1 /* 2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * and Alex Hornung <ahornung@gmail.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * ---------------------------------------------------------------------------- 36 * "THE BEER-WARE LICENSE" (Revision 42): 37 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 38 * can do whatever you want with this stuff. If we meet some day, and you think 39 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 40 * ---------------------------------------------------------------------------- 41 * 42 * Copyright (c) 1982, 1986, 1988, 1993 43 * The Regents of the University of California. All rights reserved. 44 * (c) UNIX System Laboratories, Inc. 45 * All or some portions of this file are derived from material licensed 46 * to the University of California by American Telephone and Telegraph 47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 48 * the permission of UNIX System Laboratories, Inc. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. All advertising materials mentioning features or use of this software 59 * must display the following acknowledgement: 60 * This product includes software developed by the University of 61 * California, Berkeley and its contributors. 62 * 4. Neither the name of the University nor the names of its contributors 63 * may be used to endorse or promote products derived from this software 64 * without specific prior written permission. 65 * 66 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 69 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 76 * SUCH DAMAGE. 77 * 78 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94 79 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $ 80 * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $ 81 * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $ 82 */ 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/sysctl.h> 89 #include <sys/buf.h> 90 #include <sys/conf.h> 91 #include <sys/disklabel.h> 92 #include <sys/disklabel32.h> 93 #include <sys/disklabel64.h> 94 #include <sys/diskslice.h> 95 #include <sys/diskmbr.h> 96 #include <sys/disk.h> 97 #include <sys/kerneldump.h> 98 #include <sys/malloc.h> 99 #include <sys/sysctl.h> 100 #include <machine/md_var.h> 101 #include <sys/ctype.h> 102 #include <sys/syslog.h> 103 #include <sys/device.h> 104 #include <sys/msgport.h> 105 #include <sys/devfs.h> 106 #include <sys/thread.h> 107 #include <sys/dsched.h> 108 #include <sys/queue.h> 109 #include <sys/lock.h> 110 #include <sys/udev.h> 111 #include <sys/uuid.h> 112 113 #include <sys/buf2.h> 114 #include <sys/mplock2.h> 115 #include <sys/msgport2.h> 116 #include <sys/thread2.h> 117 118 static MALLOC_DEFINE(M_DISK, "disk", "disk data"); 119 static int disk_debug_enable = 0; 120 121 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t); 122 static void disk_msg_core(void *); 123 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe); 124 static void disk_probe(struct disk *dp, int reprobe); 125 static void _setdiskinfo(struct disk *disk, struct disk_info *info); 126 static void bioqwritereorder(struct bio_queue_head *bioq); 127 static void disk_cleanserial(char *serno); 128 static int disk_debug(int, char *, ...) __printflike(2, 3); 129 130 static d_open_t diskopen; 131 static d_close_t diskclose; 132 static d_ioctl_t diskioctl; 133 static d_strategy_t diskstrategy; 134 static d_psize_t diskpsize; 135 static d_clone_t diskclone; 136 static d_dump_t diskdump; 137 138 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist); 139 static struct lwkt_token disklist_token; 140 141 static struct dev_ops disk_ops = { 142 { "disk", 0, D_DISK | D_MPSAFE }, 143 .d_open = diskopen, 144 .d_close = diskclose, 145 .d_read = physread, 146 .d_write = physwrite, 147 .d_ioctl = diskioctl, 148 .d_strategy = diskstrategy, 149 .d_dump = diskdump, 150 .d_psize = diskpsize, 151 .d_clone = diskclone 152 }; 153 154 static struct objcache *disk_msg_cache; 155 156 struct objcache_malloc_args disk_msg_malloc_args = { 157 sizeof(struct disk_msg), M_DISK }; 158 159 static struct lwkt_port disk_dispose_port; 160 static struct lwkt_port disk_msg_port; 161 162 static int 163 disk_debug(int level, char *fmt, ...) 164 { 165 __va_list ap; 166 167 __va_start(ap, fmt); 168 if (level <= disk_debug_enable) 169 kvprintf(fmt, ap); 170 __va_end(ap); 171 172 return 0; 173 } 174 175 static int 176 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe) 177 { 178 struct disk_info *info = &dp->d_info; 179 struct diskslice *sp = &dp->d_slice->dss_slices[slice]; 180 disklabel_ops_t ops; 181 struct partinfo part; 182 const char *msg; 183 char uuid_buf[128]; 184 cdev_t ndev; 185 int sno; 186 u_int i; 187 188 disk_debug(2, 189 "disk_probe_slice (begin): %s (%s)\n", 190 dev->si_name, dp->d_cdev->si_name); 191 192 sno = slice ? slice - 1 : 0; 193 194 ops = &disklabel32_ops; 195 msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info); 196 if (msg && !strcmp(msg, "no disk label")) { 197 ops = &disklabel64_ops; 198 msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info); 199 } 200 if (msg == NULL) { 201 if (slice != WHOLE_DISK_SLICE) 202 ops->op_adjust_label_reserved(dp->d_slice, slice, sp); 203 else 204 sp->ds_reserved = 0; 205 206 sp->ds_ops = ops; 207 for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) { 208 ops->op_loadpartinfo(sp->ds_label, i, &part); 209 if (part.fstype) { 210 if (reprobe && 211 (ndev = devfs_find_device_by_name("%s%c", 212 dev->si_name, 'a' + i)) 213 ) { 214 /* 215 * Device already exists and 216 * is still valid. 217 */ 218 ndev->si_flags |= SI_REPROBE_TEST; 219 220 /* 221 * Destroy old UUID alias 222 */ 223 destroy_dev_alias(ndev, "part-by-uuid/*"); 224 225 /* Create UUID alias */ 226 if (!kuuid_is_nil(&part.storage_uuid)) { 227 snprintf_uuid(uuid_buf, 228 sizeof(uuid_buf), 229 &part.storage_uuid); 230 make_dev_alias(ndev, 231 "part-by-uuid/%s", 232 uuid_buf); 233 } 234 } else { 235 ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops, 236 dkmakeminor(dkunit(dp->d_cdev), 237 slice, i), 238 UID_ROOT, GID_OPERATOR, 0640, 239 "%s%c", dev->si_name, 'a'+ i); 240 ndev->si_disk = dp; 241 udev_dict_set_cstr(ndev, "subsystem", "disk"); 242 /* Inherit parent's disk type */ 243 if (dp->d_disktype) { 244 udev_dict_set_cstr(ndev, "disk-type", 245 __DECONST(char *, dp->d_disktype)); 246 } 247 248 /* Create serno alias */ 249 if (dp->d_info.d_serialno) { 250 make_dev_alias(ndev, 251 "serno/%s.s%d%c", 252 dp->d_info.d_serialno, 253 sno, 'a' + i); 254 } 255 256 /* Create UUID alias */ 257 if (!kuuid_is_nil(&part.storage_uuid)) { 258 snprintf_uuid(uuid_buf, 259 sizeof(uuid_buf), 260 &part.storage_uuid); 261 make_dev_alias(ndev, 262 "part-by-uuid/%s", 263 uuid_buf); 264 } 265 ndev->si_flags |= SI_REPROBE_TEST; 266 } 267 } 268 } 269 } else if (info->d_dsflags & DSO_COMPATLABEL) { 270 msg = NULL; 271 if (sp->ds_size >= 0x100000000ULL) 272 ops = &disklabel64_ops; 273 else 274 ops = &disklabel32_ops; 275 sp->ds_label = ops->op_clone_label(info, sp); 276 } else { 277 if (sp->ds_type == DOSPTYP_386BSD || /* XXX */ 278 sp->ds_type == DOSPTYP_NETBSD || 279 sp->ds_type == DOSPTYP_OPENBSD) { 280 log(LOG_WARNING, "%s: cannot find label (%s)\n", 281 dev->si_name, msg); 282 } 283 } 284 285 if (msg == NULL) { 286 sp->ds_wlabel = FALSE; 287 } 288 289 return (msg ? EINVAL : 0); 290 } 291 292 /* 293 * This routine is only called for newly minted drives or to reprobe 294 * a drive with no open slices. disk_probe_slice() is called directly 295 * when reprobing partition changes within slices. 296 */ 297 static void 298 disk_probe(struct disk *dp, int reprobe) 299 { 300 struct disk_info *info = &dp->d_info; 301 cdev_t dev = dp->d_cdev; 302 cdev_t ndev; 303 int error, i, sno; 304 struct diskslices *osp; 305 struct diskslice *sp; 306 char uuid_buf[128]; 307 308 KKASSERT (info->d_media_blksize != 0); 309 310 osp = dp->d_slice; 311 dp->d_slice = dsmakeslicestruct(BASE_SLICE, info); 312 disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name); 313 314 error = mbrinit(dev, info, &(dp->d_slice)); 315 if (error) { 316 dsgone(&osp); 317 return; 318 } 319 320 for (i = 0; i < dp->d_slice->dss_nslices; i++) { 321 /* 322 * Ignore the whole-disk slice, it has already been created. 323 */ 324 if (i == WHOLE_DISK_SLICE) 325 continue; 326 327 #if 1 328 /* 329 * Ignore the compatibility slice s0 if it's a device mapper 330 * volume. 331 */ 332 if ((i == COMPATIBILITY_SLICE) && 333 (info->d_dsflags & DSO_DEVICEMAPPER)) 334 continue; 335 #endif 336 337 sp = &dp->d_slice->dss_slices[i]; 338 339 /* 340 * Handle s0. s0 is a compatibility slice if there are no 341 * other slices and it has not otherwise been set up, else 342 * we ignore it. 343 */ 344 if (i == COMPATIBILITY_SLICE) { 345 sno = 0; 346 if (sp->ds_type == 0 && 347 dp->d_slice->dss_nslices == BASE_SLICE) { 348 sp->ds_size = info->d_media_blocks; 349 sp->ds_reserved = 0; 350 } 351 } else { 352 sno = i - 1; 353 sp->ds_reserved = 0; 354 } 355 356 /* 357 * Ignore 0-length slices 358 */ 359 if (sp->ds_size == 0) 360 continue; 361 362 if (reprobe && 363 (ndev = devfs_find_device_by_name("%ss%d", 364 dev->si_name, sno))) { 365 /* 366 * Device already exists and is still valid 367 */ 368 ndev->si_flags |= SI_REPROBE_TEST; 369 370 /* 371 * Destroy old UUID alias 372 */ 373 destroy_dev_alias(ndev, "slice-by-uuid/*"); 374 375 /* Create UUID alias */ 376 if (!kuuid_is_nil(&sp->ds_stor_uuid)) { 377 snprintf_uuid(uuid_buf, sizeof(uuid_buf), 378 &sp->ds_stor_uuid); 379 make_dev_alias(ndev, "slice-by-uuid/%s", 380 uuid_buf); 381 } 382 } else { 383 /* 384 * Else create new device 385 */ 386 ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops, 387 dkmakewholeslice(dkunit(dev), i), 388 UID_ROOT, GID_OPERATOR, 0640, 389 (info->d_dsflags & DSO_DEVICEMAPPER)? 390 "%s.s%d" : "%ss%d", dev->si_name, sno); 391 udev_dict_set_cstr(ndev, "subsystem", "disk"); 392 /* Inherit parent's disk type */ 393 if (dp->d_disktype) { 394 udev_dict_set_cstr(ndev, "disk-type", 395 __DECONST(char *, dp->d_disktype)); 396 } 397 398 /* Create serno alias */ 399 if (dp->d_info.d_serialno) { 400 make_dev_alias(ndev, "serno/%s.s%d", 401 dp->d_info.d_serialno, sno); 402 } 403 404 /* Create UUID alias */ 405 if (!kuuid_is_nil(&sp->ds_stor_uuid)) { 406 snprintf_uuid(uuid_buf, sizeof(uuid_buf), 407 &sp->ds_stor_uuid); 408 make_dev_alias(ndev, "slice-by-uuid/%s", 409 uuid_buf); 410 } 411 412 ndev->si_disk = dp; 413 ndev->si_flags |= SI_REPROBE_TEST; 414 } 415 sp->ds_dev = ndev; 416 417 /* 418 * Probe appropriate slices for a disklabel 419 * 420 * XXX slice type 1 used by our gpt probe code. 421 * XXX slice type 0 used by mbr compat slice. 422 */ 423 if (sp->ds_type == DOSPTYP_386BSD || 424 sp->ds_type == DOSPTYP_NETBSD || 425 sp->ds_type == DOSPTYP_OPENBSD || 426 sp->ds_type == 0 || 427 sp->ds_type == 1) { 428 if (dp->d_slice->dss_first_bsd_slice == 0) 429 dp->d_slice->dss_first_bsd_slice = i; 430 disk_probe_slice(dp, ndev, i, reprobe); 431 } 432 } 433 dsgone(&osp); 434 disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name); 435 } 436 437 438 static void 439 disk_msg_core(void *arg) 440 { 441 struct disk *dp; 442 struct diskslice *sp; 443 disk_msg_t msg; 444 int run; 445 446 lwkt_gettoken(&disklist_token); 447 lwkt_initport_thread(&disk_msg_port, curthread); 448 wakeup(curthread); /* synchronous startup */ 449 lwkt_reltoken(&disklist_token); 450 451 get_mplock(); /* not mpsafe yet? */ 452 run = 1; 453 454 while (run) { 455 msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0); 456 457 switch (msg->hdr.u.ms_result) { 458 case DISK_DISK_PROBE: 459 dp = (struct disk *)msg->load; 460 disk_debug(1, 461 "DISK_DISK_PROBE: %s\n", 462 dp->d_cdev->si_name); 463 disk_probe(dp, 0); 464 break; 465 case DISK_DISK_DESTROY: 466 dp = (struct disk *)msg->load; 467 disk_debug(1, 468 "DISK_DISK_DESTROY: %s\n", 469 dp->d_cdev->si_name); 470 devfs_destroy_subnames(dp->d_cdev->si_name); 471 devfs_destroy_dev(dp->d_cdev); 472 lwkt_gettoken(&disklist_token); 473 LIST_REMOVE(dp, d_list); 474 lwkt_reltoken(&disklist_token); 475 if (dp->d_info.d_serialno) { 476 kfree(dp->d_info.d_serialno, M_TEMP); 477 dp->d_info.d_serialno = NULL; 478 } 479 break; 480 case DISK_UNPROBE: 481 dp = (struct disk *)msg->load; 482 disk_debug(1, 483 "DISK_DISK_UNPROBE: %s\n", 484 dp->d_cdev->si_name); 485 devfs_destroy_subnames(dp->d_cdev->si_name); 486 break; 487 case DISK_SLICE_REPROBE: 488 dp = (struct disk *)msg->load; 489 sp = (struct diskslice *)msg->load2; 490 devfs_clr_subnames_flag(sp->ds_dev->si_name, 491 SI_REPROBE_TEST); 492 disk_debug(1, 493 "DISK_SLICE_REPROBE: %s\n", 494 sp->ds_dev->si_name); 495 disk_probe_slice(dp, sp->ds_dev, 496 dkslice(sp->ds_dev), 1); 497 devfs_destroy_subnames_without_flag( 498 sp->ds_dev->si_name, SI_REPROBE_TEST); 499 break; 500 case DISK_DISK_REPROBE: 501 dp = (struct disk *)msg->load; 502 devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST); 503 disk_debug(1, 504 "DISK_DISK_REPROBE: %s\n", 505 dp->d_cdev->si_name); 506 disk_probe(dp, 1); 507 devfs_destroy_subnames_without_flag( 508 dp->d_cdev->si_name, SI_REPROBE_TEST); 509 break; 510 case DISK_SYNC: 511 disk_debug(1, "DISK_SYNC\n"); 512 break; 513 default: 514 devfs_debug(DEVFS_DEBUG_WARNING, 515 "disk_msg_core: unknown message " 516 "received at core\n"); 517 break; 518 } 519 lwkt_replymsg(&msg->hdr, 0); 520 } 521 lwkt_exit(); 522 } 523 524 525 /* 526 * Acts as a message drain. Any message that is replied to here gets 527 * destroyed and the memory freed. 528 */ 529 static void 530 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg) 531 { 532 objcache_put(disk_msg_cache, msg); 533 } 534 535 536 void 537 disk_msg_send(uint32_t cmd, void *load, void *load2) 538 { 539 disk_msg_t disk_msg; 540 lwkt_port_t port = &disk_msg_port; 541 542 disk_msg = objcache_get(disk_msg_cache, M_WAITOK); 543 544 lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0); 545 546 disk_msg->hdr.u.ms_result = cmd; 547 disk_msg->load = load; 548 disk_msg->load2 = load2; 549 KKASSERT(port); 550 lwkt_sendmsg(port, &disk_msg->hdr); 551 } 552 553 void 554 disk_msg_send_sync(uint32_t cmd, void *load, void *load2) 555 { 556 struct lwkt_port rep_port; 557 disk_msg_t disk_msg; 558 lwkt_port_t port; 559 560 disk_msg = objcache_get(disk_msg_cache, M_WAITOK); 561 port = &disk_msg_port; 562 563 /* XXX could probably use curthread's built-in msgport */ 564 lwkt_initport_thread(&rep_port, curthread); 565 lwkt_initmsg(&disk_msg->hdr, &rep_port, 0); 566 567 disk_msg->hdr.u.ms_result = cmd; 568 disk_msg->load = load; 569 disk_msg->load2 = load2; 570 571 lwkt_sendmsg(port, &disk_msg->hdr); 572 lwkt_waitmsg(&disk_msg->hdr, 0); 573 objcache_put(disk_msg_cache, disk_msg); 574 } 575 576 /* 577 * Create a raw device for the dev_ops template (which is returned). Also 578 * create a slice and unit managed disk and overload the user visible 579 * device space with it. 580 * 581 * NOTE: The returned raw device is NOT a slice and unit managed device. 582 * It is an actual raw device representing the raw disk as specified by 583 * the passed dev_ops. The disk layer not only returns such a raw device, 584 * it also uses it internally when passing (modified) commands through. 585 */ 586 cdev_t 587 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops) 588 { 589 return disk_create_named(NULL, unit, dp, raw_ops); 590 } 591 592 cdev_t 593 disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops) 594 { 595 cdev_t rawdev; 596 597 disk_debug(1, "disk_create (begin): %s%d\n", name, unit); 598 599 if (name) { 600 rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit), 601 UID_ROOT, GID_OPERATOR, 0640, "%s", name); 602 } else { 603 rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit), 604 UID_ROOT, GID_OPERATOR, 0640, 605 "%s%d", raw_ops->head.name, unit); 606 } 607 608 bzero(dp, sizeof(*dp)); 609 610 dp->d_rawdev = rawdev; 611 dp->d_raw_ops = raw_ops; 612 dp->d_dev_ops = &disk_ops; 613 614 if (name) { 615 dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops, 616 dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640, 617 "%s", name); 618 } else { 619 dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops, 620 dkmakewholedisk(unit), 621 UID_ROOT, GID_OPERATOR, 0640, 622 "%s%d", raw_ops->head.name, unit); 623 } 624 625 udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk"); 626 dp->d_cdev->si_disk = dp; 627 628 if (name) 629 dsched_disk_create_callback(dp, name, unit); 630 else 631 dsched_disk_create_callback(dp, raw_ops->head.name, unit); 632 633 lwkt_gettoken(&disklist_token); 634 LIST_INSERT_HEAD(&disklist, dp, d_list); 635 lwkt_reltoken(&disklist_token); 636 637 disk_debug(1, "disk_create (end): %s%d\n", 638 (name != NULL)?(name):(raw_ops->head.name), unit); 639 640 return (dp->d_rawdev); 641 } 642 643 int 644 disk_setdisktype(struct disk *disk, const char *type) 645 { 646 KKASSERT(disk != NULL); 647 648 disk->d_disktype = type; 649 return udev_dict_set_cstr(disk->d_cdev, "disk-type", __DECONST(char *, type)); 650 } 651 652 static void 653 _setdiskinfo(struct disk *disk, struct disk_info *info) 654 { 655 char *oldserialno; 656 657 oldserialno = disk->d_info.d_serialno; 658 bcopy(info, &disk->d_info, sizeof(disk->d_info)); 659 info = &disk->d_info; 660 661 disk_debug(1, 662 "_setdiskinfo: %s\n", 663 disk->d_cdev->si_name); 664 665 /* 666 * The serial number is duplicated so the caller can throw 667 * their copy away. 668 */ 669 if (info->d_serialno && info->d_serialno[0]) { 670 info->d_serialno = kstrdup(info->d_serialno, M_TEMP); 671 disk_cleanserial(info->d_serialno); 672 if (disk->d_cdev) { 673 make_dev_alias(disk->d_cdev, "serno/%s", 674 info->d_serialno); 675 } 676 } else { 677 info->d_serialno = NULL; 678 } 679 if (oldserialno) 680 kfree(oldserialno, M_TEMP); 681 682 dsched_disk_update_callback(disk, info); 683 684 /* 685 * The caller may set d_media_size or d_media_blocks and we 686 * calculate the other. 687 */ 688 KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0); 689 if (info->d_media_size == 0 && info->d_media_blocks) { 690 info->d_media_size = (u_int64_t)info->d_media_blocks * 691 info->d_media_blksize; 692 } else if (info->d_media_size && info->d_media_blocks == 0 && 693 info->d_media_blksize) { 694 info->d_media_blocks = info->d_media_size / 695 info->d_media_blksize; 696 } 697 698 /* 699 * The si_* fields for rawdev are not set until after the 700 * disk_create() call, so someone using the cooked version 701 * of the raw device (i.e. da0s0) will not get the right 702 * si_iosize_max unless we fix it up here. 703 */ 704 if (disk->d_cdev && disk->d_rawdev && 705 disk->d_cdev->si_iosize_max == 0) { 706 disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max; 707 disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys; 708 disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best; 709 } 710 711 /* Add the serial number to the udev_dictionary */ 712 if (info->d_serialno) 713 udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno); 714 } 715 716 /* 717 * Disk drivers must call this routine when media parameters are available 718 * or have changed. 719 */ 720 void 721 disk_setdiskinfo(struct disk *disk, struct disk_info *info) 722 { 723 _setdiskinfo(disk, info); 724 disk_msg_send(DISK_DISK_PROBE, disk, NULL); 725 disk_debug(1, 726 "disk_setdiskinfo: sent probe for %s\n", 727 disk->d_cdev->si_name); 728 } 729 730 void 731 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info) 732 { 733 _setdiskinfo(disk, info); 734 disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL); 735 disk_debug(1, 736 "disk_setdiskinfo_sync: sent probe for %s\n", 737 disk->d_cdev->si_name); 738 } 739 740 /* 741 * This routine is called when an adapter detaches. The higher level 742 * managed disk device is destroyed while the lower level raw device is 743 * released. 744 */ 745 void 746 disk_destroy(struct disk *disk) 747 { 748 dsched_disk_destroy_callback(disk); 749 disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL); 750 return; 751 } 752 753 int 754 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize) 755 { 756 struct partinfo pinfo; 757 int error; 758 759 bzero(&pinfo, sizeof(pinfo)); 760 error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0, 761 proc0.p_ucred, NULL); 762 if (error) 763 return (error); 764 765 if (pinfo.media_blksize == 0) 766 return (ENXIO); 767 768 if (blkno) /* XXX: make sure this reserved stuff is right */ 769 *blkno = pinfo.reserved_blocks + 770 pinfo.media_offset / pinfo.media_blksize; 771 if (secsize) 772 *secsize = pinfo.media_blksize; 773 if (size) 774 *size = (pinfo.media_blocks - pinfo.reserved_blocks); 775 776 return (0); 777 } 778 779 int 780 disk_dumpconf(cdev_t dev, u_int onoff) 781 { 782 struct dumperinfo di; 783 u_int64_t size, blkno; 784 u_int32_t secsize; 785 int error; 786 787 if (!onoff) 788 return set_dumper(NULL); 789 790 error = disk_dumpcheck(dev, &size, &blkno, &secsize); 791 792 if (error) 793 return ENXIO; 794 795 bzero(&di, sizeof(struct dumperinfo)); 796 di.dumper = diskdump; 797 di.priv = dev; 798 di.blocksize = secsize; 799 di.mediaoffset = blkno * DEV_BSIZE; 800 di.mediasize = size * DEV_BSIZE; 801 802 return set_dumper(&di); 803 } 804 805 void 806 disk_unprobe(struct disk *disk) 807 { 808 if (disk == NULL) 809 return; 810 811 disk_msg_send_sync(DISK_UNPROBE, disk, NULL); 812 } 813 814 void 815 disk_invalidate (struct disk *disk) 816 { 817 dsgone(&disk->d_slice); 818 } 819 820 struct disk * 821 disk_enumerate(struct disk *disk) 822 { 823 struct disk *dp; 824 825 lwkt_gettoken(&disklist_token); 826 if (!disk) 827 dp = (LIST_FIRST(&disklist)); 828 else 829 dp = (LIST_NEXT(disk, d_list)); 830 lwkt_reltoken(&disklist_token); 831 832 return dp; 833 } 834 835 static 836 int 837 sysctl_disks(SYSCTL_HANDLER_ARGS) 838 { 839 struct disk *disk; 840 int error, first; 841 842 disk = NULL; 843 first = 1; 844 845 while ((disk = disk_enumerate(disk))) { 846 if (!first) { 847 error = SYSCTL_OUT(req, " ", 1); 848 if (error) 849 return error; 850 } else { 851 first = 0; 852 } 853 error = SYSCTL_OUT(req, disk->d_rawdev->si_name, 854 strlen(disk->d_rawdev->si_name)); 855 if (error) 856 return error; 857 } 858 error = SYSCTL_OUT(req, "", 1); 859 return error; 860 } 861 862 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 863 sysctl_disks, "A", "names of available disks"); 864 865 /* 866 * Open a disk device or partition. 867 */ 868 static 869 int 870 diskopen(struct dev_open_args *ap) 871 { 872 cdev_t dev = ap->a_head.a_dev; 873 struct disk *dp; 874 int error; 875 876 /* 877 * dp can't be NULL here XXX. 878 * 879 * d_slice will be NULL if setdiskinfo() has not been called yet. 880 * setdiskinfo() is typically called whether the disk is present 881 * or not (e.g. CD), but the base disk device is created first 882 * and there may be a race. 883 */ 884 dp = dev->si_disk; 885 if (dp == NULL || dp->d_slice == NULL) 886 return (ENXIO); 887 error = 0; 888 889 /* 890 * Deal with open races 891 */ 892 get_mplock(); 893 while (dp->d_flags & DISKFLAG_LOCK) { 894 dp->d_flags |= DISKFLAG_WANTED; 895 error = tsleep(dp, PCATCH, "diskopen", hz); 896 if (error) { 897 rel_mplock(); 898 return (error); 899 } 900 } 901 dp->d_flags |= DISKFLAG_LOCK; 902 903 /* 904 * Open the underlying raw device. 905 */ 906 if (!dsisopen(dp->d_slice)) { 907 #if 0 908 if (!pdev->si_iosize_max) 909 pdev->si_iosize_max = dev->si_iosize_max; 910 #endif 911 error = dev_dopen(dp->d_rawdev, ap->a_oflags, 912 ap->a_devtype, ap->a_cred); 913 } 914 #if 0 915 /* 916 * Inherit properties from the underlying device now that it is 917 * open. 918 */ 919 dev_dclone(dev); 920 #endif 921 922 if (error) 923 goto out; 924 error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags, 925 &dp->d_slice, &dp->d_info); 926 if (!dsisopen(dp->d_slice)) { 927 dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype); 928 } 929 out: 930 dp->d_flags &= ~DISKFLAG_LOCK; 931 if (dp->d_flags & DISKFLAG_WANTED) { 932 dp->d_flags &= ~DISKFLAG_WANTED; 933 wakeup(dp); 934 } 935 rel_mplock(); 936 937 return(error); 938 } 939 940 /* 941 * Close a disk device or partition 942 */ 943 static 944 int 945 diskclose(struct dev_close_args *ap) 946 { 947 cdev_t dev = ap->a_head.a_dev; 948 struct disk *dp; 949 int error; 950 951 error = 0; 952 dp = dev->si_disk; 953 954 get_mplock(); 955 dsclose(dev, ap->a_devtype, dp->d_slice); 956 if (!dsisopen(dp->d_slice)) { 957 error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype); 958 } 959 rel_mplock(); 960 return (error); 961 } 962 963 /* 964 * First execute the ioctl on the disk device, and if it isn't supported 965 * try running it on the backing device. 966 */ 967 static 968 int 969 diskioctl(struct dev_ioctl_args *ap) 970 { 971 cdev_t dev = ap->a_head.a_dev; 972 struct disk *dp; 973 int error; 974 u_int u; 975 976 dp = dev->si_disk; 977 if (dp == NULL) 978 return (ENXIO); 979 980 devfs_debug(DEVFS_DEBUG_DEBUG, 981 "diskioctl: cmd is: %lx (name: %s)\n", 982 ap->a_cmd, dev->si_name); 983 devfs_debug(DEVFS_DEBUG_DEBUG, 984 "diskioctl: &dp->d_slice is: %p, %p\n", 985 &dp->d_slice, dp->d_slice); 986 987 if (ap->a_cmd == DIOCGKERNELDUMP) { 988 u = *(u_int *)ap->a_data; 989 return disk_dumpconf(dev, u); 990 } 991 992 if (&dp->d_slice == NULL || dp->d_slice == NULL || 993 ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) && 994 dkslice(dev) == WHOLE_DISK_SLICE)) { 995 error = ENOIOCTL; 996 } else { 997 get_mplock(); 998 error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag, 999 &dp->d_slice, &dp->d_info); 1000 rel_mplock(); 1001 } 1002 1003 if (error == ENOIOCTL) { 1004 error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data, 1005 ap->a_fflag, ap->a_cred, NULL); 1006 } 1007 return (error); 1008 } 1009 1010 /* 1011 * Execute strategy routine 1012 */ 1013 static 1014 int 1015 diskstrategy(struct dev_strategy_args *ap) 1016 { 1017 cdev_t dev = ap->a_head.a_dev; 1018 struct bio *bio = ap->a_bio; 1019 struct bio *nbio; 1020 struct disk *dp; 1021 1022 dp = dev->si_disk; 1023 1024 if (dp == NULL) { 1025 bio->bio_buf->b_error = ENXIO; 1026 bio->bio_buf->b_flags |= B_ERROR; 1027 biodone(bio); 1028 return(0); 1029 } 1030 KKASSERT(dev->si_disk == dp); 1031 1032 /* 1033 * The dscheck() function will also transform the slice relative 1034 * block number i.e. bio->bio_offset into a block number that can be 1035 * passed directly to the underlying raw device. If dscheck() 1036 * returns NULL it will have handled the bio for us (e.g. EOF 1037 * or error due to being beyond the device size). 1038 */ 1039 if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) { 1040 dsched_queue(dp, nbio); 1041 } else { 1042 biodone(bio); 1043 } 1044 return(0); 1045 } 1046 1047 /* 1048 * Return the partition size in ?blocks? 1049 */ 1050 static 1051 int 1052 diskpsize(struct dev_psize_args *ap) 1053 { 1054 cdev_t dev = ap->a_head.a_dev; 1055 struct disk *dp; 1056 1057 dp = dev->si_disk; 1058 if (dp == NULL) 1059 return(ENODEV); 1060 1061 ap->a_result = dssize(dev, &dp->d_slice); 1062 1063 if ((ap->a_result == -1) && 1064 (dp->d_info.d_dsflags & DSO_DEVICEMAPPER)) { 1065 ap->a_head.a_dev = dp->d_rawdev; 1066 return dev_doperate(&ap->a_head); 1067 } 1068 return(0); 1069 } 1070 1071 /* 1072 * When new device entries are instantiated, make sure they inherit our 1073 * si_disk structure and block and iosize limits from the raw device. 1074 * 1075 * This routine is always called synchronously in the context of the 1076 * client. 1077 * 1078 * XXX The various io and block size constraints are not always initialized 1079 * properly by devices. 1080 */ 1081 static 1082 int 1083 diskclone(struct dev_clone_args *ap) 1084 { 1085 cdev_t dev = ap->a_head.a_dev; 1086 struct disk *dp; 1087 dp = dev->si_disk; 1088 1089 KKASSERT(dp != NULL); 1090 dev->si_disk = dp; 1091 dev->si_iosize_max = dp->d_rawdev->si_iosize_max; 1092 dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys; 1093 dev->si_bsize_best = dp->d_rawdev->si_bsize_best; 1094 return(0); 1095 } 1096 1097 int 1098 diskdump(struct dev_dump_args *ap) 1099 { 1100 cdev_t dev = ap->a_head.a_dev; 1101 struct disk *dp = dev->si_disk; 1102 u_int64_t size, offset; 1103 int error; 1104 1105 error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize); 1106 /* XXX: this should probably go in disk_dumpcheck somehow */ 1107 if (ap->a_length != 0) { 1108 size *= DEV_BSIZE; 1109 offset = ap->a_blkno * DEV_BSIZE; 1110 if ((ap->a_offset < offset) || 1111 (ap->a_offset + ap->a_length - offset > size)) { 1112 kprintf("Attempt to write outside dump device boundaries.\n"); 1113 error = ENOSPC; 1114 } 1115 } 1116 1117 if (error == 0) { 1118 ap->a_head.a_dev = dp->d_rawdev; 1119 error = dev_doperate(&ap->a_head); 1120 } 1121 1122 return(error); 1123 } 1124 1125 1126 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD, 1127 0, sizeof(struct diskslices), "sizeof(struct diskslices)"); 1128 1129 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD, 1130 0, sizeof(struct disk), "sizeof(struct disk)"); 1131 1132 /* 1133 * Reorder interval for burst write allowance and minor write 1134 * allowance. 1135 * 1136 * We always want to trickle some writes in to make use of the 1137 * disk's zone cache. Bursting occurs on a longer interval and only 1138 * runningbufspace is well over the hirunningspace limit. 1139 */ 1140 int bioq_reorder_burst_interval = 60; /* should be multiple of minor */ 1141 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval, 1142 CTLFLAG_RW, &bioq_reorder_burst_interval, 0, ""); 1143 int bioq_reorder_minor_interval = 5; 1144 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval, 1145 CTLFLAG_RW, &bioq_reorder_minor_interval, 0, ""); 1146 1147 int bioq_reorder_burst_bytes = 3000000; 1148 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes, 1149 CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, ""); 1150 int bioq_reorder_minor_bytes = 262144; 1151 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes, 1152 CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, ""); 1153 1154 1155 /* 1156 * Order I/Os. Generally speaking this code is designed to make better 1157 * use of drive zone caches. A drive zone cache can typically track linear 1158 * reads or writes for around 16 zones simultaniously. 1159 * 1160 * Read prioritization issues: It is possible for hundreds of megabytes worth 1161 * of writes to be queued asynchronously. This creates a huge bottleneck 1162 * for reads which reduce read bandwidth to a trickle. 1163 * 1164 * To solve this problem we generally reorder reads before writes. 1165 * 1166 * However, a large number of random reads can also starve writes and 1167 * make poor use of the drive zone cache so we allow writes to trickle 1168 * in every N reads. 1169 */ 1170 void 1171 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio) 1172 { 1173 /* 1174 * The BIO wants to be ordered. Adding to the tail also 1175 * causes transition to be set to NULL, forcing the ordering 1176 * of all prior I/O's. 1177 */ 1178 if (bio->bio_buf->b_flags & B_ORDERED) { 1179 bioq_insert_tail(bioq, bio); 1180 return; 1181 } 1182 1183 switch(bio->bio_buf->b_cmd) { 1184 case BUF_CMD_READ: 1185 if (bioq->transition) { 1186 /* 1187 * Insert before the first write. Bleedover writes 1188 * based on reorder intervals to prevent starvation. 1189 */ 1190 TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act); 1191 ++bioq->reorder; 1192 if (bioq->reorder % bioq_reorder_minor_interval == 0) { 1193 bioqwritereorder(bioq); 1194 if (bioq->reorder >= 1195 bioq_reorder_burst_interval) { 1196 bioq->reorder = 0; 1197 } 1198 } 1199 } else { 1200 /* 1201 * No writes queued (or ordering was forced), 1202 * insert at tail. 1203 */ 1204 TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act); 1205 } 1206 break; 1207 case BUF_CMD_WRITE: 1208 /* 1209 * Writes are always appended. If no writes were previously 1210 * queued or an ordered tail insertion occured the transition 1211 * field will be NULL. 1212 */ 1213 TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act); 1214 if (bioq->transition == NULL) 1215 bioq->transition = bio; 1216 break; 1217 default: 1218 /* 1219 * All other request types are forced to be ordered. 1220 */ 1221 bioq_insert_tail(bioq, bio); 1222 break; 1223 } 1224 } 1225 1226 /* 1227 * Move the read-write transition point to prevent reads from 1228 * completely starving our writes. This brings a number of writes into 1229 * the fold every N reads. 1230 * 1231 * We bring a few linear writes into the fold on a minor interval 1232 * and we bring a non-linear burst of writes into the fold on a major 1233 * interval. Bursting only occurs if runningbufspace is really high 1234 * (typically from syncs, fsyncs, or HAMMER flushes). 1235 */ 1236 static 1237 void 1238 bioqwritereorder(struct bio_queue_head *bioq) 1239 { 1240 struct bio *bio; 1241 off_t next_offset; 1242 size_t left; 1243 size_t n; 1244 int check_off; 1245 1246 if (bioq->reorder < bioq_reorder_burst_interval || 1247 !buf_runningbufspace_severe()) { 1248 left = (size_t)bioq_reorder_minor_bytes; 1249 check_off = 1; 1250 } else { 1251 left = (size_t)bioq_reorder_burst_bytes; 1252 check_off = 0; 1253 } 1254 1255 next_offset = bioq->transition->bio_offset; 1256 while ((bio = bioq->transition) != NULL && 1257 (check_off == 0 || next_offset == bio->bio_offset) 1258 ) { 1259 n = bio->bio_buf->b_bcount; 1260 next_offset = bio->bio_offset + n; 1261 bioq->transition = TAILQ_NEXT(bio, bio_act); 1262 if (left < n) 1263 break; 1264 left -= n; 1265 } 1266 } 1267 1268 /* 1269 * Bounds checking against the media size, used for the raw partition. 1270 * secsize, mediasize and b_blkno must all be the same units. 1271 * Possibly this has to be DEV_BSIZE (512). 1272 */ 1273 int 1274 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize) 1275 { 1276 struct buf *bp = bio->bio_buf; 1277 int64_t sz; 1278 1279 sz = howmany(bp->b_bcount, secsize); 1280 1281 if (bio->bio_offset/DEV_BSIZE + sz > mediasize) { 1282 sz = mediasize - bio->bio_offset/DEV_BSIZE; 1283 if (sz == 0) { 1284 /* If exactly at end of disk, return EOF. */ 1285 bp->b_resid = bp->b_bcount; 1286 return 0; 1287 } 1288 if (sz < 0) { 1289 /* If past end of disk, return EINVAL. */ 1290 bp->b_error = EINVAL; 1291 return 0; 1292 } 1293 /* Otherwise, truncate request. */ 1294 bp->b_bcount = sz * secsize; 1295 } 1296 1297 return 1; 1298 } 1299 1300 /* 1301 * Disk error is the preface to plaintive error messages 1302 * about failing disk transfers. It prints messages of the form 1303 1304 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d) 1305 1306 * if the offset of the error in the transfer and a disk label 1307 * are both available. blkdone should be -1 if the position of the error 1308 * is unknown; the disklabel pointer may be null from drivers that have not 1309 * been converted to use them. The message is printed with kprintf 1310 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority. 1311 * The message should be completed (with at least a newline) with kprintf 1312 * or log(-1, ...), respectively. There is no trailing space. 1313 */ 1314 void 1315 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt) 1316 { 1317 struct buf *bp = bio->bio_buf; 1318 const char *term; 1319 1320 switch(bp->b_cmd) { 1321 case BUF_CMD_READ: 1322 term = "read"; 1323 break; 1324 case BUF_CMD_WRITE: 1325 term = "write"; 1326 break; 1327 default: 1328 term = "access"; 1329 break; 1330 } 1331 kprintf("%s: %s %sing ", dev->si_name, what, term); 1332 kprintf("offset %012llx for %d", 1333 (long long)bio->bio_offset, 1334 bp->b_bcount); 1335 1336 if (donecnt) 1337 kprintf(" (%d bytes completed)", donecnt); 1338 } 1339 1340 /* 1341 * Locate a disk device 1342 */ 1343 cdev_t 1344 disk_locate(const char *devname) 1345 { 1346 return devfs_find_device_by_name(devname); 1347 } 1348 1349 void 1350 disk_config(void *arg) 1351 { 1352 disk_msg_send_sync(DISK_SYNC, NULL, NULL); 1353 } 1354 1355 static void 1356 disk_init(void) 1357 { 1358 struct thread* td_core; 1359 1360 disk_msg_cache = objcache_create("disk-msg-cache", 0, 0, 1361 NULL, NULL, NULL, 1362 objcache_malloc_alloc, 1363 objcache_malloc_free, 1364 &disk_msg_malloc_args); 1365 1366 lwkt_token_init(&disklist_token, 1, "disks"); 1367 1368 /* 1369 * Initialize the reply-only port which acts as a message drain 1370 */ 1371 lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply); 1372 1373 lwkt_gettoken(&disklist_token); 1374 lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL, 1375 0, 0, "disk_msg_core"); 1376 tsleep(td_core, 0, "diskcore", 0); 1377 lwkt_reltoken(&disklist_token); 1378 } 1379 1380 static void 1381 disk_uninit(void) 1382 { 1383 objcache_destroy(disk_msg_cache); 1384 } 1385 1386 /* 1387 * Clean out illegal characters in serial numbers. 1388 */ 1389 static void 1390 disk_cleanserial(char *serno) 1391 { 1392 char c; 1393 1394 while ((c = *serno) != 0) { 1395 if (c >= 'a' && c <= 'z') 1396 ; 1397 else if (c >= 'A' && c <= 'Z') 1398 ; 1399 else if (c >= '0' && c <= '9') 1400 ; 1401 else if (c == '-' || c == '@' || c == '+' || c == '.') 1402 ; 1403 else 1404 c = '_'; 1405 *serno++= c; 1406 } 1407 } 1408 1409 TUNABLE_INT("kern.disk_debug", &disk_debug_enable); 1410 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable, 1411 0, "Enable subr_disk debugging"); 1412 1413 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL); 1414 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL); 1415