xref: /dflybsd-src/sys/kern/subr_bus.c (revision e87965eba44c127cbb0939db6545e58bd99cfb77)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 
50 #include <machine/stdarg.h>	/* for device_printf() */
51 
52 #include <sys/thread2.h>
53 #include <sys/mplock2.h>
54 
55 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
56 
57 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
58 
59 #ifdef BUS_DEBUG
60 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
61 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
62 #define DRIVERNAME(d)	((d)? d->name : "no driver")
63 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
64 
65 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
66  * prevent syslog from deleting initial spaces
67  */
68 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
69 
70 static void	print_device_short(device_t dev, int indent);
71 static void	print_device(device_t dev, int indent);
72 void		print_device_tree_short(device_t dev, int indent);
73 void		print_device_tree(device_t dev, int indent);
74 static void	print_driver_short(driver_t *driver, int indent);
75 static void	print_driver(driver_t *driver, int indent);
76 static void	print_driver_list(driver_list_t drivers, int indent);
77 static void	print_devclass_short(devclass_t dc, int indent);
78 static void	print_devclass(devclass_t dc, int indent);
79 void		print_devclass_list_short(void);
80 void		print_devclass_list(void);
81 
82 #else
83 /* Make the compiler ignore the function calls */
84 #define PDEBUG(a)			/* nop */
85 #define DEVICENAME(d)			/* nop */
86 #define DRIVERNAME(d)			/* nop */
87 #define DEVCLANAME(d)			/* nop */
88 
89 #define print_device_short(d,i)		/* nop */
90 #define print_device(d,i)		/* nop */
91 #define print_device_tree_short(d,i)	/* nop */
92 #define print_device_tree(d,i)		/* nop */
93 #define print_driver_short(d,i)		/* nop */
94 #define print_driver(d,i)		/* nop */
95 #define print_driver_list(d,i)		/* nop */
96 #define print_devclass_short(d,i)	/* nop */
97 #define print_devclass(d,i)		/* nop */
98 #define print_devclass_list_short()	/* nop */
99 #define print_devclass_list()		/* nop */
100 #endif
101 
102 static void	device_attach_async(device_t dev);
103 static void	device_attach_thread(void *arg);
104 static int	device_doattach(device_t dev);
105 
106 static int do_async_attach = 0;
107 static int numasyncthreads;
108 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
109 
110 /*
111  * /dev/devctl implementation
112  */
113 
114 /*
115  * This design allows only one reader for /dev/devctl.  This is not desirable
116  * in the long run, but will get a lot of hair out of this implementation.
117  * Maybe we should make this device a clonable device.
118  *
119  * Also note: we specifically do not attach a device to the device_t tree
120  * to avoid potential chicken and egg problems.  One could argue that all
121  * of this belongs to the root node.  One could also further argue that the
122  * sysctl interface that we have not might more properly be an ioctl
123  * interface, but at this stage of the game, I'm not inclined to rock that
124  * boat.
125  *
126  * I'm also not sure that the SIGIO support is done correctly or not, as
127  * I copied it from a driver that had SIGIO support that likely hasn't been
128  * tested since 3.4 or 2.2.8!
129  */
130 
131 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
132 static int devctl_disable = 0;
133 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
134 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
135     sysctl_devctl_disable, "I", "devctl disable");
136 
137 static d_open_t		devopen;
138 static d_close_t	devclose;
139 static d_read_t		devread;
140 static d_ioctl_t	devioctl;
141 static d_kqfilter_t	devkqfilter;
142 
143 static struct dev_ops devctl_ops = {
144 	{ "devctl", 0, 0 },
145 	.d_open =	devopen,
146 	.d_close =	devclose,
147 	.d_read =	devread,
148 	.d_ioctl =	devioctl,
149 	.d_kqfilter =	devkqfilter
150 };
151 
152 struct dev_event_info
153 {
154 	char *dei_data;
155 	TAILQ_ENTRY(dev_event_info) dei_link;
156 };
157 
158 TAILQ_HEAD(devq, dev_event_info);
159 
160 static struct dev_softc
161 {
162 	int	inuse;
163 	int	nonblock;
164 	struct lock lock;
165 	struct kqinfo kq;
166 	struct devq devq;
167 	struct proc *async_proc;
168 } devsoftc;
169 
170 static void
171 devinit(void)
172 {
173 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
174 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
175 	TAILQ_INIT(&devsoftc.devq);
176 }
177 
178 static int
179 devopen(struct dev_open_args *ap)
180 {
181 	if (devsoftc.inuse)
182 		return (EBUSY);
183 	/* move to init */
184 	devsoftc.inuse = 1;
185 	devsoftc.nonblock = 0;
186 	devsoftc.async_proc = NULL;
187 	return (0);
188 }
189 
190 static int
191 devclose(struct dev_close_args *ap)
192 {
193 	devsoftc.inuse = 0;
194 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
195 	wakeup(&devsoftc);
196 	lockmgr(&devsoftc.lock, LK_RELEASE);
197 
198 	return (0);
199 }
200 
201 /*
202  * The read channel for this device is used to report changes to
203  * userland in realtime.  We are required to free the data as well as
204  * the n1 object because we allocate them separately.  Also note that
205  * we return one record at a time.  If you try to read this device a
206  * character at a time, you will lose the rest of the data.  Listening
207  * programs are expected to cope.
208  */
209 static int
210 devread(struct dev_read_args *ap)
211 {
212 	struct uio *uio = ap->a_uio;
213 	struct dev_event_info *n1;
214 	int rv;
215 
216 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
217 	while (TAILQ_EMPTY(&devsoftc.devq)) {
218 		if (devsoftc.nonblock) {
219 			lockmgr(&devsoftc.lock, LK_RELEASE);
220 			return (EAGAIN);
221 		}
222 		tsleep_interlock(&devsoftc, PCATCH);
223 		lockmgr(&devsoftc.lock, LK_RELEASE);
224 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
225 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
226 		if (rv) {
227 			/*
228 			 * Need to translate ERESTART to EINTR here? -- jake
229 			 */
230 			lockmgr(&devsoftc.lock, LK_RELEASE);
231 			return (rv);
232 		}
233 	}
234 	n1 = TAILQ_FIRST(&devsoftc.devq);
235 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
236 	lockmgr(&devsoftc.lock, LK_RELEASE);
237 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
238 	kfree(n1->dei_data, M_BUS);
239 	kfree(n1, M_BUS);
240 	return (rv);
241 }
242 
243 static	int
244 devioctl(struct dev_ioctl_args *ap)
245 {
246 	switch (ap->a_cmd) {
247 
248 	case FIONBIO:
249 		if (*(int*)ap->a_data)
250 			devsoftc.nonblock = 1;
251 		else
252 			devsoftc.nonblock = 0;
253 		return (0);
254 	case FIOASYNC:
255 		if (*(int*)ap->a_data)
256 			devsoftc.async_proc = curproc;
257 		else
258 			devsoftc.async_proc = NULL;
259 		return (0);
260 
261 		/* (un)Support for other fcntl() calls. */
262 	case FIOCLEX:
263 	case FIONCLEX:
264 	case FIONREAD:
265 	case FIOSETOWN:
266 	case FIOGETOWN:
267 	default:
268 		break;
269 	}
270 	return (ENOTTY);
271 }
272 
273 static void dev_filter_detach(struct knote *);
274 static int dev_filter_read(struct knote *, long);
275 
276 static struct filterops dev_filtops =
277 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
278 
279 static int
280 devkqfilter(struct dev_kqfilter_args *ap)
281 {
282 	struct knote *kn = ap->a_kn;
283 	struct klist *klist;
284 
285 	ap->a_result = 0;
286 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
287 
288 	switch (kn->kn_filter) {
289 	case EVFILT_READ:
290 		kn->kn_fop = &dev_filtops;
291 		break;
292 	default:
293 		ap->a_result = EOPNOTSUPP;
294 		lockmgr(&devsoftc.lock, LK_RELEASE);
295 		return (0);
296 	}
297 
298 	klist = &devsoftc.kq.ki_note;
299 	knote_insert(klist, kn);
300 
301 	lockmgr(&devsoftc.lock, LK_RELEASE);
302 
303 	return (0);
304 }
305 
306 static void
307 dev_filter_detach(struct knote *kn)
308 {
309 	struct klist *klist;
310 
311 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
312 	klist = &devsoftc.kq.ki_note;
313 	knote_remove(klist, kn);
314 	lockmgr(&devsoftc.lock, LK_RELEASE);
315 }
316 
317 static int
318 dev_filter_read(struct knote *kn, long hint)
319 {
320 	int ready = 0;
321 
322 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
323 	if (!TAILQ_EMPTY(&devsoftc.devq))
324 		ready = 1;
325 	lockmgr(&devsoftc.lock, LK_RELEASE);
326 
327 	return (ready);
328 }
329 
330 
331 /**
332  * @brief Return whether the userland process is running
333  */
334 boolean_t
335 devctl_process_running(void)
336 {
337 	return (devsoftc.inuse == 1);
338 }
339 
340 /**
341  * @brief Queue data to be read from the devctl device
342  *
343  * Generic interface to queue data to the devctl device.  It is
344  * assumed that @p data is properly formatted.  It is further assumed
345  * that @p data is allocated using the M_BUS malloc type.
346  */
347 void
348 devctl_queue_data(char *data)
349 {
350 	struct dev_event_info *n1 = NULL;
351 	struct proc *p;
352 
353 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
354 	if (n1 == NULL)
355 		return;
356 	n1->dei_data = data;
357 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
358 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
359 	wakeup(&devsoftc);
360 	lockmgr(&devsoftc.lock, LK_RELEASE);
361 	get_mplock();	/* XXX */
362 	KNOTE(&devsoftc.kq.ki_note, 0);
363 	rel_mplock();	/* XXX */
364 	p = devsoftc.async_proc;
365 	if (p != NULL)
366 		ksignal(p, SIGIO);
367 }
368 
369 /**
370  * @brief Send a 'notification' to userland, using standard ways
371  */
372 void
373 devctl_notify(const char *system, const char *subsystem, const char *type,
374     const char *data)
375 {
376 	int len = 0;
377 	char *msg;
378 
379 	if (system == NULL)
380 		return;		/* BOGUS!  Must specify system. */
381 	if (subsystem == NULL)
382 		return;		/* BOGUS!  Must specify subsystem. */
383 	if (type == NULL)
384 		return;		/* BOGUS!  Must specify type. */
385 	len += strlen(" system=") + strlen(system);
386 	len += strlen(" subsystem=") + strlen(subsystem);
387 	len += strlen(" type=") + strlen(type);
388 	/* add in the data message plus newline. */
389 	if (data != NULL)
390 		len += strlen(data);
391 	len += 3;	/* '!', '\n', and NUL */
392 	msg = kmalloc(len, M_BUS, M_NOWAIT);
393 	if (msg == NULL)
394 		return;		/* Drop it on the floor */
395 	if (data != NULL)
396 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
397 		    system, subsystem, type, data);
398 	else
399 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
400 		    system, subsystem, type);
401 	devctl_queue_data(msg);
402 }
403 
404 /*
405  * Common routine that tries to make sending messages as easy as possible.
406  * We allocate memory for the data, copy strings into that, but do not
407  * free it unless there's an error.  The dequeue part of the driver should
408  * free the data.  We don't send data when the device is disabled.  We do
409  * send data, even when we have no listeners, because we wish to avoid
410  * races relating to startup and restart of listening applications.
411  *
412  * devaddq is designed to string together the type of event, with the
413  * object of that event, plus the plug and play info and location info
414  * for that event.  This is likely most useful for devices, but less
415  * useful for other consumers of this interface.  Those should use
416  * the devctl_queue_data() interface instead.
417  */
418 static void
419 devaddq(const char *type, const char *what, device_t dev)
420 {
421 	char *data = NULL;
422 	char *loc = NULL;
423 	char *pnp = NULL;
424 	const char *parstr;
425 
426 	if (devctl_disable)
427 		return;
428 	data = kmalloc(1024, M_BUS, M_NOWAIT);
429 	if (data == NULL)
430 		goto bad;
431 
432 	/* get the bus specific location of this device */
433 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
434 	if (loc == NULL)
435 		goto bad;
436 	*loc = '\0';
437 	bus_child_location_str(dev, loc, 1024);
438 
439 	/* Get the bus specific pnp info of this device */
440 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
441 	if (pnp == NULL)
442 		goto bad;
443 	*pnp = '\0';
444 	bus_child_pnpinfo_str(dev, pnp, 1024);
445 
446 	/* Get the parent of this device, or / if high enough in the tree. */
447 	if (device_get_parent(dev) == NULL)
448 		parstr = ".";	/* Or '/' ? */
449 	else
450 		parstr = device_get_nameunit(device_get_parent(dev));
451 	/* String it all together. */
452 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
453 	  parstr);
454 	kfree(loc, M_BUS);
455 	kfree(pnp, M_BUS);
456 	devctl_queue_data(data);
457 	return;
458 bad:
459 	kfree(pnp, M_BUS);
460 	kfree(loc, M_BUS);
461 	kfree(data, M_BUS);
462 	return;
463 }
464 
465 /*
466  * A device was added to the tree.  We are called just after it successfully
467  * attaches (that is, probe and attach success for this device).  No call
468  * is made if a device is merely parented into the tree.  See devnomatch
469  * if probe fails.  If attach fails, no notification is sent (but maybe
470  * we should have a different message for this).
471  */
472 static void
473 devadded(device_t dev)
474 {
475 	char *pnp = NULL;
476 	char *tmp = NULL;
477 
478 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
479 	if (pnp == NULL)
480 		goto fail;
481 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
482 	if (tmp == NULL)
483 		goto fail;
484 	*pnp = '\0';
485 	bus_child_pnpinfo_str(dev, pnp, 1024);
486 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
487 	devaddq("+", tmp, dev);
488 fail:
489 	if (pnp != NULL)
490 		kfree(pnp, M_BUS);
491 	if (tmp != NULL)
492 		kfree(tmp, M_BUS);
493 	return;
494 }
495 
496 /*
497  * A device was removed from the tree.  We are called just before this
498  * happens.
499  */
500 static void
501 devremoved(device_t dev)
502 {
503 	char *pnp = NULL;
504 	char *tmp = NULL;
505 
506 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
507 	if (pnp == NULL)
508 		goto fail;
509 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
510 	if (tmp == NULL)
511 		goto fail;
512 	*pnp = '\0';
513 	bus_child_pnpinfo_str(dev, pnp, 1024);
514 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
515 	devaddq("-", tmp, dev);
516 fail:
517 	if (pnp != NULL)
518 		kfree(pnp, M_BUS);
519 	if (tmp != NULL)
520 		kfree(tmp, M_BUS);
521 	return;
522 }
523 
524 /*
525  * Called when there's no match for this device.  This is only called
526  * the first time that no match happens, so we don't keep getitng this
527  * message.  Should that prove to be undesirable, we can change it.
528  * This is called when all drivers that can attach to a given bus
529  * decline to accept this device.  Other errrors may not be detected.
530  */
531 static void
532 devnomatch(device_t dev)
533 {
534 	devaddq("?", "", dev);
535 }
536 
537 static int
538 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
539 {
540 	struct dev_event_info *n1;
541 	int dis, error;
542 
543 	dis = devctl_disable;
544 	error = sysctl_handle_int(oidp, &dis, 0, req);
545 	if (error || !req->newptr)
546 		return (error);
547 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
548 	devctl_disable = dis;
549 	if (dis) {
550 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
551 			n1 = TAILQ_FIRST(&devsoftc.devq);
552 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
553 			kfree(n1->dei_data, M_BUS);
554 			kfree(n1, M_BUS);
555 		}
556 	}
557 	lockmgr(&devsoftc.lock, LK_RELEASE);
558 	return (0);
559 }
560 
561 /* End of /dev/devctl code */
562 
563 TAILQ_HEAD(,device)	bus_data_devices;
564 static int bus_data_generation = 1;
565 
566 kobj_method_t null_methods[] = {
567 	{ 0, 0 }
568 };
569 
570 DEFINE_CLASS(null, null_methods, 0);
571 
572 /*
573  * Devclass implementation
574  */
575 
576 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
577 
578 static devclass_t
579 devclass_find_internal(const char *classname, const char *parentname,
580 		       int create)
581 {
582 	devclass_t dc;
583 
584 	PDEBUG(("looking for %s", classname));
585 	if (classname == NULL)
586 		return(NULL);
587 
588 	TAILQ_FOREACH(dc, &devclasses, link)
589 		if (!strcmp(dc->name, classname))
590 			break;
591 
592 	if (create && !dc) {
593 		PDEBUG(("creating %s", classname));
594 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
595 			    M_BUS, M_INTWAIT | M_ZERO);
596 		if (!dc)
597 			return(NULL);
598 		dc->parent = NULL;
599 		dc->name = (char*) (dc + 1);
600 		strcpy(dc->name, classname);
601 		dc->devices = NULL;
602 		dc->maxunit = 0;
603 		TAILQ_INIT(&dc->drivers);
604 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
605 
606 		bus_data_generation_update();
607 
608 	}
609 
610 	/*
611 	 * If a parent class is specified, then set that as our parent so
612 	 * that this devclass will support drivers for the parent class as
613 	 * well.  If the parent class has the same name don't do this though
614 	 * as it creates a cycle that can trigger an infinite loop in
615 	 * device_probe_child() if a device exists for which there is no
616 	 * suitable driver.
617 	 */
618 	if (parentname && dc && !dc->parent &&
619 	    strcmp(classname, parentname) != 0)
620 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
621 
622 	return(dc);
623 }
624 
625 devclass_t
626 devclass_create(const char *classname)
627 {
628 	return(devclass_find_internal(classname, NULL, TRUE));
629 }
630 
631 devclass_t
632 devclass_find(const char *classname)
633 {
634 	return(devclass_find_internal(classname, NULL, FALSE));
635 }
636 
637 device_t
638 devclass_find_unit(const char *classname, int unit)
639 {
640 	devclass_t dc;
641 
642 	if ((dc = devclass_find(classname)) != NULL)
643 	    return(devclass_get_device(dc, unit));
644 	return (NULL);
645 }
646 
647 int
648 devclass_add_driver(devclass_t dc, driver_t *driver)
649 {
650 	driverlink_t dl;
651 	device_t dev;
652 	int i;
653 
654 	PDEBUG(("%s", DRIVERNAME(driver)));
655 
656 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
657 	if (!dl)
658 		return(ENOMEM);
659 
660 	/*
661 	 * Compile the driver's methods. Also increase the reference count
662 	 * so that the class doesn't get freed when the last instance
663 	 * goes. This means we can safely use static methods and avoids a
664 	 * double-free in devclass_delete_driver.
665 	 */
666 	kobj_class_instantiate(driver);
667 
668 	/*
669 	 * Make sure the devclass which the driver is implementing exists.
670 	 */
671 	devclass_find_internal(driver->name, NULL, TRUE);
672 
673 	dl->driver = driver;
674 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
675 
676 	/*
677 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
678 	 * but only if the bus has already been attached (otherwise we
679 	 * might probe too early).
680 	 *
681 	 * This is what will cause a newly loaded module to be associated
682 	 * with hardware.  bus_generic_driver_added() is typically what ends
683 	 * up being called.
684 	 */
685 	for (i = 0; i < dc->maxunit; i++) {
686 		if ((dev = dc->devices[i]) != NULL) {
687 			if (dev->state >= DS_ATTACHED)
688 				BUS_DRIVER_ADDED(dev, driver);
689 		}
690 	}
691 
692 	bus_data_generation_update();
693 	return(0);
694 }
695 
696 int
697 devclass_delete_driver(devclass_t busclass, driver_t *driver)
698 {
699 	devclass_t dc = devclass_find(driver->name);
700 	driverlink_t dl;
701 	device_t dev;
702 	int i;
703 	int error;
704 
705 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
706 
707 	if (!dc)
708 		return(0);
709 
710 	/*
711 	 * Find the link structure in the bus' list of drivers.
712 	 */
713 	TAILQ_FOREACH(dl, &busclass->drivers, link)
714 		if (dl->driver == driver)
715 			break;
716 
717 	if (!dl) {
718 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
719 		return(ENOENT);
720 	}
721 
722 	/*
723 	 * Disassociate from any devices.  We iterate through all the
724 	 * devices in the devclass of the driver and detach any which are
725 	 * using the driver and which have a parent in the devclass which
726 	 * we are deleting from.
727 	 *
728 	 * Note that since a driver can be in multiple devclasses, we
729 	 * should not detach devices which are not children of devices in
730 	 * the affected devclass.
731 	 */
732 	for (i = 0; i < dc->maxunit; i++)
733 		if (dc->devices[i]) {
734 			dev = dc->devices[i];
735 			if (dev->driver == driver && dev->parent &&
736 			    dev->parent->devclass == busclass) {
737 				if ((error = device_detach(dev)) != 0)
738 					return(error);
739 				device_set_driver(dev, NULL);
740 		    	}
741 		}
742 
743 	TAILQ_REMOVE(&busclass->drivers, dl, link);
744 	kfree(dl, M_BUS);
745 
746 	kobj_class_uninstantiate(driver);
747 
748 	bus_data_generation_update();
749 	return(0);
750 }
751 
752 static driverlink_t
753 devclass_find_driver_internal(devclass_t dc, const char *classname)
754 {
755 	driverlink_t dl;
756 
757 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
758 
759 	TAILQ_FOREACH(dl, &dc->drivers, link)
760 		if (!strcmp(dl->driver->name, classname))
761 			return(dl);
762 
763 	PDEBUG(("not found"));
764 	return(NULL);
765 }
766 
767 kobj_class_t
768 devclass_find_driver(devclass_t dc, const char *classname)
769 {
770 	driverlink_t dl;
771 
772 	dl = devclass_find_driver_internal(dc, classname);
773 	if (dl)
774 		return(dl->driver);
775 	else
776 		return(NULL);
777 }
778 
779 const char *
780 devclass_get_name(devclass_t dc)
781 {
782 	return(dc->name);
783 }
784 
785 device_t
786 devclass_get_device(devclass_t dc, int unit)
787 {
788 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
789 		return(NULL);
790 	return(dc->devices[unit]);
791 }
792 
793 void *
794 devclass_get_softc(devclass_t dc, int unit)
795 {
796 	device_t dev;
797 
798 	dev = devclass_get_device(dc, unit);
799 	if (!dev)
800 		return(NULL);
801 
802 	return(device_get_softc(dev));
803 }
804 
805 int
806 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
807 {
808 	int i;
809 	int count;
810 	device_t *list;
811 
812 	count = 0;
813 	for (i = 0; i < dc->maxunit; i++)
814 		if (dc->devices[i])
815 			count++;
816 
817 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
818 	if (list == NULL)
819 		return(ENOMEM);
820 
821 	count = 0;
822 	for (i = 0; i < dc->maxunit; i++)
823 		if (dc->devices[i]) {
824 			list[count] = dc->devices[i];
825 			count++;
826 		}
827 
828 	*devlistp = list;
829 	*devcountp = count;
830 
831 	return(0);
832 }
833 
834 /**
835  * @brief Get a list of drivers in the devclass
836  *
837  * An array containing a list of pointers to all the drivers in the
838  * given devclass is allocated and returned in @p *listp.  The number
839  * of drivers in the array is returned in @p *countp. The caller should
840  * free the array using @c free(p, M_TEMP).
841  *
842  * @param dc            the devclass to examine
843  * @param listp         gives location for array pointer return value
844  * @param countp        gives location for number of array elements
845  *                      return value
846  *
847  * @retval 0            success
848  * @retval ENOMEM       the array allocation failed
849  */
850 int
851 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
852 {
853         driverlink_t dl;
854         driver_t **list;
855         int count;
856 
857         count = 0;
858         TAILQ_FOREACH(dl, &dc->drivers, link)
859                 count++;
860         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
861         if (list == NULL)
862                 return (ENOMEM);
863 
864         count = 0;
865         TAILQ_FOREACH(dl, &dc->drivers, link) {
866                 list[count] = dl->driver;
867                 count++;
868         }
869         *listp = list;
870         *countp = count;
871 
872         return (0);
873 }
874 
875 /**
876  * @brief Get the number of devices in a devclass
877  *
878  * @param dc		the devclass to examine
879  */
880 int
881 devclass_get_count(devclass_t dc)
882 {
883 	int count, i;
884 
885 	count = 0;
886 	for (i = 0; i < dc->maxunit; i++)
887 		if (dc->devices[i])
888 			count++;
889 	return (count);
890 }
891 
892 int
893 devclass_get_maxunit(devclass_t dc)
894 {
895 	return(dc->maxunit);
896 }
897 
898 void
899 devclass_set_parent(devclass_t dc, devclass_t pdc)
900 {
901         dc->parent = pdc;
902 }
903 
904 devclass_t
905 devclass_get_parent(devclass_t dc)
906 {
907 	return(dc->parent);
908 }
909 
910 static int
911 devclass_alloc_unit(devclass_t dc, int *unitp)
912 {
913 	int unit = *unitp;
914 
915 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
916 
917 	/* If we have been given a wired unit number, check for existing device */
918 	if (unit != -1) {
919 		if (unit >= 0 && unit < dc->maxunit &&
920 		    dc->devices[unit] != NULL) {
921 			if (bootverbose)
922 				kprintf("%s-: %s%d exists, using next available unit number\n",
923 				       dc->name, dc->name, unit);
924 			/* find the next available slot */
925 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
926 				;
927 		}
928 	} else {
929 		/* Unwired device, find the next available slot for it */
930 		unit = 0;
931 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
932 			unit++;
933 	}
934 
935 	/*
936 	 * We've selected a unit beyond the length of the table, so let's
937 	 * extend the table to make room for all units up to and including
938 	 * this one.
939 	 */
940 	if (unit >= dc->maxunit) {
941 		device_t *newlist;
942 		int newsize;
943 
944 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
945 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
946 				 M_INTWAIT | M_ZERO);
947 		if (newlist == NULL)
948 			return(ENOMEM);
949 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
950 		if (dc->devices)
951 			kfree(dc->devices, M_BUS);
952 		dc->devices = newlist;
953 		dc->maxunit = newsize;
954 	}
955 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
956 
957 	*unitp = unit;
958 	return(0);
959 }
960 
961 static int
962 devclass_add_device(devclass_t dc, device_t dev)
963 {
964 	int buflen, error;
965 
966 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
967 
968 	buflen = strlen(dc->name) + 5;
969 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
970 	if (!dev->nameunit)
971 		return(ENOMEM);
972 
973 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
974 		kfree(dev->nameunit, M_BUS);
975 		dev->nameunit = NULL;
976 		return(error);
977 	}
978 	dc->devices[dev->unit] = dev;
979 	dev->devclass = dc;
980 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
981 
982 	return(0);
983 }
984 
985 static int
986 devclass_delete_device(devclass_t dc, device_t dev)
987 {
988 	if (!dc || !dev)
989 		return(0);
990 
991 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
992 
993 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
994 		panic("devclass_delete_device: inconsistent device class");
995 	dc->devices[dev->unit] = NULL;
996 	if (dev->flags & DF_WILDCARD)
997 		dev->unit = -1;
998 	dev->devclass = NULL;
999 	kfree(dev->nameunit, M_BUS);
1000 	dev->nameunit = NULL;
1001 
1002 	return(0);
1003 }
1004 
1005 static device_t
1006 make_device(device_t parent, const char *name, int unit)
1007 {
1008 	device_t dev;
1009 	devclass_t dc;
1010 
1011 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1012 
1013 	if (name != NULL) {
1014 		dc = devclass_find_internal(name, NULL, TRUE);
1015 		if (!dc) {
1016 			kprintf("make_device: can't find device class %s\n", name);
1017 			return(NULL);
1018 		}
1019 	} else
1020 		dc = NULL;
1021 
1022 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1023 	if (!dev)
1024 		return(0);
1025 
1026 	dev->parent = parent;
1027 	TAILQ_INIT(&dev->children);
1028 	kobj_init((kobj_t) dev, &null_class);
1029 	dev->driver = NULL;
1030 	dev->devclass = NULL;
1031 	dev->unit = unit;
1032 	dev->nameunit = NULL;
1033 	dev->desc = NULL;
1034 	dev->busy = 0;
1035 	dev->devflags = 0;
1036 	dev->flags = DF_ENABLED;
1037 	dev->order = 0;
1038 	if (unit == -1)
1039 		dev->flags |= DF_WILDCARD;
1040 	if (name) {
1041 		dev->flags |= DF_FIXEDCLASS;
1042 		if (devclass_add_device(dc, dev) != 0) {
1043 			kobj_delete((kobj_t)dev, M_BUS);
1044 			return(NULL);
1045 		}
1046     	}
1047 	dev->ivars = NULL;
1048 	dev->softc = NULL;
1049 
1050 	dev->state = DS_NOTPRESENT;
1051 
1052 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1053 	bus_data_generation_update();
1054 
1055 	return(dev);
1056 }
1057 
1058 static int
1059 device_print_child(device_t dev, device_t child)
1060 {
1061 	int retval = 0;
1062 
1063 	if (device_is_alive(child))
1064 		retval += BUS_PRINT_CHILD(dev, child);
1065 	else
1066 		retval += device_printf(child, " not found\n");
1067 
1068 	return(retval);
1069 }
1070 
1071 device_t
1072 device_add_child(device_t dev, const char *name, int unit)
1073 {
1074 	return device_add_child_ordered(dev, 0, name, unit);
1075 }
1076 
1077 device_t
1078 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1079 {
1080 	device_t child;
1081 	device_t place;
1082 
1083 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1084 		order, unit));
1085 
1086 	child = make_device(dev, name, unit);
1087 	if (child == NULL)
1088 		return child;
1089 	child->order = order;
1090 
1091 	TAILQ_FOREACH(place, &dev->children, link)
1092 		if (place->order > order)
1093 			break;
1094 
1095 	if (place) {
1096 		/*
1097 		 * The device 'place' is the first device whose order is
1098 		 * greater than the new child.
1099 		 */
1100 		TAILQ_INSERT_BEFORE(place, child, link);
1101 	} else {
1102 		/*
1103 		 * The new child's order is greater or equal to the order of
1104 		 * any existing device. Add the child to the tail of the list.
1105 		 */
1106 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1107     	}
1108 
1109 	bus_data_generation_update();
1110 	return(child);
1111 }
1112 
1113 int
1114 device_delete_child(device_t dev, device_t child)
1115 {
1116 	int error;
1117 	device_t grandchild;
1118 
1119 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1120 
1121 	/* remove children first */
1122 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1123         	error = device_delete_child(child, grandchild);
1124 		if (error)
1125 			return(error);
1126 	}
1127 
1128 	if ((error = device_detach(child)) != 0)
1129 		return(error);
1130 	if (child->devclass)
1131 		devclass_delete_device(child->devclass, child);
1132 	TAILQ_REMOVE(&dev->children, child, link);
1133 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1134 	device_set_desc(child, NULL);
1135 	kobj_delete((kobj_t)child, M_BUS);
1136 
1137 	bus_data_generation_update();
1138 	return(0);
1139 }
1140 
1141 /**
1142  * @brief Find a device given a unit number
1143  *
1144  * This is similar to devclass_get_devices() but only searches for
1145  * devices which have @p dev as a parent.
1146  *
1147  * @param dev		the parent device to search
1148  * @param unit		the unit number to search for.  If the unit is -1,
1149  *			return the first child of @p dev which has name
1150  *			@p classname (that is, the one with the lowest unit.)
1151  *
1152  * @returns		the device with the given unit number or @c
1153  *			NULL if there is no such device
1154  */
1155 device_t
1156 device_find_child(device_t dev, const char *classname, int unit)
1157 {
1158 	devclass_t dc;
1159 	device_t child;
1160 
1161 	dc = devclass_find(classname);
1162 	if (!dc)
1163 		return(NULL);
1164 
1165 	if (unit != -1) {
1166 		child = devclass_get_device(dc, unit);
1167 		if (child && child->parent == dev)
1168 			return (child);
1169 	} else {
1170 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1171 			child = devclass_get_device(dc, unit);
1172 			if (child && child->parent == dev)
1173 				return (child);
1174 		}
1175 	}
1176 	return(NULL);
1177 }
1178 
1179 static driverlink_t
1180 first_matching_driver(devclass_t dc, device_t dev)
1181 {
1182 	if (dev->devclass)
1183 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1184 	else
1185 		return(TAILQ_FIRST(&dc->drivers));
1186 }
1187 
1188 static driverlink_t
1189 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1190 {
1191 	if (dev->devclass) {
1192 		driverlink_t dl;
1193 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1194 			if (!strcmp(dev->devclass->name, dl->driver->name))
1195 				return(dl);
1196 		return(NULL);
1197 	} else
1198 		return(TAILQ_NEXT(last, link));
1199 }
1200 
1201 static int
1202 device_probe_child(device_t dev, device_t child)
1203 {
1204 	devclass_t dc;
1205 	driverlink_t best = 0;
1206 	driverlink_t dl;
1207 	int result, pri = 0;
1208 	int hasclass = (child->devclass != 0);
1209 
1210 	dc = dev->devclass;
1211 	if (!dc)
1212 		panic("device_probe_child: parent device has no devclass");
1213 
1214 	if (child->state == DS_ALIVE)
1215 		return(0);
1216 
1217 	for (; dc; dc = dc->parent) {
1218     		for (dl = first_matching_driver(dc, child); dl;
1219 		     dl = next_matching_driver(dc, child, dl)) {
1220 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1221 			device_set_driver(child, dl->driver);
1222 			if (!hasclass)
1223 				device_set_devclass(child, dl->driver->name);
1224 			result = DEVICE_PROBE(child);
1225 			if (!hasclass)
1226 				device_set_devclass(child, 0);
1227 
1228 			/*
1229 			 * If the driver returns SUCCESS, there can be
1230 			 * no higher match for this device.
1231 			 */
1232 			if (result == 0) {
1233 				best = dl;
1234 				pri = 0;
1235 				break;
1236 			}
1237 
1238 			/*
1239 			 * The driver returned an error so it
1240 			 * certainly doesn't match.
1241 			 */
1242 			if (result > 0) {
1243 				device_set_driver(child, 0);
1244 				continue;
1245 			}
1246 
1247 			/*
1248 			 * A priority lower than SUCCESS, remember the
1249 			 * best matching driver. Initialise the value
1250 			 * of pri for the first match.
1251 			 */
1252 			if (best == 0 || result > pri) {
1253 				best = dl;
1254 				pri = result;
1255 				continue;
1256 			}
1257 	        }
1258 		/*
1259 	         * If we have unambiguous match in this devclass,
1260 	         * don't look in the parent.
1261 	         */
1262 	        if (best && pri == 0)
1263 	    	        break;
1264 	}
1265 
1266 	/*
1267 	 * If we found a driver, change state and initialise the devclass.
1268 	 */
1269 	if (best) {
1270 		if (!child->devclass)
1271 			device_set_devclass(child, best->driver->name);
1272 		device_set_driver(child, best->driver);
1273 		if (pri < 0) {
1274 			/*
1275 			 * A bit bogus. Call the probe method again to make
1276 			 * sure that we have the right description.
1277 			 */
1278 			DEVICE_PROBE(child);
1279 		}
1280 
1281 		bus_data_generation_update();
1282 		child->state = DS_ALIVE;
1283 		return(0);
1284 	}
1285 
1286 	return(ENXIO);
1287 }
1288 
1289 device_t
1290 device_get_parent(device_t dev)
1291 {
1292 	return dev->parent;
1293 }
1294 
1295 int
1296 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1297 {
1298 	int count;
1299 	device_t child;
1300 	device_t *list;
1301 
1302 	count = 0;
1303 	TAILQ_FOREACH(child, &dev->children, link)
1304 		count++;
1305 
1306 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1307 	if (!list)
1308 		return(ENOMEM);
1309 
1310 	count = 0;
1311 	TAILQ_FOREACH(child, &dev->children, link) {
1312 		list[count] = child;
1313 		count++;
1314 	}
1315 
1316 	*devlistp = list;
1317 	*devcountp = count;
1318 
1319 	return(0);
1320 }
1321 
1322 driver_t *
1323 device_get_driver(device_t dev)
1324 {
1325 	return(dev->driver);
1326 }
1327 
1328 devclass_t
1329 device_get_devclass(device_t dev)
1330 {
1331 	return(dev->devclass);
1332 }
1333 
1334 const char *
1335 device_get_name(device_t dev)
1336 {
1337 	if (dev->devclass)
1338 		return devclass_get_name(dev->devclass);
1339 	return(NULL);
1340 }
1341 
1342 const char *
1343 device_get_nameunit(device_t dev)
1344 {
1345 	return(dev->nameunit);
1346 }
1347 
1348 int
1349 device_get_unit(device_t dev)
1350 {
1351 	return(dev->unit);
1352 }
1353 
1354 const char *
1355 device_get_desc(device_t dev)
1356 {
1357 	return(dev->desc);
1358 }
1359 
1360 uint32_t
1361 device_get_flags(device_t dev)
1362 {
1363 	return(dev->devflags);
1364 }
1365 
1366 int
1367 device_print_prettyname(device_t dev)
1368 {
1369 	const char *name = device_get_name(dev);
1370 
1371 	if (name == 0)
1372 		return kprintf("unknown: ");
1373 	else
1374 		return kprintf("%s%d: ", name, device_get_unit(dev));
1375 }
1376 
1377 int
1378 device_printf(device_t dev, const char * fmt, ...)
1379 {
1380 	__va_list ap;
1381 	int retval;
1382 
1383 	retval = device_print_prettyname(dev);
1384 	__va_start(ap, fmt);
1385 	retval += kvprintf(fmt, ap);
1386 	__va_end(ap);
1387 	return retval;
1388 }
1389 
1390 static void
1391 device_set_desc_internal(device_t dev, const char* desc, int copy)
1392 {
1393 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1394 		kfree(dev->desc, M_BUS);
1395 		dev->flags &= ~DF_DESCMALLOCED;
1396 		dev->desc = NULL;
1397 	}
1398 
1399 	if (copy && desc) {
1400 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1401 		if (dev->desc) {
1402 			strcpy(dev->desc, desc);
1403 			dev->flags |= DF_DESCMALLOCED;
1404 		}
1405 	} else {
1406 		/* Avoid a -Wcast-qual warning */
1407 		dev->desc = (char *)(uintptr_t) desc;
1408 	}
1409 
1410 	bus_data_generation_update();
1411 }
1412 
1413 void
1414 device_set_desc(device_t dev, const char* desc)
1415 {
1416 	device_set_desc_internal(dev, desc, FALSE);
1417 }
1418 
1419 void
1420 device_set_desc_copy(device_t dev, const char* desc)
1421 {
1422 	device_set_desc_internal(dev, desc, TRUE);
1423 }
1424 
1425 void
1426 device_set_flags(device_t dev, uint32_t flags)
1427 {
1428 	dev->devflags = flags;
1429 }
1430 
1431 void *
1432 device_get_softc(device_t dev)
1433 {
1434 	return dev->softc;
1435 }
1436 
1437 void
1438 device_set_softc(device_t dev, void *softc)
1439 {
1440 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1441 		kfree(dev->softc, M_BUS);
1442 	dev->softc = softc;
1443 	if (dev->softc)
1444 		dev->flags |= DF_EXTERNALSOFTC;
1445 	else
1446 		dev->flags &= ~DF_EXTERNALSOFTC;
1447 }
1448 
1449 void
1450 device_set_async_attach(device_t dev, int enable)
1451 {
1452 	if (enable)
1453 		dev->flags |= DF_ASYNCPROBE;
1454 	else
1455 		dev->flags &= ~DF_ASYNCPROBE;
1456 }
1457 
1458 void *
1459 device_get_ivars(device_t dev)
1460 {
1461 	return dev->ivars;
1462 }
1463 
1464 void
1465 device_set_ivars(device_t dev, void * ivars)
1466 {
1467 	if (!dev)
1468 		return;
1469 
1470 	dev->ivars = ivars;
1471 }
1472 
1473 device_state_t
1474 device_get_state(device_t dev)
1475 {
1476 	return(dev->state);
1477 }
1478 
1479 void
1480 device_enable(device_t dev)
1481 {
1482 	dev->flags |= DF_ENABLED;
1483 }
1484 
1485 void
1486 device_disable(device_t dev)
1487 {
1488 	dev->flags &= ~DF_ENABLED;
1489 }
1490 
1491 /*
1492  * YYY cannot block
1493  */
1494 void
1495 device_busy(device_t dev)
1496 {
1497 	if (dev->state < DS_ATTACHED)
1498 		panic("device_busy: called for unattached device");
1499 	if (dev->busy == 0 && dev->parent)
1500 		device_busy(dev->parent);
1501 	dev->busy++;
1502 	dev->state = DS_BUSY;
1503 }
1504 
1505 /*
1506  * YYY cannot block
1507  */
1508 void
1509 device_unbusy(device_t dev)
1510 {
1511 	if (dev->state != DS_BUSY)
1512 		panic("device_unbusy: called for non-busy device");
1513 	dev->busy--;
1514 	if (dev->busy == 0) {
1515 		if (dev->parent)
1516 			device_unbusy(dev->parent);
1517 		dev->state = DS_ATTACHED;
1518 	}
1519 }
1520 
1521 void
1522 device_quiet(device_t dev)
1523 {
1524 	dev->flags |= DF_QUIET;
1525 }
1526 
1527 void
1528 device_verbose(device_t dev)
1529 {
1530 	dev->flags &= ~DF_QUIET;
1531 }
1532 
1533 int
1534 device_is_quiet(device_t dev)
1535 {
1536 	return((dev->flags & DF_QUIET) != 0);
1537 }
1538 
1539 int
1540 device_is_enabled(device_t dev)
1541 {
1542 	return((dev->flags & DF_ENABLED) != 0);
1543 }
1544 
1545 int
1546 device_is_alive(device_t dev)
1547 {
1548 	return(dev->state >= DS_ALIVE);
1549 }
1550 
1551 int
1552 device_is_attached(device_t dev)
1553 {
1554 	return(dev->state >= DS_ATTACHED);
1555 }
1556 
1557 int
1558 device_set_devclass(device_t dev, const char *classname)
1559 {
1560 	devclass_t dc;
1561 	int error;
1562 
1563 	if (!classname) {
1564 		if (dev->devclass)
1565 			devclass_delete_device(dev->devclass, dev);
1566 		return(0);
1567 	}
1568 
1569 	if (dev->devclass) {
1570 		kprintf("device_set_devclass: device class already set\n");
1571 		return(EINVAL);
1572 	}
1573 
1574 	dc = devclass_find_internal(classname, NULL, TRUE);
1575 	if (!dc)
1576 		return(ENOMEM);
1577 
1578 	error = devclass_add_device(dc, dev);
1579 
1580 	bus_data_generation_update();
1581 	return(error);
1582 }
1583 
1584 int
1585 device_set_driver(device_t dev, driver_t *driver)
1586 {
1587 	if (dev->state >= DS_ATTACHED)
1588 		return(EBUSY);
1589 
1590 	if (dev->driver == driver)
1591 		return(0);
1592 
1593 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1594 		kfree(dev->softc, M_BUS);
1595 		dev->softc = NULL;
1596 	}
1597 	kobj_delete((kobj_t) dev, 0);
1598 	dev->driver = driver;
1599 	if (driver) {
1600 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1601 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1602 			dev->softc = kmalloc(driver->size, M_BUS,
1603 					    M_INTWAIT | M_ZERO);
1604 			if (!dev->softc) {
1605 				kobj_delete((kobj_t)dev, 0);
1606 				kobj_init((kobj_t) dev, &null_class);
1607 				dev->driver = NULL;
1608 				return(ENOMEM);
1609 	    		}
1610 		}
1611 	} else {
1612 		kobj_init((kobj_t) dev, &null_class);
1613 	}
1614 
1615 	bus_data_generation_update();
1616 	return(0);
1617 }
1618 
1619 int
1620 device_probe_and_attach(device_t dev)
1621 {
1622 	device_t bus = dev->parent;
1623 	int error = 0;
1624 
1625 	if (dev->state >= DS_ALIVE)
1626 		return(0);
1627 
1628 	if ((dev->flags & DF_ENABLED) == 0) {
1629 		if (bootverbose) {
1630 			device_print_prettyname(dev);
1631 			kprintf("not probed (disabled)\n");
1632 		}
1633 		return(0);
1634 	}
1635 
1636 	error = device_probe_child(bus, dev);
1637 	if (error) {
1638 		if (!(dev->flags & DF_DONENOMATCH)) {
1639 			BUS_PROBE_NOMATCH(bus, dev);
1640 			devnomatch(dev);
1641 			dev->flags |= DF_DONENOMATCH;
1642 		}
1643 		return(error);
1644 	}
1645 
1646 	/*
1647 	 * Output the exact device chain prior to the attach in case the
1648 	 * system locks up during attach, and generate the full info after
1649 	 * the attach so correct irq and other information is displayed.
1650 	 */
1651 	if (bootverbose && !device_is_quiet(dev)) {
1652 		device_t tmp;
1653 
1654 		kprintf("%s", device_get_nameunit(dev));
1655 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1656 			kprintf(".%s", device_get_nameunit(tmp));
1657 		kprintf("\n");
1658 	}
1659 	if (!device_is_quiet(dev))
1660 		device_print_child(bus, dev);
1661 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1662 		kprintf("%s: probing asynchronously\n",
1663 			device_get_nameunit(dev));
1664 		dev->state = DS_INPROGRESS;
1665 		device_attach_async(dev);
1666 		error = 0;
1667 	} else {
1668 		error = device_doattach(dev);
1669 	}
1670 	return(error);
1671 }
1672 
1673 /*
1674  * Device is known to be alive, do the attach asynchronously.
1675  * However, serialize the attaches with the mp lock.
1676  */
1677 static void
1678 device_attach_async(device_t dev)
1679 {
1680 	thread_t td;
1681 
1682 	atomic_add_int(&numasyncthreads, 1);
1683 	lwkt_create(device_attach_thread, dev, &td, NULL,
1684 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1685 }
1686 
1687 static void
1688 device_attach_thread(void *arg)
1689 {
1690 	device_t dev = arg;
1691 
1692 	get_mplock();	/* XXX replace with devattach_token later */
1693 	(void)device_doattach(dev);
1694 	atomic_subtract_int(&numasyncthreads, 1);
1695 	wakeup(&numasyncthreads);
1696 	rel_mplock();	/* XXX replace with devattach_token later */
1697 }
1698 
1699 /*
1700  * Device is known to be alive, do the attach (synchronous or asynchronous)
1701  */
1702 static int
1703 device_doattach(device_t dev)
1704 {
1705 	device_t bus = dev->parent;
1706 	int hasclass = (dev->devclass != 0);
1707 	int error;
1708 
1709 	error = DEVICE_ATTACH(dev);
1710 	if (error == 0) {
1711 		dev->state = DS_ATTACHED;
1712 		if (bootverbose && !device_is_quiet(dev))
1713 			device_print_child(bus, dev);
1714 		devadded(dev);
1715 	} else {
1716 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1717 		       dev->driver->name, dev->unit, error);
1718 		/* Unset the class that was set in device_probe_child */
1719 		if (!hasclass)
1720 			device_set_devclass(dev, 0);
1721 		device_set_driver(dev, NULL);
1722 		dev->state = DS_NOTPRESENT;
1723 	}
1724 	return(error);
1725 }
1726 
1727 int
1728 device_detach(device_t dev)
1729 {
1730 	int error;
1731 
1732 	PDEBUG(("%s", DEVICENAME(dev)));
1733 	if (dev->state == DS_BUSY)
1734 		return(EBUSY);
1735 	if (dev->state != DS_ATTACHED)
1736 		return(0);
1737 
1738 	if ((error = DEVICE_DETACH(dev)) != 0)
1739 		return(error);
1740 	devremoved(dev);
1741 	device_printf(dev, "detached\n");
1742 	if (dev->parent)
1743 		BUS_CHILD_DETACHED(dev->parent, dev);
1744 
1745 	if (!(dev->flags & DF_FIXEDCLASS))
1746 		devclass_delete_device(dev->devclass, dev);
1747 
1748 	dev->state = DS_NOTPRESENT;
1749 	device_set_driver(dev, NULL);
1750 
1751 	return(0);
1752 }
1753 
1754 int
1755 device_shutdown(device_t dev)
1756 {
1757 	if (dev->state < DS_ATTACHED)
1758 		return 0;
1759 	PDEBUG(("%s", DEVICENAME(dev)));
1760 	return DEVICE_SHUTDOWN(dev);
1761 }
1762 
1763 int
1764 device_set_unit(device_t dev, int unit)
1765 {
1766 	devclass_t dc;
1767 	int err;
1768 
1769 	dc = device_get_devclass(dev);
1770 	if (unit < dc->maxunit && dc->devices[unit])
1771 		return(EBUSY);
1772 	err = devclass_delete_device(dc, dev);
1773 	if (err)
1774 		return(err);
1775 	dev->unit = unit;
1776 	err = devclass_add_device(dc, dev);
1777 	if (err)
1778 		return(err);
1779 
1780 	bus_data_generation_update();
1781 	return(0);
1782 }
1783 
1784 /*======================================*/
1785 /*
1786  * Access functions for device resources.
1787  */
1788 
1789 /* Supplied by config(8) in ioconf.c */
1790 extern struct config_device config_devtab[];
1791 extern int devtab_count;
1792 
1793 /* Runtime version */
1794 struct config_device *devtab = config_devtab;
1795 
1796 static int
1797 resource_new_name(const char *name, int unit)
1798 {
1799 	struct config_device *new;
1800 
1801 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1802 		     M_INTWAIT | M_ZERO);
1803 	if (new == NULL)
1804 		return(-1);
1805 	if (devtab && devtab_count > 0)
1806 		bcopy(devtab, new, devtab_count * sizeof(*new));
1807 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1808 	if (new[devtab_count].name == NULL) {
1809 		kfree(new, M_TEMP);
1810 		return(-1);
1811 	}
1812 	strcpy(new[devtab_count].name, name);
1813 	new[devtab_count].unit = unit;
1814 	new[devtab_count].resource_count = 0;
1815 	new[devtab_count].resources = NULL;
1816 	if (devtab && devtab != config_devtab)
1817 		kfree(devtab, M_TEMP);
1818 	devtab = new;
1819 	return devtab_count++;
1820 }
1821 
1822 static int
1823 resource_new_resname(int j, const char *resname, resource_type type)
1824 {
1825 	struct config_resource *new;
1826 	int i;
1827 
1828 	i = devtab[j].resource_count;
1829 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1830 	if (new == NULL)
1831 		return(-1);
1832 	if (devtab[j].resources && i > 0)
1833 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1834 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1835 	if (new[i].name == NULL) {
1836 		kfree(new, M_TEMP);
1837 		return(-1);
1838 	}
1839 	strcpy(new[i].name, resname);
1840 	new[i].type = type;
1841 	if (devtab[j].resources)
1842 		kfree(devtab[j].resources, M_TEMP);
1843 	devtab[j].resources = new;
1844 	devtab[j].resource_count = i + 1;
1845 	return(i);
1846 }
1847 
1848 static int
1849 resource_match_string(int i, const char *resname, const char *value)
1850 {
1851 	int j;
1852 	struct config_resource *res;
1853 
1854 	for (j = 0, res = devtab[i].resources;
1855 	     j < devtab[i].resource_count; j++, res++)
1856 		if (!strcmp(res->name, resname)
1857 		    && res->type == RES_STRING
1858 		    && !strcmp(res->u.stringval, value))
1859 			return(j);
1860 	return(-1);
1861 }
1862 
1863 static int
1864 resource_find(const char *name, int unit, const char *resname,
1865 	      struct config_resource **result)
1866 {
1867 	int i, j;
1868 	struct config_resource *res;
1869 
1870 	/*
1871 	 * First check specific instances, then generic.
1872 	 */
1873 	for (i = 0; i < devtab_count; i++) {
1874 		if (devtab[i].unit < 0)
1875 			continue;
1876 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1877 			res = devtab[i].resources;
1878 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1879 				if (!strcmp(res->name, resname)) {
1880 					*result = res;
1881 					return(0);
1882 				}
1883 		}
1884 	}
1885 	for (i = 0; i < devtab_count; i++) {
1886 		if (devtab[i].unit >= 0)
1887 			continue;
1888 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1889 		/* XXX if so, then the generic match does nothing */
1890 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1891 			res = devtab[i].resources;
1892 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1893 				if (!strcmp(res->name, resname)) {
1894 					*result = res;
1895 					return(0);
1896 				}
1897 		}
1898 	}
1899 	return(ENOENT);
1900 }
1901 
1902 int
1903 resource_int_value(const char *name, int unit, const char *resname, int *result)
1904 {
1905 	int error;
1906 	struct config_resource *res;
1907 
1908 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1909 		return(error);
1910 	if (res->type != RES_INT)
1911 		return(EFTYPE);
1912 	*result = res->u.intval;
1913 	return(0);
1914 }
1915 
1916 int
1917 resource_long_value(const char *name, int unit, const char *resname,
1918 		    long *result)
1919 {
1920 	int error;
1921 	struct config_resource *res;
1922 
1923 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1924 		return(error);
1925 	if (res->type != RES_LONG)
1926 		return(EFTYPE);
1927 	*result = res->u.longval;
1928 	return(0);
1929 }
1930 
1931 int
1932 resource_string_value(const char *name, int unit, const char *resname,
1933 		      char **result)
1934 {
1935 	int error;
1936 	struct config_resource *res;
1937 
1938 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1939 		return(error);
1940 	if (res->type != RES_STRING)
1941 		return(EFTYPE);
1942 	*result = res->u.stringval;
1943 	return(0);
1944 }
1945 
1946 int
1947 resource_query_string(int i, const char *resname, const char *value)
1948 {
1949 	if (i < 0)
1950 		i = 0;
1951 	else
1952 		i = i + 1;
1953 	for (; i < devtab_count; i++)
1954 		if (resource_match_string(i, resname, value) >= 0)
1955 			return(i);
1956 	return(-1);
1957 }
1958 
1959 int
1960 resource_locate(int i, const char *resname)
1961 {
1962 	if (i < 0)
1963 		i = 0;
1964 	else
1965 		i = i + 1;
1966 	for (; i < devtab_count; i++)
1967 		if (!strcmp(devtab[i].name, resname))
1968 			return(i);
1969 	return(-1);
1970 }
1971 
1972 int
1973 resource_count(void)
1974 {
1975 	return(devtab_count);
1976 }
1977 
1978 char *
1979 resource_query_name(int i)
1980 {
1981 	return(devtab[i].name);
1982 }
1983 
1984 int
1985 resource_query_unit(int i)
1986 {
1987 	return(devtab[i].unit);
1988 }
1989 
1990 static int
1991 resource_create(const char *name, int unit, const char *resname,
1992 		resource_type type, struct config_resource **result)
1993 {
1994 	int i, j;
1995 	struct config_resource *res = NULL;
1996 
1997 	for (i = 0; i < devtab_count; i++)
1998 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1999 			res = devtab[i].resources;
2000 			break;
2001 		}
2002 	if (res == NULL) {
2003 		i = resource_new_name(name, unit);
2004 		if (i < 0)
2005 			return(ENOMEM);
2006 		res = devtab[i].resources;
2007 	}
2008 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2009 		if (!strcmp(res->name, resname)) {
2010 			*result = res;
2011 			return(0);
2012 		}
2013 	j = resource_new_resname(i, resname, type);
2014 	if (j < 0)
2015 		return(ENOMEM);
2016 	res = &devtab[i].resources[j];
2017 	*result = res;
2018 	return(0);
2019 }
2020 
2021 int
2022 resource_set_int(const char *name, int unit, const char *resname, int value)
2023 {
2024 	int error;
2025 	struct config_resource *res;
2026 
2027 	error = resource_create(name, unit, resname, RES_INT, &res);
2028 	if (error)
2029 		return(error);
2030 	if (res->type != RES_INT)
2031 		return(EFTYPE);
2032 	res->u.intval = value;
2033 	return(0);
2034 }
2035 
2036 int
2037 resource_set_long(const char *name, int unit, const char *resname, long value)
2038 {
2039 	int error;
2040 	struct config_resource *res;
2041 
2042 	error = resource_create(name, unit, resname, RES_LONG, &res);
2043 	if (error)
2044 		return(error);
2045 	if (res->type != RES_LONG)
2046 		return(EFTYPE);
2047 	res->u.longval = value;
2048 	return(0);
2049 }
2050 
2051 int
2052 resource_set_string(const char *name, int unit, const char *resname,
2053 		    const char *value)
2054 {
2055 	int error;
2056 	struct config_resource *res;
2057 
2058 	error = resource_create(name, unit, resname, RES_STRING, &res);
2059 	if (error)
2060 		return(error);
2061 	if (res->type != RES_STRING)
2062 		return(EFTYPE);
2063 	if (res->u.stringval)
2064 		kfree(res->u.stringval, M_TEMP);
2065 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2066 	if (res->u.stringval == NULL)
2067 		return(ENOMEM);
2068 	strcpy(res->u.stringval, value);
2069 	return(0);
2070 }
2071 
2072 static void
2073 resource_cfgload(void *dummy __unused)
2074 {
2075 	struct config_resource *res, *cfgres;
2076 	int i, j;
2077 	int error;
2078 	char *name, *resname;
2079 	int unit;
2080 	resource_type type;
2081 	char *stringval;
2082 	int config_devtab_count;
2083 
2084 	config_devtab_count = devtab_count;
2085 	devtab = NULL;
2086 	devtab_count = 0;
2087 
2088 	for (i = 0; i < config_devtab_count; i++) {
2089 		name = config_devtab[i].name;
2090 		unit = config_devtab[i].unit;
2091 
2092 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2093 			cfgres = config_devtab[i].resources;
2094 			resname = cfgres[j].name;
2095 			type = cfgres[j].type;
2096 			error = resource_create(name, unit, resname, type,
2097 						&res);
2098 			if (error) {
2099 				kprintf("create resource %s%d: error %d\n",
2100 					name, unit, error);
2101 				continue;
2102 			}
2103 			if (res->type != type) {
2104 				kprintf("type mismatch %s%d: %d != %d\n",
2105 					name, unit, res->type, type);
2106 				continue;
2107 			}
2108 			switch (type) {
2109 			case RES_INT:
2110 				res->u.intval = cfgres[j].u.intval;
2111 				break;
2112 			case RES_LONG:
2113 				res->u.longval = cfgres[j].u.longval;
2114 				break;
2115 			case RES_STRING:
2116 				if (res->u.stringval)
2117 					kfree(res->u.stringval, M_TEMP);
2118 				stringval = cfgres[j].u.stringval;
2119 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2120 							  M_TEMP, M_INTWAIT);
2121 				if (res->u.stringval == NULL)
2122 					break;
2123 				strcpy(res->u.stringval, stringval);
2124 				break;
2125 			default:
2126 				panic("unknown resource type %d", type);
2127 			}
2128 		}
2129 	}
2130 }
2131 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2132 
2133 
2134 /*======================================*/
2135 /*
2136  * Some useful method implementations to make life easier for bus drivers.
2137  */
2138 
2139 void
2140 resource_list_init(struct resource_list *rl)
2141 {
2142 	SLIST_INIT(rl);
2143 }
2144 
2145 void
2146 resource_list_free(struct resource_list *rl)
2147 {
2148 	struct resource_list_entry *rle;
2149 
2150 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2151 		if (rle->res)
2152 			panic("resource_list_free: resource entry is busy");
2153 		SLIST_REMOVE_HEAD(rl, link);
2154 		kfree(rle, M_BUS);
2155 	}
2156 }
2157 
2158 void
2159 resource_list_add(struct resource_list *rl, int type, int rid,
2160     u_long start, u_long end, u_long count, int cpuid)
2161 {
2162 	struct resource_list_entry *rle;
2163 
2164 	rle = resource_list_find(rl, type, rid);
2165 	if (rle == NULL) {
2166 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2167 			     M_INTWAIT);
2168 		if (!rle)
2169 			panic("resource_list_add: can't record entry");
2170 		SLIST_INSERT_HEAD(rl, rle, link);
2171 		rle->type = type;
2172 		rle->rid = rid;
2173 		rle->res = NULL;
2174 		rle->cpuid = -1;
2175 	}
2176 
2177 	if (rle->res)
2178 		panic("resource_list_add: resource entry is busy");
2179 
2180 	rle->start = start;
2181 	rle->end = end;
2182 	rle->count = count;
2183 
2184 	if (cpuid != -1) {
2185 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2186 			panic("resource_list_add: moving from cpu%d -> cpu%d\n",
2187 			    rle->cpuid, cpuid);
2188 		}
2189 		rle->cpuid = cpuid;
2190 	}
2191 }
2192 
2193 struct resource_list_entry*
2194 resource_list_find(struct resource_list *rl,
2195 		   int type, int rid)
2196 {
2197 	struct resource_list_entry *rle;
2198 
2199 	SLIST_FOREACH(rle, rl, link)
2200 		if (rle->type == type && rle->rid == rid)
2201 			return(rle);
2202 	return(NULL);
2203 }
2204 
2205 void
2206 resource_list_delete(struct resource_list *rl,
2207 		     int type, int rid)
2208 {
2209 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2210 
2211 	if (rle) {
2212 		if (rle->res != NULL)
2213 			panic("resource_list_delete: resource has not been released");
2214 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2215 		kfree(rle, M_BUS);
2216 	}
2217 }
2218 
2219 struct resource *
2220 resource_list_alloc(struct resource_list *rl,
2221 		    device_t bus, device_t child,
2222 		    int type, int *rid,
2223 		    u_long start, u_long end,
2224 		    u_long count, u_int flags, int cpuid)
2225 {
2226 	struct resource_list_entry *rle = 0;
2227 	int passthrough = (device_get_parent(child) != bus);
2228 	int isdefault = (start == 0UL && end == ~0UL);
2229 
2230 	if (passthrough) {
2231 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2232 					  type, rid,
2233 					  start, end, count, flags, cpuid));
2234 	}
2235 
2236 	rle = resource_list_find(rl, type, *rid);
2237 
2238 	if (!rle)
2239 		return(0);		/* no resource of that type/rid */
2240 
2241 	if (rle->res)
2242 		panic("resource_list_alloc: resource entry is busy");
2243 
2244 	if (isdefault) {
2245 		start = rle->start;
2246 		count = max(count, rle->count);
2247 		end = max(rle->end, start + count - 1);
2248 	}
2249 	cpuid = rle->cpuid;
2250 
2251 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2252 				      type, rid, start, end, count,
2253 				      flags, cpuid);
2254 
2255 	/*
2256 	 * Record the new range.
2257 	 */
2258 	if (rle->res) {
2259 		rle->start = rman_get_start(rle->res);
2260 		rle->end = rman_get_end(rle->res);
2261 		rle->count = count;
2262 	}
2263 
2264 	return(rle->res);
2265 }
2266 
2267 int
2268 resource_list_release(struct resource_list *rl,
2269 		      device_t bus, device_t child,
2270 		      int type, int rid, struct resource *res)
2271 {
2272 	struct resource_list_entry *rle = 0;
2273 	int passthrough = (device_get_parent(child) != bus);
2274 	int error;
2275 
2276 	if (passthrough) {
2277 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2278 					    type, rid, res));
2279 	}
2280 
2281 	rle = resource_list_find(rl, type, rid);
2282 
2283 	if (!rle)
2284 		panic("resource_list_release: can't find resource");
2285 	if (!rle->res)
2286 		panic("resource_list_release: resource entry is not busy");
2287 
2288 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2289 				     type, rid, res);
2290 	if (error)
2291 		return(error);
2292 
2293 	rle->res = NULL;
2294 	return(0);
2295 }
2296 
2297 int
2298 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2299 			 const char *format)
2300 {
2301 	struct resource_list_entry *rle;
2302 	int printed, retval;
2303 
2304 	printed = 0;
2305 	retval = 0;
2306 	/* Yes, this is kinda cheating */
2307 	SLIST_FOREACH(rle, rl, link) {
2308 		if (rle->type == type) {
2309 			if (printed == 0)
2310 				retval += kprintf(" %s ", name);
2311 			else
2312 				retval += kprintf(",");
2313 			printed++;
2314 			retval += kprintf(format, rle->start);
2315 			if (rle->count > 1) {
2316 				retval += kprintf("-");
2317 				retval += kprintf(format, rle->start +
2318 						 rle->count - 1);
2319 			}
2320 		}
2321 	}
2322 	return(retval);
2323 }
2324 
2325 /*
2326  * Generic driver/device identify functions.  These will install a device
2327  * rendezvous point under the parent using the same name as the driver
2328  * name, which will at a later time be probed and attached.
2329  *
2330  * These functions are used when the parent does not 'scan' its bus for
2331  * matching devices, or for the particular devices using these functions,
2332  * or when the device is a pseudo or synthesized device (such as can be
2333  * found under firewire and ppbus).
2334  */
2335 int
2336 bus_generic_identify(driver_t *driver, device_t parent)
2337 {
2338 	if (parent->state == DS_ATTACHED)
2339 		return (0);
2340 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2341 	return (0);
2342 }
2343 
2344 int
2345 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2346 {
2347 	if (parent->state == DS_ATTACHED)
2348 		return (0);
2349 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2350 	return (0);
2351 }
2352 
2353 /*
2354  * Call DEVICE_IDENTIFY for each driver.
2355  */
2356 int
2357 bus_generic_probe(device_t dev)
2358 {
2359 	devclass_t dc = dev->devclass;
2360 	driverlink_t dl;
2361 
2362 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2363 		DEVICE_IDENTIFY(dl->driver, dev);
2364 	}
2365 
2366 	return(0);
2367 }
2368 
2369 /*
2370  * This is an aweful hack due to the isa bus and autoconf code not
2371  * probing the ISA devices until after everything else has configured.
2372  * The ISA bus did a dummy attach long ago so we have to set it back
2373  * to an earlier state so the probe thinks its the initial probe and
2374  * not a bus rescan.
2375  *
2376  * XXX remove by properly defering the ISA bus scan.
2377  */
2378 int
2379 bus_generic_probe_hack(device_t dev)
2380 {
2381 	if (dev->state == DS_ATTACHED) {
2382 		dev->state = DS_ALIVE;
2383 		bus_generic_probe(dev);
2384 		dev->state = DS_ATTACHED;
2385 	}
2386 	return (0);
2387 }
2388 
2389 int
2390 bus_generic_attach(device_t dev)
2391 {
2392 	device_t child;
2393 
2394 	TAILQ_FOREACH(child, &dev->children, link) {
2395 		device_probe_and_attach(child);
2396 	}
2397 
2398 	return(0);
2399 }
2400 
2401 int
2402 bus_generic_detach(device_t dev)
2403 {
2404 	device_t child;
2405 	int error;
2406 
2407 	if (dev->state != DS_ATTACHED)
2408 		return(EBUSY);
2409 
2410 	TAILQ_FOREACH(child, &dev->children, link)
2411 		if ((error = device_detach(child)) != 0)
2412 			return(error);
2413 
2414 	return 0;
2415 }
2416 
2417 int
2418 bus_generic_shutdown(device_t dev)
2419 {
2420 	device_t child;
2421 
2422 	TAILQ_FOREACH(child, &dev->children, link)
2423 		device_shutdown(child);
2424 
2425 	return(0);
2426 }
2427 
2428 int
2429 bus_generic_suspend(device_t dev)
2430 {
2431 	int error;
2432 	device_t child, child2;
2433 
2434 	TAILQ_FOREACH(child, &dev->children, link) {
2435 		error = DEVICE_SUSPEND(child);
2436 		if (error) {
2437 			for (child2 = TAILQ_FIRST(&dev->children);
2438 			     child2 && child2 != child;
2439 			     child2 = TAILQ_NEXT(child2, link))
2440 				DEVICE_RESUME(child2);
2441 			return(error);
2442 		}
2443 	}
2444 	return(0);
2445 }
2446 
2447 int
2448 bus_generic_resume(device_t dev)
2449 {
2450 	device_t child;
2451 
2452 	TAILQ_FOREACH(child, &dev->children, link)
2453 		DEVICE_RESUME(child);
2454 		/* if resume fails, there's nothing we can usefully do... */
2455 
2456 	return(0);
2457 }
2458 
2459 int
2460 bus_print_child_header(device_t dev, device_t child)
2461 {
2462 	int retval = 0;
2463 
2464 	if (device_get_desc(child))
2465 		retval += device_printf(child, "<%s>", device_get_desc(child));
2466 	else
2467 		retval += kprintf("%s", device_get_nameunit(child));
2468 	if (bootverbose) {
2469 		if (child->state != DS_ATTACHED)
2470 			kprintf(" [tentative]");
2471 		else
2472 			kprintf(" [attached!]");
2473 	}
2474 	return(retval);
2475 }
2476 
2477 int
2478 bus_print_child_footer(device_t dev, device_t child)
2479 {
2480 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2481 }
2482 
2483 device_t
2484 bus_generic_add_child(device_t dev, device_t child, int order,
2485 		      const char *name, int unit)
2486 {
2487 	if (dev->parent)
2488 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2489 	else
2490 		dev = device_add_child_ordered(child, order, name, unit);
2491 	return(dev);
2492 
2493 }
2494 
2495 int
2496 bus_generic_print_child(device_t dev, device_t child)
2497 {
2498 	int retval = 0;
2499 
2500 	retval += bus_print_child_header(dev, child);
2501 	retval += bus_print_child_footer(dev, child);
2502 
2503 	return(retval);
2504 }
2505 
2506 int
2507 bus_generic_read_ivar(device_t dev, device_t child, int index,
2508 		      uintptr_t * result)
2509 {
2510 	int error;
2511 
2512 	if (dev->parent)
2513 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2514 	else
2515 		error = ENOENT;
2516 	return (error);
2517 }
2518 
2519 int
2520 bus_generic_write_ivar(device_t dev, device_t child, int index,
2521 		       uintptr_t value)
2522 {
2523 	int error;
2524 
2525 	if (dev->parent)
2526 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2527 	else
2528 		error = ENOENT;
2529 	return (error);
2530 }
2531 
2532 /*
2533  * Resource list are used for iterations, do not recurse.
2534  */
2535 struct resource_list *
2536 bus_generic_get_resource_list(device_t dev, device_t child)
2537 {
2538 	return (NULL);
2539 }
2540 
2541 void
2542 bus_generic_driver_added(device_t dev, driver_t *driver)
2543 {
2544 	device_t child;
2545 
2546 	DEVICE_IDENTIFY(driver, dev);
2547 	TAILQ_FOREACH(child, &dev->children, link) {
2548 		if (child->state == DS_NOTPRESENT)
2549 			device_probe_and_attach(child);
2550 	}
2551 }
2552 
2553 int
2554 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2555 		       int flags, driver_intr_t *intr, void *arg,
2556 		       void **cookiep, lwkt_serialize_t serializer)
2557 {
2558 	/* Propagate up the bus hierarchy until someone handles it. */
2559 	if (dev->parent)
2560 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2561 				      intr, arg, cookiep, serializer));
2562 	else
2563 		return(EINVAL);
2564 }
2565 
2566 int
2567 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2568 			  void *cookie)
2569 {
2570 	/* Propagate up the bus hierarchy until someone handles it. */
2571 	if (dev->parent)
2572 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2573 	else
2574 		return(EINVAL);
2575 }
2576 
2577 int
2578 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2579 {
2580 	if (dev->parent)
2581 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2582 	else
2583 		return(0);
2584 }
2585 
2586 void
2587 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2588 {
2589 	if (dev->parent)
2590 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2591 }
2592 
2593 int
2594 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2595     enum intr_polarity pol)
2596 {
2597 	/* Propagate up the bus hierarchy until someone handles it. */
2598 	if (dev->parent)
2599 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2600 	else
2601 		return(EINVAL);
2602 }
2603 
2604 struct resource *
2605 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2606     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2607 {
2608 	/* Propagate up the bus hierarchy until someone handles it. */
2609 	if (dev->parent)
2610 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2611 					   start, end, count, flags, cpuid));
2612 	else
2613 		return(NULL);
2614 }
2615 
2616 int
2617 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2618 			     struct resource *r)
2619 {
2620 	/* Propagate up the bus hierarchy until someone handles it. */
2621 	if (dev->parent)
2622 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2623 	else
2624 		return(EINVAL);
2625 }
2626 
2627 int
2628 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2629 			      struct resource *r)
2630 {
2631 	/* Propagate up the bus hierarchy until someone handles it. */
2632 	if (dev->parent)
2633 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2634 	else
2635 		return(EINVAL);
2636 }
2637 
2638 int
2639 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2640 				int rid, struct resource *r)
2641 {
2642 	/* Propagate up the bus hierarchy until someone handles it. */
2643 	if (dev->parent)
2644 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2645 					       r));
2646 	else
2647 		return(EINVAL);
2648 }
2649 
2650 int
2651 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2652 			 u_long *startp, u_long *countp)
2653 {
2654 	int error;
2655 
2656 	error = ENOENT;
2657 	if (dev->parent) {
2658 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2659 					 startp, countp);
2660 	}
2661 	return (error);
2662 }
2663 
2664 int
2665 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2666 			u_long start, u_long count, int cpuid)
2667 {
2668 	int error;
2669 
2670 	error = EINVAL;
2671 	if (dev->parent) {
2672 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2673 					 start, count, cpuid);
2674 	}
2675 	return (error);
2676 }
2677 
2678 void
2679 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2680 {
2681 	if (dev->parent)
2682 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2683 }
2684 
2685 int
2686 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2687     u_long *startp, u_long *countp)
2688 {
2689 	struct resource_list *rl = NULL;
2690 	struct resource_list_entry *rle = NULL;
2691 
2692 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2693 	if (!rl)
2694 		return(EINVAL);
2695 
2696 	rle = resource_list_find(rl, type, rid);
2697 	if (!rle)
2698 		return(ENOENT);
2699 
2700 	if (startp)
2701 		*startp = rle->start;
2702 	if (countp)
2703 		*countp = rle->count;
2704 
2705 	return(0);
2706 }
2707 
2708 int
2709 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2710     u_long start, u_long count, int cpuid)
2711 {
2712 	struct resource_list *rl = NULL;
2713 
2714 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2715 	if (!rl)
2716 		return(EINVAL);
2717 
2718 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2719 	    cpuid);
2720 
2721 	return(0);
2722 }
2723 
2724 void
2725 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2726 {
2727 	struct resource_list *rl = NULL;
2728 
2729 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2730 	if (!rl)
2731 		return;
2732 
2733 	resource_list_delete(rl, type, rid);
2734 }
2735 
2736 int
2737 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2738     int rid, struct resource *r)
2739 {
2740 	struct resource_list *rl = NULL;
2741 
2742 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2743 	if (!rl)
2744 		return(EINVAL);
2745 
2746 	return(resource_list_release(rl, dev, child, type, rid, r));
2747 }
2748 
2749 struct resource *
2750 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2751     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2752 {
2753 	struct resource_list *rl = NULL;
2754 
2755 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2756 	if (!rl)
2757 		return(NULL);
2758 
2759 	return(resource_list_alloc(rl, dev, child, type, rid,
2760 	    start, end, count, flags, cpuid));
2761 }
2762 
2763 int
2764 bus_generic_child_present(device_t bus, device_t child)
2765 {
2766 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2767 }
2768 
2769 
2770 /*
2771  * Some convenience functions to make it easier for drivers to use the
2772  * resource-management functions.  All these really do is hide the
2773  * indirection through the parent's method table, making for slightly
2774  * less-wordy code.  In the future, it might make sense for this code
2775  * to maintain some sort of a list of resources allocated by each device.
2776  */
2777 int
2778 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2779     struct resource **res)
2780 {
2781 	int i;
2782 
2783 	for (i = 0; rs[i].type != -1; i++)
2784 	        res[i] = NULL;
2785 	for (i = 0; rs[i].type != -1; i++) {
2786 		res[i] = bus_alloc_resource_any(dev,
2787 		    rs[i].type, &rs[i].rid, rs[i].flags);
2788 		if (res[i] == NULL) {
2789 			bus_release_resources(dev, rs, res);
2790 			return (ENXIO);
2791 		}
2792 	}
2793 	return (0);
2794 }
2795 
2796 void
2797 bus_release_resources(device_t dev, const struct resource_spec *rs,
2798     struct resource **res)
2799 {
2800 	int i;
2801 
2802 	for (i = 0; rs[i].type != -1; i++)
2803 		if (res[i] != NULL) {
2804 			bus_release_resource(
2805 			    dev, rs[i].type, rs[i].rid, res[i]);
2806 			res[i] = NULL;
2807 		}
2808 }
2809 
2810 struct resource *
2811 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2812 		   u_long count, u_int flags)
2813 {
2814 	if (dev->parent == 0)
2815 		return(0);
2816 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2817 				  count, flags, -1));
2818 }
2819 
2820 int
2821 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2822 {
2823 	if (dev->parent == 0)
2824 		return(EINVAL);
2825 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2826 }
2827 
2828 int
2829 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2830 {
2831 	if (dev->parent == 0)
2832 		return(EINVAL);
2833 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2834 }
2835 
2836 int
2837 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2838 {
2839 	if (dev->parent == 0)
2840 		return(EINVAL);
2841 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2842 }
2843 
2844 int
2845 bus_setup_intr(device_t dev, struct resource *r, int flags,
2846 	       driver_intr_t handler, void *arg,
2847 	       void **cookiep, lwkt_serialize_t serializer)
2848 {
2849 	if (dev->parent == 0)
2850 		return(EINVAL);
2851 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2852 			      cookiep, serializer));
2853 }
2854 
2855 int
2856 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2857 {
2858 	if (dev->parent == 0)
2859 		return(EINVAL);
2860 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2861 }
2862 
2863 void
2864 bus_enable_intr(device_t dev, void *cookie)
2865 {
2866 	if (dev->parent)
2867 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2868 }
2869 
2870 int
2871 bus_disable_intr(device_t dev, void *cookie)
2872 {
2873 	if (dev->parent)
2874 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2875 	else
2876 		return(0);
2877 }
2878 
2879 int
2880 bus_set_resource(device_t dev, int type, int rid,
2881 		 u_long start, u_long count, int cpuid)
2882 {
2883 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2884 				start, count, cpuid));
2885 }
2886 
2887 int
2888 bus_get_resource(device_t dev, int type, int rid,
2889 		 u_long *startp, u_long *countp)
2890 {
2891 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2892 				startp, countp));
2893 }
2894 
2895 u_long
2896 bus_get_resource_start(device_t dev, int type, int rid)
2897 {
2898 	u_long start, count;
2899 	int error;
2900 
2901 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2902 				 &start, &count);
2903 	if (error)
2904 		return(0);
2905 	return(start);
2906 }
2907 
2908 u_long
2909 bus_get_resource_count(device_t dev, int type, int rid)
2910 {
2911 	u_long start, count;
2912 	int error;
2913 
2914 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2915 				 &start, &count);
2916 	if (error)
2917 		return(0);
2918 	return(count);
2919 }
2920 
2921 void
2922 bus_delete_resource(device_t dev, int type, int rid)
2923 {
2924 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2925 }
2926 
2927 int
2928 bus_child_present(device_t child)
2929 {
2930 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2931 }
2932 
2933 int
2934 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2935 {
2936 	device_t parent;
2937 
2938 	parent = device_get_parent(child);
2939 	if (parent == NULL) {
2940 		*buf = '\0';
2941 		return (0);
2942 	}
2943 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2944 }
2945 
2946 int
2947 bus_child_location_str(device_t child, char *buf, size_t buflen)
2948 {
2949 	device_t parent;
2950 
2951 	parent = device_get_parent(child);
2952 	if (parent == NULL) {
2953 		*buf = '\0';
2954 		return (0);
2955 	}
2956 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2957 }
2958 
2959 static int
2960 root_print_child(device_t dev, device_t child)
2961 {
2962 	return(0);
2963 }
2964 
2965 static int
2966 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2967 		void **cookiep, lwkt_serialize_t serializer)
2968 {
2969 	/*
2970 	 * If an interrupt mapping gets to here something bad has happened.
2971 	 */
2972 	panic("root_setup_intr");
2973 }
2974 
2975 /*
2976  * If we get here, assume that the device is permanant and really is
2977  * present in the system.  Removable bus drivers are expected to intercept
2978  * this call long before it gets here.  We return -1 so that drivers that
2979  * really care can check vs -1 or some ERRNO returned higher in the food
2980  * chain.
2981  */
2982 static int
2983 root_child_present(device_t dev, device_t child)
2984 {
2985 	return(-1);
2986 }
2987 
2988 /*
2989  * XXX NOTE! other defaults may be set in bus_if.m
2990  */
2991 static kobj_method_t root_methods[] = {
2992 	/* Device interface */
2993 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2994 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2995 	KOBJMETHOD(device_resume,	bus_generic_resume),
2996 
2997 	/* Bus interface */
2998 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2999 	KOBJMETHOD(bus_print_child,	root_print_child),
3000 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3001 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3002 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3003 	KOBJMETHOD(bus_child_present,   root_child_present),
3004 
3005 	{ 0, 0 }
3006 };
3007 
3008 static driver_t root_driver = {
3009 	"root",
3010 	root_methods,
3011 	1,			/* no softc */
3012 };
3013 
3014 device_t	root_bus;
3015 devclass_t	root_devclass;
3016 
3017 static int
3018 root_bus_module_handler(module_t mod, int what, void* arg)
3019 {
3020 	switch (what) {
3021 	case MOD_LOAD:
3022 		TAILQ_INIT(&bus_data_devices);
3023 		root_bus = make_device(NULL, "root", 0);
3024 		root_bus->desc = "System root bus";
3025 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3026 		root_bus->driver = &root_driver;
3027 		root_bus->state = DS_ALIVE;
3028 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3029 		devinit();
3030 		return(0);
3031 
3032 	case MOD_SHUTDOWN:
3033 		device_shutdown(root_bus);
3034 		return(0);
3035 	default:
3036 		return(0);
3037 	}
3038 }
3039 
3040 static moduledata_t root_bus_mod = {
3041 	"rootbus",
3042 	root_bus_module_handler,
3043 	0
3044 };
3045 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3046 
3047 void
3048 root_bus_configure(void)
3049 {
3050 	int warncount;
3051 	device_t dev;
3052 
3053 	PDEBUG(("."));
3054 
3055 	/*
3056 	 * handle device_identify based device attachments to the root_bus
3057 	 * (typically nexus).
3058 	 */
3059 	bus_generic_probe(root_bus);
3060 
3061 	/*
3062 	 * Probe and attach the devices under root_bus.
3063 	 */
3064 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3065 		device_probe_and_attach(dev);
3066 	}
3067 
3068 	/*
3069 	 * Wait for all asynchronous attaches to complete.  If we don't
3070 	 * our legacy ISA bus scan could steal device unit numbers or
3071 	 * even I/O ports.
3072 	 */
3073 	warncount = 10;
3074 	if (numasyncthreads)
3075 		kprintf("Waiting for async drivers to attach\n");
3076 	while (numasyncthreads > 0) {
3077 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3078 			--warncount;
3079 		if (warncount == 0) {
3080 			kprintf("Warning: Still waiting for %d "
3081 				"drivers to attach\n", numasyncthreads);
3082 		} else if (warncount == -30) {
3083 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3084 			break;
3085 		}
3086 	}
3087 	root_bus->state = DS_ATTACHED;
3088 }
3089 
3090 int
3091 driver_module_handler(module_t mod, int what, void *arg)
3092 {
3093 	int error;
3094 	struct driver_module_data *dmd;
3095 	devclass_t bus_devclass;
3096 	kobj_class_t driver;
3097         const char *parentname;
3098 
3099 	dmd = (struct driver_module_data *)arg;
3100 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3101 	error = 0;
3102 
3103 	switch (what) {
3104 	case MOD_LOAD:
3105 		if (dmd->dmd_chainevh)
3106 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3107 
3108 		driver = dmd->dmd_driver;
3109 		PDEBUG(("Loading module: driver %s on bus %s",
3110 		        DRIVERNAME(driver), dmd->dmd_busname));
3111 
3112 		/*
3113 		 * If the driver has any base classes, make the
3114 		 * devclass inherit from the devclass of the driver's
3115 		 * first base class. This will allow the system to
3116 		 * search for drivers in both devclasses for children
3117 		 * of a device using this driver.
3118 		 */
3119 		if (driver->baseclasses)
3120 			parentname = driver->baseclasses[0]->name;
3121 		else
3122 			parentname = NULL;
3123 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3124 							    parentname, TRUE);
3125 
3126 		error = devclass_add_driver(bus_devclass, driver);
3127 		if (error)
3128 			break;
3129 		break;
3130 
3131 	case MOD_UNLOAD:
3132 		PDEBUG(("Unloading module: driver %s from bus %s",
3133 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3134 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3135 
3136 		if (!error && dmd->dmd_chainevh)
3137 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3138 		break;
3139 	}
3140 
3141 	return (error);
3142 }
3143 
3144 #ifdef BUS_DEBUG
3145 
3146 /*
3147  * The _short versions avoid iteration by not calling anything that prints
3148  * more than oneliners. I love oneliners.
3149  */
3150 
3151 static void
3152 print_device_short(device_t dev, int indent)
3153 {
3154 	if (!dev)
3155 		return;
3156 
3157 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3158 		      dev->unit, dev->desc,
3159 		      (dev->parent? "":"no "),
3160 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3161 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3162 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3163 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3164 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3165 		      (dev->ivars? "":"no "),
3166 		      (dev->softc? "":"no "),
3167 		      dev->busy));
3168 }
3169 
3170 static void
3171 print_device(device_t dev, int indent)
3172 {
3173 	if (!dev)
3174 		return;
3175 
3176 	print_device_short(dev, indent);
3177 
3178 	indentprintf(("Parent:\n"));
3179 	print_device_short(dev->parent, indent+1);
3180 	indentprintf(("Driver:\n"));
3181 	print_driver_short(dev->driver, indent+1);
3182 	indentprintf(("Devclass:\n"));
3183 	print_devclass_short(dev->devclass, indent+1);
3184 }
3185 
3186 /*
3187  * Print the device and all its children (indented).
3188  */
3189 void
3190 print_device_tree_short(device_t dev, int indent)
3191 {
3192 	device_t child;
3193 
3194 	if (!dev)
3195 		return;
3196 
3197 	print_device_short(dev, indent);
3198 
3199 	TAILQ_FOREACH(child, &dev->children, link)
3200 		print_device_tree_short(child, indent+1);
3201 }
3202 
3203 /*
3204  * Print the device and all its children (indented).
3205  */
3206 void
3207 print_device_tree(device_t dev, int indent)
3208 {
3209 	device_t child;
3210 
3211 	if (!dev)
3212 		return;
3213 
3214 	print_device(dev, indent);
3215 
3216 	TAILQ_FOREACH(child, &dev->children, link)
3217 		print_device_tree(child, indent+1);
3218 }
3219 
3220 static void
3221 print_driver_short(driver_t *driver, int indent)
3222 {
3223 	if (!driver)
3224 		return;
3225 
3226 	indentprintf(("driver %s: softc size = %zu\n",
3227 		      driver->name, driver->size));
3228 }
3229 
3230 static void
3231 print_driver(driver_t *driver, int indent)
3232 {
3233 	if (!driver)
3234 		return;
3235 
3236 	print_driver_short(driver, indent);
3237 }
3238 
3239 
3240 static void
3241 print_driver_list(driver_list_t drivers, int indent)
3242 {
3243 	driverlink_t driver;
3244 
3245 	TAILQ_FOREACH(driver, &drivers, link)
3246 		print_driver(driver->driver, indent);
3247 }
3248 
3249 static void
3250 print_devclass_short(devclass_t dc, int indent)
3251 {
3252 	if (!dc)
3253 		return;
3254 
3255 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3256 }
3257 
3258 static void
3259 print_devclass(devclass_t dc, int indent)
3260 {
3261 	int i;
3262 
3263 	if (!dc)
3264 		return;
3265 
3266 	print_devclass_short(dc, indent);
3267 	indentprintf(("Drivers:\n"));
3268 	print_driver_list(dc->drivers, indent+1);
3269 
3270 	indentprintf(("Devices:\n"));
3271 	for (i = 0; i < dc->maxunit; i++)
3272 		if (dc->devices[i])
3273 			print_device(dc->devices[i], indent+1);
3274 }
3275 
3276 void
3277 print_devclass_list_short(void)
3278 {
3279 	devclass_t dc;
3280 
3281 	kprintf("Short listing of devclasses, drivers & devices:\n");
3282 	TAILQ_FOREACH(dc, &devclasses, link) {
3283 		print_devclass_short(dc, 0);
3284 	}
3285 }
3286 
3287 void
3288 print_devclass_list(void)
3289 {
3290 	devclass_t dc;
3291 
3292 	kprintf("Full listing of devclasses, drivers & devices:\n");
3293 	TAILQ_FOREACH(dc, &devclasses, link) {
3294 		print_devclass(dc, 0);
3295 	}
3296 }
3297 
3298 #endif
3299 
3300 /*
3301  * Check to see if a device is disabled via a disabled hint.
3302  */
3303 int
3304 resource_disabled(const char *name, int unit)
3305 {
3306 	int error, value;
3307 
3308 	error = resource_int_value(name, unit, "disabled", &value);
3309 	if (error)
3310 	       return(0);
3311 	return(value);
3312 }
3313 
3314 /*
3315  * User-space access to the device tree.
3316  *
3317  * We implement a small set of nodes:
3318  *
3319  * hw.bus			Single integer read method to obtain the
3320  *				current generation count.
3321  * hw.bus.devices		Reads the entire device tree in flat space.
3322  * hw.bus.rman			Resource manager interface
3323  *
3324  * We might like to add the ability to scan devclasses and/or drivers to
3325  * determine what else is currently loaded/available.
3326  */
3327 
3328 static int
3329 sysctl_bus(SYSCTL_HANDLER_ARGS)
3330 {
3331 	struct u_businfo	ubus;
3332 
3333 	ubus.ub_version = BUS_USER_VERSION;
3334 	ubus.ub_generation = bus_data_generation;
3335 
3336 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3337 }
3338 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3339     "bus-related data");
3340 
3341 static int
3342 sysctl_devices(SYSCTL_HANDLER_ARGS)
3343 {
3344 	int			*name = (int *)arg1;
3345 	u_int			namelen = arg2;
3346 	int			index;
3347 	struct device		*dev;
3348 	struct u_device		udev;	/* XXX this is a bit big */
3349 	int			error;
3350 
3351 	if (namelen != 2)
3352 		return (EINVAL);
3353 
3354 	if (bus_data_generation_check(name[0]))
3355 		return (EINVAL);
3356 
3357 	index = name[1];
3358 
3359 	/*
3360 	 * Scan the list of devices, looking for the requested index.
3361 	 */
3362 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3363 		if (index-- == 0)
3364 			break;
3365 	}
3366 	if (dev == NULL)
3367 		return (ENOENT);
3368 
3369 	/*
3370 	 * Populate the return array.
3371 	 */
3372 	bzero(&udev, sizeof(udev));
3373 	udev.dv_handle = (uintptr_t)dev;
3374 	udev.dv_parent = (uintptr_t)dev->parent;
3375 	if (dev->nameunit != NULL)
3376 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3377 	if (dev->desc != NULL)
3378 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3379 	if (dev->driver != NULL && dev->driver->name != NULL)
3380 		strlcpy(udev.dv_drivername, dev->driver->name,
3381 		    sizeof(udev.dv_drivername));
3382 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3383 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3384 	udev.dv_devflags = dev->devflags;
3385 	udev.dv_flags = dev->flags;
3386 	udev.dv_state = dev->state;
3387 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3388 	return (error);
3389 }
3390 
3391 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3392     "system device tree");
3393 
3394 int
3395 bus_data_generation_check(int generation)
3396 {
3397 	if (generation != bus_data_generation)
3398 		return (1);
3399 
3400 	/* XXX generate optimised lists here? */
3401 	return (0);
3402 }
3403 
3404 void
3405 bus_data_generation_update(void)
3406 {
3407 	bus_data_generation++;
3408 }
3409 
3410 const char *
3411 intr_str_polarity(enum intr_polarity pola)
3412 {
3413 	switch (pola) {
3414 	case INTR_POLARITY_LOW:
3415 		return "low";
3416 
3417 	case INTR_POLARITY_HIGH:
3418 		return "high";
3419 
3420 	case INTR_POLARITY_CONFORM:
3421 		return "conform";
3422 	}
3423 	return "unknown";
3424 }
3425 
3426 const char *
3427 intr_str_trigger(enum intr_trigger trig)
3428 {
3429 	switch (trig) {
3430 	case INTR_TRIGGER_EDGE:
3431 		return "edge";
3432 
3433 	case INTR_TRIGGER_LEVEL:
3434 		return "level";
3435 
3436 	case INTR_TRIGGER_CONFORM:
3437 		return "conform";
3438 	}
3439 	return "unknown";
3440 }
3441