xref: /dflybsd-src/sys/kern/sys_generic.c (revision 37fcf2909492f7075bf6d42e7fd1f78345527048)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD: src/sys/kern/sys_generic.c,v 1.55.2.10 2001/03/17 10:39:32 peter Exp $
40  * $DragonFly: src/sys/kern/sys_generic.c,v 1.49 2008/05/05 22:09:44 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/event.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/proc.h>
54 #include <sys/signalvar.h>
55 #include <sys/socketvar.h>
56 #include <sys/uio.h>
57 #include <sys/kernel.h>
58 #include <sys/kern_syscall.h>
59 #include <sys/malloc.h>
60 #include <sys/mapped_ioctl.h>
61 #include <sys/poll.h>
62 #include <sys/queue.h>
63 #include <sys/resourcevar.h>
64 #include <sys/socketops.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/buf.h>
68 #ifdef KTRACE
69 #include <sys/ktrace.h>
70 #endif
71 #include <vm/vm.h>
72 #include <vm/vm_page.h>
73 
74 #include <sys/file2.h>
75 #include <sys/mplock2.h>
76 #include <sys/spinlock2.h>
77 
78 #include <machine/limits.h>
79 
80 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
81 static MALLOC_DEFINE(M_IOCTLMAP, "ioctlmap", "mapped ioctl handler buffer");
82 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
83 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
84 
85 typedef struct kfd_set {
86         fd_mask	fds_bits[2];
87 } kfd_set;
88 
89 enum select_copyin_states {
90     COPYIN_READ, COPYIN_WRITE, COPYIN_EXCEPT, COPYIN_DONE };
91 
92 struct select_kevent_copyin_args {
93 	kfd_set		*read_set;
94 	kfd_set		*write_set;
95 	kfd_set		*except_set;
96 	int		active_set;	/* One of select_copyin_states */
97 	struct lwp	*lwp;		/* Pointer to our lwp */
98 	int		num_fds;	/* Number of file descriptors (syscall arg) */
99 	int		proc_fds;	/* Processed fd's (wraps) */
100 	int		error;		/* Returned to userland */
101 };
102 
103 struct poll_kevent_copyin_args {
104 	struct lwp	*lwp;
105 	struct pollfd	*fds;
106 	int		nfds;
107 	int		pfds;
108 	int		error;
109 };
110 
111 static int 	doselect(int nd, fd_set *in, fd_set *ou, fd_set *ex,
112 			 struct timespec *ts, int *res);
113 static int	dopoll(int nfds, struct pollfd *fds, struct timespec *ts,
114 		       int *res);
115 static int	dofileread(int, struct file *, struct uio *, int, size_t *);
116 static int	dofilewrite(int, struct file *, struct uio *, int, size_t *);
117 
118 /*
119  * Read system call.
120  *
121  * MPSAFE
122  */
123 int
124 sys_read(struct read_args *uap)
125 {
126 	struct thread *td = curthread;
127 	struct uio auio;
128 	struct iovec aiov;
129 	int error;
130 
131 	if ((ssize_t)uap->nbyte < 0)
132 		error = EINVAL;
133 
134 	aiov.iov_base = uap->buf;
135 	aiov.iov_len = uap->nbyte;
136 	auio.uio_iov = &aiov;
137 	auio.uio_iovcnt = 1;
138 	auio.uio_offset = -1;
139 	auio.uio_resid = uap->nbyte;
140 	auio.uio_rw = UIO_READ;
141 	auio.uio_segflg = UIO_USERSPACE;
142 	auio.uio_td = td;
143 
144 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
145 	return(error);
146 }
147 
148 /*
149  * Positioned (Pread) read system call
150  *
151  * MPSAFE
152  */
153 int
154 sys_extpread(struct extpread_args *uap)
155 {
156 	struct thread *td = curthread;
157 	struct uio auio;
158 	struct iovec aiov;
159 	int error;
160 	int flags;
161 
162 	if ((ssize_t)uap->nbyte < 0)
163 		return(EINVAL);
164 
165 	aiov.iov_base = uap->buf;
166 	aiov.iov_len = uap->nbyte;
167 	auio.uio_iov = &aiov;
168 	auio.uio_iovcnt = 1;
169 	auio.uio_offset = uap->offset;
170 	auio.uio_resid = uap->nbyte;
171 	auio.uio_rw = UIO_READ;
172 	auio.uio_segflg = UIO_USERSPACE;
173 	auio.uio_td = td;
174 
175 	flags = uap->flags & O_FMASK;
176 	if (uap->offset != (off_t)-1)
177 		flags |= O_FOFFSET;
178 
179 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
180 	return(error);
181 }
182 
183 /*
184  * Scatter read system call.
185  *
186  * MPSAFE
187  */
188 int
189 sys_readv(struct readv_args *uap)
190 {
191 	struct thread *td = curthread;
192 	struct uio auio;
193 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
194 	int error;
195 
196 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
197 			     &auio.uio_resid);
198 	if (error)
199 		return (error);
200 	auio.uio_iov = iov;
201 	auio.uio_iovcnt = uap->iovcnt;
202 	auio.uio_offset = -1;
203 	auio.uio_rw = UIO_READ;
204 	auio.uio_segflg = UIO_USERSPACE;
205 	auio.uio_td = td;
206 
207 	error = kern_preadv(uap->fd, &auio, 0, &uap->sysmsg_szresult);
208 
209 	iovec_free(&iov, aiov);
210 	return (error);
211 }
212 
213 
214 /*
215  * Scatter positioned read system call.
216  *
217  * MPSAFE
218  */
219 int
220 sys_extpreadv(struct extpreadv_args *uap)
221 {
222 	struct thread *td = curthread;
223 	struct uio auio;
224 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
225 	int error;
226 	int flags;
227 
228 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
229 			     &auio.uio_resid);
230 	if (error)
231 		return (error);
232 	auio.uio_iov = iov;
233 	auio.uio_iovcnt = uap->iovcnt;
234 	auio.uio_offset = uap->offset;
235 	auio.uio_rw = UIO_READ;
236 	auio.uio_segflg = UIO_USERSPACE;
237 	auio.uio_td = td;
238 
239 	flags = uap->flags & O_FMASK;
240 	if (uap->offset != (off_t)-1)
241 		flags |= O_FOFFSET;
242 
243 	error = kern_preadv(uap->fd, &auio, flags, &uap->sysmsg_szresult);
244 
245 	iovec_free(&iov, aiov);
246 	return(error);
247 }
248 
249 /*
250  * MPSAFE
251  */
252 int
253 kern_preadv(int fd, struct uio *auio, int flags, size_t *res)
254 {
255 	struct thread *td = curthread;
256 	struct proc *p = td->td_proc;
257 	struct file *fp;
258 	int error;
259 
260 	KKASSERT(p);
261 
262 	fp = holdfp(p->p_fd, fd, FREAD);
263 	if (fp == NULL)
264 		return (EBADF);
265 	if (flags & O_FOFFSET && fp->f_type != DTYPE_VNODE) {
266 		error = ESPIPE;
267 	} else {
268 		error = dofileread(fd, fp, auio, flags, res);
269 	}
270 	fdrop(fp);
271 	return(error);
272 }
273 
274 /*
275  * Common code for readv and preadv that reads data in
276  * from a file using the passed in uio, offset, and flags.
277  *
278  * MPALMOSTSAFE - ktrace needs help
279  */
280 static int
281 dofileread(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
282 {
283 	int error;
284 	size_t len;
285 #ifdef KTRACE
286 	struct thread *td = curthread;
287 	struct iovec *ktriov = NULL;
288 	struct uio ktruio;
289 #endif
290 
291 #ifdef KTRACE
292 	/*
293 	 * if tracing, save a copy of iovec
294 	 */
295 	if (KTRPOINT(td, KTR_GENIO))  {
296 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
297 
298 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
299 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
300 		ktruio = *auio;
301 	}
302 #endif
303 	len = auio->uio_resid;
304 	error = fo_read(fp, auio, fp->f_cred, flags);
305 	if (error) {
306 		if (auio->uio_resid != len && (error == ERESTART ||
307 		    error == EINTR || error == EWOULDBLOCK))
308 			error = 0;
309 	}
310 #ifdef KTRACE
311 	if (ktriov != NULL) {
312 		if (error == 0) {
313 			ktruio.uio_iov = ktriov;
314 			ktruio.uio_resid = len - auio->uio_resid;
315 			get_mplock();
316 			ktrgenio(td->td_lwp, fd, UIO_READ, &ktruio, error);
317 			rel_mplock();
318 		}
319 		FREE(ktriov, M_TEMP);
320 	}
321 #endif
322 	if (error == 0)
323 		*res = len - auio->uio_resid;
324 
325 	return(error);
326 }
327 
328 /*
329  * Write system call
330  *
331  * MPSAFE
332  */
333 int
334 sys_write(struct write_args *uap)
335 {
336 	struct thread *td = curthread;
337 	struct uio auio;
338 	struct iovec aiov;
339 	int error;
340 
341 	if ((ssize_t)uap->nbyte < 0)
342 		error = EINVAL;
343 
344 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
345 	aiov.iov_len = uap->nbyte;
346 	auio.uio_iov = &aiov;
347 	auio.uio_iovcnt = 1;
348 	auio.uio_offset = -1;
349 	auio.uio_resid = uap->nbyte;
350 	auio.uio_rw = UIO_WRITE;
351 	auio.uio_segflg = UIO_USERSPACE;
352 	auio.uio_td = td;
353 
354 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
355 
356 	return(error);
357 }
358 
359 /*
360  * Pwrite system call
361  *
362  * MPSAFE
363  */
364 int
365 sys_extpwrite(struct extpwrite_args *uap)
366 {
367 	struct thread *td = curthread;
368 	struct uio auio;
369 	struct iovec aiov;
370 	int error;
371 	int flags;
372 
373 	if ((ssize_t)uap->nbyte < 0)
374 		error = EINVAL;
375 
376 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
377 	aiov.iov_len = uap->nbyte;
378 	auio.uio_iov = &aiov;
379 	auio.uio_iovcnt = 1;
380 	auio.uio_offset = uap->offset;
381 	auio.uio_resid = uap->nbyte;
382 	auio.uio_rw = UIO_WRITE;
383 	auio.uio_segflg = UIO_USERSPACE;
384 	auio.uio_td = td;
385 
386 	flags = uap->flags & O_FMASK;
387 	if (uap->offset != (off_t)-1)
388 		flags |= O_FOFFSET;
389 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
390 	return(error);
391 }
392 
393 /*
394  * MPSAFE
395  */
396 int
397 sys_writev(struct writev_args *uap)
398 {
399 	struct thread *td = curthread;
400 	struct uio auio;
401 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
402 	int error;
403 
404 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
405 			     &auio.uio_resid);
406 	if (error)
407 		return (error);
408 	auio.uio_iov = iov;
409 	auio.uio_iovcnt = uap->iovcnt;
410 	auio.uio_offset = -1;
411 	auio.uio_rw = UIO_WRITE;
412 	auio.uio_segflg = UIO_USERSPACE;
413 	auio.uio_td = td;
414 
415 	error = kern_pwritev(uap->fd, &auio, 0, &uap->sysmsg_szresult);
416 
417 	iovec_free(&iov, aiov);
418 	return (error);
419 }
420 
421 
422 /*
423  * Gather positioned write system call
424  *
425  * MPSAFE
426  */
427 int
428 sys_extpwritev(struct extpwritev_args *uap)
429 {
430 	struct thread *td = curthread;
431 	struct uio auio;
432 	struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
433 	int error;
434 	int flags;
435 
436 	error = iovec_copyin(uap->iovp, &iov, aiov, uap->iovcnt,
437 			     &auio.uio_resid);
438 	if (error)
439 		return (error);
440 	auio.uio_iov = iov;
441 	auio.uio_iovcnt = uap->iovcnt;
442 	auio.uio_offset = uap->offset;
443 	auio.uio_rw = UIO_WRITE;
444 	auio.uio_segflg = UIO_USERSPACE;
445 	auio.uio_td = td;
446 
447 	flags = uap->flags & O_FMASK;
448 	if (uap->offset != (off_t)-1)
449 		flags |= O_FOFFSET;
450 
451 	error = kern_pwritev(uap->fd, &auio, flags, &uap->sysmsg_szresult);
452 
453 	iovec_free(&iov, aiov);
454 	return(error);
455 }
456 
457 /*
458  * MPSAFE
459  */
460 int
461 kern_pwritev(int fd, struct uio *auio, int flags, size_t *res)
462 {
463 	struct thread *td = curthread;
464 	struct proc *p = td->td_proc;
465 	struct file *fp;
466 	int error;
467 
468 	KKASSERT(p);
469 
470 	fp = holdfp(p->p_fd, fd, FWRITE);
471 	if (fp == NULL)
472 		return (EBADF);
473 	else if ((flags & O_FOFFSET) && fp->f_type != DTYPE_VNODE) {
474 		error = ESPIPE;
475 	} else {
476 		error = dofilewrite(fd, fp, auio, flags, res);
477 	}
478 
479 	fdrop(fp);
480 	return (error);
481 }
482 
483 /*
484  * Common code for writev and pwritev that writes data to
485  * a file using the passed in uio, offset, and flags.
486  *
487  * MPALMOSTSAFE - ktrace needs help
488  */
489 static int
490 dofilewrite(int fd, struct file *fp, struct uio *auio, int flags, size_t *res)
491 {
492 	struct thread *td = curthread;
493 	struct lwp *lp = td->td_lwp;
494 	int error;
495 	size_t len;
496 #ifdef KTRACE
497 	struct iovec *ktriov = NULL;
498 	struct uio ktruio;
499 #endif
500 
501 #ifdef KTRACE
502 	/*
503 	 * if tracing, save a copy of iovec and uio
504 	 */
505 	if (KTRPOINT(td, KTR_GENIO))  {
506 		int iovlen = auio->uio_iovcnt * sizeof(struct iovec);
507 
508 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
509 		bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
510 		ktruio = *auio;
511 	}
512 #endif
513 	len = auio->uio_resid;
514 	error = fo_write(fp, auio, fp->f_cred, flags);
515 	if (error) {
516 		if (auio->uio_resid != len && (error == ERESTART ||
517 		    error == EINTR || error == EWOULDBLOCK))
518 			error = 0;
519 		/* Socket layer is responsible for issuing SIGPIPE. */
520 		if (error == EPIPE) {
521 			get_mplock();
522 			lwpsignal(lp->lwp_proc, lp, SIGPIPE);
523 			rel_mplock();
524 		}
525 	}
526 #ifdef KTRACE
527 	if (ktriov != NULL) {
528 		if (error == 0) {
529 			ktruio.uio_iov = ktriov;
530 			ktruio.uio_resid = len - auio->uio_resid;
531 			get_mplock();
532 			ktrgenio(lp, fd, UIO_WRITE, &ktruio, error);
533 			rel_mplock();
534 		}
535 		FREE(ktriov, M_TEMP);
536 	}
537 #endif
538 	if (error == 0)
539 		*res = len - auio->uio_resid;
540 
541 	return(error);
542 }
543 
544 /*
545  * Ioctl system call
546  *
547  * MPALMOSTSAFE
548  */
549 int
550 sys_ioctl(struct ioctl_args *uap)
551 {
552 	int error;
553 
554 	get_mplock();
555 	error = mapped_ioctl(uap->fd, uap->com, uap->data, NULL, &uap->sysmsg);
556 	rel_mplock();
557 	return (error);
558 }
559 
560 struct ioctl_map_entry {
561 	const char *subsys;
562 	struct ioctl_map_range *cmd_ranges;
563 	LIST_ENTRY(ioctl_map_entry) entries;
564 };
565 
566 /*
567  * The true heart of all ioctl syscall handlers (native, emulation).
568  * If map != NULL, it will be searched for a matching entry for com,
569  * and appropriate conversions/conversion functions will be utilized.
570  */
571 int
572 mapped_ioctl(int fd, u_long com, caddr_t uspc_data, struct ioctl_map *map,
573 	     struct sysmsg *msg)
574 {
575 	struct thread *td = curthread;
576 	struct proc *p = td->td_proc;
577 	struct ucred *cred;
578 	struct file *fp;
579 	struct ioctl_map_range *iomc = NULL;
580 	int error;
581 	u_int size;
582 	u_long ocom = com;
583 	caddr_t data, memp;
584 	int tmp;
585 #define STK_PARAMS	128
586 	union {
587 	    char stkbuf[STK_PARAMS];
588 	    long align;
589 	} ubuf;
590 
591 	KKASSERT(p);
592 	cred = td->td_ucred;
593 
594 	fp = holdfp(p->p_fd, fd, FREAD|FWRITE);
595 	if (fp == NULL)
596 		return(EBADF);
597 
598 	if (map != NULL) {	/* obey translation map */
599 		u_long maskcmd;
600 		struct ioctl_map_entry *e;
601 
602 		maskcmd = com & map->mask;
603 
604 		LIST_FOREACH(e, &map->mapping, entries) {
605 			for (iomc = e->cmd_ranges; iomc->start != 0 ||
606 			     iomc->maptocmd != 0 || iomc->wrapfunc != NULL ||
607 			     iomc->mapfunc != NULL;
608 			     iomc++) {
609 				if (maskcmd >= iomc->start &&
610 				    maskcmd <= iomc->end)
611 					break;
612 			}
613 
614 			/* Did we find a match? */
615 			if (iomc->start != 0 || iomc->maptocmd != 0 ||
616 			    iomc->wrapfunc != NULL || iomc->mapfunc != NULL)
617 				break;
618 		}
619 
620 		if (iomc == NULL ||
621 		    (iomc->start == 0 && iomc->maptocmd == 0
622 		     && iomc->wrapfunc == NULL && iomc->mapfunc == NULL)) {
623 			kprintf("%s: 'ioctl' fd=%d, cmd=0x%lx ('%c',%d) not implemented\n",
624 			       map->sys, fd, maskcmd,
625 			       (int)((maskcmd >> 8) & 0xff),
626 			       (int)(maskcmd & 0xff));
627 			error = EINVAL;
628 			goto done;
629 		}
630 
631 		/*
632 		 * If it's a non-range one to one mapping, maptocmd should be
633 		 * correct. If it's a ranged one to one mapping, we pass the
634 		 * original value of com, and for a range mapped to a different
635 		 * range, we always need a mapping function to translate the
636 		 * ioctl to our native ioctl. Ex. 6500-65ff <-> 9500-95ff
637 		 */
638 		if (iomc->start == iomc->end && iomc->maptocmd == iomc->maptoend) {
639 			com = iomc->maptocmd;
640 		} else if (iomc->start == iomc->maptocmd && iomc->end == iomc->maptoend) {
641 			if (iomc->mapfunc != NULL)
642 				com = iomc->mapfunc(iomc->start, iomc->end,
643 						    iomc->start, iomc->end,
644 						    com, com);
645 		} else {
646 			if (iomc->mapfunc != NULL) {
647 				com = iomc->mapfunc(iomc->start, iomc->end,
648 						    iomc->maptocmd, iomc->maptoend,
649 						    com, ocom);
650 			} else {
651 				kprintf("%s: Invalid mapping for fd=%d, cmd=%#lx ('%c',%d)\n",
652 				       map->sys, fd, maskcmd,
653 				       (int)((maskcmd >> 8) & 0xff),
654 				       (int)(maskcmd & 0xff));
655 				error = EINVAL;
656 				goto done;
657 			}
658 		}
659 	}
660 
661 	switch (com) {
662 	case FIONCLEX:
663 		error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
664 		goto done;
665 	case FIOCLEX:
666 		error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
667 		goto done;
668 	}
669 
670 	/*
671 	 * Interpret high order word to find amount of data to be
672 	 * copied to/from the user's address space.
673 	 */
674 	size = IOCPARM_LEN(com);
675 	if (size > IOCPARM_MAX) {
676 		error = ENOTTY;
677 		goto done;
678 	}
679 
680 	memp = NULL;
681 	if (size > sizeof (ubuf.stkbuf)) {
682 		memp = kmalloc(size, M_IOCTLOPS, M_WAITOK);
683 		data = memp;
684 	} else {
685 		data = ubuf.stkbuf;
686 	}
687 	if ((com & IOC_IN) != 0) {
688 		if (size != 0) {
689 			error = copyin(uspc_data, data, (size_t)size);
690 			if (error) {
691 				if (memp != NULL)
692 					kfree(memp, M_IOCTLOPS);
693 				goto done;
694 			}
695 		} else {
696 			*(caddr_t *)data = uspc_data;
697 		}
698 	} else if ((com & IOC_OUT) != 0 && size) {
699 		/*
700 		 * Zero the buffer so the user always
701 		 * gets back something deterministic.
702 		 */
703 		bzero(data, (size_t)size);
704 	} else if ((com & IOC_VOID) != 0) {
705 		*(caddr_t *)data = uspc_data;
706 	}
707 
708 	switch (com) {
709 	case FIONBIO:
710 		if ((tmp = *(int *)data))
711 			fp->f_flag |= FNONBLOCK;
712 		else
713 			fp->f_flag &= ~FNONBLOCK;
714 		error = 0;
715 		break;
716 
717 	case FIOASYNC:
718 		if ((tmp = *(int *)data))
719 			fp->f_flag |= FASYNC;
720 		else
721 			fp->f_flag &= ~FASYNC;
722 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred, msg);
723 		break;
724 
725 	default:
726 		/*
727 		 *  If there is a override function,
728 		 *  call it instead of directly routing the call
729 		 */
730 		if (map != NULL && iomc->wrapfunc != NULL)
731 			error = iomc->wrapfunc(fp, com, ocom, data, cred);
732 		else
733 			error = fo_ioctl(fp, com, data, cred, msg);
734 		/*
735 		 * Copy any data to user, size was
736 		 * already set and checked above.
737 		 */
738 		if (error == 0 && (com & IOC_OUT) != 0 && size != 0)
739 			error = copyout(data, uspc_data, (size_t)size);
740 		break;
741 	}
742 	if (memp != NULL)
743 		kfree(memp, M_IOCTLOPS);
744 done:
745 	fdrop(fp);
746 	return(error);
747 }
748 
749 int
750 mapped_ioctl_register_handler(struct ioctl_map_handler *he)
751 {
752 	struct ioctl_map_entry *ne;
753 
754 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL &&
755 		 he->subsys != NULL && *he->subsys != '\0');
756 
757 	ne = kmalloc(sizeof(struct ioctl_map_entry), M_IOCTLMAP, M_WAITOK);
758 
759 	ne->subsys = he->subsys;
760 	ne->cmd_ranges = he->cmd_ranges;
761 
762 	LIST_INSERT_HEAD(&he->map->mapping, ne, entries);
763 
764 	return(0);
765 }
766 
767 int
768 mapped_ioctl_unregister_handler(struct ioctl_map_handler *he)
769 {
770 	struct ioctl_map_entry *ne;
771 
772 	KKASSERT(he != NULL && he->map != NULL && he->cmd_ranges != NULL);
773 
774 	LIST_FOREACH(ne, &he->map->mapping, entries) {
775 		if (ne->cmd_ranges != he->cmd_ranges)
776 			continue;
777 		LIST_REMOVE(ne, entries);
778 		kfree(ne, M_IOCTLMAP);
779 		return(0);
780 	}
781 	return(EINVAL);
782 }
783 
784 static int	nselcoll;	/* Select collisions since boot */
785 int	selwait;
786 SYSCTL_INT(_kern, OID_AUTO, nselcoll, CTLFLAG_RD, &nselcoll, 0, "");
787 static int	nseldebug;
788 SYSCTL_INT(_kern, OID_AUTO, nseldebug, CTLFLAG_RW, &nseldebug, 0, "");
789 
790 /*
791  * Select system call.
792  *
793  * MPSAFE
794  */
795 int
796 sys_select(struct select_args *uap)
797 {
798 	struct timeval ktv;
799 	struct timespec *ktsp, kts;
800 	int error;
801 
802 	/*
803 	 * Get timeout if any.
804 	 */
805 	if (uap->tv != NULL) {
806 		error = copyin(uap->tv, &ktv, sizeof (ktv));
807 		if (error)
808 			return (error);
809 		TIMEVAL_TO_TIMESPEC(&ktv, &kts);
810 		ktsp = &kts;
811 	} else {
812 		ktsp = NULL;
813 	}
814 
815 	/*
816 	 * Do real work.
817 	 */
818 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktsp,
819 			 &uap->sysmsg_result);
820 
821 	return (error);
822 }
823 
824 
825 /*
826  * Pselect system call.
827  *
828  * MPALMOSTSAFE
829  */
830 int
831 sys_pselect(struct pselect_args *uap)
832 {
833 	struct thread *td = curthread;
834 	struct lwp *lp = td->td_lwp;
835 	struct timespec *ktsp, kts;
836 	sigset_t sigmask;
837 	int error;
838 
839 	/*
840 	 * Get timeout if any.
841 	 */
842 	if (uap->ts != NULL) {
843 		error = copyin(uap->ts, &kts, sizeof (kts));
844 		if (error)
845 			return (error);
846 		ktsp = &kts;
847 	} else {
848 		ktsp = NULL;
849 	}
850 
851 	/*
852 	 * Install temporary signal mask if any provided.
853 	 */
854 	if (uap->sigmask != NULL) {
855 		error = copyin(uap->sigmask, &sigmask, sizeof(sigmask));
856 		if (error)
857 			return (error);
858 		get_mplock();
859 		lp->lwp_oldsigmask = lp->lwp_sigmask;
860 		SIG_CANTMASK(sigmask);
861 		lp->lwp_sigmask = sigmask;
862 	} else {
863 		get_mplock();
864 	}
865 
866 	/*
867 	 * Do real job.
868 	 */
869 	error = doselect(uap->nd, uap->in, uap->ou, uap->ex, ktsp,
870 			 &uap->sysmsg_result);
871 
872 	if (uap->sigmask != NULL) {
873 		/* doselect() responsible for turning ERESTART into EINTR */
874 		KKASSERT(error != ERESTART);
875 		if (error == EINTR) {
876 			/*
877 			 * We can't restore the previous signal mask now
878 			 * because it could block the signal that interrupted
879 			 * us.  So make a note to restore it after executing
880 			 * the handler.
881 			 */
882 			lp->lwp_flag |= LWP_OLDMASK;
883 		} else {
884 			/*
885 			 * No handler to run. Restore previous mask immediately.
886 			 */
887 			lp->lwp_sigmask = lp->lwp_oldsigmask;
888 		}
889 	}
890 	rel_mplock();
891 
892 	return (error);
893 }
894 
895 static int
896 select_copyin(void *arg, struct kevent *kevp, int maxevents, int *events)
897 {
898 	struct select_kevent_copyin_args *skap = NULL;
899 	struct kevent *kev;
900 	int fd;
901 	kfd_set *fdp = NULL;
902 	short filter = 0;
903 	u_int fflags = 0;
904 
905 	skap = (struct select_kevent_copyin_args *)arg;
906 
907 	if (*events == maxevents)
908 		return (0);
909 
910 	while (skap->active_set < COPYIN_DONE) {
911 		switch (skap->active_set) {
912 		case COPYIN_READ:
913 			/*
914 			 * Register descriptors for the read filter
915 			 */
916 			fdp = skap->read_set;
917 			filter = EVFILT_READ;
918 			fflags = 0;
919 			if (fdp)
920 				break;
921 			++skap->active_set;
922 			skap->proc_fds = 0;
923 			/* fall through */
924 		case COPYIN_WRITE:
925 			/*
926 			 * Register descriptors for the write filter
927 			 */
928 			fdp = skap->write_set;
929 			filter = EVFILT_WRITE;
930 			fflags = 0;
931 			if (fdp)
932 				break;
933 			++skap->active_set;
934 			skap->proc_fds = 0;
935 			/* fall through */
936 		case COPYIN_EXCEPT:
937 			/*
938 			 * Register descriptors for the exception filter
939 			 */
940 			fdp = skap->except_set;
941 			filter = EVFILT_EXCEPT;
942 			fflags = NOTE_OOB;
943 			if (fdp)
944 				break;
945 			++skap->active_set;
946 			skap->proc_fds = 0;
947 			/* fall through */
948 		case COPYIN_DONE:
949 			/*
950 			 * Nothing left to register
951 			 */
952 			return(0);
953 			/* NOT REACHED */
954 		}
955 
956 		while (skap->proc_fds < skap->num_fds) {
957 			fd = skap->proc_fds;
958 			if (FD_ISSET(fd, fdp)) {
959 				kev = &kevp[*events];
960 				EV_SET(kev, fd, filter,
961 				       EV_ADD|EV_ENABLE,
962 				       fflags, 0,
963 				       (void *)skap->lwp->lwp_kqueue_serial);
964 				FD_CLR(fd, fdp);
965 				++*events;
966 			}
967 			++skap->proc_fds;
968 			if (*events == maxevents)
969 				return (0);
970 		}
971 		skap->active_set++;
972 		skap->proc_fds = 0;
973 	}
974 
975 	return (0);
976 }
977 
978 static int
979 select_copyout(void *arg, struct kevent *kevp, int count, int *res)
980 {
981 	struct select_kevent_copyin_args *skap;
982 	struct kevent kev;
983 	int i = 0;
984 
985 	skap = (struct select_kevent_copyin_args *)arg;
986 
987 	if (kevp[0].flags & EV_ERROR) {
988 		skap->error = kevp[0].data;
989 		return (0);
990 	}
991 
992 	for (i = 0; i < count; ++i) {
993 		if ((u_int)kevp[i].udata != skap->lwp->lwp_kqueue_serial) {
994 			kev = kevp[i];
995 			kev.flags = EV_DISABLE|EV_DELETE;
996 			kqueue_register(&skap->lwp->lwp_kqueue, &kev);
997 			continue;
998 		}
999 
1000 		switch (kevp[i].filter) {
1001 		case EVFILT_READ:
1002 			FD_SET(kevp[i].ident, skap->read_set);
1003 			break;
1004 		case EVFILT_WRITE:
1005 			FD_SET(kevp[i].ident, skap->write_set);
1006 			break;
1007 		case EVFILT_EXCEPT:
1008 			FD_SET(kevp[i].ident, skap->except_set);
1009 			break;
1010 		}
1011 
1012 		++*res;
1013 	}
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Copy select bits in from userland.  Allocate kernel memory if the
1020  * set is large.
1021  */
1022 static int
1023 getbits(int bytes, fd_set *in_set, kfd_set **out_set, kfd_set *tmp_set)
1024 {
1025 	int error;
1026 
1027 	if (in_set) {
1028 		if (bytes < sizeof(*tmp_set))
1029 			*out_set = tmp_set;
1030 		else
1031 			*out_set = kmalloc(bytes, M_SELECT, M_WAITOK);
1032 		error = copyin(in_set, *out_set, bytes);
1033 	} else {
1034 		*out_set = NULL;
1035 		error = 0;
1036 	}
1037 	return (error);
1038 }
1039 
1040 /*
1041  * Copy returned select bits back out to userland.
1042  */
1043 static int
1044 putbits(int bytes, kfd_set *in_set, fd_set *out_set)
1045 {
1046 	int error;
1047 
1048 	if (in_set) {
1049 		error = copyout(in_set, out_set, bytes);
1050 	} else {
1051 		error = 0;
1052 	}
1053 	return (error);
1054 }
1055 
1056 /*
1057  * Common code for sys_select() and sys_pselect().
1058  *
1059  * in, out and ex are userland pointers.  ts must point to validated
1060  * kernel-side timeout value or NULL for infinite timeout.  res must
1061  * point to syscall return value.
1062  */
1063 static int
1064 doselect(int nd, fd_set *read, fd_set *write, fd_set *except,
1065 	 struct timespec *ts, int *res)
1066 {
1067 	struct proc *p = curproc;
1068 	struct select_kevent_copyin_args *kap, ka;
1069 	int bytes, error;
1070 	kfd_set read_tmp;
1071 	kfd_set write_tmp;
1072 	kfd_set except_tmp;
1073 
1074 	*res = 0;
1075 	if (nd < 0)
1076 		return (EINVAL);
1077 	if (nd > p->p_fd->fd_nfiles)		/* limit kmalloc */
1078 		nd = p->p_fd->fd_nfiles;
1079 
1080 	kap = &ka;
1081 	kap->lwp = curthread->td_lwp;
1082 	kap->num_fds = nd;
1083 	kap->proc_fds = 0;
1084 	kap->error = 0;
1085 	kap->active_set = COPYIN_READ;
1086 
1087 	/*
1088 	 * Calculate bytes based on the number of __fd_mask[] array entries
1089 	 * multiplied by the size of __fd_mask.
1090 	 */
1091 	bytes = howmany(nd, __NFDBITS) * sizeof(__fd_mask);
1092 
1093 	error = getbits(bytes, read, &kap->read_set, &read_tmp);
1094 	if (error == 0)
1095 		error = getbits(bytes, write, &kap->write_set, &write_tmp);
1096 	if (error == 0)
1097 		error = getbits(bytes, except, &kap->except_set, &except_tmp);
1098 	if (error)
1099 		goto done;
1100 
1101 	/*
1102 	 * NOTE: Make sure the max events passed to kern_kevent() is
1103 	 *	 effectively unlimited.  (nd * 3) accomplishes this.
1104 	 *
1105 	 *	 (*res) continues to increment as returned events are
1106 	 *	 loaded in.
1107 	 */
1108 	error = kern_kevent(&kap->lwp->lwp_kqueue, 0x7FFFFFFF, res, kap,
1109 			    select_copyin, select_copyout, ts);
1110 	if (error == 0)
1111 		error = putbits(bytes, kap->read_set, read);
1112 	if (error == 0)
1113 		error = putbits(bytes, kap->write_set, write);
1114 	if (error == 0)
1115 		error = putbits(bytes, kap->except_set, except);
1116 
1117 	/*
1118 	 * Cumulative error from individual events (EBADFD?)
1119 	 */
1120 	if (kap->error)
1121 		error = kap->error;
1122 
1123 	/*
1124 	 * Clean up.
1125 	 */
1126 done:
1127 	if (kap->read_set && kap->read_set != &read_tmp)
1128 		kfree(kap->read_set, M_SELECT);
1129 	if (kap->write_set && kap->write_set != &write_tmp)
1130 		kfree(kap->write_set, M_SELECT);
1131 	if (kap->except_set && kap->except_set != &except_tmp)
1132 		kfree(kap->except_set, M_SELECT);
1133 
1134 	kap->lwp->lwp_kqueue_serial++;
1135 
1136 	return (error);
1137 }
1138 
1139 /*
1140  * Poll system call.
1141  *
1142  * MPSAFE
1143  */
1144 int
1145 sys_poll(struct poll_args *uap)
1146 {
1147 	struct timespec ts, *tsp;
1148 	int error;
1149 
1150 	if (uap->timeout != INFTIM) {
1151 		ts.tv_sec = uap->timeout / 1000;
1152 		ts.tv_nsec = (uap->timeout % 1000) * 1000 * 1000;
1153 		tsp = &ts;
1154 	} else {
1155 		tsp = NULL;
1156 	}
1157 
1158 	error = dopoll(uap->nfds, uap->fds, tsp, &uap->sysmsg_result);
1159 
1160 	return (error);
1161 }
1162 
1163 static int
1164 poll_copyin(void *arg, struct kevent *kevp, int maxevents, int *events)
1165 {
1166 	struct poll_kevent_copyin_args *pkap;
1167 	struct pollfd *pfd;
1168 	struct kevent *kev;
1169 	int kev_count;
1170 
1171 	pkap = (struct poll_kevent_copyin_args *)arg;
1172 
1173 	while (pkap->pfds < pkap->nfds) {
1174 		pfd = &pkap->fds[pkap->pfds];
1175 
1176 		/* Clear return events */
1177 		pfd->revents = 0;
1178 
1179 		/* Do not check if fd is equal to -1 */
1180 		if (pfd->fd == -1) {
1181 			++pkap->pfds;
1182 			continue;
1183 		}
1184 
1185 		kev_count = 0;
1186 		if (pfd->events & (POLLIN | POLLRDNORM))
1187 			kev_count++;
1188 		if (pfd->events & (POLLOUT | POLLWRNORM))
1189 			kev_count++;
1190 		if (pfd->events & (POLLPRI | POLLRDBAND))
1191 			kev_count++;
1192 
1193 		if (*events + kev_count > maxevents)
1194 			return (0);
1195 
1196 		/*
1197 		 * NOTE: A combined serial number and poll array index is
1198 		 * stored in kev->udata.
1199 		 */
1200 		kev = &kevp[*events];
1201 		if (pfd->events & (POLLIN | POLLRDNORM)) {
1202 			EV_SET(kev++, pfd->fd, EVFILT_READ, EV_ADD|EV_ENABLE,
1203 			       0, 0, (void *)(pkap->lwp->lwp_kqueue_serial +
1204 					      pkap->pfds));
1205 		}
1206 		if (pfd->events & (POLLOUT | POLLWRNORM)) {
1207 			EV_SET(kev++, pfd->fd, EVFILT_WRITE, EV_ADD|EV_ENABLE,
1208 			       0, 0, (void *)(pkap->lwp->lwp_kqueue_serial +
1209 					      pkap->pfds));
1210 		}
1211 		if (pfd->events & (POLLPRI | POLLRDBAND)) {
1212 			EV_SET(kev++, pfd->fd, EVFILT_EXCEPT, EV_ADD|EV_ENABLE,
1213 			       NOTE_OOB, 0,
1214 			       (void *)(pkap->lwp->lwp_kqueue_serial +
1215 					pkap->pfds));
1216 		}
1217 
1218 		if (nseldebug) {
1219 			kprintf("poll index %d fd %d events %08x\n",
1220 				pkap->pfds, pfd->fd, pfd->events);
1221 		}
1222 
1223 		++pkap->pfds;
1224 		(*events) += kev_count;
1225 	}
1226 
1227 	return (0);
1228 }
1229 
1230 static int
1231 poll_copyout(void *arg, struct kevent *kevp, int count, int *res)
1232 {
1233 	struct poll_kevent_copyin_args *pkap;
1234 	struct pollfd *pfd;
1235 	struct kevent kev;
1236 	int i;
1237 	u_int pi;
1238 
1239 	pkap = (struct poll_kevent_copyin_args *)arg;
1240 
1241 	for (i = 0; i < count; ++i) {
1242 		/*
1243 		 * Extract the poll array index and delete spurious events.
1244 		 * We can easily tell if the serial number is incorrect
1245 		 * by checking whether the extracted index is out of range.
1246 		 */
1247 		pi = (u_int)kevp[i].udata - (u_int)pkap->lwp->lwp_kqueue_serial;
1248 
1249 		if (pi >= pkap->nfds) {
1250 			kev = kevp[i];
1251 			kev.flags = EV_DISABLE|EV_DELETE;
1252 			kqueue_register(&pkap->lwp->lwp_kqueue, &kev);
1253 			if (nseldebug)
1254 				kprintf("poll index %d out of range\n", pi);
1255 			continue;
1256 		}
1257 		pfd = &pkap->fds[pi];
1258 		if (kevp[i].ident == pfd->fd) {
1259 			if (kevp[i].flags & EV_ERROR) {
1260 				switch(kevp[i].data) {
1261 				case EOPNOTSUPP:
1262 					/*
1263 					 * Operation not supported.  Poll
1264 					 * does not return an error for
1265 					 * POLLPRI (OOB/urgent data) when
1266 					 * it is not supported by the device.
1267 					 */
1268 					if (kevp[i].filter != EVFILT_EXCEPT) {
1269 						pfd->revents |= POLLERR;
1270 						++*res;
1271 					}
1272 					break;
1273 				case EBADF:
1274 					/* Bad file descriptor */
1275 					pfd->revents |= POLLNVAL;
1276 					++*res;
1277 					break;
1278 				default:
1279 					pfd->revents |= POLLERR;
1280 					++*res;
1281 					break;
1282 				}
1283 				if (nseldebug)
1284 					kprintf("poll index %d fd %d filter %d error %d\n",
1285 						pi, pfd->fd,
1286 						kevp[i].filter, kevp[i].data);
1287 				continue;
1288 			}
1289 
1290 			if (kevp[i].flags & EV_EOF) {
1291 				pfd->revents |= POLLHUP;
1292 				++*res;
1293 				continue;
1294 			}
1295 
1296 			switch (kevp[i].filter) {
1297 			case EVFILT_READ:
1298 				pfd->revents |= (POLLIN | POLLRDNORM);
1299 				break;
1300 			case EVFILT_WRITE:
1301 				pfd->revents |= (POLLOUT | POLLWRNORM);
1302 				break;
1303 			case EVFILT_EXCEPT:
1304 				pfd->revents |= (POLLPRI | POLLRDBAND);
1305 				break;
1306 			}
1307 
1308 			if (nseldebug) {
1309 				kprintf("poll index %d fd %d revents %08x\n",
1310 					pi, pfd->fd, pfd->revents);
1311 			}
1312 
1313 			++*res;
1314 			continue;
1315 		} else {
1316 			if (nseldebug)
1317 				kprintf("poll index %d mismatch %d/%d\n",
1318 					pi, kevp[i].ident, pfd->fd);
1319 		}
1320 	}
1321 
1322 	return (0);
1323 }
1324 
1325 static int
1326 dopoll(int nfds, struct pollfd *fds, struct timespec *ts, int *res)
1327 {
1328 	struct poll_kevent_copyin_args ka;
1329 	struct pollfd sfds[64];
1330 	int bytes;
1331 	int error;
1332 
1333         *res = 0;
1334         if (nfds < 0)
1335                 return (EINVAL);
1336 
1337 	/*
1338 	 * This is a bit arbitrary but we need to limit internal kmallocs.
1339 	 */
1340         if (nfds > maxfilesperproc * 2)
1341                 nfds = maxfilesperproc * 2;
1342 	bytes = sizeof(struct pollfd) * nfds;
1343 
1344 	ka.lwp = curthread->td_lwp;
1345 	ka.nfds = nfds;
1346 	ka.pfds = 0;
1347 	ka.error = 0;
1348 
1349 	if (ka.nfds < 64)
1350 		ka.fds = sfds;
1351 	else
1352 		ka.fds = kmalloc(bytes, M_SELECT, M_WAITOK);
1353 
1354 	error = copyin(fds, ka.fds, bytes);
1355 	if (error == 0)
1356 		error = kern_kevent(&ka.lwp->lwp_kqueue, ka.nfds, res, &ka,
1357 				    poll_copyin, poll_copyout, ts);
1358 
1359 	if (error == 0)
1360 		error = copyout(ka.fds, fds, bytes);
1361 
1362 	if (ka.fds != sfds)
1363 		kfree(ka.fds, M_SELECT);
1364 
1365 	ka.lwp->lwp_kqueue_serial += nfds;
1366 
1367 	return (error);
1368 }
1369 
1370 static int
1371 socket_wait_copyin(void *arg, struct kevent *kevp, int maxevents, int *events)
1372 {
1373 	return (0);
1374 }
1375 
1376 static int
1377 socket_wait_copyout(void *arg, struct kevent *kevp, int count, int *res)
1378 {
1379 	++*res;
1380 	return (0);
1381 }
1382 
1383 extern	struct fileops socketops;
1384 int
1385 socket_wait(struct socket *so, struct timespec *ts, int *res)
1386 {
1387 	struct thread *td = curthread;
1388 	struct file *fp;
1389 	struct kqueue kq;
1390 	struct kevent kev;
1391 	int error, fd;
1392 
1393 	if ((error = falloc(td->td_lwp, &fp, &fd)) != 0)
1394 		return (error);
1395 
1396 	fp->f_type = DTYPE_SOCKET;
1397 	fp->f_flag = FREAD | FWRITE;
1398 	fp->f_ops = &socketops;
1399 	fp->f_data = so;
1400 	fsetfd(td->td_lwp->lwp_proc->p_fd, fp, fd);
1401 
1402 	kqueue_init(&kq, td->td_lwp->lwp_proc->p_fd);
1403 	EV_SET(&kev, fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, NULL);
1404 	if ((error = kqueue_register(&kq, &kev)) != 0) {
1405 		fdrop(fp);
1406 		return (error);
1407 	}
1408 
1409 	error = kern_kevent(&kq, 1, res, NULL, socket_wait_copyin,
1410 			    socket_wait_copyout, ts);
1411 
1412 	EV_SET(&kev, fd, EVFILT_READ, EV_DELETE, 0, 0, NULL);
1413 	kqueue_register(&kq, &kev);
1414 	fp->f_ops = &badfileops;
1415 	fdrop(fp);
1416 
1417 	return (error);
1418 }
1419 
1420 /*
1421  * OpenBSD poll system call.
1422  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1423  *
1424  * MPSAFE
1425  */
1426 int
1427 sys_openbsd_poll(struct openbsd_poll_args *uap)
1428 {
1429 	return (sys_poll((struct poll_args *)uap));
1430 }
1431 
1432 /*ARGSUSED*/
1433 int
1434 seltrue(cdev_t dev, int events)
1435 {
1436 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1437 }
1438 
1439 /*
1440  * Do a wakeup when a selectable event occurs.
1441  */
1442 void
1443 selwakeup(struct selinfo *sip)
1444 {
1445 	struct proc *p;
1446 	struct lwp *lp = NULL;
1447 
1448 	if (sip->si_pid == 0)
1449 		return;
1450 	if (sip->si_flags & SI_COLL) {
1451 		nselcoll++;
1452 		sip->si_flags &= ~SI_COLL;
1453 		wakeup((caddr_t)&selwait);	/* YYY fixable */
1454 	}
1455 	p = pfind(sip->si_pid);
1456 	sip->si_pid = 0;
1457 	if (p == NULL)
1458 		return;
1459 	lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, sip->si_tid);
1460 	if (lp == NULL)
1461 		return;
1462 
1463 	/*
1464 	 * This is a temporary hack until the code can be rewritten.
1465 	 * Check LWP_SELECT before assuming we can setrunnable().
1466 	 * Otherwise we might catch the lwp before it actually goes to
1467 	 * sleep.
1468 	 */
1469 	crit_enter();
1470 	if (lp->lwp_flag & LWP_SELECT) {
1471 		lp->lwp_flag &= ~LWP_SELECT;
1472 	} else if (lp->lwp_wchan == (caddr_t)&selwait) {
1473 		/*
1474 		 * Flag the process to break the tsleep when
1475 		 * setrunnable is called, but only call setrunnable
1476 		 * here if the process is not in a stopped state.
1477 		 */
1478 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1479 		if (p->p_stat != SSTOP)
1480 			setrunnable(lp);
1481 	}
1482 	crit_exit();
1483 
1484 	kqueue_wakeup(&lp->lwp_kqueue);
1485 }
1486 
1487