xref: /dflybsd-src/sys/kern/subr_disk.c (revision db894c98da8703b9cab83c18e43cd852ab7ee3b7)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. All advertising materials mentioning features or use of this software
59  *    must display the following acknowledgement:
60  *	This product includes software developed by the University of
61  *	California, Berkeley and its contributors.
62  * 4. Neither the name of the University nor the names of its contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  *
78  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
79  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
80  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
81  * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
82  */
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/sysctl.h>
89 #include <sys/buf.h>
90 #include <sys/conf.h>
91 #include <sys/disklabel.h>
92 #include <sys/disklabel32.h>
93 #include <sys/disklabel64.h>
94 #include <sys/diskslice.h>
95 #include <sys/diskmbr.h>
96 #include <sys/disk.h>
97 #include <sys/kerneldump.h>
98 #include <sys/malloc.h>
99 #include <sys/sysctl.h>
100 #include <machine/md_var.h>
101 #include <sys/ctype.h>
102 #include <sys/syslog.h>
103 #include <sys/device.h>
104 #include <sys/msgport.h>
105 #include <sys/devfs.h>
106 #include <sys/thread.h>
107 #include <sys/dsched.h>
108 #include <sys/queue.h>
109 #include <sys/lock.h>
110 #include <sys/udev.h>
111 #include <sys/uuid.h>
112 
113 #include <sys/buf2.h>
114 #include <sys/mplock2.h>
115 #include <sys/msgport2.h>
116 #include <sys/thread2.h>
117 
118 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
119 static int disk_debug_enable = 0;
120 
121 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
122 static void disk_msg_core(void *);
123 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
124 static void disk_probe(struct disk *dp, int reprobe);
125 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
126 static void bioqwritereorder(struct bio_queue_head *bioq);
127 static void disk_cleanserial(char *serno);
128 static int disk_debug(int, char *, ...) __printflike(2, 3);
129 
130 static d_open_t diskopen;
131 static d_close_t diskclose;
132 static d_ioctl_t diskioctl;
133 static d_strategy_t diskstrategy;
134 static d_psize_t diskpsize;
135 static d_clone_t diskclone;
136 static d_dump_t diskdump;
137 
138 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
139 static struct lwkt_token disklist_token;
140 
141 static struct dev_ops disk_ops = {
142 	{ "disk", 0, D_DISK | D_MPSAFE },
143 	.d_open = diskopen,
144 	.d_close = diskclose,
145 	.d_read = physread,
146 	.d_write = physwrite,
147 	.d_ioctl = diskioctl,
148 	.d_strategy = diskstrategy,
149 	.d_dump = diskdump,
150 	.d_psize = diskpsize,
151 	.d_clone = diskclone
152 };
153 
154 static struct objcache 	*disk_msg_cache;
155 
156 struct objcache_malloc_args disk_msg_malloc_args = {
157 	sizeof(struct disk_msg), M_DISK };
158 
159 static struct lwkt_port disk_dispose_port;
160 static struct lwkt_port disk_msg_port;
161 
162 static int
163 disk_debug(int level, char *fmt, ...)
164 {
165 	__va_list ap;
166 
167 	__va_start(ap, fmt);
168 	if (level <= disk_debug_enable)
169 		kvprintf(fmt, ap);
170 	__va_end(ap);
171 
172 	return 0;
173 }
174 
175 static int
176 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
177 {
178 	struct disk_info *info = &dp->d_info;
179 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
180 	disklabel_ops_t ops;
181 	struct partinfo part;
182 	const char *msg;
183 	char uuid_buf[128];
184 	cdev_t ndev;
185 	int sno;
186 	u_int i;
187 
188 	disk_debug(2,
189 		    "disk_probe_slice (begin): %s (%s)\n",
190 			dev->si_name, dp->d_cdev->si_name);
191 
192 	sno = slice ? slice - 1 : 0;
193 
194 	ops = &disklabel32_ops;
195 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
196 	if (msg && !strcmp(msg, "no disk label")) {
197 		ops = &disklabel64_ops;
198 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
199 	}
200 	if (msg == NULL) {
201 		if (slice != WHOLE_DISK_SLICE)
202 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
203 		else
204 			sp->ds_reserved = 0;
205 
206 		sp->ds_ops = ops;
207 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
208 			ops->op_loadpartinfo(sp->ds_label, i, &part);
209 			if (part.fstype) {
210 				if (reprobe &&
211 				    (ndev = devfs_find_device_by_name("%s%c",
212 						dev->si_name, 'a' + i))
213 				) {
214 					/*
215 					 * Device already exists and
216 					 * is still valid.
217 					 */
218 					ndev->si_flags |= SI_REPROBE_TEST;
219 
220 					/*
221 					 * Destroy old UUID alias
222 					 */
223 					destroy_dev_alias(ndev, "part-by-uuid/*");
224 
225 					/* Create UUID alias */
226 					if (!kuuid_is_nil(&part.storage_uuid)) {
227 						snprintf_uuid(uuid_buf,
228 						    sizeof(uuid_buf),
229 						    &part.storage_uuid);
230 						make_dev_alias(ndev,
231 						    "part-by-uuid/%s",
232 						    uuid_buf);
233 					}
234 				} else {
235 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
236 						dkmakeminor(dkunit(dp->d_cdev),
237 							    slice, i),
238 						UID_ROOT, GID_OPERATOR, 0640,
239 						"%s%c", dev->si_name, 'a'+ i);
240 					ndev->si_disk = dp;
241 					udev_dict_set_cstr(ndev, "subsystem", "disk");
242 					/* Inherit parent's disk type */
243 					if (dp->d_disktype) {
244 						udev_dict_set_cstr(ndev, "disk-type",
245 						    __DECONST(char *, dp->d_disktype));
246 					}
247 
248 					/* Create serno alias */
249 					if (dp->d_info.d_serialno) {
250 						make_dev_alias(ndev,
251 						    "serno/%s.s%d%c",
252 						    dp->d_info.d_serialno,
253 						    sno, 'a' + i);
254 					}
255 
256 					/* Create UUID alias */
257 					if (!kuuid_is_nil(&part.storage_uuid)) {
258 						snprintf_uuid(uuid_buf,
259 						    sizeof(uuid_buf),
260 						    &part.storage_uuid);
261 						make_dev_alias(ndev,
262 						    "part-by-uuid/%s",
263 						    uuid_buf);
264 					}
265 					ndev->si_flags |= SI_REPROBE_TEST;
266 				}
267 			}
268 		}
269 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
270 		msg = NULL;
271 		if (sp->ds_size >= 0x100000000ULL)
272 			ops = &disklabel64_ops;
273 		else
274 			ops = &disklabel32_ops;
275 		sp->ds_label = ops->op_clone_label(info, sp);
276 	} else {
277 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
278 		    sp->ds_type == DOSPTYP_NETBSD ||
279 		    sp->ds_type == DOSPTYP_OPENBSD) {
280 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
281 			    dev->si_name, msg);
282 		}
283 	}
284 
285 	if (msg == NULL) {
286 		sp->ds_wlabel = FALSE;
287 	}
288 
289 	return (msg ? EINVAL : 0);
290 }
291 
292 /*
293  * This routine is only called for newly minted drives or to reprobe
294  * a drive with no open slices.  disk_probe_slice() is called directly
295  * when reprobing partition changes within slices.
296  */
297 static void
298 disk_probe(struct disk *dp, int reprobe)
299 {
300 	struct disk_info *info = &dp->d_info;
301 	cdev_t dev = dp->d_cdev;
302 	cdev_t ndev;
303 	int error, i, sno;
304 	struct diskslices *osp;
305 	struct diskslice *sp;
306 	char uuid_buf[128];
307 
308 	KKASSERT (info->d_media_blksize != 0);
309 
310 	osp = dp->d_slice;
311 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
312 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
313 
314 	error = mbrinit(dev, info, &(dp->d_slice));
315 	if (error) {
316 		dsgone(&osp);
317 		return;
318 	}
319 
320 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
321 		/*
322 		 * Ignore the whole-disk slice, it has already been created.
323 		 */
324 		if (i == WHOLE_DISK_SLICE)
325 			continue;
326 
327 #if 1
328 		/*
329 		 * Ignore the compatibility slice s0 if it's a device mapper
330 		 * volume.
331 		 */
332 		if ((i == COMPATIBILITY_SLICE) &&
333 		    (info->d_dsflags & DSO_DEVICEMAPPER))
334 			continue;
335 #endif
336 
337 		sp = &dp->d_slice->dss_slices[i];
338 
339 		/*
340 		 * Handle s0.  s0 is a compatibility slice if there are no
341 		 * other slices and it has not otherwise been set up, else
342 		 * we ignore it.
343 		 */
344 		if (i == COMPATIBILITY_SLICE) {
345 			sno = 0;
346 			if (sp->ds_type == 0 &&
347 			    dp->d_slice->dss_nslices == BASE_SLICE) {
348 				sp->ds_size = info->d_media_blocks;
349 				sp->ds_reserved = 0;
350 			}
351 		} else {
352 			sno = i - 1;
353 			sp->ds_reserved = 0;
354 		}
355 
356 		/*
357 		 * Ignore 0-length slices
358 		 */
359 		if (sp->ds_size == 0)
360 			continue;
361 
362 		if (reprobe &&
363 		    (ndev = devfs_find_device_by_name("%ss%d",
364 						      dev->si_name, sno))) {
365 			/*
366 			 * Device already exists and is still valid
367 			 */
368 			ndev->si_flags |= SI_REPROBE_TEST;
369 
370 			/*
371 			 * Destroy old UUID alias
372 			 */
373 			destroy_dev_alias(ndev, "slice-by-uuid/*");
374 
375 			/* Create UUID alias */
376 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
377 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
378 				    &sp->ds_stor_uuid);
379 				make_dev_alias(ndev, "slice-by-uuid/%s",
380 				    uuid_buf);
381 			}
382 		} else {
383 			/*
384 			 * Else create new device
385 			 */
386 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
387 					dkmakewholeslice(dkunit(dev), i),
388 					UID_ROOT, GID_OPERATOR, 0640,
389 					(info->d_dsflags & DSO_DEVICEMAPPER)?
390 					"%s.s%d" : "%ss%d", dev->si_name, sno);
391 			udev_dict_set_cstr(ndev, "subsystem", "disk");
392 			/* Inherit parent's disk type */
393 			if (dp->d_disktype) {
394 				udev_dict_set_cstr(ndev, "disk-type",
395 				    __DECONST(char *, dp->d_disktype));
396 			}
397 
398 			/* Create serno alias */
399 			if (dp->d_info.d_serialno) {
400 				make_dev_alias(ndev, "serno/%s.s%d",
401 					       dp->d_info.d_serialno, sno);
402 			}
403 
404 			/* Create UUID alias */
405 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
406 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
407 				    &sp->ds_stor_uuid);
408 				make_dev_alias(ndev, "slice-by-uuid/%s",
409 				    uuid_buf);
410 			}
411 
412 			ndev->si_disk = dp;
413 			ndev->si_flags |= SI_REPROBE_TEST;
414 		}
415 		sp->ds_dev = ndev;
416 
417 		/*
418 		 * Probe appropriate slices for a disklabel
419 		 *
420 		 * XXX slice type 1 used by our gpt probe code.
421 		 * XXX slice type 0 used by mbr compat slice.
422 		 */
423 		if (sp->ds_type == DOSPTYP_386BSD ||
424 		    sp->ds_type == DOSPTYP_NETBSD ||
425 		    sp->ds_type == DOSPTYP_OPENBSD ||
426 		    sp->ds_type == 0 ||
427 		    sp->ds_type == 1) {
428 			if (dp->d_slice->dss_first_bsd_slice == 0)
429 				dp->d_slice->dss_first_bsd_slice = i;
430 			disk_probe_slice(dp, ndev, i, reprobe);
431 		}
432 	}
433 	dsgone(&osp);
434 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
435 }
436 
437 
438 static void
439 disk_msg_core(void *arg)
440 {
441 	struct disk	*dp;
442 	struct diskslice *sp;
443 	disk_msg_t msg;
444 	int run;
445 
446 	lwkt_gettoken(&disklist_token);
447 	lwkt_initport_thread(&disk_msg_port, curthread);
448 	wakeup(curthread);	/* synchronous startup */
449 	lwkt_reltoken(&disklist_token);
450 
451 	get_mplock();	/* not mpsafe yet? */
452 	run = 1;
453 
454 	while (run) {
455 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
456 
457 		switch (msg->hdr.u.ms_result) {
458 		case DISK_DISK_PROBE:
459 			dp = (struct disk *)msg->load;
460 			disk_debug(1,
461 				    "DISK_DISK_PROBE: %s\n",
462 					dp->d_cdev->si_name);
463 			disk_probe(dp, 0);
464 			break;
465 		case DISK_DISK_DESTROY:
466 			dp = (struct disk *)msg->load;
467 			disk_debug(1,
468 				    "DISK_DISK_DESTROY: %s\n",
469 					dp->d_cdev->si_name);
470 			devfs_destroy_subnames(dp->d_cdev->si_name);
471 			devfs_destroy_dev(dp->d_cdev);
472 			lwkt_gettoken(&disklist_token);
473 			LIST_REMOVE(dp, d_list);
474 			lwkt_reltoken(&disklist_token);
475 			if (dp->d_info.d_serialno) {
476 				kfree(dp->d_info.d_serialno, M_TEMP);
477 				dp->d_info.d_serialno = NULL;
478 			}
479 			break;
480 		case DISK_UNPROBE:
481 			dp = (struct disk *)msg->load;
482 			disk_debug(1,
483 				    "DISK_DISK_UNPROBE: %s\n",
484 					dp->d_cdev->si_name);
485 			devfs_destroy_subnames(dp->d_cdev->si_name);
486 			break;
487 		case DISK_SLICE_REPROBE:
488 			dp = (struct disk *)msg->load;
489 			sp = (struct diskslice *)msg->load2;
490 			devfs_clr_subnames_flag(sp->ds_dev->si_name,
491 						SI_REPROBE_TEST);
492 			disk_debug(1,
493 				    "DISK_SLICE_REPROBE: %s\n",
494 				    sp->ds_dev->si_name);
495 			disk_probe_slice(dp, sp->ds_dev,
496 					 dkslice(sp->ds_dev), 1);
497 			devfs_destroy_subnames_without_flag(
498 					sp->ds_dev->si_name, SI_REPROBE_TEST);
499 			break;
500 		case DISK_DISK_REPROBE:
501 			dp = (struct disk *)msg->load;
502 			devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST);
503 			disk_debug(1,
504 				    "DISK_DISK_REPROBE: %s\n",
505 				    dp->d_cdev->si_name);
506 			disk_probe(dp, 1);
507 			devfs_destroy_subnames_without_flag(
508 					dp->d_cdev->si_name, SI_REPROBE_TEST);
509 			break;
510 		case DISK_SYNC:
511 			disk_debug(1, "DISK_SYNC\n");
512 			break;
513 		default:
514 			devfs_debug(DEVFS_DEBUG_WARNING,
515 				    "disk_msg_core: unknown message "
516 				    "received at core\n");
517 			break;
518 		}
519 		lwkt_replymsg(&msg->hdr, 0);
520 	}
521 	lwkt_exit();
522 }
523 
524 
525 /*
526  * Acts as a message drain. Any message that is replied to here gets
527  * destroyed and the memory freed.
528  */
529 static void
530 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
531 {
532 	objcache_put(disk_msg_cache, msg);
533 }
534 
535 
536 void
537 disk_msg_send(uint32_t cmd, void *load, void *load2)
538 {
539 	disk_msg_t disk_msg;
540 	lwkt_port_t port = &disk_msg_port;
541 
542 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
543 
544 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
545 
546 	disk_msg->hdr.u.ms_result = cmd;
547 	disk_msg->load = load;
548 	disk_msg->load2 = load2;
549 	KKASSERT(port);
550 	lwkt_sendmsg(port, &disk_msg->hdr);
551 }
552 
553 void
554 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
555 {
556 	struct lwkt_port rep_port;
557 	disk_msg_t disk_msg;
558 	lwkt_port_t port;
559 
560 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
561 	port = &disk_msg_port;
562 
563 	/* XXX could probably use curthread's built-in msgport */
564 	lwkt_initport_thread(&rep_port, curthread);
565 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
566 
567 	disk_msg->hdr.u.ms_result = cmd;
568 	disk_msg->load = load;
569 	disk_msg->load2 = load2;
570 
571 	lwkt_sendmsg(port, &disk_msg->hdr);
572 	lwkt_waitmsg(&disk_msg->hdr, 0);
573 	objcache_put(disk_msg_cache, disk_msg);
574 }
575 
576 /*
577  * Create a raw device for the dev_ops template (which is returned).  Also
578  * create a slice and unit managed disk and overload the user visible
579  * device space with it.
580  *
581  * NOTE: The returned raw device is NOT a slice and unit managed device.
582  * It is an actual raw device representing the raw disk as specified by
583  * the passed dev_ops.  The disk layer not only returns such a raw device,
584  * it also uses it internally when passing (modified) commands through.
585  */
586 cdev_t
587 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
588 {
589 	return disk_create_named(NULL, unit, dp, raw_ops);
590 }
591 
592 cdev_t
593 disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops)
594 {
595 	cdev_t rawdev;
596 
597 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
598 
599 	if (name) {
600 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
601 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
602 	} else {
603 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
604 		    UID_ROOT, GID_OPERATOR, 0640,
605 		    "%s%d", raw_ops->head.name, unit);
606 	}
607 
608 	bzero(dp, sizeof(*dp));
609 
610 	dp->d_rawdev = rawdev;
611 	dp->d_raw_ops = raw_ops;
612 	dp->d_dev_ops = &disk_ops;
613 
614 	if (name) {
615 		dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
616 		    dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640,
617 		    "%s", name);
618 	} else {
619 		dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
620 		    dkmakewholedisk(unit),
621 		    UID_ROOT, GID_OPERATOR, 0640,
622 		    "%s%d", raw_ops->head.name, unit);
623 	}
624 
625 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
626 	dp->d_cdev->si_disk = dp;
627 
628 	if (name)
629 		dsched_disk_create_callback(dp, name, unit);
630 	else
631 		dsched_disk_create_callback(dp, raw_ops->head.name, unit);
632 
633 	lwkt_gettoken(&disklist_token);
634 	LIST_INSERT_HEAD(&disklist, dp, d_list);
635 	lwkt_reltoken(&disklist_token);
636 
637 	disk_debug(1, "disk_create (end): %s%d\n",
638 	    (name != NULL)?(name):(raw_ops->head.name), unit);
639 
640 	return (dp->d_rawdev);
641 }
642 
643 int
644 disk_setdisktype(struct disk *disk, const char *type)
645 {
646 	KKASSERT(disk != NULL);
647 
648 	disk->d_disktype = type;
649 	return udev_dict_set_cstr(disk->d_cdev, "disk-type", __DECONST(char *, type));
650 }
651 
652 static void
653 _setdiskinfo(struct disk *disk, struct disk_info *info)
654 {
655 	char *oldserialno;
656 
657 	oldserialno = disk->d_info.d_serialno;
658 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
659 	info = &disk->d_info;
660 
661 	disk_debug(1,
662 		    "_setdiskinfo: %s\n",
663 			disk->d_cdev->si_name);
664 
665 	/*
666 	 * The serial number is duplicated so the caller can throw
667 	 * their copy away.
668 	 */
669 	if (info->d_serialno && info->d_serialno[0]) {
670 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
671 		disk_cleanserial(info->d_serialno);
672 		if (disk->d_cdev) {
673 			make_dev_alias(disk->d_cdev, "serno/%s",
674 					info->d_serialno);
675 		}
676 	} else {
677 		info->d_serialno = NULL;
678 	}
679 	if (oldserialno)
680 		kfree(oldserialno, M_TEMP);
681 
682 	dsched_disk_update_callback(disk, info);
683 
684 	/*
685 	 * The caller may set d_media_size or d_media_blocks and we
686 	 * calculate the other.
687 	 */
688 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
689 	if (info->d_media_size == 0 && info->d_media_blocks) {
690 		info->d_media_size = (u_int64_t)info->d_media_blocks *
691 				     info->d_media_blksize;
692 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
693 		   info->d_media_blksize) {
694 		info->d_media_blocks = info->d_media_size /
695 				       info->d_media_blksize;
696 	}
697 
698 	/*
699 	 * The si_* fields for rawdev are not set until after the
700 	 * disk_create() call, so someone using the cooked version
701 	 * of the raw device (i.e. da0s0) will not get the right
702 	 * si_iosize_max unless we fix it up here.
703 	 */
704 	if (disk->d_cdev && disk->d_rawdev &&
705 	    disk->d_cdev->si_iosize_max == 0) {
706 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
707 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
708 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
709 	}
710 
711 	/* Add the serial number to the udev_dictionary */
712 	if (info->d_serialno)
713 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
714 }
715 
716 /*
717  * Disk drivers must call this routine when media parameters are available
718  * or have changed.
719  */
720 void
721 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
722 {
723 	_setdiskinfo(disk, info);
724 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
725 	disk_debug(1,
726 		    "disk_setdiskinfo: sent probe for %s\n",
727 			disk->d_cdev->si_name);
728 }
729 
730 void
731 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
732 {
733 	_setdiskinfo(disk, info);
734 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
735 	disk_debug(1,
736 		    "disk_setdiskinfo_sync: sent probe for %s\n",
737 			disk->d_cdev->si_name);
738 }
739 
740 /*
741  * This routine is called when an adapter detaches.  The higher level
742  * managed disk device is destroyed while the lower level raw device is
743  * released.
744  */
745 void
746 disk_destroy(struct disk *disk)
747 {
748 	dsched_disk_destroy_callback(disk);
749 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
750 	return;
751 }
752 
753 int
754 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize)
755 {
756 	struct partinfo pinfo;
757 	int error;
758 
759 	bzero(&pinfo, sizeof(pinfo));
760 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
761 			   proc0.p_ucred, NULL);
762 	if (error)
763 		return (error);
764 
765 	if (pinfo.media_blksize == 0)
766 		return (ENXIO);
767 
768 	if (blkno) /* XXX: make sure this reserved stuff is right */
769 		*blkno = pinfo.reserved_blocks +
770 			pinfo.media_offset / pinfo.media_blksize;
771 	if (secsize)
772 		*secsize = pinfo.media_blksize;
773 	if (size)
774 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
775 
776 	return (0);
777 }
778 
779 int
780 disk_dumpconf(cdev_t dev, u_int onoff)
781 {
782 	struct dumperinfo di;
783 	u_int64_t	size, blkno;
784 	u_int32_t	secsize;
785 	int error;
786 
787 	if (!onoff)
788 		return set_dumper(NULL);
789 
790 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
791 
792 	if (error)
793 		return ENXIO;
794 
795 	bzero(&di, sizeof(struct dumperinfo));
796 	di.dumper = diskdump;
797 	di.priv = dev;
798 	di.blocksize = secsize;
799 	di.mediaoffset = blkno * DEV_BSIZE;
800 	di.mediasize = size * DEV_BSIZE;
801 
802 	return set_dumper(&di);
803 }
804 
805 void
806 disk_unprobe(struct disk *disk)
807 {
808 	if (disk == NULL)
809 		return;
810 
811 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
812 }
813 
814 void
815 disk_invalidate (struct disk *disk)
816 {
817 	dsgone(&disk->d_slice);
818 }
819 
820 struct disk *
821 disk_enumerate(struct disk *disk)
822 {
823 	struct disk *dp;
824 
825 	lwkt_gettoken(&disklist_token);
826 	if (!disk)
827 		dp = (LIST_FIRST(&disklist));
828 	else
829 		dp = (LIST_NEXT(disk, d_list));
830 	lwkt_reltoken(&disklist_token);
831 
832 	return dp;
833 }
834 
835 static
836 int
837 sysctl_disks(SYSCTL_HANDLER_ARGS)
838 {
839 	struct disk *disk;
840 	int error, first;
841 
842 	disk = NULL;
843 	first = 1;
844 
845 	while ((disk = disk_enumerate(disk))) {
846 		if (!first) {
847 			error = SYSCTL_OUT(req, " ", 1);
848 			if (error)
849 				return error;
850 		} else {
851 			first = 0;
852 		}
853 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
854 				   strlen(disk->d_rawdev->si_name));
855 		if (error)
856 			return error;
857 	}
858 	error = SYSCTL_OUT(req, "", 1);
859 	return error;
860 }
861 
862 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
863     sysctl_disks, "A", "names of available disks");
864 
865 /*
866  * Open a disk device or partition.
867  */
868 static
869 int
870 diskopen(struct dev_open_args *ap)
871 {
872 	cdev_t dev = ap->a_head.a_dev;
873 	struct disk *dp;
874 	int error;
875 
876 	/*
877 	 * dp can't be NULL here XXX.
878 	 *
879 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
880 	 * setdiskinfo() is typically called whether the disk is present
881 	 * or not (e.g. CD), but the base disk device is created first
882 	 * and there may be a race.
883 	 */
884 	dp = dev->si_disk;
885 	if (dp == NULL || dp->d_slice == NULL)
886 		return (ENXIO);
887 	error = 0;
888 
889 	/*
890 	 * Deal with open races
891 	 */
892 	get_mplock();
893 	while (dp->d_flags & DISKFLAG_LOCK) {
894 		dp->d_flags |= DISKFLAG_WANTED;
895 		error = tsleep(dp, PCATCH, "diskopen", hz);
896 		if (error) {
897 			rel_mplock();
898 			return (error);
899 		}
900 	}
901 	dp->d_flags |= DISKFLAG_LOCK;
902 
903 	/*
904 	 * Open the underlying raw device.
905 	 */
906 	if (!dsisopen(dp->d_slice)) {
907 #if 0
908 		if (!pdev->si_iosize_max)
909 			pdev->si_iosize_max = dev->si_iosize_max;
910 #endif
911 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
912 				  ap->a_devtype, ap->a_cred);
913 	}
914 #if 0
915 	/*
916 	 * Inherit properties from the underlying device now that it is
917 	 * open.
918 	 */
919 	dev_dclone(dev);
920 #endif
921 
922 	if (error)
923 		goto out;
924 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
925 		       &dp->d_slice, &dp->d_info);
926 	if (!dsisopen(dp->d_slice)) {
927 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
928 	}
929 out:
930 	dp->d_flags &= ~DISKFLAG_LOCK;
931 	if (dp->d_flags & DISKFLAG_WANTED) {
932 		dp->d_flags &= ~DISKFLAG_WANTED;
933 		wakeup(dp);
934 	}
935 	rel_mplock();
936 
937 	return(error);
938 }
939 
940 /*
941  * Close a disk device or partition
942  */
943 static
944 int
945 diskclose(struct dev_close_args *ap)
946 {
947 	cdev_t dev = ap->a_head.a_dev;
948 	struct disk *dp;
949 	int error;
950 
951 	error = 0;
952 	dp = dev->si_disk;
953 
954 	get_mplock();
955 	dsclose(dev, ap->a_devtype, dp->d_slice);
956 	if (!dsisopen(dp->d_slice)) {
957 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
958 	}
959 	rel_mplock();
960 	return (error);
961 }
962 
963 /*
964  * First execute the ioctl on the disk device, and if it isn't supported
965  * try running it on the backing device.
966  */
967 static
968 int
969 diskioctl(struct dev_ioctl_args *ap)
970 {
971 	cdev_t dev = ap->a_head.a_dev;
972 	struct disk *dp;
973 	int error;
974 	u_int u;
975 
976 	dp = dev->si_disk;
977 	if (dp == NULL)
978 		return (ENXIO);
979 
980 	devfs_debug(DEVFS_DEBUG_DEBUG,
981 		    "diskioctl: cmd is: %lx (name: %s)\n",
982 		    ap->a_cmd, dev->si_name);
983 	devfs_debug(DEVFS_DEBUG_DEBUG,
984 		    "diskioctl: &dp->d_slice is: %p, %p\n",
985 		    &dp->d_slice, dp->d_slice);
986 
987 	if (ap->a_cmd == DIOCGKERNELDUMP) {
988 		u = *(u_int *)ap->a_data;
989 		return disk_dumpconf(dev, u);
990 	}
991 
992 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
993 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
994 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
995 		error = ENOIOCTL;
996 	} else {
997 		get_mplock();
998 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
999 				&dp->d_slice, &dp->d_info);
1000 		rel_mplock();
1001 	}
1002 
1003 	if (error == ENOIOCTL) {
1004 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1005 				   ap->a_fflag, ap->a_cred, NULL);
1006 	}
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Execute strategy routine
1012  */
1013 static
1014 int
1015 diskstrategy(struct dev_strategy_args *ap)
1016 {
1017 	cdev_t dev = ap->a_head.a_dev;
1018 	struct bio *bio = ap->a_bio;
1019 	struct bio *nbio;
1020 	struct disk *dp;
1021 
1022 	dp = dev->si_disk;
1023 
1024 	if (dp == NULL) {
1025 		bio->bio_buf->b_error = ENXIO;
1026 		bio->bio_buf->b_flags |= B_ERROR;
1027 		biodone(bio);
1028 		return(0);
1029 	}
1030 	KKASSERT(dev->si_disk == dp);
1031 
1032 	/*
1033 	 * The dscheck() function will also transform the slice relative
1034 	 * block number i.e. bio->bio_offset into a block number that can be
1035 	 * passed directly to the underlying raw device.  If dscheck()
1036 	 * returns NULL it will have handled the bio for us (e.g. EOF
1037 	 * or error due to being beyond the device size).
1038 	 */
1039 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1040 		dsched_queue(dp, nbio);
1041 	} else {
1042 		biodone(bio);
1043 	}
1044 	return(0);
1045 }
1046 
1047 /*
1048  * Return the partition size in ?blocks?
1049  */
1050 static
1051 int
1052 diskpsize(struct dev_psize_args *ap)
1053 {
1054 	cdev_t dev = ap->a_head.a_dev;
1055 	struct disk *dp;
1056 
1057 	dp = dev->si_disk;
1058 	if (dp == NULL)
1059 		return(ENODEV);
1060 
1061 	ap->a_result = dssize(dev, &dp->d_slice);
1062 
1063 	if ((ap->a_result == -1) &&
1064 	   (dp->d_info.d_dsflags & DSO_DEVICEMAPPER)) {
1065 		ap->a_head.a_dev = dp->d_rawdev;
1066 		return dev_doperate(&ap->a_head);
1067 	}
1068 	return(0);
1069 }
1070 
1071 /*
1072  * When new device entries are instantiated, make sure they inherit our
1073  * si_disk structure and block and iosize limits from the raw device.
1074  *
1075  * This routine is always called synchronously in the context of the
1076  * client.
1077  *
1078  * XXX The various io and block size constraints are not always initialized
1079  * properly by devices.
1080  */
1081 static
1082 int
1083 diskclone(struct dev_clone_args *ap)
1084 {
1085 	cdev_t dev = ap->a_head.a_dev;
1086 	struct disk *dp;
1087 	dp = dev->si_disk;
1088 
1089 	KKASSERT(dp != NULL);
1090 	dev->si_disk = dp;
1091 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
1092 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
1093 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
1094 	return(0);
1095 }
1096 
1097 int
1098 diskdump(struct dev_dump_args *ap)
1099 {
1100 	cdev_t dev = ap->a_head.a_dev;
1101 	struct disk *dp = dev->si_disk;
1102 	u_int64_t size, offset;
1103 	int error;
1104 
1105 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1106 	/* XXX: this should probably go in disk_dumpcheck somehow */
1107 	if (ap->a_length != 0) {
1108 		size *= DEV_BSIZE;
1109 		offset = ap->a_blkno * DEV_BSIZE;
1110 		if ((ap->a_offset < offset) ||
1111 		    (ap->a_offset + ap->a_length - offset > size)) {
1112 			kprintf("Attempt to write outside dump device boundaries.\n");
1113 			error = ENOSPC;
1114 		}
1115 	}
1116 
1117 	if (error == 0) {
1118 		ap->a_head.a_dev = dp->d_rawdev;
1119 		error = dev_doperate(&ap->a_head);
1120 	}
1121 
1122 	return(error);
1123 }
1124 
1125 
1126 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1127     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1128 
1129 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1130     0, sizeof(struct disk), "sizeof(struct disk)");
1131 
1132 /*
1133  * Reorder interval for burst write allowance and minor write
1134  * allowance.
1135  *
1136  * We always want to trickle some writes in to make use of the
1137  * disk's zone cache.  Bursting occurs on a longer interval and only
1138  * runningbufspace is well over the hirunningspace limit.
1139  */
1140 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1141 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1142 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1143 int bioq_reorder_minor_interval = 5;
1144 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1145 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1146 
1147 int bioq_reorder_burst_bytes = 3000000;
1148 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1149 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1150 int bioq_reorder_minor_bytes = 262144;
1151 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1152 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1153 
1154 
1155 /*
1156  * Order I/Os.  Generally speaking this code is designed to make better
1157  * use of drive zone caches.  A drive zone cache can typically track linear
1158  * reads or writes for around 16 zones simultaniously.
1159  *
1160  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1161  * of writes to be queued asynchronously.  This creates a huge bottleneck
1162  * for reads which reduce read bandwidth to a trickle.
1163  *
1164  * To solve this problem we generally reorder reads before writes.
1165  *
1166  * However, a large number of random reads can also starve writes and
1167  * make poor use of the drive zone cache so we allow writes to trickle
1168  * in every N reads.
1169  */
1170 void
1171 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1172 {
1173 	/*
1174 	 * The BIO wants to be ordered.  Adding to the tail also
1175 	 * causes transition to be set to NULL, forcing the ordering
1176 	 * of all prior I/O's.
1177 	 */
1178 	if (bio->bio_buf->b_flags & B_ORDERED) {
1179 		bioq_insert_tail(bioq, bio);
1180 		return;
1181 	}
1182 
1183 	switch(bio->bio_buf->b_cmd) {
1184 	case BUF_CMD_READ:
1185 		if (bioq->transition) {
1186 			/*
1187 			 * Insert before the first write.  Bleedover writes
1188 			 * based on reorder intervals to prevent starvation.
1189 			 */
1190 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1191 			++bioq->reorder;
1192 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1193 				bioqwritereorder(bioq);
1194 				if (bioq->reorder >=
1195 				    bioq_reorder_burst_interval) {
1196 					bioq->reorder = 0;
1197 				}
1198 			}
1199 		} else {
1200 			/*
1201 			 * No writes queued (or ordering was forced),
1202 			 * insert at tail.
1203 			 */
1204 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1205 		}
1206 		break;
1207 	case BUF_CMD_WRITE:
1208 		/*
1209 		 * Writes are always appended.  If no writes were previously
1210 		 * queued or an ordered tail insertion occured the transition
1211 		 * field will be NULL.
1212 		 */
1213 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1214 		if (bioq->transition == NULL)
1215 			bioq->transition = bio;
1216 		break;
1217 	default:
1218 		/*
1219 		 * All other request types are forced to be ordered.
1220 		 */
1221 		bioq_insert_tail(bioq, bio);
1222 		break;
1223 	}
1224 }
1225 
1226 /*
1227  * Move the read-write transition point to prevent reads from
1228  * completely starving our writes.  This brings a number of writes into
1229  * the fold every N reads.
1230  *
1231  * We bring a few linear writes into the fold on a minor interval
1232  * and we bring a non-linear burst of writes into the fold on a major
1233  * interval.  Bursting only occurs if runningbufspace is really high
1234  * (typically from syncs, fsyncs, or HAMMER flushes).
1235  */
1236 static
1237 void
1238 bioqwritereorder(struct bio_queue_head *bioq)
1239 {
1240 	struct bio *bio;
1241 	off_t next_offset;
1242 	size_t left;
1243 	size_t n;
1244 	int check_off;
1245 
1246 	if (bioq->reorder < bioq_reorder_burst_interval ||
1247 	    !buf_runningbufspace_severe()) {
1248 		left = (size_t)bioq_reorder_minor_bytes;
1249 		check_off = 1;
1250 	} else {
1251 		left = (size_t)bioq_reorder_burst_bytes;
1252 		check_off = 0;
1253 	}
1254 
1255 	next_offset = bioq->transition->bio_offset;
1256 	while ((bio = bioq->transition) != NULL &&
1257 	       (check_off == 0 || next_offset == bio->bio_offset)
1258 	) {
1259 		n = bio->bio_buf->b_bcount;
1260 		next_offset = bio->bio_offset + n;
1261 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1262 		if (left < n)
1263 			break;
1264 		left -= n;
1265 	}
1266 }
1267 
1268 /*
1269  * Bounds checking against the media size, used for the raw partition.
1270  * secsize, mediasize and b_blkno must all be the same units.
1271  * Possibly this has to be DEV_BSIZE (512).
1272  */
1273 int
1274 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1275 {
1276 	struct buf *bp = bio->bio_buf;
1277 	int64_t sz;
1278 
1279 	sz = howmany(bp->b_bcount, secsize);
1280 
1281 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1282 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1283 		if (sz == 0) {
1284 			/* If exactly at end of disk, return EOF. */
1285 			bp->b_resid = bp->b_bcount;
1286 			return 0;
1287 		}
1288 		if (sz < 0) {
1289 			/* If past end of disk, return EINVAL. */
1290 			bp->b_error = EINVAL;
1291 			return 0;
1292 		}
1293 		/* Otherwise, truncate request. */
1294 		bp->b_bcount = sz * secsize;
1295 	}
1296 
1297 	return 1;
1298 }
1299 
1300 /*
1301  * Disk error is the preface to plaintive error messages
1302  * about failing disk transfers.  It prints messages of the form
1303 
1304 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1305 
1306  * if the offset of the error in the transfer and a disk label
1307  * are both available.  blkdone should be -1 if the position of the error
1308  * is unknown; the disklabel pointer may be null from drivers that have not
1309  * been converted to use them.  The message is printed with kprintf
1310  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1311  * The message should be completed (with at least a newline) with kprintf
1312  * or log(-1, ...), respectively.  There is no trailing space.
1313  */
1314 void
1315 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1316 {
1317 	struct buf *bp = bio->bio_buf;
1318 	const char *term;
1319 
1320 	switch(bp->b_cmd) {
1321 	case BUF_CMD_READ:
1322 		term = "read";
1323 		break;
1324 	case BUF_CMD_WRITE:
1325 		term = "write";
1326 		break;
1327 	default:
1328 		term = "access";
1329 		break;
1330 	}
1331 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1332 	kprintf("offset %012llx for %d",
1333 		(long long)bio->bio_offset,
1334 		bp->b_bcount);
1335 
1336 	if (donecnt)
1337 		kprintf(" (%d bytes completed)", donecnt);
1338 }
1339 
1340 /*
1341  * Locate a disk device
1342  */
1343 cdev_t
1344 disk_locate(const char *devname)
1345 {
1346 	return devfs_find_device_by_name(devname);
1347 }
1348 
1349 void
1350 disk_config(void *arg)
1351 {
1352 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1353 }
1354 
1355 static void
1356 disk_init(void)
1357 {
1358 	struct thread* td_core;
1359 
1360 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1361 					 NULL, NULL, NULL,
1362 					 objcache_malloc_alloc,
1363 					 objcache_malloc_free,
1364 					 &disk_msg_malloc_args);
1365 
1366 	lwkt_token_init(&disklist_token, 1, "disks");
1367 
1368 	/*
1369 	 * Initialize the reply-only port which acts as a message drain
1370 	 */
1371 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1372 
1373 	lwkt_gettoken(&disklist_token);
1374 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1375 		    0, 0, "disk_msg_core");
1376 	tsleep(td_core, 0, "diskcore", 0);
1377 	lwkt_reltoken(&disklist_token);
1378 }
1379 
1380 static void
1381 disk_uninit(void)
1382 {
1383 	objcache_destroy(disk_msg_cache);
1384 }
1385 
1386 /*
1387  * Clean out illegal characters in serial numbers.
1388  */
1389 static void
1390 disk_cleanserial(char *serno)
1391 {
1392 	char c;
1393 
1394 	while ((c = *serno) != 0) {
1395 		if (c >= 'a' && c <= 'z')
1396 			;
1397 		else if (c >= 'A' && c <= 'Z')
1398 			;
1399 		else if (c >= '0' && c <= '9')
1400 			;
1401 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1402 			;
1403 		else
1404 			c = '_';
1405 		*serno++= c;
1406 	}
1407 }
1408 
1409 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1410 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1411 		0, "Enable subr_disk debugging");
1412 
1413 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1414 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1415