xref: /dflybsd-src/sys/kern/subr_disk.c (revision bc73772033acf16cec326bfb764d6fd9dc1dc660)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ----------------------------------------------------------------------------
35  * "THE BEER-WARE LICENSE" (Revision 42):
36  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
37  * can do whatever you want with this stuff. If we meet some day, and you think
38  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
39  * ----------------------------------------------------------------------------
40  *
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80  * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <sys/sysctl.h>
99 #include <machine/md_var.h>
100 #include <sys/ctype.h>
101 #include <sys/syslog.h>
102 #include <sys/device.h>
103 #include <sys/msgport.h>
104 #include <sys/msgport2.h>
105 #include <sys/buf2.h>
106 #include <sys/devfs.h>
107 #include <sys/thread.h>
108 #include <sys/thread2.h>
109 #include <sys/dsched.h>
110 #include <sys/queue.h>
111 #include <sys/lock.h>
112 #include <sys/udev.h>
113 
114 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
115 static int disk_debug_enable = 0;
116 
117 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
118 static void disk_msg_core(void *);
119 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
120 static void disk_probe(struct disk *dp, int reprobe);
121 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
122 static void bioqwritereorder(struct bio_queue_head *bioq);
123 static void disk_cleanserial(char *serno);
124 
125 static d_open_t diskopen;
126 static d_close_t diskclose;
127 static d_ioctl_t diskioctl;
128 static d_strategy_t diskstrategy;
129 static d_psize_t diskpsize;
130 static d_clone_t diskclone;
131 static d_dump_t diskdump;
132 
133 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
134 static struct lwkt_token disklist_token;
135 
136 static struct dev_ops disk_ops = {
137 	{ "disk", 0, D_DISK },
138 	.d_open = diskopen,
139 	.d_close = diskclose,
140 	.d_read = physread,
141 	.d_write = physwrite,
142 	.d_ioctl = diskioctl,
143 	.d_strategy = diskstrategy,
144 	.d_dump = diskdump,
145 	.d_psize = diskpsize,
146 	.d_clone = diskclone
147 };
148 
149 static struct objcache 	*disk_msg_cache;
150 
151 struct objcache_malloc_args disk_msg_malloc_args = {
152 	sizeof(struct disk_msg), M_DISK };
153 
154 static struct lwkt_port disk_dispose_port;
155 static struct lwkt_port disk_msg_port;
156 
157 static int
158 disk_debug(int level, char *fmt, ...)
159 {
160 	__va_list ap;
161 
162 	__va_start(ap, fmt);
163 	if (level <= disk_debug_enable)
164 		kvprintf(fmt, ap);
165 	__va_end(ap);
166 
167 	return 0;
168 }
169 
170 static int
171 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
172 {
173 	struct disk_info *info = &dp->d_info;
174 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
175 	disklabel_ops_t ops;
176 	struct partinfo part;
177 	const char *msg;
178 	cdev_t ndev;
179 	int sno;
180 	u_int i;
181 
182 	disk_debug(2,
183 		    "disk_probe_slice (begin): %s (%s)\n",
184 			dev->si_name, dp->d_cdev->si_name);
185 
186 	sno = slice ? slice - 1 : 0;
187 
188 	ops = &disklabel32_ops;
189 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
190 	if (msg && !strcmp(msg, "no disk label")) {
191 		ops = &disklabel64_ops;
192 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
193 	}
194 	if (msg == NULL) {
195 		if (slice != WHOLE_DISK_SLICE)
196 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
197 		else
198 			sp->ds_reserved = 0;
199 
200 		sp->ds_ops = ops;
201 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
202 			ops->op_loadpartinfo(sp->ds_label, i, &part);
203 			if (part.fstype) {
204 				if (reprobe &&
205 				    (ndev = devfs_find_device_by_name("%s%c",
206 						dev->si_name, 'a' + i))
207 				) {
208 					/*
209 					 * Device already exists and
210 					 * is still valid.
211 					 */
212 					ndev->si_flags |= SI_REPROBE_TEST;
213 				} else {
214 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
215 						dkmakeminor(dkunit(dp->d_cdev),
216 							    slice, i),
217 						UID_ROOT, GID_OPERATOR, 0640,
218 						"%s%c", dev->si_name, 'a'+ i);
219 					ndev->si_disk = dp;
220 					udev_dict_set_cstr(ndev, "subsystem", "disk");
221 					/* Inherit parent's disk type */
222 					if (dp->d_disktype) {
223 						udev_dict_set_cstr(ndev, "disk-type",
224 						    __DECONST(char *, dp->d_disktype));
225 					}
226 					if (dp->d_info.d_serialno) {
227 						make_dev_alias(ndev,
228 						    "serno/%s.s%d%c",
229 						    dp->d_info.d_serialno,
230 						    sno, 'a' + i);
231 					}
232 					ndev->si_flags |= SI_REPROBE_TEST;
233 				}
234 			}
235 		}
236 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
237 		msg = NULL;
238 		if (sp->ds_size >= 0x100000000ULL)
239 			ops = &disklabel64_ops;
240 		else
241 			ops = &disklabel32_ops;
242 		sp->ds_label = ops->op_clone_label(info, sp);
243 	} else {
244 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
245 		    sp->ds_type == DOSPTYP_NETBSD ||
246 		    sp->ds_type == DOSPTYP_OPENBSD) {
247 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
248 			    dev->si_name, msg);
249 		}
250 	}
251 
252 	if (msg == NULL) {
253 		sp->ds_wlabel = FALSE;
254 	}
255 
256 	return (msg ? EINVAL : 0);
257 }
258 
259 /*
260  * This routine is only called for newly minted drives or to reprobe
261  * a drive with no open slices.  disk_probe_slice() is called directly
262  * when reprobing partition changes within slices.
263  */
264 static void
265 disk_probe(struct disk *dp, int reprobe)
266 {
267 	struct disk_info *info = &dp->d_info;
268 	cdev_t dev = dp->d_cdev;
269 	cdev_t ndev;
270 	int error, i, sno;
271 	struct diskslices *osp;
272 	struct diskslice *sp;
273 
274 	KKASSERT (info->d_media_blksize != 0);
275 
276 	osp = dp->d_slice;
277 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
278 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
279 
280 	error = mbrinit(dev, info, &(dp->d_slice));
281 	if (error) {
282 		dsgone(&osp);
283 		return;
284 	}
285 
286 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
287 		/*
288 		 * Ignore the whole-disk slice, it has already been created.
289 		 */
290 		if (i == WHOLE_DISK_SLICE)
291 			continue;
292 		sp = &dp->d_slice->dss_slices[i];
293 
294 		/*
295 		 * Handle s0.  s0 is a compatibility slice if there are no
296 		 * other slices and it has not otherwise been set up, else
297 		 * we ignore it.
298 		 */
299 		if (i == COMPATIBILITY_SLICE) {
300 			sno = 0;
301 			if (sp->ds_type == 0 &&
302 			    dp->d_slice->dss_nslices == BASE_SLICE) {
303 				sp->ds_size = info->d_media_blocks;
304 				sp->ds_reserved = 0;
305 			}
306 		} else {
307 			sno = i - 1;
308 			sp->ds_reserved = 0;
309 		}
310 
311 		/*
312 		 * Ignore 0-length slices
313 		 */
314 		if (sp->ds_size == 0)
315 			continue;
316 
317 		if (reprobe &&
318 		    (ndev = devfs_find_device_by_name("%ss%d",
319 						      dev->si_name, sno))) {
320 			/*
321 			 * Device already exists and is still valid
322 			 */
323 			ndev->si_flags |= SI_REPROBE_TEST;
324 		} else {
325 			/*
326 			 * Else create new device
327 			 */
328 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
329 					dkmakewholeslice(dkunit(dev), i),
330 					UID_ROOT, GID_OPERATOR, 0640,
331 					"%ss%d", dev->si_name, sno);
332 			udev_dict_set_cstr(ndev, "subsystem", "disk");
333 			/* Inherit parent's disk type */
334 			if (dp->d_disktype) {
335 				udev_dict_set_cstr(ndev, "disk-type",
336 				    __DECONST(char *, dp->d_disktype));
337 			}
338 			if (dp->d_info.d_serialno) {
339 				make_dev_alias(ndev, "serno/%s.s%d",
340 					       dp->d_info.d_serialno, sno);
341 			}
342 			ndev->si_disk = dp;
343 			ndev->si_flags |= SI_REPROBE_TEST;
344 		}
345 		sp->ds_dev = ndev;
346 
347 		/*
348 		 * Probe appropriate slices for a disklabel
349 		 *
350 		 * XXX slice type 1 used by our gpt probe code.
351 		 * XXX slice type 0 used by mbr compat slice.
352 		 */
353 		if (sp->ds_type == DOSPTYP_386BSD ||
354 		    sp->ds_type == DOSPTYP_NETBSD ||
355 		    sp->ds_type == DOSPTYP_OPENBSD ||
356 		    sp->ds_type == 0 ||
357 		    sp->ds_type == 1) {
358 			if (dp->d_slice->dss_first_bsd_slice == 0)
359 				dp->d_slice->dss_first_bsd_slice = i;
360 			disk_probe_slice(dp, ndev, i, reprobe);
361 		}
362 	}
363 	dsgone(&osp);
364 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
365 }
366 
367 
368 static void
369 disk_msg_core(void *arg)
370 {
371 	struct disk	*dp;
372 	struct diskslice *sp;
373 	disk_msg_t msg;
374 	int run;
375 
376 	lwkt_initport_thread(&disk_msg_port, curthread);
377 	wakeup(curthread);
378 	run = 1;
379 
380 	while (run) {
381 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
382 
383 		switch (msg->hdr.u.ms_result) {
384 		case DISK_DISK_PROBE:
385 			dp = (struct disk *)msg->load;
386 			disk_debug(1,
387 				    "DISK_DISK_PROBE: %s\n",
388 					dp->d_cdev->si_name);
389 			disk_probe(dp, 0);
390 			break;
391 		case DISK_DISK_DESTROY:
392 			dp = (struct disk *)msg->load;
393 			disk_debug(1,
394 				    "DISK_DISK_DESTROY: %s\n",
395 					dp->d_cdev->si_name);
396 			devfs_destroy_subnames(dp->d_cdev->si_name);
397 			devfs_destroy_dev(dp->d_cdev);
398 			lwkt_gettoken(&disklist_token);
399 			LIST_REMOVE(dp, d_list);
400 			lwkt_reltoken(&disklist_token);
401 			if (dp->d_info.d_serialno) {
402 				kfree(dp->d_info.d_serialno, M_TEMP);
403 				dp->d_info.d_serialno = NULL;
404 			}
405 			break;
406 		case DISK_UNPROBE:
407 			dp = (struct disk *)msg->load;
408 			disk_debug(1,
409 				    "DISK_DISK_UNPROBE: %s\n",
410 					dp->d_cdev->si_name);
411 			devfs_destroy_subnames(dp->d_cdev->si_name);
412 			break;
413 		case DISK_SLICE_REPROBE:
414 			dp = (struct disk *)msg->load;
415 			sp = (struct diskslice *)msg->load2;
416 			devfs_clr_subnames_flag(sp->ds_dev->si_name,
417 						SI_REPROBE_TEST);
418 			disk_debug(1,
419 				    "DISK_SLICE_REPROBE: %s\n",
420 				    sp->ds_dev->si_name);
421 			disk_probe_slice(dp, sp->ds_dev,
422 					 dkslice(sp->ds_dev), 1);
423 			devfs_destroy_subnames_without_flag(
424 					sp->ds_dev->si_name, SI_REPROBE_TEST);
425 			break;
426 		case DISK_DISK_REPROBE:
427 			dp = (struct disk *)msg->load;
428 			devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST);
429 			disk_debug(1,
430 				    "DISK_DISK_REPROBE: %s\n",
431 				    dp->d_cdev->si_name);
432 			disk_probe(dp, 1);
433 			devfs_destroy_subnames_without_flag(
434 					dp->d_cdev->si_name, SI_REPROBE_TEST);
435 			break;
436 		case DISK_SYNC:
437 			disk_debug(1, "DISK_SYNC\n");
438 			break;
439 		default:
440 			devfs_debug(DEVFS_DEBUG_WARNING,
441 				    "disk_msg_core: unknown message "
442 				    "received at core\n");
443 			break;
444 		}
445 		lwkt_replymsg(&msg->hdr, 0);
446 	}
447 	lwkt_exit();
448 }
449 
450 
451 /*
452  * Acts as a message drain. Any message that is replied to here gets
453  * destroyed and the memory freed.
454  */
455 static void
456 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
457 {
458 	objcache_put(disk_msg_cache, msg);
459 }
460 
461 
462 void
463 disk_msg_send(uint32_t cmd, void *load, void *load2)
464 {
465 	disk_msg_t disk_msg;
466 	lwkt_port_t port = &disk_msg_port;
467 
468 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
469 
470 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
471 
472 	disk_msg->hdr.u.ms_result = cmd;
473 	disk_msg->load = load;
474 	disk_msg->load2 = load2;
475 	KKASSERT(port);
476 	lwkt_sendmsg(port, &disk_msg->hdr);
477 }
478 
479 void
480 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
481 {
482 	struct lwkt_port rep_port;
483 	disk_msg_t disk_msg;
484 	lwkt_port_t port;
485 
486 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
487 	port = &disk_msg_port;
488 
489 	/* XXX could probably use curthread's built-in msgport */
490 	lwkt_initport_thread(&rep_port, curthread);
491 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
492 
493 	disk_msg->hdr.u.ms_result = cmd;
494 	disk_msg->load = load;
495 	disk_msg->load2 = load2;
496 
497 	lwkt_sendmsg(port, &disk_msg->hdr);
498 	lwkt_waitmsg(&disk_msg->hdr, 0);
499 	objcache_put(disk_msg_cache, disk_msg);
500 }
501 
502 /*
503  * Create a raw device for the dev_ops template (which is returned).  Also
504  * create a slice and unit managed disk and overload the user visible
505  * device space with it.
506  *
507  * NOTE: The returned raw device is NOT a slice and unit managed device.
508  * It is an actual raw device representing the raw disk as specified by
509  * the passed dev_ops.  The disk layer not only returns such a raw device,
510  * it also uses it internally when passing (modified) commands through.
511  */
512 cdev_t
513 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
514 {
515 	return disk_create_named(NULL, unit, dp, raw_ops);
516 }
517 
518 cdev_t
519 disk_create_named(const char *name, int unit, struct disk *dp, struct dev_ops *raw_ops)
520 {
521 	cdev_t rawdev;
522 
523 	if (name == NULL)
524 		name = raw_ops->head.name;
525 
526 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
527 
528 	rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
529 			    UID_ROOT, GID_OPERATOR, 0640,
530 			    "%s%d", name, unit);
531 
532 	bzero(dp, sizeof(*dp));
533 
534 	dp->d_rawdev = rawdev;
535 	dp->d_raw_ops = raw_ops;
536 	dp->d_dev_ops = &disk_ops;
537 	dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
538 			    dkmakewholedisk(unit),
539 			    UID_ROOT, GID_OPERATOR, 0640,
540 			    "%s%d", name, unit);
541 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
542 	dp->d_cdev->si_disk = dp;
543 
544 	dsched_disk_create_callback(dp, name, unit);
545 
546 	lwkt_gettoken(&disklist_token);
547 	LIST_INSERT_HEAD(&disklist, dp, d_list);
548 	lwkt_reltoken(&disklist_token);
549 
550 	disk_debug(1, "disk_create (end): %s%d\n", name, unit);
551 
552 	return (dp->d_rawdev);
553 }
554 
555 int
556 disk_setdisktype(struct disk *disk, const char *type)
557 {
558 	KKASSERT(disk != NULL);
559 
560 	disk->d_disktype = type;
561 	return udev_dict_set_cstr(disk->d_cdev, "disk-type", __DECONST(char *, type));
562 }
563 
564 static void
565 _setdiskinfo(struct disk *disk, struct disk_info *info)
566 {
567 	char *oldserialno;
568 
569 	oldserialno = disk->d_info.d_serialno;
570 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
571 	info = &disk->d_info;
572 
573 	disk_debug(1,
574 		    "_setdiskinfo: %s\n",
575 			disk->d_cdev->si_name);
576 
577 	/*
578 	 * The serial number is duplicated so the caller can throw
579 	 * their copy away.
580 	 */
581 	if (info->d_serialno && info->d_serialno[0]) {
582 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
583 		disk_cleanserial(info->d_serialno);
584 		if (disk->d_cdev) {
585 			make_dev_alias(disk->d_cdev, "serno/%s",
586 					info->d_serialno);
587 		}
588 	} else {
589 		info->d_serialno = NULL;
590 	}
591 	if (oldserialno)
592 		kfree(oldserialno, M_TEMP);
593 
594 	dsched_disk_update_callback(disk, info);
595 
596 	/*
597 	 * The caller may set d_media_size or d_media_blocks and we
598 	 * calculate the other.
599 	 */
600 	KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0);
601 	if (info->d_media_size == 0 && info->d_media_blocks) {
602 		info->d_media_size = (u_int64_t)info->d_media_blocks *
603 				     info->d_media_blksize;
604 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
605 		   info->d_media_blksize) {
606 		info->d_media_blocks = info->d_media_size /
607 				       info->d_media_blksize;
608 	}
609 
610 	/*
611 	 * The si_* fields for rawdev are not set until after the
612 	 * disk_create() call, so someone using the cooked version
613 	 * of the raw device (i.e. da0s0) will not get the right
614 	 * si_iosize_max unless we fix it up here.
615 	 */
616 	if (disk->d_cdev && disk->d_rawdev &&
617 	    disk->d_cdev->si_iosize_max == 0) {
618 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
619 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
620 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
621 	}
622 }
623 
624 /*
625  * Disk drivers must call this routine when media parameters are available
626  * or have changed.
627  */
628 void
629 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
630 {
631 	_setdiskinfo(disk, info);
632 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
633 	disk_debug(1,
634 		    "disk_setdiskinfo: sent probe for %s\n",
635 			disk->d_cdev->si_name);
636 }
637 
638 void
639 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
640 {
641 	_setdiskinfo(disk, info);
642 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
643 	disk_debug(1,
644 		    "disk_setdiskinfo_sync: sent probe for %s\n",
645 			disk->d_cdev->si_name);
646 }
647 
648 /*
649  * This routine is called when an adapter detaches.  The higher level
650  * managed disk device is destroyed while the lower level raw device is
651  * released.
652  */
653 void
654 disk_destroy(struct disk *disk)
655 {
656 	dsched_disk_destroy_callback(disk);
657 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
658 	return;
659 }
660 
661 int
662 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize)
663 {
664 	struct partinfo pinfo;
665 	int error;
666 
667 	bzero(&pinfo, sizeof(pinfo));
668 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
669 			   proc0.p_ucred, NULL);
670 	if (error)
671 		return (error);
672 
673 	if (pinfo.media_blksize == 0)
674 		return (ENXIO);
675 
676 	if (blkno) /* XXX: make sure this reserved stuff is right */
677 		*blkno = pinfo.reserved_blocks +
678 			pinfo.media_offset / pinfo.media_blksize;
679 	if (secsize)
680 		*secsize = pinfo.media_blksize;
681 	if (size)
682 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
683 
684 	return (0);
685 }
686 
687 int
688 disk_dumpconf(cdev_t dev, u_int onoff)
689 {
690 	struct dumperinfo di;
691 	u_int64_t	size, blkno;
692 	u_int32_t	secsize;
693 	int error;
694 
695 	if (!onoff)
696 		return set_dumper(NULL);
697 
698 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
699 
700 	if (error)
701 		return ENXIO;
702 
703 	bzero(&di, sizeof(struct dumperinfo));
704 	di.dumper = diskdump;
705 	di.priv = dev;
706 	di.blocksize = secsize;
707 	di.mediaoffset = blkno * DEV_BSIZE;
708 	di.mediasize = size * DEV_BSIZE;
709 
710 	return set_dumper(&di);
711 }
712 
713 void
714 disk_unprobe(struct disk *disk)
715 {
716 	if (disk == NULL)
717 		return;
718 
719 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
720 }
721 
722 void
723 disk_invalidate (struct disk *disk)
724 {
725 	dsgone(&disk->d_slice);
726 }
727 
728 struct disk *
729 disk_enumerate(struct disk *disk)
730 {
731 	struct disk *dp;
732 
733 	lwkt_gettoken(&disklist_token);
734 	if (!disk)
735 		dp = (LIST_FIRST(&disklist));
736 	else
737 		dp = (LIST_NEXT(disk, d_list));
738 	lwkt_reltoken(&disklist_token);
739 
740 	return dp;
741 }
742 
743 static
744 int
745 sysctl_disks(SYSCTL_HANDLER_ARGS)
746 {
747 	struct disk *disk;
748 	int error, first;
749 
750 	disk = NULL;
751 	first = 1;
752 
753 	while ((disk = disk_enumerate(disk))) {
754 		if (!first) {
755 			error = SYSCTL_OUT(req, " ", 1);
756 			if (error)
757 				return error;
758 		} else {
759 			first = 0;
760 		}
761 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
762 				   strlen(disk->d_rawdev->si_name));
763 		if (error)
764 			return error;
765 	}
766 	error = SYSCTL_OUT(req, "", 1);
767 	return error;
768 }
769 
770 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
771     sysctl_disks, "A", "names of available disks");
772 
773 /*
774  * Open a disk device or partition.
775  */
776 static
777 int
778 diskopen(struct dev_open_args *ap)
779 {
780 	cdev_t dev = ap->a_head.a_dev;
781 	struct disk *dp;
782 	int error;
783 
784 	/*
785 	 * dp can't be NULL here XXX.
786 	 *
787 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
788 	 * setdiskinfo() is typically called whether the disk is present
789 	 * or not (e.g. CD), but the base disk device is created first
790 	 * and there may be a race.
791 	 */
792 	dp = dev->si_disk;
793 	if (dp == NULL || dp->d_slice == NULL)
794 		return (ENXIO);
795 	error = 0;
796 
797 	/*
798 	 * Deal with open races
799 	 */
800 	while (dp->d_flags & DISKFLAG_LOCK) {
801 		dp->d_flags |= DISKFLAG_WANTED;
802 		error = tsleep(dp, PCATCH, "diskopen", hz);
803 		if (error)
804 			return (error);
805 	}
806 	dp->d_flags |= DISKFLAG_LOCK;
807 
808 	/*
809 	 * Open the underlying raw device.
810 	 */
811 	if (!dsisopen(dp->d_slice)) {
812 #if 0
813 		if (!pdev->si_iosize_max)
814 			pdev->si_iosize_max = dev->si_iosize_max;
815 #endif
816 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
817 				  ap->a_devtype, ap->a_cred);
818 	}
819 #if 0
820 	/*
821 	 * Inherit properties from the underlying device now that it is
822 	 * open.
823 	 */
824 	dev_dclone(dev);
825 #endif
826 
827 	if (error)
828 		goto out;
829 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
830 		       &dp->d_slice, &dp->d_info);
831 	if (!dsisopen(dp->d_slice)) {
832 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
833 	}
834 out:
835 	dp->d_flags &= ~DISKFLAG_LOCK;
836 	if (dp->d_flags & DISKFLAG_WANTED) {
837 		dp->d_flags &= ~DISKFLAG_WANTED;
838 		wakeup(dp);
839 	}
840 
841 	return(error);
842 }
843 
844 /*
845  * Close a disk device or partition
846  */
847 static
848 int
849 diskclose(struct dev_close_args *ap)
850 {
851 	cdev_t dev = ap->a_head.a_dev;
852 	struct disk *dp;
853 	int error;
854 
855 	error = 0;
856 	dp = dev->si_disk;
857 
858 	dsclose(dev, ap->a_devtype, dp->d_slice);
859 	if (!dsisopen(dp->d_slice)) {
860 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
861 	}
862 	return (error);
863 }
864 
865 /*
866  * First execute the ioctl on the disk device, and if it isn't supported
867  * try running it on the backing device.
868  */
869 static
870 int
871 diskioctl(struct dev_ioctl_args *ap)
872 {
873 	cdev_t dev = ap->a_head.a_dev;
874 	struct disk *dp;
875 	int error;
876 	u_int u;
877 
878 	dp = dev->si_disk;
879 	if (dp == NULL)
880 		return (ENXIO);
881 
882 	devfs_debug(DEVFS_DEBUG_DEBUG,
883 		    "diskioctl: cmd is: %lx (name: %s)\n",
884 		    ap->a_cmd, dev->si_name);
885 	devfs_debug(DEVFS_DEBUG_DEBUG,
886 		    "diskioctl: &dp->d_slice is: %p, %p\n",
887 		    &dp->d_slice, dp->d_slice);
888 
889 	if (ap->a_cmd == DIOCGKERNELDUMP) {
890 		u = *(u_int *)ap->a_data;
891 		return disk_dumpconf(dev, u);
892 	}
893 
894 	if (&dp->d_slice == NULL || dp->d_slice == NULL) {
895 		error = ENOIOCTL;
896 	} else {
897 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
898 				&dp->d_slice, &dp->d_info);
899 	}
900 
901 	if (error == ENOIOCTL) {
902 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
903 				   ap->a_fflag, ap->a_cred, NULL);
904 	}
905 	return (error);
906 }
907 
908 /*
909  * Execute strategy routine
910  */
911 static
912 int
913 diskstrategy(struct dev_strategy_args *ap)
914 {
915 	cdev_t dev = ap->a_head.a_dev;
916 	struct bio *bio = ap->a_bio;
917 	struct bio *nbio;
918 	struct disk *dp;
919 
920 	dp = dev->si_disk;
921 
922 	if (dp == NULL) {
923 		bio->bio_buf->b_error = ENXIO;
924 		bio->bio_buf->b_flags |= B_ERROR;
925 		biodone(bio);
926 		return(0);
927 	}
928 	KKASSERT(dev->si_disk == dp);
929 
930 	/*
931 	 * The dscheck() function will also transform the slice relative
932 	 * block number i.e. bio->bio_offset into a block number that can be
933 	 * passed directly to the underlying raw device.  If dscheck()
934 	 * returns NULL it will have handled the bio for us (e.g. EOF
935 	 * or error due to being beyond the device size).
936 	 */
937 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
938 		dsched_queue(dp, nbio);
939 	} else {
940 		biodone(bio);
941 	}
942 	return(0);
943 }
944 
945 /*
946  * Return the partition size in ?blocks?
947  */
948 static
949 int
950 diskpsize(struct dev_psize_args *ap)
951 {
952 	cdev_t dev = ap->a_head.a_dev;
953 	struct disk *dp;
954 
955 	dp = dev->si_disk;
956 	if (dp == NULL)
957 		return(ENODEV);
958 	ap->a_result = dssize(dev, &dp->d_slice);
959 	return(0);
960 }
961 
962 /*
963  * When new device entries are instantiated, make sure they inherit our
964  * si_disk structure and block and iosize limits from the raw device.
965  *
966  * This routine is always called synchronously in the context of the
967  * client.
968  *
969  * XXX The various io and block size constraints are not always initialized
970  * properly by devices.
971  */
972 static
973 int
974 diskclone(struct dev_clone_args *ap)
975 {
976 	cdev_t dev = ap->a_head.a_dev;
977 	struct disk *dp;
978 	dp = dev->si_disk;
979 
980 	KKASSERT(dp != NULL);
981 	dev->si_disk = dp;
982 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
983 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
984 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
985 	return(0);
986 }
987 
988 int
989 diskdump(struct dev_dump_args *ap)
990 {
991 	cdev_t dev = ap->a_head.a_dev;
992 	struct disk *dp = dev->si_disk;
993 	u_int64_t size, offset;
994 	int error;
995 
996 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
997 	/* XXX: this should probably go in disk_dumpcheck somehow */
998 	if (ap->a_length != 0) {
999 		size *= DEV_BSIZE;
1000 		offset = ap->a_blkno * DEV_BSIZE;
1001 		if ((ap->a_offset < offset) ||
1002 		    (ap->a_offset + ap->a_length - offset > size)) {
1003 			kprintf("Attempt to write outside dump device boundaries.\n");
1004 			error = ENOSPC;
1005 		}
1006 	}
1007 
1008 	if (error == 0) {
1009 		ap->a_head.a_dev = dp->d_rawdev;
1010 		error = dev_doperate(&ap->a_head);
1011 	}
1012 
1013 	return(error);
1014 }
1015 
1016 
1017 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1018     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1019 
1020 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1021     0, sizeof(struct disk), "sizeof(struct disk)");
1022 
1023 /*
1024  * Reorder interval for burst write allowance and minor write
1025  * allowance.
1026  *
1027  * We always want to trickle some writes in to make use of the
1028  * disk's zone cache.  Bursting occurs on a longer interval and only
1029  * runningbufspace is well over the hirunningspace limit.
1030  */
1031 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1032 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1033 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1034 int bioq_reorder_minor_interval = 5;
1035 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1036 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1037 
1038 int bioq_reorder_burst_bytes = 3000000;
1039 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1040 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1041 int bioq_reorder_minor_bytes = 262144;
1042 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1043 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1044 
1045 
1046 /*
1047  * Order I/Os.  Generally speaking this code is designed to make better
1048  * use of drive zone caches.  A drive zone cache can typically track linear
1049  * reads or writes for around 16 zones simultaniously.
1050  *
1051  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1052  * of writes to be queued asynchronously.  This creates a huge bottleneck
1053  * for reads which reduce read bandwidth to a trickle.
1054  *
1055  * To solve this problem we generally reorder reads before writes.
1056  *
1057  * However, a large number of random reads can also starve writes and
1058  * make poor use of the drive zone cache so we allow writes to trickle
1059  * in every N reads.
1060  */
1061 void
1062 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1063 {
1064 	/*
1065 	 * The BIO wants to be ordered.  Adding to the tail also
1066 	 * causes transition to be set to NULL, forcing the ordering
1067 	 * of all prior I/O's.
1068 	 */
1069 	if (bio->bio_buf->b_flags & B_ORDERED) {
1070 		bioq_insert_tail(bioq, bio);
1071 		return;
1072 	}
1073 
1074 	switch(bio->bio_buf->b_cmd) {
1075 	case BUF_CMD_READ:
1076 		if (bioq->transition) {
1077 			/*
1078 			 * Insert before the first write.  Bleedover writes
1079 			 * based on reorder intervals to prevent starvation.
1080 			 */
1081 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1082 			++bioq->reorder;
1083 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1084 				bioqwritereorder(bioq);
1085 				if (bioq->reorder >=
1086 				    bioq_reorder_burst_interval) {
1087 					bioq->reorder = 0;
1088 				}
1089 			}
1090 		} else {
1091 			/*
1092 			 * No writes queued (or ordering was forced),
1093 			 * insert at tail.
1094 			 */
1095 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1096 		}
1097 		break;
1098 	case BUF_CMD_WRITE:
1099 		/*
1100 		 * Writes are always appended.  If no writes were previously
1101 		 * queued or an ordered tail insertion occured the transition
1102 		 * field will be NULL.
1103 		 */
1104 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1105 		if (bioq->transition == NULL)
1106 			bioq->transition = bio;
1107 		break;
1108 	default:
1109 		/*
1110 		 * All other request types are forced to be ordered.
1111 		 */
1112 		bioq_insert_tail(bioq, bio);
1113 		break;
1114 	}
1115 }
1116 
1117 /*
1118  * Move the read-write transition point to prevent reads from
1119  * completely starving our writes.  This brings a number of writes into
1120  * the fold every N reads.
1121  *
1122  * We bring a few linear writes into the fold on a minor interval
1123  * and we bring a non-linear burst of writes into the fold on a major
1124  * interval.  Bursting only occurs if runningbufspace is really high
1125  * (typically from syncs, fsyncs, or HAMMER flushes).
1126  */
1127 static
1128 void
1129 bioqwritereorder(struct bio_queue_head *bioq)
1130 {
1131 	struct bio *bio;
1132 	off_t next_offset;
1133 	size_t left;
1134 	size_t n;
1135 	int check_off;
1136 
1137 	if (bioq->reorder < bioq_reorder_burst_interval ||
1138 	    !buf_runningbufspace_severe()) {
1139 		left = (size_t)bioq_reorder_minor_bytes;
1140 		check_off = 1;
1141 	} else {
1142 		left = (size_t)bioq_reorder_burst_bytes;
1143 		check_off = 0;
1144 	}
1145 
1146 	next_offset = bioq->transition->bio_offset;
1147 	while ((bio = bioq->transition) != NULL &&
1148 	       (check_off == 0 || next_offset == bio->bio_offset)
1149 	) {
1150 		n = bio->bio_buf->b_bcount;
1151 		next_offset = bio->bio_offset + n;
1152 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1153 		if (left < n)
1154 			break;
1155 		left -= n;
1156 	}
1157 }
1158 
1159 /*
1160  * Bounds checking against the media size, used for the raw partition.
1161  * secsize, mediasize and b_blkno must all be the same units.
1162  * Possibly this has to be DEV_BSIZE (512).
1163  */
1164 int
1165 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1166 {
1167 	struct buf *bp = bio->bio_buf;
1168 	int64_t sz;
1169 
1170 	sz = howmany(bp->b_bcount, secsize);
1171 
1172 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1173 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1174 		if (sz == 0) {
1175 			/* If exactly at end of disk, return EOF. */
1176 			bp->b_resid = bp->b_bcount;
1177 			return 0;
1178 		}
1179 		if (sz < 0) {
1180 			/* If past end of disk, return EINVAL. */
1181 			bp->b_error = EINVAL;
1182 			return 0;
1183 		}
1184 		/* Otherwise, truncate request. */
1185 		bp->b_bcount = sz * secsize;
1186 	}
1187 
1188 	return 1;
1189 }
1190 
1191 /*
1192  * Disk error is the preface to plaintive error messages
1193  * about failing disk transfers.  It prints messages of the form
1194 
1195 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1196 
1197  * if the offset of the error in the transfer and a disk label
1198  * are both available.  blkdone should be -1 if the position of the error
1199  * is unknown; the disklabel pointer may be null from drivers that have not
1200  * been converted to use them.  The message is printed with kprintf
1201  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1202  * The message should be completed (with at least a newline) with kprintf
1203  * or log(-1, ...), respectively.  There is no trailing space.
1204  */
1205 void
1206 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1207 {
1208 	struct buf *bp = bio->bio_buf;
1209 	const char *term;
1210 
1211 	switch(bp->b_cmd) {
1212 	case BUF_CMD_READ:
1213 		term = "read";
1214 		break;
1215 	case BUF_CMD_WRITE:
1216 		term = "write";
1217 		break;
1218 	default:
1219 		term = "access";
1220 		break;
1221 	}
1222 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1223 	kprintf("offset %012llx for %d",
1224 		(long long)bio->bio_offset,
1225 		bp->b_bcount);
1226 
1227 	if (donecnt)
1228 		kprintf(" (%d bytes completed)", donecnt);
1229 }
1230 
1231 /*
1232  * Locate a disk device
1233  */
1234 cdev_t
1235 disk_locate(const char *devname)
1236 {
1237 	return devfs_find_device_by_name(devname);
1238 }
1239 
1240 void
1241 disk_config(void *arg)
1242 {
1243 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1244 }
1245 
1246 static void
1247 disk_init(void)
1248 {
1249 	struct thread* td_core;
1250 
1251 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1252 					 NULL, NULL, NULL,
1253 					 objcache_malloc_alloc,
1254 					 objcache_malloc_free,
1255 					 &disk_msg_malloc_args);
1256 
1257 	lwkt_token_init(&disklist_token, 1);
1258 
1259 	/*
1260 	 * Initialize the reply-only port which acts as a message drain
1261 	 */
1262 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1263 
1264 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1265 		    0, 0, "disk_msg_core");
1266 
1267 	tsleep(td_core, 0, "diskcore", 0);
1268 }
1269 
1270 static void
1271 disk_uninit(void)
1272 {
1273 	objcache_destroy(disk_msg_cache);
1274 }
1275 
1276 /*
1277  * Clean out illegal characters in serial numbers.
1278  */
1279 static void
1280 disk_cleanserial(char *serno)
1281 {
1282 	char c;
1283 
1284 	while ((c = *serno) != 0) {
1285 		if (c >= 'a' && c <= 'z')
1286 			;
1287 		else if (c >= 'A' && c <= 'Z')
1288 			;
1289 		else if (c >= '0' && c <= '9')
1290 			;
1291 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1292 			;
1293 		else
1294 			c = '_';
1295 		*serno++= c;
1296 	}
1297 }
1298 
1299 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1300 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1301 		0, "Enable subr_disk debugging");
1302 
1303 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1304 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1305