 static int pipe_create (struct pipe **cpipep);
158 static __inline void pipewakeup (struct pipe *cpipe);
159 static int pipespace (struct pipe *cpipe, int size);
160 
161 static __inline void
162 pipewakeup(struct pipe *cpipe)
163 {
164 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
165 		get_mplock();
166 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
167 		rel_mplock();
168 	}
169 	if (SLIST_FIRST(&cpipe->pipe_kq.ki_note))
170 		KNOTE(&cpipe->pipe_kq.ki_note, 0);
171 }
172 
173 /*
174  * These routines are called before and after a UIO.  The UIO
175  * may block, causing our held tokens to be lost temporarily.
176  *
177  * We use these routines to serialize reads against other reads
178  * and writes against other writes.
179  *
180  * The read token is held on entry so *ipp does not race.
181  */
182 static __inline int
183 pipe_start_uio(struct pipe *cpipe, int *ipp)
184 {
185 	int error;
186 
187 	while (*ipp) {
188 		*ipp = -1;
189 		error = tsleep(ipp, PCATCH, "pipexx", 0);
190 		if (error)
191 			return (error);
192 	}
193 	*ipp = 1;
194 	return (0);
195 }
196 
197 static __inline void
198 pipe_end_uio(struct pipe *cpipe, int *ipp)
199 {
200 	if (*ipp < 0) {
201 		*ipp = 0;
202 		wakeup(ipp);
203 	} else {
204 		KKASSERT(*ipp > 0);
205 		*ipp = 0;
206 	}
207 }
208 
209 static __inline void
210 pipe_get_mplock(int *save)
211 {
212 #ifdef SMP
213 	if (pipe_mpsafe == 0) {
214 		get_mplock();
215 		*save = 1;
216 	} else
217 #endif
218 	{
219 		*save = 0;
220 	}
221 }
222 
223 static __inline void
224 pipe_rel_mplock(int *save)
225 {
226 #ifdef SMP
227 	if (*save)
228 		rel_mplock();
229 #endif
230 }
231 
232 
233 /*
234  * The pipe system call for the DTYPE_PIPE type of pipes
235  *
236  * pipe_args(int dummy)
237  *
238  * MPSAFE
239  */
240 int
241 sys_pipe(struct pipe_args *uap)
242 {
243 	struct thread *td = curthread;
244 	struct filedesc *fdp = td->td_proc->p_fd;
245 	struct file *rf, *wf;
246 	struct pipe *rpipe, *wpipe;
247 	int fd1, fd2, error;
248 
249 	rpipe = wpipe = NULL;
250 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
251 		pipeclose(rpipe);
252 		pipeclose(wpipe);
253 		return (ENFILE);
254 	}
255 
256 	error = falloc(td->td_lwp, &rf, &fd1);
257 	if (error) {
258 		pipeclose(rpipe);
259 		pipeclose(wpipe);
260 		return (error);
261 	}
262 	uap->sysmsg_fds[0] = fd1;
263 
264 	/*
265 	 * Warning: once we've gotten past allocation of the fd for the
266 	 * read-side, we can only drop the read side via fdrop() in order
267 	 * to avoid races against processes which manage to dup() the read
268 	 * side while we are blocked trying to allocate the write side.
269 	 */
270 	rf->f_type = DTYPE_PIPE;
271 	rf->f_flag = FREAD | FWRITE;
272 	rf->f_ops = &pipeops;
273 	rf->f_data = rpipe;
274 	error = falloc(td->td_lwp, &wf, &fd2);
275 	if (error) {
276 		fsetfd(fdp, NULL, fd1);
277 		fdrop(rf);
278 		/* rpipe has been closed by fdrop(). */
279 		pipeclose(wpipe);
280 		return (error);
281 	}
282 	wf->f_type = DTYPE_PIPE;
283 	wf->f_flag = FREAD | FWRITE;
284 	wf->f_ops = &pipeops;
285 	wf->f_data = wpipe;
286 	uap->sysmsg_fds[1] = fd2;
287 
288 	rpipe->pipe_slock = kmalloc(sizeof(struct lock),
289 				    M_PIPE, M_WAITOK|M_ZERO);
290 	wpipe->pipe_slock = rpipe->pipe_slock;
291 	rpipe->pipe_peer = wpipe;
292 	wpipe->pipe_peer = rpipe;
293 	lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
294 
295 	/*
296 	 * Once activated the peer relationship remains valid until
297 	 * both sides are closed.
298 	 */
299 	fsetfd(fdp, rf, fd1);
300 	fsetfd(fdp, wf, fd2);
301 	fdrop(rf);
302 	fdrop(wf);
303 
304 	return (0);
305 }
306 
307 /*
308  * Allocate kva for pipe circular buffer, the space is pageable
309  * This routine will 'realloc' the size of a pipe safely, if it fails
310  * it will retain the old buffer.
311  * If it fails it will return ENOMEM.
312  */
313 static int
314 pipespace(struct pipe *cpipe, int size)
315 {
316 	struct vm_object *object;
317 	caddr_t buffer;
318 	int npages, error;
319 
320 	npages = round_page(size) / PAGE_SIZE;
321 	object = cpipe->pipe_buffer.object;
322 
323 	/*
324 	 * [re]create the object if necessary and reserve space for it
325 	 * in the kernel_map.  The object and memory are pageable.  On
326 	 * success, free the old resources before assigning the new
327 	 * ones.
328 	 */
329 	if (object == NULL || object->size != npages) {
330 		get_mplock();
331 		object = vm_object_allocate(OBJT_DEFAULT, npages);
332 		buffer = (caddr_t)vm_map_min(&kernel_map);
333 
334 		error = vm_map_find(&kernel_map, object, 0,
335 				    (vm_offset_t *)&buffer,
336 				    size, PAGE_SIZE,
337 				    1, VM_MAPTYPE_NORMAL,
338 				    VM_PROT_ALL, VM_PROT_ALL,
339 				    0);
340 
341 		if (error != KERN_SUCCESS) {
342 			vm_object_deallocate(object);
343 			rel_mplock();
344 			return (ENOMEM);
345 		}
346 		pipe_free_kmem(cpipe);
347 		rel_mplock();
348 		cpipe->pipe_buffer.object = object;
349 		cpipe->pipe_buffer.buffer = buffer;
350 		cpipe->pipe_buffer.size = size;
351 		++pipe_bkmem_alloc;
352 	} else {
353 		++pipe_bcache_alloc;
354 	}
355 	cpipe->pipe_buffer.rindex = 0;
356 	cpipe->pipe_buffer.windex = 0;
357 	return (0);
358 }
359 
360 /*
361  * Initialize and allocate VM and memory for pipe, pulling the pipe from
362  * our per-cpu cache if possible.  For now make sure it is sized for the
363  * smaller PIPE_SIZE default.
364  */
365 static int
366 pipe_create(struct pipe **cpipep)
367 {
368 	globaldata_t gd = mycpu;
369 	struct pipe *cpipe;
370 	int error;
371 
372 	if ((cpipe = gd->gd_pipeq) != NULL) {
373 		gd->gd_pipeq = cpipe->pipe_peer;
374 		--gd->gd_pipeqcount;
375 		cpipe->pipe_peer = NULL;
376 		cpipe->pipe_wantwcnt = 0;
377 	} else {
378 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
379 	}
380 	*cpipep = cpipe;
381 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
382 		return (error);
383 	vfs_timestamp(&cpipe->pipe_ctime);
384 	cpipe->pipe_atime = cpipe->pipe_ctime;
385 	cpipe->pipe_mtime = cpipe->pipe_ctime;
386 	lwkt_token_init(&cpipe->pipe_rlock, 1);
387 	lwkt_token_init(&cpipe->pipe_wlock, 1);
388 	return (0);
389 }
390 
391 /*
392  * MPALMOSTSAFE (acquires mplock)
393  */
394 static int
395 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
396 {
397 	struct pipe *rpipe;
398 	int error;
399 	size_t nread = 0;
400 	int nbio;
401 	u_int size;	/* total bytes available */
402 	u_int nsize;	/* total bytes to read */
403 	u_int rindex;	/* contiguous bytes available */
404 	int notify_writer;
405 	int mpsave;
406 	int bigread;
407 	int bigcount;
408 
409 	if (uio->uio_resid == 0)
410 		return(0);
411 
412 	/*
413 	 * Setup locks, calculate nbio
414 	 */
415 	pipe_get_mplock(&mpsave);
416 	rpipe = (struct pipe *)fp->f_data;
417 	lwkt_gettoken(&rpipe->pipe_rlock);
418 
419 	if (fflags & O_FBLOCKING)
420 		nbio = 0;
421 	else if (fflags & O_FNONBLOCKING)
422 		nbio = 1;
423 	else if (fp->f_flag & O_NONBLOCK)
424 		nbio = 1;
425 	else
426 		nbio = 0;
427 
428 	/*
429 	 * Reads are serialized.  Note however that pipe_buffer.buffer and
430 	 * pipe_buffer.size can change out from under us when the number
431 	 * of bytes in the buffer are zero due to the write-side doing a
432 	 * pipespace().
433 	 */
434 	error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
435 	if (error) {
436 		pipe_rel_mplock(&mpsave);
437 		lwkt_reltoken(&rpipe->pipe_rlock);
438 		return (error);
439 	}
440 	notify_writer = 0;
441 
442 	bigread = (uio->uio_resid > 10 * 1024 * 1024);
443 	bigcount = 10;
444 
445 	while (uio->uio_resid) {
446 		/*
447 		 * Don't hog the cpu.
448 		 */
449 		if (bigread && --bigcount == 0) {
450 			lwkt_user_yield();
451 			bigcount = 10;
452 			if (CURSIG(curthread->td_lwp)) {
453 				error = EINTR;
454 				break;
455 			}
456 		}
457 
458 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
459 		cpu_lfence();
460 		if (size) {
461 			rindex = rpipe->pipe_buffer.rindex &
462 				 (rpipe->pipe_buffer.size - 1);
463 			nsize = size;
464 			if (nsize > rpipe->pipe_buffer.size - rindex)
465 				nsize = rpipe->pipe_buffer.size - rindex;
466 			nsize = szmin(nsize, uio->uio_resid);
467 
468 			error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
469 					nsize, uio);
470 			if (error)
471 				break;
472 			cpu_mfence();
473 			rpipe->pipe_buffer.rindex += nsize;
474 			nread += nsize;
475 
476 			/*
477 			 * If the FIFO is still over half full just continue
478 			 * and do not try to notify the writer yet.
479 			 */
480 			if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
481 				notify_writer = 0;
482 				continue;
483 			}
484 
485 			/*
486 			 * When the FIFO is less then half full notify any
487 			 * waiting writer.  WANTW can be checked while
488 			 * holding just the rlock.
489 			 */
490 			notify_writer = 1;
491 			if ((rpipe->pipe_state & PIPE_WANTW) == 0)
492 				continue;
493 		}
494 
495 		/*
496 		 * If the "write-side" was blocked we wake it up.  This code
497 		 * is reached either when the buffer is completely emptied
498 		 * or if it becomes more then half-empty.
499 		 *
500 		 * Pipe_state can only be modified if both the rlock and
501 		 * wlock are held.
502 		 */
503 		if (rpipe->pipe_state & PIPE_WANTW) {
504 			lwkt_gettoken(&rpipe->pipe_wlock);
505 			if (rpipe->pipe_state & PIPE_WANTW) {
506 				notify_writer = 0;
507 				rpipe->pipe_state &= ~PIPE_WANTW;
508 				lwkt_reltoken(&rpipe->pipe_wlock);
509 				wakeup(rpipe);
510 			} else {
511 				lwkt_reltoken(&rpipe->pipe_wlock);
512 			}
513 		}
514 
515 		/*
516 		 * Pick up our copy loop again if the writer sent data to
517 		 * us while we were messing around.
518 		 *
519 		 * On a SMP box poll up to pipe_delay nanoseconds for new
520 		 * data.  Typically a value of 2000 to 4000 is sufficient
521 		 * to eradicate most IPIs/tsleeps/wakeups when a pipe
522 		 * is used for synchronous communications with small packets,
523 		 * and 8000 or so (8uS) will pipeline large buffer xfers
524 		 * between cpus over a pipe.
525 		 *
526 		 * For synchronous communications a hit means doing a
527 		 * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
528 		 * where as miss requiring a tsleep/wakeup sequence
529 		 * will take 7uS or more.
530 		 */
531 		if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
532 			continue;
533 
534 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
535 		if (pipe_delay) {
536 			int64_t tsc_target;
537 			int good = 0;
538 
539 			tsc_target = tsc_get_target(pipe_delay);
540 			while (tsc_test_target(tsc_target) == 0) {
541 				if (rpipe->pipe_buffer.windex !=
542 				    rpipe->pipe_buffer.rindex) {
543 					good = 1;
544 					break;
545 				}
546 			}
547 			if (good)
548 				continue;
549 		}
550 #endif
551 
552 		/*
553 		 * Detect EOF condition, do not set error.
554 		 */
555 		if (rpipe->pipe_state & PIPE_REOF)
556 			break;
557 
558 		/*
559 		 * Break if some data was read, or if this was a non-blocking
560 		 * read.
561 		 */
562 		if (nread > 0)
563 			break;
564 
565 		if (nbio) {
566 			error = EAGAIN;
567 			break;
568 		}
569 
570 		/*
571 		 * Last chance, interlock with WANTR.
572 		 */
573 		lwkt_gettoken(&rpipe->pipe_wlock);
574 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
575 		if (size) {
576 			lwkt_reltoken(&rpipe->pipe_wlock);
577 			continue;
578 		}
579 
580 		/*
581 		 * Retest EOF - acquiring a new token can temporarily release
582 		 * tokens already held.
583 		 */
584 		if (rpipe->pipe_state & PIPE_REOF) {
585 			lwkt_reltoken(&rpipe->pipe_wlock);
586 			break;
587 		}
588 
589 		/*
590 		 * If there is no more to read in the pipe, reset its
591 		 * pointers to the beginning.  This improves cache hit
592 		 * stats.
593 		 *
594 		 * We need both locks to modify both pointers, and there
595 		 * must also not be a write in progress or the uiomove()
596 		 * in the write might block and temporarily release
597 		 * its wlock, then reacquire and update windex.  We are
598 		 * only serialized against reads, not writes.
599 		 *
600 		 * XXX should we even bother resetting the indices?  It
601 		 *     might actually be more cache efficient not to.
602 		 */
603 		if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
604 		    rpipe->pipe_wip == 0) {
605 			rpipe->pipe_buffer.rindex = 0;
606 			rpipe->pipe_buffer.windex = 0;
607 		}
608 
609 		/*
610 		 * Wait for more data.
611 		 *
612 		 * Pipe_state can only be set if both the rlock and wlock
613 		 * are held.
614 		 */
615 		rpipe->pipe_state |= PIPE_WANTR;
616 		tsleep_interlock(rpipe, PCATCH);
617 		lwkt_reltoken(&rpipe->pipe_wlock);
618 		error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
619 		++pipe_rblocked_count;
620 		if (error)
621 			break;
622 	}
623 	pipe_end_uio(rpipe, &rpipe->pipe_rip);
624 
625 	/*
626 	 * Uptime last access time
627 	 */
628 	if (error == 0 && nread)
629 		vfs_timestamp(&rpipe->pipe_atime);
630 
631 	/*
632 	 * If we drained the FIFO more then half way then handle
633 	 * write blocking hysteresis.
634 	 *
635 	 * Note that PIPE_WANTW cannot be set by the writer without
636 	 * it holding both rlock and wlock, so we can test it
637 	 * while holding just rlock.
638 	 */
639 	if (notify_writer) {
640 		if (rpipe->pipe_state & PIPE_WANTW) {
641 			lwkt_gettoken(&rpipe->pipe_wlock);
642 			if (rpipe->pipe_state & PIPE_WANTW) {
643 				rpipe->pipe_state &= ~PIPE_WANTW;
644 				lwkt_reltoken(&rpipe->pipe_wlock);
645 				wakeup(rpipe);
646 			} else {
647 				lwkt_reltoken(&rpipe->pipe_wlock);
648 			}
649 		}
650 		lwkt_gettoken(&rpipe->pipe_wlock);
651 		pipewakeup(rpipe);
652 		lwkt_reltoken(&rpipe->pipe_wlock);
653 	}
654 	/*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
655 	lwkt_reltoken(&rpipe->pipe_rlock);
656 
657 	pipe_rel_mplock(&mpsave);
658 	return (error);
659 }
660 
661 /*
662  * MPALMOSTSAFE - acquires mplock
663  */
664 static int
665 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
666 {
667 	int error;
668 	int orig_resid;
669 	int nbio;
670 	struct pipe *wpipe, *rpipe;
671 	u_int windex;
672 	u_int space;
673 	u_int wcount;
674 	int mpsave;
675 	int bigwrite;
676 	int bigcount;
677 
678 	pipe_get_mplock(&mpsave);
679 
680 	/*
681 	 * Writes go to the peer.  The peer will always exist.
682 	 */
683 	rpipe = (struct pipe *) fp->f_data;
684 	wpipe = rpipe->pipe_peer;
685 	lwkt_gettoken(&wpipe->pipe_wlock);
686 	if (wpipe->pipe_state & PIPE_WEOF) {
687 		pipe_rel_mplock(&mpsave);
688 		lwkt_reltoken(&wpipe->pipe_wlock);
689 		return (EPIPE);
690 	}
691 
692 	/*
693 	 * Degenerate case (EPIPE takes prec)
694 	 */
695 	if (uio->uio_resid == 0) {
696 		pipe_rel_mplock(&mpsave);
697 		lwkt_reltoken(&wpipe->pipe_wlock);
698 		return(0);
699 	}
700 
701 	/*
702 	 * Writes are serialized (start_uio must be called with wlock)
703 	 */
704 	error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
705 	if (error) {
706 		pipe_rel_mplock(&mpsave);
707 		lwkt_reltoken(&wpipe->pipe_wlock);
708 		return (error);
709 	}
710 
711 	if (fflags & O_FBLOCKING)
712 		nbio = 0;
713 	else if (fflags & O_FNONBLOCKING)
714 		nbio = 1;
715 	else if (fp->f_flag & O_NONBLOCK)
716 		nbio = 1;
717 	else
718 		nbio = 0;
719 
720 	/*
721 	 * If it is advantageous to resize the pipe buffer, do
722 	 * so.  We are write-serialized so we can block safely.
723 	 */
724 	if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
725 	    (pipe_nbig < pipe_maxbig) &&
726 	    wpipe->pipe_wantwcnt > 4 &&
727 	    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
728 		/*
729 		 * Recheck after lock.
730 		 */
731 		lwkt_gettoken(&wpipe->pipe_rlock);
732 		if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
733 		    (pipe_nbig < pipe_maxbig) &&
734 		    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
735 			atomic_add_int(&pipe_nbig, 1);
736 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
737 				++pipe_bigcount;
738 			else
739 				atomic_subtract_int(&pipe_nbig, 1);
740 		}
741 		lwkt_reltoken(&wpipe->pipe_rlock);
742 	}
743 
744 	orig_resid = uio->uio_resid;
745 	wcount = 0;
746 
747 	bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
748 	bigcount = 10;
749 
750 	while (uio->uio_resid) {
751 		if (wpipe->pipe_state & PIPE_WEOF) {
752 			error = EPIPE;
753 			break;
754 		}
755 
756 		/*
757 		 * Don't hog the cpu.
758 		 */
759 		if (bigwrite && --bigcount == 0) {
760 			lwkt_user_yield();
761 			bigcount = 10;
762 			if (CURSIG(curthread->td_lwp)) {
763 				error = EINTR;
764 				break;
765 			}
766 		}
767 
768 		windex = wpipe->pipe_buffer.windex &
769 			 (wpipe->pipe_buffer.size - 1);
770 		space = wpipe->pipe_buffer.size -
771 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
772 		cpu_lfence();
773 
774 		/* Writes of size <= PIPE_BUF must be atomic. */
775 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
776 			space = 0;
777 
778 		/*
779 		 * Write to fill, read size handles write hysteresis.  Also
780 		 * additional restrictions can cause select-based non-blocking
781 		 * writes to spin.
782 		 */
783 		if (space > 0) {
784 			u_int segsize;
785 
786 			/*
787 			 * Transfer size is minimum of uio transfer
788 			 * and free space in pipe buffer.
789 			 *
790 			 * Limit each uiocopy to no more then PIPE_SIZE
791 			 * so we can keep the gravy train going on a
792 			 * SMP box.  This doubles the performance for
793 			 * write sizes > 16K.  Otherwise large writes
794 			 * wind up doing an inefficient synchronous
795 			 * ping-pong.
796 			 */
797 			space = szmin(space, uio->uio_resid);
798 			if (space > PIPE_SIZE)
799 				space = PIPE_SIZE;
800 
801 			/*
802 			 * First segment to transfer is minimum of
803 			 * transfer size and contiguous space in
804 			 * pipe buffer.  If first segment to transfer
805 			 * is less than the transfer size, we've got
806 			 * a wraparound in the buffer.
807 			 */
808 			segsize = wpipe->pipe_buffer.size - windex;
809 			if (segsize > space)
810 				segsize = space;
811 
812 #ifdef SMP
813 			/*
814 			 * If this is the first loop and the reader is
815 			 * blocked, do a preemptive wakeup of the reader.
816 			 *
817 			 * On SMP the IPI latency plus the wlock interlock
818 			 * on the reader side is the fastest way to get the
819 			 * reader going.  (The scheduler will hard loop on
820 			 * lock tokens).
821 			 *
822 			 * NOTE: We can't clear WANTR here without acquiring
823 			 * the rlock, which we don't want to do here!
824 			 */
825 			if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
826 				wakeup(wpipe);
827 #endif
828 
829 			/*
830 			 * Transfer segment, which may include a wrap-around.
831 			 * Update windex to account for both all in one go
832 			 * so the reader can read() the data atomically.
833 			 */
834 			error = uiomove(&wpipe->pipe_buffer.buffer[windex],
835 					segsize, uio);
836 			if (error == 0 && segsize < space) {
837 				segsize = space - segsize;
838 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
839 						segsize, uio);
840 			}
841 			if (error)
842 				break;
843 			cpu_mfence();
844 			wpipe->pipe_buffer.windex += space;
845 			wcount += space;
846 			continue;
847 		}
848 
849 		/*
850 		 * We need both the rlock and the wlock to interlock against
851 		 * the EOF, WANTW, and size checks, and to modify pipe_state.
852 		 *
853 		 * These are token locks so we do not have to worry about
854 		 * deadlocks.
855 		 */
856 		lwkt_gettoken(&wpipe->pipe_rlock);
857 
858 		/*
859 		 * If the "read-side" has been blocked, wake it up now
860 		 * and yield to let it drain synchronously rather
861 		 * then block.
862 		 */
863 		if (wpipe->pipe_state & PIPE_WANTR) {
864 			wpipe->pipe_state &= ~PIPE_WANTR;
865 			wakeup(wpipe);
866 		}
867 
868 		/*
869 		 * don't block on non-blocking I/O
870 		 */
871 		if (nbio) {
872 			lwkt_reltoken(&wpipe->pipe_rlock);
873 			error = EAGAIN;
874 			break;
875 		}
876 
877 		/*
878 		 * re-test whether we have to block in the writer after
879 		 * acquiring both locks, in case the reader opened up
880 		 * some space.
881 		 */
882 		space = wpipe->pipe_buffer.size -
883 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
884 		cpu_lfence();
885 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
886 			space = 0;
887 
888 		/*
889 		 * Retest EOF - acquiring a new token can temporarily release
890 		 * tokens already held.
891 		 */
892 		if (wpipe->pipe_state & PIPE_WEOF) {
893 			lwkt_reltoken(&wpipe->pipe_rlock);
894 			error = EPIPE;
895 			break;
896 		}
897 
898 		/*
899 		 * We have no more space and have something to offer,
900 		 * wake up select/poll/kq.
901 		 */
902 		if (space == 0) {
903 			wpipe->pipe_state |= PIPE_WANTW;
904 			++wpipe->pipe_wantwcnt;
905 			pipewakeup(wpipe);
906 			if (wpipe->pipe_state & PIPE_WANTW)
907 				error = tsleep(wpipe, PCATCH, "pipewr", 0);
908 			++pipe_wblocked_count;
909 		}
910 		lwkt_reltoken(&wpipe->pipe_rlock);
911 
912 		/*
913 		 * Break out if we errored or the read side wants us to go
914 		 * away.
915 		 */
916 		if (error)
917 			break;
918 		if (wpipe->pipe_state & PIPE_WEOF) {
919 			error = EPIPE;
920 			break;
921 		}
922 	}
923 	pipe_end_uio(wpipe, &wpipe->pipe_wip);
924 
925 	/*
926 	 * If we have put any characters in the buffer, we wake up
927 	 * the reader.
928 	 *
929 	 * Both rlock and wlock are required to be able to modify pipe_state.
930 	 */
931 	if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
932 		if (wpipe->pipe_state & PIPE_WANTR) {
933 			lwkt_gettoken(&wpipe->pipe_rlock);
934 			if (wpipe->pipe_state & PIPE_WANTR) {
935 				wpipe->pipe_state &= ~PIPE_WANTR;
936 				lwkt_reltoken(&wpipe->pipe_rlock);
937 				wakeup(wpipe);
938 			} else {
939 				lwkt_reltoken(&wpipe->pipe_rlock);
940 			}
941 		}
942 		lwkt_gettoken(&wpipe->pipe_rlock);
943 		pipewakeup(wpipe);
944 		lwkt_reltoken(&wpipe->pipe_rlock);
945 	}
946 
947 	/*
948 	 * Don't return EPIPE if I/O was successful
949 	 */
950 	if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
951 	    (uio->uio_resid == 0) &&
952 	    (error == EPIPE)) {
953 		error = 0;
954 	}
955 
956 	if (error == 0)
957 		vfs_timestamp(&wpipe->pipe_mtime);
958 
959 	/*
960 	 * We have something to offer,
961 	 * wake up select/poll/kq.
962 	 */
963 	/*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
964 	lwkt_reltoken(&wpipe->pipe_wlock);
965 	pipe_rel_mplock(&mpsave);
966 	return (error);
967 }
968 
969 /*
970  * MPALMOSTSAFE - acquires mplock
971  *
972  * we implement a very minimal set of ioctls for compatibility with sockets.
973  */
974 int
975 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
976 	   struct ucred *cred, struct sysmsg *msg)
977 {
978 	struct pipe *mpipe;
979 	int error;
980 	int mpsave;
981 
982 	pipe_get_mplock(&mpsave);
983 	mpipe = (struct pipe *)fp->f_data;
984 
985 	lwkt_gettoken(&mpipe->pipe_rlock);
986 	lwkt_gettoken(&mpipe->pipe_wlock);
987 
988 	switch (cmd) {
989 	case FIOASYNC:
990 		if (*(int *)data) {
991 			mpipe->pipe_state |= PIPE_ASYNC;
992 		} else {
993 			mpipe->pipe_state &= ~PIPE_ASYNC;
994 		}
995 		error = 0;
996 		break;
997 	case FIONREAD:
998 		*(int *)data = mpipe->pipe_buffer.windex -
999 				mpipe->pipe_buffer.rindex;
1000 		error = 0;
1001 		break;
1002 	case FIOSETOWN:
1003 		get_mplock();
1004 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1005 		rel_mplock();
1006 		break;
1007 	case FIOGETOWN:
1008 		*(int *)data = fgetown(mpipe->pipe_sigio);
1009 		error = 0;
1010 		break;
1011 	case TIOCSPGRP:
1012 		/* This is deprecated, FIOSETOWN should be used instead. */
1013 		get_mplock();
1014 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1015 		rel_mplock();
1016 		break;
1017 
1018 	case TIOCGPGRP:
1019 		/* This is deprecated, FIOGETOWN should be used instead. */
1020 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1021 		error = 0;
1022 		break;
1023 	default:
1024 		error = ENOTTY;
1025 		break;
1026 	}
1027 	lwkt_reltoken(&mpipe->pipe_wlock);
1028 	lwkt_reltoken(&mpipe->pipe_rlock);
1029 	pipe_rel_mplock(&mpsave);
1030 
1031 	return (error);
1032 }
1033 
1034 /*
1035  * MPSAFE
1036  */
1037 static int
1038 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1039 {
1040 	struct pipe *pipe;
1041 	int mpsave;
1042 
1043 	pipe_get_mplock(&mpsave);
1044 	pipe = (struct pipe *)fp->f_data;
1045 
1046 	bzero((caddr_t)ub, sizeof(*ub));
1047 	ub->st_mode = S_IFIFO;
1048 	ub->st_blksize = pipe->pipe_buffer.size;
1049 	ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1050 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1051 	ub->st_atimespec = pipe->pipe_atime;
1052 	ub->st_mtimespec = pipe->pipe_mtime;
1053 	ub->st_ctimespec = pipe->pipe_ctime;
1054 	/*
1055 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1056 	 * st_flags, st_gen.
1057 	 * XXX (st_dev, st_ino) should be unique.
1058 	 */
1059 	pipe_rel_mplock(&mpsave);
1060 	return (0);
1061 }
1062 
1063 /*
1064  * MPALMOSTSAFE - acquires mplock
1065  */
1066 static int
1067 pipe_close(struct file *fp)
1068 {
1069 	struct pipe *cpipe;
1070 
1071 	get_mplock();
1072 	cpipe = (struct pipe *)fp->f_data;
1073 	fp->f_ops = &badfileops;
1074 	fp->f_data = NULL;
1075 	funsetown(cpipe->pipe_sigio);
1076 	pipeclose(cpipe);
1077 	rel_mplock();
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Shutdown one or both directions of a full-duplex pipe.
1083  *
1084  * MPALMOSTSAFE - acquires mplock
1085  */
1086 static int
1087 pipe_shutdown(struct file *fp, int how)
1088 {
1089 	struct pipe *rpipe;
1090 	struct pipe *wpipe;
1091 	int error = EPIPE;
1092 	int mpsave;
1093 
1094 	pipe_get_mplock(&mpsave);
1095 	rpipe = (struct pipe *)fp->f_data;
1096 	wpipe = rpipe->pipe_peer;
1097 
1098 	/*
1099 	 * We modify pipe_state on both pipes, which means we need
1100 	 * all four tokens!
1101 	 */
1102 	lwkt_gettoken(&rpipe->pipe_rlock);
1103 	lwkt_gettoken(&rpipe->pipe_wlock);
1104 	lwkt_gettoken(&wpipe->pipe_rlock);
1105 	lwkt_gettoken(&wpipe->pipe_wlock);
1106 
1107 	switch(how) {
1108 	case SHUT_RDWR:
1109 	case SHUT_RD:
1110 		rpipe->pipe_state |= PIPE_REOF;		/* my reads */
1111 		rpipe->pipe_state |= PIPE_WEOF;		/* peer writes */
1112 		if (rpipe->pipe_state & PIPE_WANTR) {
1113 			rpipe->pipe_state &= ~PIPE_WANTR;
1114 			wakeup(rpipe);
1115 		}
1116 		if (rpipe->pipe_state & PIPE_WANTW) {
1117 			rpipe->pipe_state &= ~PIPE_WANTW;
1118 			wakeup(rpipe);
1119 		}
1120 		error = 0;
1121 		if (how == SHUT_RD)
1122 			break;
1123 		/* fall through */
1124 	case SHUT_WR:
1125 		wpipe->pipe_state |= PIPE_REOF;		/* peer reads */
1126 		wpipe->pipe_state |= PIPE_WEOF;		/* my writes */
1127 		if (wpipe->pipe_state & PIPE_WANTR) {
1128 			wpipe->pipe_state &= ~PIPE_WANTR;
1129 			wakeup(wpipe);
1130 		}
1131 		if (wpipe->pipe_state & PIPE_WANTW) {
1132 			wpipe->pipe_state &= ~PIPE_WANTW;
1133 			wakeup(wpipe);
1134 		}
1135 		error = 0;
1136 		break;
1137 	}
1138 	pipewakeup(rpipe);
1139 	pipewakeup(wpipe);
1140 
1141 	lwkt_reltoken(&wpipe->pipe_wlock);
1142 	lwkt_reltoken(&wpipe->pipe_rlock);
1143 	lwkt_reltoken(&rpipe->pipe_wlock);
1144 	lwkt_reltoken(&rpipe->pipe_rlock);
1145 
1146 	pipe_rel_mplock(&mpsave);
1147 	return (error);
1148 }
1149 
1150 static void
1151 pipe_free_kmem(struct pipe *cpipe)
1152 {
1153 	if (cpipe->pipe_buffer.buffer != NULL) {
1154 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1155 			atomic_subtract_int(&pipe_nbig, 1);
1156 		kmem_free(&kernel_map,
1157 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1158 			cpipe->pipe_buffer.size);
1159 		cpipe->pipe_buffer.buffer = NULL;
1160 		cpipe->pipe_buffer.object = NULL;
1161 	}
1162 }
1163 
1164 /*
1165  * Close the pipe.  The slock must be held to interlock against simultanious
1166  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1167  */
1168 static void
1169 pipeclose(struct pipe *cpipe)
1170 {
1171 	globaldata_t gd;
1172 	struct pipe *ppipe;
1173 
1174 	if (cpipe == NULL)
1175 		return;
1176 
1177 	/*
1178 	 * The slock may not have been allocated yet (close during
1179 	 * initialization)
1180 	 *
1181 	 * We need both the read and write tokens to modify pipe_state.
1182 	 */
1183 	if (cpipe->pipe_slock)
1184 		lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1185 	lwkt_gettoken(&cpipe->pipe_rlock);
1186 	lwkt_gettoken(&cpipe->pipe_wlock);
1187 
1188 	/*
1189 	 * Set our state, wakeup anyone waiting in select/poll/kq, and
1190 	 * wakeup anyone blocked on our pipe.
1191 	 */
1192 	cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1193 	pipewakeup(cpipe);
1194 	if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1195 		cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1196 		wakeup(cpipe);
1197 	}
1198 
1199 	/*
1200 	 * Disconnect from peer.
1201 	 */
1202 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1203 		lwkt_gettoken(&ppipe->pipe_rlock);
1204 		lwkt_gettoken(&ppipe->pipe_wlock);
1205 		ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1206 		pipewakeup(ppipe);
1207 		if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1208 			ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1209 			wakeup(ppipe);
1210 		}
1211 		if (SLIST_FIRST(&ppipe->pipe_kq.ki_note))
1212 			KNOTE(&ppipe->pipe_kq.ki_note, 0);
1213 		lwkt_reltoken(&ppipe->pipe_wlock);
1214 		lwkt_reltoken(&ppipe->pipe_rlock);
1215 	}
1216 
1217 	/*
1218 	 * If the peer is also closed we can free resources for both
1219 	 * sides, otherwise we leave our side intact to deal with any
1220 	 * races (since we only have the slock).
1221 	 */
1222 	if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1223 		cpipe->pipe_peer = NULL;
1224 		ppipe->pipe_peer = NULL;
1225 		ppipe->pipe_slock = NULL;	/* we will free the slock */
1226 		pipeclose(ppipe);
1227 		ppipe = NULL;
1228 	}
1229 
1230 	lwkt_reltoken(&cpipe->pipe_wlock);
1231 	lwkt_reltoken(&cpipe->pipe_rlock);
1232 	if (cpipe->pipe_slock)
1233 		lockmgr(cpipe->pipe_slock, LK_RELEASE);
1234 
1235 	/*
1236 	 * If we disassociated from our peer we can free resources
1237 	 */
1238 	if (ppipe == NULL) {
1239 		gd = mycpu;
1240 		if (cpipe->pipe_slock) {
1241 			kfree(cpipe->pipe_slock, M_PIPE);
1242 			cpipe->pipe_slock = NULL;
1243 		}
1244 		if (gd->gd_pipeqcount >= pipe_maxcache ||
1245 		    cpipe->pipe_buffer.size != PIPE_SIZE
1246 		) {
1247 			pipe_free_kmem(cpipe);
1248 			kfree(cpipe, M_PIPE);
1249 		} else {
1250 			cpipe->pipe_state = 0;
1251 			cpipe->pipe_peer = gd->gd_pipeq;
1252 			gd->gd_pipeq = cpipe;
1253 			++gd->gd_pipeqcount;
1254 		}
1255 	}
1256 }
1257 
1258 /*
1259  * MPALMOSTSAFE - acquires mplock
1260  */
1261 static int
1262 pipe_kqfilter(struct file *fp, struct knote *kn)
1263 {
1264 	struct pipe *cpipe;
1265 
1266 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1267 
1268 	switch (kn->kn_filter) {
1269 	case EVFILT_READ:
1270 		kn->kn_fop = &pipe_rfiltops;
1271 		break;
1272 	case EVFILT_WRITE:
1273 		kn->kn_fop = &pipe_wfiltops;
1274 		if (cpipe->pipe_peer == NULL) {
1275 			/* other end of pipe has been closed */
1276 			rel_mplock();
1277 			return (EPIPE);
1278 		}
1279 		break;
1280 	default:
1281 		return (EOPNOTSUPP);
1282 	}
1283 	kn->kn_hook = (caddr_t)cpipe;
1284 
1285 	knote_insert(&cpipe->pipe_kq.ki_note, kn);
1286 
1287 	return (0);
1288 }
1289 
1290 static void
1291 filt_pipedetach(struct knote *kn)
1292 {
1293 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1294 
1295 	knote_remove(&cpipe->pipe_kq.ki_note, kn);
1296 }
1297 
1298 /*ARGSUSED*/
1299 static int
1300 filt_piperead(struct knote *kn, long hint)
1301 {
1302 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1303 
1304 	/* XXX RACE */
1305 	kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1306 	if (rpipe->pipe_state & PIPE_REOF) {
1307 		kn->kn_flags |= EV_EOF;
1308 		return (1);
1309 	}
1310 
1311 	return (kn->kn_data > 0);
1312 }
1313 
1314 /*ARGSUSED*/
1315 static int
1316 filt_pipewrite(struct knote *kn, long hint)
1317 {
1318 	struct pipe *wpipe = (struct pipe *)kn->kn_fp->f_data;
1319 	u_int32_t space;
1320 
1321 	/* XXX RACE */
1322 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1323 		kn->kn_data = 0;
1324 		kn->kn_flags |= EV_EOF;
1325 		return (1);
1326 	}
1327 	space = wpipe->pipe_buffer.windex -
1328 		wpipe->pipe_buffer.rindex;
1329 	space = wpipe->pipe_buffer.size - space;
1330 
1331 	kn->kn_data = space;
1332 	return (kn->kn_data >= PIPE_BUF);
1333 }
1334