xref: /dflybsd-src/sys/kern/sys_pipe.c (revision 441d34b2441f59fde86fa4ef2d5d5cb7a6bfcb11)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63 
64 #include <sys/file2.h>
65 #include <sys/signal2.h>
66 #include <sys/mplock2.h>
67 
68 #include <machine/cpufunc.h>
69 
70 /*
71  * interfaces to the outside world
72  */
73 static int pipe_read (struct file *fp, struct uio *uio,
74 		struct ucred *cred, int flags);
75 static int pipe_write (struct file *fp, struct uio *uio,
76 		struct ucred *cred, int flags);
77 static int pipe_close (struct file *fp);
78 static int pipe_shutdown (struct file *fp, int how);
79 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
80 static int pipe_kqfilter (struct file *fp, struct knote *kn);
81 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
82 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
83 		struct ucred *cred, struct sysmsg *msg);
84 
85 static struct fileops pipeops = {
86 	.fo_read = pipe_read,
87 	.fo_write = pipe_write,
88 	.fo_ioctl = pipe_ioctl,
89 	.fo_poll = pipe_poll,
90 	.fo_kqfilter = pipe_kqfilter,
91 	.fo_stat = pipe_stat,
92 	.fo_close = pipe_close,
93 	.fo_shutdown = pipe_shutdown
94 };
95 
96 static void	filt_pipedetach(struct knote *kn);
97 static int	filt_piperead(struct knote *kn, long hint);
98 static int	filt_pipewrite(struct knote *kn, long hint);
99 
100 static struct filterops pipe_rfiltops =
101 	{ 1, NULL, filt_pipedetach, filt_piperead };
102 static struct filterops pipe_wfiltops =
103 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
104 
105 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
106 
107 /*
108  * Default pipe buffer size(s), this can be kind-of large now because pipe
109  * space is pageable.  The pipe code will try to maintain locality of
110  * reference for performance reasons, so small amounts of outstanding I/O
111  * will not wipe the cache.
112  */
113 #define MINPIPESIZE (PIPE_SIZE/3)
114 #define MAXPIPESIZE (2*PIPE_SIZE/3)
115 
116 /*
117  * Limit the number of "big" pipes
118  */
119 #define LIMITBIGPIPES	64
120 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
121 
122 static int pipe_maxbig = LIMITBIGPIPES;
123 static int pipe_maxcache = PIPEQ_MAX_CACHE;
124 static int pipe_bigcount;
125 static int pipe_nbig;
126 static int pipe_bcache_alloc;
127 static int pipe_bkmem_alloc;
128 static int pipe_rblocked_count;
129 static int pipe_wblocked_count;
130 
131 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
132 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
133         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
134 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
135         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
136 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
137         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
138 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
139         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
140 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
141         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
142 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
143         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
144 #ifdef SMP
145 static int pipe_delay = 5000;	/* 5uS default */
146 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
147         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
148 static int pipe_mpsafe = 1;
149 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
150         CTLFLAG_RW, &pipe_mpsafe, 0, "");
151 #endif
152 #if !defined(NO_PIPE_SYSCTL_STATS)
153 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
154         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
155 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
156         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
157 #endif
158 
159 static void pipeclose (struct pipe *cpipe);
160 static void pipe_free_kmem (struct pipe *cpipe);
161 static int pipe_create (struct pipe **cpipep);
162 static __inline void pipeselwakeup (struct pipe *cpipe);
163 static int pipespace (struct pipe *cpipe, int size);
164 
165 static __inline int
166 pipeseltest(struct pipe *cpipe)
167 {
168 	return ((cpipe->pipe_state & PIPE_SEL) ||
169 		((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) ||
170 		SLIST_FIRST(&cpipe->pipe_sel.si_note));
171 }
172 
173 static __inline void
174 pipeselwakeup(struct pipe *cpipe)
175 {
176 	if (cpipe->pipe_state & PIPE_SEL) {
177 		get_mplock();
178 		cpipe->pipe_state &= ~PIPE_SEL;
179 		selwakeup(&cpipe->pipe_sel);
180 		rel_mplock();
181 	}
182 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
183 		get_mplock();
184 		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
185 		rel_mplock();
186 	}
187 	if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
188 		get_mplock();
189 		KNOTE(&cpipe->pipe_sel.si_note, 0);
190 		rel_mplock();
191 	}
192 }
193 
194 /*
195  * These routines are called before and after a UIO.  The UIO
196  * may block, causing our held tokens to be lost temporarily.
197  *
198  * We use these routines to serialize reads against other reads
199  * and writes against other writes.
200  *
201  * The read token is held on entry so *ipp does not race.
202  */
203 static __inline int
204 pipe_start_uio(struct pipe *cpipe, int *ipp)
205 {
206 	int error;
207 
208 	while (*ipp) {
209 		*ipp = -1;
210 		error = tsleep(ipp, PCATCH, "pipexx", 0);
211 		if (error)
212 			return (error);
213 	}
214 	*ipp = 1;
215 	return (0);
216 }
217 
218 static __inline void
219 pipe_end_uio(struct pipe *cpipe, int *ipp)
220 {
221 	if (*ipp < 0) {
222 		*ipp = 0;
223 		wakeup(ipp);
224 	} else {
225 		KKASSERT(*ipp > 0);
226 		*ipp = 0;
227 	}
228 }
229 
230 static __inline void
231 pipe_get_mplock(int *save)
232 {
233 #ifdef SMP
234 	if (pipe_mpsafe == 0) {
235 		get_mplock();
236 		*save = 1;
237 	} else
238 #endif
239 	{
240 		*save = 0;
241 	}
242 }
243 
244 static __inline void
245 pipe_rel_mplock(int *save)
246 {
247 #ifdef SMP
248 	if (*save)
249 		rel_mplock();
250 #endif
251 }
252 
253 
254 /*
255  * The pipe system call for the DTYPE_PIPE type of pipes
256  *
257  * pipe_args(int dummy)
258  *
259  * MPSAFE
260  */
261 int
262 sys_pipe(struct pipe_args *uap)
263 {
264 	struct thread *td = curthread;
265 	struct filedesc *fdp = td->td_proc->p_fd;
266 	struct file *rf, *wf;
267 	struct pipe *rpipe, *wpipe;
268 	int fd1, fd2, error;
269 
270 	rpipe = wpipe = NULL;
271 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
272 		pipeclose(rpipe);
273 		pipeclose(wpipe);
274 		return (ENFILE);
275 	}
276 
277 	error = falloc(td->td_lwp, &rf, &fd1);
278 	if (error) {
279 		pipeclose(rpipe);
280 		pipeclose(wpipe);
281 		return (error);
282 	}
283 	uap->sysmsg_fds[0] = fd1;
284 
285 	/*
286 	 * Warning: once we've gotten past allocation of the fd for the
287 	 * read-side, we can only drop the read side via fdrop() in order
288 	 * to avoid races against processes which manage to dup() the read
289 	 * side while we are blocked trying to allocate the write side.
290 	 */
291 	rf->f_type = DTYPE_PIPE;
292 	rf->f_flag = FREAD | FWRITE;
293 	rf->f_ops = &pipeops;
294 	rf->f_data = rpipe;
295 	error = falloc(td->td_lwp, &wf, &fd2);
296 	if (error) {
297 		fsetfd(fdp, NULL, fd1);
298 		fdrop(rf);
299 		/* rpipe has been closed by fdrop(). */
300 		pipeclose(wpipe);
301 		return (error);
302 	}
303 	wf->f_type = DTYPE_PIPE;
304 	wf->f_flag = FREAD | FWRITE;
305 	wf->f_ops = &pipeops;
306 	wf->f_data = wpipe;
307 	uap->sysmsg_fds[1] = fd2;
308 
309 	rpipe->pipe_slock = kmalloc(sizeof(struct lock),
310 				    M_PIPE, M_WAITOK|M_ZERO);
311 	wpipe->pipe_slock = rpipe->pipe_slock;
312 	rpipe->pipe_peer = wpipe;
313 	wpipe->pipe_peer = rpipe;
314 	lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
315 
316 	/*
317 	 * Once activated the peer relationship remains valid until
318 	 * both sides are closed.
319 	 */
320 	fsetfd(fdp, rf, fd1);
321 	fsetfd(fdp, wf, fd2);
322 	fdrop(rf);
323 	fdrop(wf);
324 
325 	return (0);
326 }
327 
328 /*
329  * Allocate kva for pipe circular buffer, the space is pageable
330  * This routine will 'realloc' the size of a pipe safely, if it fails
331  * it will retain the old buffer.
332  * If it fails it will return ENOMEM.
333  */
334 static int
335 pipespace(struct pipe *cpipe, int size)
336 {
337 	struct vm_object *object;
338 	caddr_t buffer;
339 	int npages, error;
340 
341 	npages = round_page(size) / PAGE_SIZE;
342 	object = cpipe->pipe_buffer.object;
343 
344 	/*
345 	 * [re]create the object if necessary and reserve space for it
346 	 * in the kernel_map.  The object and memory are pageable.  On
347 	 * success, free the old resources before assigning the new
348 	 * ones.
349 	 */
350 	if (object == NULL || object->size != npages) {
351 		get_mplock();
352 		object = vm_object_allocate(OBJT_DEFAULT, npages);
353 		buffer = (caddr_t)vm_map_min(&kernel_map);
354 
355 		error = vm_map_find(&kernel_map, object, 0,
356 				    (vm_offset_t *)&buffer,
357 				    size, PAGE_SIZE,
358 				    1, VM_MAPTYPE_NORMAL,
359 				    VM_PROT_ALL, VM_PROT_ALL,
360 				    0);
361 
362 		if (error != KERN_SUCCESS) {
363 			vm_object_deallocate(object);
364 			rel_mplock();
365 			return (ENOMEM);
366 		}
367 		pipe_free_kmem(cpipe);
368 		rel_mplock();
369 		cpipe->pipe_buffer.object = object;
370 		cpipe->pipe_buffer.buffer = buffer;
371 		cpipe->pipe_buffer.size = size;
372 		++pipe_bkmem_alloc;
373 	} else {
374 		++pipe_bcache_alloc;
375 	}
376 	cpipe->pipe_buffer.rindex = 0;
377 	cpipe->pipe_buffer.windex = 0;
378 	return (0);
379 }
380 
381 /*
382  * Initialize and allocate VM and memory for pipe, pulling the pipe from
383  * our per-cpu cache if possible.  For now make sure it is sized for the
384  * smaller PIPE_SIZE default.
385  */
386 static int
387 pipe_create(struct pipe **cpipep)
388 {
389 	globaldata_t gd = mycpu;
390 	struct pipe *cpipe;
391 	int error;
392 
393 	if ((cpipe = gd->gd_pipeq) != NULL) {
394 		gd->gd_pipeq = cpipe->pipe_peer;
395 		--gd->gd_pipeqcount;
396 		cpipe->pipe_peer = NULL;
397 		cpipe->pipe_wantwcnt = 0;
398 	} else {
399 		cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
400 	}
401 	*cpipep = cpipe;
402 	if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
403 		return (error);
404 	vfs_timestamp(&cpipe->pipe_ctime);
405 	cpipe->pipe_atime = cpipe->pipe_ctime;
406 	cpipe->pipe_mtime = cpipe->pipe_ctime;
407 	lwkt_token_init(&cpipe->pipe_rlock, 1);
408 	lwkt_token_init(&cpipe->pipe_wlock, 1);
409 	return (0);
410 }
411 
412 /*
413  * MPALMOSTSAFE (acquires mplock)
414  */
415 static int
416 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
417 {
418 	struct pipe *rpipe;
419 	int error;
420 	size_t nread = 0;
421 	int nbio;
422 	u_int size;	/* total bytes available */
423 	u_int nsize;	/* total bytes to read */
424 	u_int rindex;	/* contiguous bytes available */
425 	int notify_writer;
426 	int mpsave;
427 	int bigread;
428 	int bigcount;
429 
430 	if (uio->uio_resid == 0)
431 		return(0);
432 
433 	/*
434 	 * Setup locks, calculate nbio
435 	 */
436 	pipe_get_mplock(&mpsave);
437 	rpipe = (struct pipe *)fp->f_data;
438 	lwkt_gettoken(&rpipe->pipe_rlock);
439 
440 	if (fflags & O_FBLOCKING)
441 		nbio = 0;
442 	else if (fflags & O_FNONBLOCKING)
443 		nbio = 1;
444 	else if (fp->f_flag & O_NONBLOCK)
445 		nbio = 1;
446 	else
447 		nbio = 0;
448 
449 	/*
450 	 * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
451 	 * pipe_buffer.size can change out from under us when the number
452 	 * of bytes in the buffer are zero due to the write-side doing a
453 	 * pipespace().
454 	 */
455 	error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
456 	if (error) {
457 		pipe_rel_mplock(&mpsave);
458 		lwkt_reltoken(&rpipe->pipe_rlock);
459 		return (error);
460 	}
461 	notify_writer = 0;
462 
463 	bigread = (uio->uio_resid > 10 * 1024 * 1024);
464 	bigcount = 10;
465 
466 	while (uio->uio_resid) {
467 		/*
468 		 * Don't hog the cpu.
469 		 */
470 		if (bigread && --bigcount == 0) {
471 			lwkt_user_yield();
472 			bigcount = 10;
473 			if (CURSIG(curthread->td_lwp)) {
474 				error = EINTR;
475 				break;
476 			}
477 		}
478 
479 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
480 		cpu_lfence();
481 		if (size) {
482 			rindex = rpipe->pipe_buffer.rindex &
483 				 (rpipe->pipe_buffer.size - 1);
484 			nsize = size;
485 			if (nsize > rpipe->pipe_buffer.size - rindex)
486 				nsize = rpipe->pipe_buffer.size - rindex;
487 			nsize = szmin(nsize, uio->uio_resid);
488 
489 			error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
490 					nsize, uio);
491 			if (error)
492 				break;
493 			cpu_mfence();
494 			rpipe->pipe_buffer.rindex += nsize;
495 			nread += nsize;
496 
497 			/*
498 			 * If the FIFO is still over half full just continue
499 			 * and do not try to notify the writer yet.
500 			 */
501 			if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
502 				notify_writer = 0;
503 				continue;
504 			}
505 
506 			/*
507 			 * When the FIFO is less then half full notify any
508 			 * waiting writer.  WANTW can be checked while
509 			 * holding just the rlock.
510 			 */
511 			notify_writer = 1;
512 			if ((rpipe->pipe_state & PIPE_WANTW) == 0)
513 				continue;
514 		}
515 
516 		/*
517 		 * If the "write-side" was blocked we wake it up.  This code
518 		 * is reached either when the buffer is completely emptied
519 		 * or if it becomes more then half-empty.
520 		 *
521 		 * Pipe_state can only be modified if both the rlock and
522 		 * wlock are held.
523 		 */
524 		if (rpipe->pipe_state & PIPE_WANTW) {
525 			lwkt_gettoken(&rpipe->pipe_wlock);
526 			if (rpipe->pipe_state & PIPE_WANTW) {
527 				notify_writer = 0;
528 				rpipe->pipe_state &= ~PIPE_WANTW;
529 				lwkt_reltoken(&rpipe->pipe_wlock);
530 				wakeup(rpipe);
531 			} else {
532 				lwkt_reltoken(&rpipe->pipe_wlock);
533 			}
534 		}
535 
536 		/*
537 		 * Pick up our copy loop again if the writer sent data to
538 		 * us while we were messing around.
539 		 *
540 		 * On a SMP box poll up to pipe_delay nanoseconds for new
541 		 * data.  Typically a value of 2000 to 4000 is sufficient
542 		 * to eradicate most IPIs/tsleeps/wakeups when a pipe
543 		 * is used for synchronous communications with small packets,
544 		 * and 8000 or so (8uS) will pipeline large buffer xfers
545 		 * between cpus over a pipe.
546 		 *
547 		 * For synchronous communications a hit means doing a
548 		 * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
549 		 * where as miss requiring a tsleep/wakeup sequence
550 		 * will take 7uS or more.
551 		 */
552 		if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
553 			continue;
554 
555 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
556 		if (pipe_delay) {
557 			int64_t tsc_target;
558 			int good = 0;
559 
560 			tsc_target = tsc_get_target(pipe_delay);
561 			while (tsc_test_target(tsc_target) == 0) {
562 				if (rpipe->pipe_buffer.windex !=
563 				    rpipe->pipe_buffer.rindex) {
564 					good = 1;
565 					break;
566 				}
567 			}
568 			if (good)
569 				continue;
570 		}
571 #endif
572 
573 		/*
574 		 * Detect EOF condition, do not set error.
575 		 */
576 		if (rpipe->pipe_state & PIPE_REOF)
577 			break;
578 
579 		/*
580 		 * Break if some data was read, or if this was a non-blocking
581 		 * read.
582 		 */
583 		if (nread > 0)
584 			break;
585 
586 		if (nbio) {
587 			error = EAGAIN;
588 			break;
589 		}
590 
591 		/*
592 		 * Last chance, interlock with WANTR.
593 		 */
594 		lwkt_gettoken(&rpipe->pipe_wlock);
595 		size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
596 		if (size) {
597 			lwkt_reltoken(&rpipe->pipe_wlock);
598 			continue;
599 		}
600 
601 		/*
602 		 * Retest EOF - acquiring a new token can temporarily release
603 		 * tokens already held.
604 		 */
605 		if (rpipe->pipe_state & PIPE_REOF) {
606 			lwkt_reltoken(&rpipe->pipe_wlock);
607 			break;
608 		}
609 
610 		/*
611 		 * If there is no more to read in the pipe, reset its
612 		 * pointers to the beginning.  This improves cache hit
613 		 * stats.
614 		 *
615 		 * We need both locks to modify both pointers, and there
616 		 * must also not be a write in progress or the uiomove()
617 		 * in the write might block and temporarily release
618 		 * its wlock, then reacquire and update windex.  We are
619 		 * only serialized against reads, not writes.
620 		 *
621 		 * XXX should we even bother resetting the indices?  It
622 		 *     might actually be more cache efficient not to.
623 		 */
624 		if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
625 		    rpipe->pipe_wip == 0) {
626 			rpipe->pipe_buffer.rindex = 0;
627 			rpipe->pipe_buffer.windex = 0;
628 		}
629 
630 		/*
631 		 * Wait for more data.
632 		 *
633 		 * Pipe_state can only be set if both the rlock and wlock
634 		 * are held.
635 		 */
636 		rpipe->pipe_state |= PIPE_WANTR;
637 		tsleep_interlock(rpipe, PCATCH);
638 		lwkt_reltoken(&rpipe->pipe_wlock);
639 		error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
640 		++pipe_rblocked_count;
641 		if (error)
642 			break;
643 	}
644 	pipe_end_uio(rpipe, &rpipe->pipe_rip);
645 
646 	/*
647 	 * Uptime last access time
648 	 */
649 	if (error == 0 && nread)
650 		vfs_timestamp(&rpipe->pipe_atime);
651 
652 	/*
653 	 * If we drained the FIFO more then half way then handle
654 	 * write blocking hysteresis.
655 	 *
656 	 * Note that PIPE_WANTW cannot be set by the writer without
657 	 * it holding both rlock and wlock, so we can test it
658 	 * while holding just rlock.
659 	 */
660 	if (notify_writer) {
661 		if (rpipe->pipe_state & PIPE_WANTW) {
662 			lwkt_gettoken(&rpipe->pipe_wlock);
663 			if (rpipe->pipe_state & PIPE_WANTW) {
664 				rpipe->pipe_state &= ~PIPE_WANTW;
665 				lwkt_reltoken(&rpipe->pipe_wlock);
666 				wakeup(rpipe);
667 			} else {
668 				lwkt_reltoken(&rpipe->pipe_wlock);
669 			}
670 		}
671 		if (pipeseltest(rpipe)) {
672 			lwkt_gettoken(&rpipe->pipe_wlock);
673 			pipeselwakeup(rpipe);
674 			lwkt_reltoken(&rpipe->pipe_wlock);
675 		}
676 	}
677 	/*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
678 	lwkt_reltoken(&rpipe->pipe_rlock);
679 
680 	pipe_rel_mplock(&mpsave);
681 	return (error);
682 }
683 
684 /*
685  * MPALMOSTSAFE - acquires mplock
686  */
687 static int
688 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
689 {
690 	int error;
691 	int orig_resid;
692 	int nbio;
693 	struct pipe *wpipe, *rpipe;
694 	u_int windex;
695 	u_int space;
696 	u_int wcount;
697 	int mpsave;
698 	int bigwrite;
699 	int bigcount;
700 
701 	pipe_get_mplock(&mpsave);
702 
703 	/*
704 	 * Writes go to the peer.  The peer will always exist.
705 	 */
706 	rpipe = (struct pipe *) fp->f_data;
707 	wpipe = rpipe->pipe_peer;
708 	lwkt_gettoken(&wpipe->pipe_wlock);
709 	if (wpipe->pipe_state & PIPE_WEOF) {
710 		pipe_rel_mplock(&mpsave);
711 		lwkt_reltoken(&wpipe->pipe_wlock);
712 		return (EPIPE);
713 	}
714 
715 	/*
716 	 * Degenerate case (EPIPE takes prec)
717 	 */
718 	if (uio->uio_resid == 0) {
719 		pipe_rel_mplock(&mpsave);
720 		lwkt_reltoken(&wpipe->pipe_wlock);
721 		return(0);
722 	}
723 
724 	/*
725 	 * Writes are serialized (start_uio must be called with wlock)
726 	 */
727 	error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
728 	if (error) {
729 		pipe_rel_mplock(&mpsave);
730 		lwkt_reltoken(&wpipe->pipe_wlock);
731 		return (error);
732 	}
733 
734 	if (fflags & O_FBLOCKING)
735 		nbio = 0;
736 	else if (fflags & O_FNONBLOCKING)
737 		nbio = 1;
738 	else if (fp->f_flag & O_NONBLOCK)
739 		nbio = 1;
740 	else
741 		nbio = 0;
742 
743 	/*
744 	 * If it is advantageous to resize the pipe buffer, do
745 	 * so.  We are write-serialized so we can block safely.
746 	 */
747 	if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
748 	    (pipe_nbig < pipe_maxbig) &&
749 	    wpipe->pipe_wantwcnt > 4 &&
750 	    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
751 		/*
752 		 * Recheck after lock.
753 		 */
754 		lwkt_gettoken(&wpipe->pipe_rlock);
755 		if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
756 		    (pipe_nbig < pipe_maxbig) &&
757 		    (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
758 			atomic_add_int(&pipe_nbig, 1);
759 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
760 				++pipe_bigcount;
761 			else
762 				atomic_subtract_int(&pipe_nbig, 1);
763 		}
764 		lwkt_reltoken(&wpipe->pipe_rlock);
765 	}
766 
767 	orig_resid = uio->uio_resid;
768 	wcount = 0;
769 
770 	bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
771 	bigcount = 10;
772 
773 	while (uio->uio_resid) {
774 		if (wpipe->pipe_state & PIPE_WEOF) {
775 			error = EPIPE;
776 			break;
777 		}
778 
779 		/*
780 		 * Don't hog the cpu.
781 		 */
782 		if (bigwrite && --bigcount == 0) {
783 			lwkt_user_yield();
784 			bigcount = 10;
785 			if (CURSIG(curthread->td_lwp)) {
786 				error = EINTR;
787 				break;
788 			}
789 		}
790 
791 		windex = wpipe->pipe_buffer.windex &
792 			 (wpipe->pipe_buffer.size - 1);
793 		space = wpipe->pipe_buffer.size -
794 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
795 		cpu_lfence();
796 
797 		/* Writes of size <= PIPE_BUF must be atomic. */
798 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
799 			space = 0;
800 
801 		/*
802 		 * Write to fill, read size handles write hysteresis.  Also
803 		 * additional restrictions can cause select-based non-blocking
804 		 * writes to spin.
805 		 */
806 		if (space > 0) {
807 			u_int segsize;
808 
809 			/*
810 			 * Transfer size is minimum of uio transfer
811 			 * and free space in pipe buffer.
812 			 *
813 			 * Limit each uiocopy to no more then PIPE_SIZE
814 			 * so we can keep the gravy train going on a
815 			 * SMP box.  This doubles the performance for
816 			 * write sizes > 16K.  Otherwise large writes
817 			 * wind up doing an inefficient synchronous
818 			 * ping-pong.
819 			 */
820 			space = szmin(space, uio->uio_resid);
821 			if (space > PIPE_SIZE)
822 				space = PIPE_SIZE;
823 
824 			/*
825 			 * First segment to transfer is minimum of
826 			 * transfer size and contiguous space in
827 			 * pipe buffer.  If first segment to transfer
828 			 * is less than the transfer size, we've got
829 			 * a wraparound in the buffer.
830 			 */
831 			segsize = wpipe->pipe_buffer.size - windex;
832 			if (segsize > space)
833 				segsize = space;
834 
835 #ifdef SMP
836 			/*
837 			 * If this is the first loop and the reader is
838 			 * blocked, do a preemptive wakeup of the reader.
839 			 *
840 			 * On SMP the IPI latency plus the wlock interlock
841 			 * on the reader side is the fastest way to get the
842 			 * reader going.  (The scheduler will hard loop on
843 			 * lock tokens).
844 			 *
845 			 * NOTE: We can't clear WANTR here without acquiring
846 			 * the rlock, which we don't want to do here!
847 			 */
848 			if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
849 				wakeup(wpipe);
850 #endif
851 
852 			/*
853 			 * Transfer segment, which may include a wrap-around.
854 			 * Update windex to account for both all in one go
855 			 * so the reader can read() the data atomically.
856 			 */
857 			error = uiomove(&wpipe->pipe_buffer.buffer[windex],
858 					segsize, uio);
859 			if (error == 0 && segsize < space) {
860 				segsize = space - segsize;
861 				error = uiomove(&wpipe->pipe_buffer.buffer[0],
862 						segsize, uio);
863 			}
864 			if (error)
865 				break;
866 			cpu_mfence();
867 			wpipe->pipe_buffer.windex += space;
868 			wcount += space;
869 			continue;
870 		}
871 
872 		/*
873 		 * We need both the rlock and the wlock to interlock against
874 		 * the EOF, WANTW, and size checks, and to modify pipe_state.
875 		 *
876 		 * These are token locks so we do not have to worry about
877 		 * deadlocks.
878 		 */
879 		lwkt_gettoken(&wpipe->pipe_rlock);
880 
881 		/*
882 		 * If the "read-side" has been blocked, wake it up now
883 		 * and yield to let it drain synchronously rather
884 		 * then block.
885 		 */
886 		if (wpipe->pipe_state & PIPE_WANTR) {
887 			wpipe->pipe_state &= ~PIPE_WANTR;
888 			wakeup(wpipe);
889 		}
890 
891 		/*
892 		 * don't block on non-blocking I/O
893 		 */
894 		if (nbio) {
895 			lwkt_reltoken(&wpipe->pipe_rlock);
896 			error = EAGAIN;
897 			break;
898 		}
899 
900 		/*
901 		 * re-test whether we have to block in the writer after
902 		 * acquiring both locks, in case the reader opened up
903 		 * some space.
904 		 */
905 		space = wpipe->pipe_buffer.size -
906 			(wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
907 		cpu_lfence();
908 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
909 			space = 0;
910 
911 		/*
912 		 * Retest EOF - acquiring a new token can temporarily release
913 		 * tokens already held.
914 		 */
915 		if (wpipe->pipe_state & PIPE_WEOF) {
916 			lwkt_reltoken(&wpipe->pipe_rlock);
917 			error = EPIPE;
918 			break;
919 		}
920 
921 		/*
922 		 * We have no more space and have something to offer,
923 		 * wake up select/poll.
924 		 */
925 		if (space == 0) {
926 			wpipe->pipe_state |= PIPE_WANTW;
927 			++wpipe->pipe_wantwcnt;
928 			pipeselwakeup(wpipe);
929 			if (wpipe->pipe_state & PIPE_WANTW)
930 				error = tsleep(wpipe, PCATCH, "pipewr", 0);
931 			++pipe_wblocked_count;
932 		}
933 		lwkt_reltoken(&wpipe->pipe_rlock);
934 
935 		/*
936 		 * Break out if we errored or the read side wants us to go
937 		 * away.
938 		 */
939 		if (error)
940 			break;
941 		if (wpipe->pipe_state & PIPE_WEOF) {
942 			error = EPIPE;
943 			break;
944 		}
945 	}
946 	pipe_end_uio(wpipe, &wpipe->pipe_wip);
947 
948 	/*
949 	 * If we have put any characters in the buffer, we wake up
950 	 * the reader.
951 	 *
952 	 * Both rlock and wlock are required to be able to modify pipe_state.
953 	 */
954 	if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
955 		if (wpipe->pipe_state & PIPE_WANTR) {
956 			lwkt_gettoken(&wpipe->pipe_rlock);
957 			if (wpipe->pipe_state & PIPE_WANTR) {
958 				wpipe->pipe_state &= ~PIPE_WANTR;
959 				lwkt_reltoken(&wpipe->pipe_rlock);
960 				wakeup(wpipe);
961 			} else {
962 				lwkt_reltoken(&wpipe->pipe_rlock);
963 			}
964 		}
965 		if (pipeseltest(wpipe)) {
966 			lwkt_gettoken(&wpipe->pipe_rlock);
967 			pipeselwakeup(wpipe);
968 			lwkt_reltoken(&wpipe->pipe_rlock);
969 		}
970 	}
971 
972 	/*
973 	 * Don't return EPIPE if I/O was successful
974 	 */
975 	if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
976 	    (uio->uio_resid == 0) &&
977 	    (error == EPIPE)) {
978 		error = 0;
979 	}
980 
981 	if (error == 0)
982 		vfs_timestamp(&wpipe->pipe_mtime);
983 
984 	/*
985 	 * We have something to offer,
986 	 * wake up select/poll.
987 	 */
988 	/*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
989 	lwkt_reltoken(&wpipe->pipe_wlock);
990 	pipe_rel_mplock(&mpsave);
991 	return (error);
992 }
993 
994 /*
995  * MPALMOSTSAFE - acquires mplock
996  *
997  * we implement a very minimal set of ioctls for compatibility with sockets.
998  */
999 int
1000 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
1001 	   struct ucred *cred, struct sysmsg *msg)
1002 {
1003 	struct pipe *mpipe;
1004 	int error;
1005 	int mpsave;
1006 
1007 	pipe_get_mplock(&mpsave);
1008 	mpipe = (struct pipe *)fp->f_data;
1009 
1010 	lwkt_gettoken(&mpipe->pipe_rlock);
1011 	lwkt_gettoken(&mpipe->pipe_wlock);
1012 
1013 	switch (cmd) {
1014 	case FIOASYNC:
1015 		if (*(int *)data) {
1016 			mpipe->pipe_state |= PIPE_ASYNC;
1017 		} else {
1018 			mpipe->pipe_state &= ~PIPE_ASYNC;
1019 		}
1020 		error = 0;
1021 		break;
1022 	case FIONREAD:
1023 		*(int *)data = mpipe->pipe_buffer.windex -
1024 				mpipe->pipe_buffer.rindex;
1025 		error = 0;
1026 		break;
1027 	case FIOSETOWN:
1028 		get_mplock();
1029 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1030 		rel_mplock();
1031 		break;
1032 	case FIOGETOWN:
1033 		*(int *)data = fgetown(mpipe->pipe_sigio);
1034 		error = 0;
1035 		break;
1036 	case TIOCSPGRP:
1037 		/* This is deprecated, FIOSETOWN should be used instead. */
1038 		get_mplock();
1039 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1040 		rel_mplock();
1041 		break;
1042 
1043 	case TIOCGPGRP:
1044 		/* This is deprecated, FIOGETOWN should be used instead. */
1045 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1046 		error = 0;
1047 		break;
1048 	default:
1049 		error = ENOTTY;
1050 		break;
1051 	}
1052 	lwkt_reltoken(&mpipe->pipe_wlock);
1053 	lwkt_reltoken(&mpipe->pipe_rlock);
1054 	pipe_rel_mplock(&mpsave);
1055 
1056 	return (error);
1057 }
1058 
1059 /*
1060  * MPALMOSTSAFE - acquires mplock
1061  *
1062  * poll for events (helper)
1063  */
1064 static int
1065 pipe_poll_events(struct pipe *rpipe, struct pipe *wpipe, int events)
1066 {
1067 	int revents = 0;
1068 	u_int space;
1069 
1070 	if (events & (POLLIN | POLLRDNORM)) {
1071 		if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1072 		    (rpipe->pipe_state & PIPE_REOF)) {
1073 			revents |= events & (POLLIN | POLLRDNORM);
1074 		}
1075 	}
1076 
1077 	if (events & (POLLOUT | POLLWRNORM)) {
1078 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1079 			revents |= events & (POLLOUT | POLLWRNORM);
1080 		} else {
1081 			space = wpipe->pipe_buffer.windex -
1082 				wpipe->pipe_buffer.rindex;
1083 			space = wpipe->pipe_buffer.size - space;
1084 			if (space >= PIPE_BUF)
1085 				revents |= events & (POLLOUT | POLLWRNORM);
1086 		}
1087 	}
1088 
1089 	if ((rpipe->pipe_state & PIPE_REOF) ||
1090 	    (wpipe == NULL) ||
1091 	    (wpipe->pipe_state & PIPE_WEOF)) {
1092 		revents |= POLLHUP;
1093 	}
1094 	return (revents);
1095 }
1096 
1097 /*
1098  * Poll for events from file pointer.
1099  */
1100 int
1101 pipe_poll(struct file *fp, int events, struct ucred *cred)
1102 {
1103 	struct pipe *rpipe;
1104 	struct pipe *wpipe;
1105 	int revents = 0;
1106 	int mpsave;
1107 
1108 	pipe_get_mplock(&mpsave);
1109 	rpipe = (struct pipe *)fp->f_data;
1110 	wpipe = rpipe->pipe_peer;
1111 
1112 	revents = pipe_poll_events(rpipe, wpipe, events);
1113 	if (revents == 0) {
1114 		if (events & (POLLIN | POLLRDNORM)) {
1115 			lwkt_gettoken(&rpipe->pipe_rlock);
1116 			lwkt_gettoken(&rpipe->pipe_wlock);
1117 		}
1118 		if (events & (POLLOUT | POLLWRNORM)) {
1119 			lwkt_gettoken(&wpipe->pipe_rlock);
1120 			lwkt_gettoken(&wpipe->pipe_wlock);
1121 		}
1122 		revents = pipe_poll_events(rpipe, wpipe, events);
1123 		if (revents == 0) {
1124 			if (events & (POLLIN | POLLRDNORM)) {
1125 				selrecord(curthread, &rpipe->pipe_sel);
1126 				rpipe->pipe_state |= PIPE_SEL;
1127 			}
1128 
1129 			if (events & (POLLOUT | POLLWRNORM)) {
1130 				selrecord(curthread, &wpipe->pipe_sel);
1131 				wpipe->pipe_state |= PIPE_SEL;
1132 			}
1133 		}
1134 		if (events & (POLLOUT | POLLWRNORM)) {
1135 			lwkt_reltoken(&wpipe->pipe_wlock);
1136 			lwkt_reltoken(&wpipe->pipe_rlock);
1137 		}
1138 		if (events & (POLLIN | POLLRDNORM)) {
1139 			lwkt_reltoken(&rpipe->pipe_wlock);
1140 			lwkt_reltoken(&rpipe->pipe_rlock);
1141 		}
1142 	}
1143 	pipe_rel_mplock(&mpsave);
1144 	return (revents);
1145 }
1146 
1147 /*
1148  * MPSAFE
1149  */
1150 static int
1151 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1152 {
1153 	struct pipe *pipe;
1154 	int mpsave;
1155 
1156 	pipe_get_mplock(&mpsave);
1157 	pipe = (struct pipe *)fp->f_data;
1158 
1159 	bzero((caddr_t)ub, sizeof(*ub));
1160 	ub->st_mode = S_IFIFO;
1161 	ub->st_blksize = pipe->pipe_buffer.size;
1162 	ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1163 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1164 	ub->st_atimespec = pipe->pipe_atime;
1165 	ub->st_mtimespec = pipe->pipe_mtime;
1166 	ub->st_ctimespec = pipe->pipe_ctime;
1167 	/*
1168 	 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1169 	 * st_flags, st_gen.
1170 	 * XXX (st_dev, st_ino) should be unique.
1171 	 */
1172 	pipe_rel_mplock(&mpsave);
1173 	return (0);
1174 }
1175 
1176 /*
1177  * MPALMOSTSAFE - acquires mplock
1178  */
1179 static int
1180 pipe_close(struct file *fp)
1181 {
1182 	struct pipe *cpipe;
1183 
1184 	get_mplock();
1185 	cpipe = (struct pipe *)fp->f_data;
1186 	fp->f_ops = &badfileops;
1187 	fp->f_data = NULL;
1188 	funsetown(cpipe->pipe_sigio);
1189 	pipeclose(cpipe);
1190 	rel_mplock();
1191 	return (0);
1192 }
1193 
1194 /*
1195  * Shutdown one or both directions of a full-duplex pipe.
1196  *
1197  * MPALMOSTSAFE - acquires mplock
1198  */
1199 static int
1200 pipe_shutdown(struct file *fp, int how)
1201 {
1202 	struct pipe *rpipe;
1203 	struct pipe *wpipe;
1204 	int error = EPIPE;
1205 	int mpsave;
1206 
1207 	pipe_get_mplock(&mpsave);
1208 	rpipe = (struct pipe *)fp->f_data;
1209 	wpipe = rpipe->pipe_peer;
1210 
1211 	/*
1212 	 * We modify pipe_state on both pipes, which means we need
1213 	 * all four tokens!
1214 	 */
1215 	lwkt_gettoken(&rpipe->pipe_rlock);
1216 	lwkt_gettoken(&rpipe->pipe_wlock);
1217 	lwkt_gettoken(&wpipe->pipe_rlock);
1218 	lwkt_gettoken(&wpipe->pipe_wlock);
1219 
1220 	switch(how) {
1221 	case SHUT_RDWR:
1222 	case SHUT_RD:
1223 		rpipe->pipe_state |= PIPE_REOF;		/* my reads */
1224 		rpipe->pipe_state |= PIPE_WEOF;		/* peer writes */
1225 		if (rpipe->pipe_state & PIPE_WANTR) {
1226 			rpipe->pipe_state &= ~PIPE_WANTR;
1227 			wakeup(rpipe);
1228 		}
1229 		if (rpipe->pipe_state & PIPE_WANTW) {
1230 			rpipe->pipe_state &= ~PIPE_WANTW;
1231 			wakeup(rpipe);
1232 		}
1233 		error = 0;
1234 		if (how == SHUT_RD)
1235 			break;
1236 		/* fall through */
1237 	case SHUT_WR:
1238 		wpipe->pipe_state |= PIPE_REOF;		/* peer reads */
1239 		wpipe->pipe_state |= PIPE_WEOF;		/* my writes */
1240 		if (wpipe->pipe_state & PIPE_WANTR) {
1241 			wpipe->pipe_state &= ~PIPE_WANTR;
1242 			wakeup(wpipe);
1243 		}
1244 		if (wpipe->pipe_state & PIPE_WANTW) {
1245 			wpipe->pipe_state &= ~PIPE_WANTW;
1246 			wakeup(wpipe);
1247 		}
1248 		error = 0;
1249 		break;
1250 	}
1251 	pipeselwakeup(rpipe);
1252 	pipeselwakeup(wpipe);
1253 
1254 	lwkt_reltoken(&wpipe->pipe_wlock);
1255 	lwkt_reltoken(&wpipe->pipe_rlock);
1256 	lwkt_reltoken(&rpipe->pipe_wlock);
1257 	lwkt_reltoken(&rpipe->pipe_rlock);
1258 
1259 	pipe_rel_mplock(&mpsave);
1260 	return (error);
1261 }
1262 
1263 static void
1264 pipe_free_kmem(struct pipe *cpipe)
1265 {
1266 	if (cpipe->pipe_buffer.buffer != NULL) {
1267 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1268 			atomic_subtract_int(&pipe_nbig, 1);
1269 		kmem_free(&kernel_map,
1270 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1271 			cpipe->pipe_buffer.size);
1272 		cpipe->pipe_buffer.buffer = NULL;
1273 		cpipe->pipe_buffer.object = NULL;
1274 	}
1275 }
1276 
1277 /*
1278  * Close the pipe.  The slock must be held to interlock against simultanious
1279  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1280  */
1281 static void
1282 pipeclose(struct pipe *cpipe)
1283 {
1284 	globaldata_t gd;
1285 	struct pipe *ppipe;
1286 
1287 	if (cpipe == NULL)
1288 		return;
1289 
1290 	/*
1291 	 * The slock may not have been allocated yet (close during
1292 	 * initialization)
1293 	 *
1294 	 * We need both the read and write tokens to modify pipe_state.
1295 	 */
1296 	if (cpipe->pipe_slock)
1297 		lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1298 	lwkt_gettoken(&cpipe->pipe_rlock);
1299 	lwkt_gettoken(&cpipe->pipe_wlock);
1300 
1301 	/*
1302 	 * Set our state, wakeup anyone waiting in select, and
1303 	 * wakeup anyone blocked on our pipe.
1304 	 */
1305 	cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1306 	pipeselwakeup(cpipe);
1307 	if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1308 		cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1309 		wakeup(cpipe);
1310 	}
1311 
1312 	/*
1313 	 * Disconnect from peer.
1314 	 */
1315 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1316 		lwkt_gettoken(&ppipe->pipe_rlock);
1317 		lwkt_gettoken(&ppipe->pipe_wlock);
1318 		ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1319 		pipeselwakeup(ppipe);
1320 		if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1321 			ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1322 			wakeup(ppipe);
1323 		}
1324 		if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1325 			get_mplock();
1326 			KNOTE(&ppipe->pipe_sel.si_note, 0);
1327 			rel_mplock();
1328 		}
1329 		lwkt_reltoken(&ppipe->pipe_wlock);
1330 		lwkt_reltoken(&ppipe->pipe_rlock);
1331 	}
1332 
1333 	/*
1334 	 * If the peer is also closed we can free resources for both
1335 	 * sides, otherwise we leave our side intact to deal with any
1336 	 * races (since we only have the slock).
1337 	 */
1338 	if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1339 		cpipe->pipe_peer = NULL;
1340 		ppipe->pipe_peer = NULL;
1341 		ppipe->pipe_slock = NULL;	/* we will free the slock */
1342 		pipeclose(ppipe);
1343 		ppipe = NULL;
1344 	}
1345 
1346 	lwkt_reltoken(&cpipe->pipe_wlock);
1347 	lwkt_reltoken(&cpipe->pipe_rlock);
1348 	if (cpipe->pipe_slock)
1349 		lockmgr(cpipe->pipe_slock, LK_RELEASE);
1350 
1351 	/*
1352 	 * If we disassociated from our peer we can free resources
1353 	 */
1354 	if (ppipe == NULL) {
1355 		gd = mycpu;
1356 		if (cpipe->pipe_slock) {
1357 			kfree(cpipe->pipe_slock, M_PIPE);
1358 			cpipe->pipe_slock = NULL;
1359 		}
1360 		if (gd->gd_pipeqcount >= pipe_maxcache ||
1361 		    cpipe->pipe_buffer.size != PIPE_SIZE
1362 		) {
1363 			pipe_free_kmem(cpipe);
1364 			kfree(cpipe, M_PIPE);
1365 		} else {
1366 			cpipe->pipe_state = 0;
1367 			cpipe->pipe_peer = gd->gd_pipeq;
1368 			gd->gd_pipeq = cpipe;
1369 			++gd->gd_pipeqcount;
1370 		}
1371 	}
1372 }
1373 
1374 /*
1375  * MPALMOSTSAFE - acquires mplock
1376  */
1377 static int
1378 pipe_kqfilter(struct file *fp, struct knote *kn)
1379 {
1380 	struct pipe *cpipe;
1381 
1382 	get_mplock();
1383 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1384 
1385 	switch (kn->kn_filter) {
1386 	case EVFILT_READ:
1387 		kn->kn_fop = &pipe_rfiltops;
1388 		break;
1389 	case EVFILT_WRITE:
1390 		kn->kn_fop = &pipe_wfiltops;
1391 		cpipe = cpipe->pipe_peer;
1392 		if (cpipe == NULL) {
1393 			/* other end of pipe has been closed */
1394 			rel_mplock();
1395 			return (EPIPE);
1396 		}
1397 		break;
1398 	default:
1399 		return (1);
1400 	}
1401 	kn->kn_hook = (caddr_t)cpipe;
1402 
1403 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1404 	rel_mplock();
1405 	return (0);
1406 }
1407 
1408 static void
1409 filt_pipedetach(struct knote *kn)
1410 {
1411 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1412 
1413 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1414 }
1415 
1416 /*ARGSUSED*/
1417 static int
1418 filt_piperead(struct knote *kn, long hint)
1419 {
1420 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1421 
1422 	kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1423 
1424 	/* XXX RACE */
1425 	if (rpipe->pipe_state & PIPE_REOF) {
1426 		kn->kn_flags |= EV_EOF;
1427 		return (1);
1428 	}
1429 	return (kn->kn_data > 0);
1430 }
1431 
1432 /*ARGSUSED*/
1433 static int
1434 filt_pipewrite(struct knote *kn, long hint)
1435 {
1436 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1437 	struct pipe *wpipe = rpipe->pipe_peer;
1438 	u_int32_t space;
1439 
1440 	/* XXX RACE */
1441 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1442 		kn->kn_data = 0;
1443 		kn->kn_flags |= EV_EOF;
1444 		return (1);
1445 	}
1446 	space = wpipe->pipe_buffer.windex -
1447 		wpipe->pipe_buffer.rindex;
1448 	space = wpipe->pipe_buffer.size - space;
1449 	kn->kn_data = space;
1450 	return (kn->kn_data >= PIPE_BUF);
1451 }
1452