1 /* 2 * Copyright (c) 1997,1998 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $ 27 * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $ 28 */ 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kobj.h> 38 #include <sys/bus_private.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/rman.h> 43 #include <sys/device.h> 44 #include <sys/lock.h> 45 #include <sys/conf.h> 46 #include <sys/uio.h> 47 #include <sys/filio.h> 48 #include <sys/event.h> 49 #include <sys/signalvar.h> 50 51 #include <machine/stdarg.h> /* for device_printf() */ 52 53 #include <sys/thread2.h> 54 #include <sys/mplock2.h> 55 56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 57 58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 59 60 #ifdef BUS_DEBUG 61 #define PDEBUG(a) (kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n")) 62 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 63 #define DRIVERNAME(d) ((d)? d->name : "no driver") 64 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 65 66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to 67 * prevent syslog from deleting initial spaces 68 */ 69 #define indentprintf(p) do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf(" "); kprintf p ; } while(0) 70 71 static void print_device_short(device_t dev, int indent); 72 static void print_device(device_t dev, int indent); 73 void print_device_tree_short(device_t dev, int indent); 74 void print_device_tree(device_t dev, int indent); 75 static void print_driver_short(driver_t *driver, int indent); 76 static void print_driver(driver_t *driver, int indent); 77 static void print_driver_list(driver_list_t drivers, int indent); 78 static void print_devclass_short(devclass_t dc, int indent); 79 static void print_devclass(devclass_t dc, int indent); 80 void print_devclass_list_short(void); 81 void print_devclass_list(void); 82 83 #else 84 /* Make the compiler ignore the function calls */ 85 #define PDEBUG(a) /* nop */ 86 #define DEVICENAME(d) /* nop */ 87 #define DRIVERNAME(d) /* nop */ 88 #define DEVCLANAME(d) /* nop */ 89 90 #define print_device_short(d,i) /* nop */ 91 #define print_device(d,i) /* nop */ 92 #define print_device_tree_short(d,i) /* nop */ 93 #define print_device_tree(d,i) /* nop */ 94 #define print_driver_short(d,i) /* nop */ 95 #define print_driver(d,i) /* nop */ 96 #define print_driver_list(d,i) /* nop */ 97 #define print_devclass_short(d,i) /* nop */ 98 #define print_devclass(d,i) /* nop */ 99 #define print_devclass_list_short() /* nop */ 100 #define print_devclass_list() /* nop */ 101 #endif 102 103 static void device_attach_async(device_t dev); 104 static void device_attach_thread(void *arg); 105 static int device_doattach(device_t dev); 106 107 static int do_async_attach = 0; 108 static int numasyncthreads; 109 TUNABLE_INT("kern.do_async_attach", &do_async_attach); 110 111 /* 112 * /dev/devctl implementation 113 */ 114 115 /* 116 * This design allows only one reader for /dev/devctl. This is not desirable 117 * in the long run, but will get a lot of hair out of this implementation. 118 * Maybe we should make this device a clonable device. 119 * 120 * Also note: we specifically do not attach a device to the device_t tree 121 * to avoid potential chicken and egg problems. One could argue that all 122 * of this belongs to the root node. One could also further argue that the 123 * sysctl interface that we have not might more properly be an ioctl 124 * interface, but at this stage of the game, I'm not inclined to rock that 125 * boat. 126 * 127 * I'm also not sure that the SIGIO support is done correctly or not, as 128 * I copied it from a driver that had SIGIO support that likely hasn't been 129 * tested since 3.4 or 2.2.8! 130 */ 131 132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 133 static int devctl_disable = 0; 134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 136 sysctl_devctl_disable, "I", "devctl disable"); 137 138 #define CDEV_MAJOR 188 139 140 static d_open_t devopen; 141 static d_close_t devclose; 142 static d_read_t devread; 143 static d_ioctl_t devioctl; 144 static d_kqfilter_t devkqfilter; 145 146 static struct dev_ops devctl_ops = { 147 { "devctl", CDEV_MAJOR, 0 }, 148 .d_open = devopen, 149 .d_close = devclose, 150 .d_read = devread, 151 .d_ioctl = devioctl, 152 .d_kqfilter = devkqfilter 153 }; 154 155 struct dev_event_info 156 { 157 char *dei_data; 158 TAILQ_ENTRY(dev_event_info) dei_link; 159 }; 160 161 TAILQ_HEAD(devq, dev_event_info); 162 163 static struct dev_softc 164 { 165 int inuse; 166 int nonblock; 167 struct lock lock; 168 struct kqinfo kq; 169 struct devq devq; 170 struct proc *async_proc; 171 } devsoftc; 172 173 static void 174 devinit(void) 175 { 176 make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl"); 177 lockinit(&devsoftc.lock, "dev mtx", 0, 0); 178 TAILQ_INIT(&devsoftc.devq); 179 } 180 181 static int 182 devopen(struct dev_open_args *ap) 183 { 184 if (devsoftc.inuse) 185 return (EBUSY); 186 /* move to init */ 187 devsoftc.inuse = 1; 188 devsoftc.nonblock = 0; 189 devsoftc.async_proc = NULL; 190 return (0); 191 } 192 193 static int 194 devclose(struct dev_close_args *ap) 195 { 196 devsoftc.inuse = 0; 197 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 198 wakeup(&devsoftc); 199 lockmgr(&devsoftc.lock, LK_RELEASE); 200 201 return (0); 202 } 203 204 /* 205 * The read channel for this device is used to report changes to 206 * userland in realtime. We are required to free the data as well as 207 * the n1 object because we allocate them separately. Also note that 208 * we return one record at a time. If you try to read this device a 209 * character at a time, you will lose the rest of the data. Listening 210 * programs are expected to cope. 211 */ 212 static int 213 devread(struct dev_read_args *ap) 214 { 215 struct uio *uio = ap->a_uio; 216 struct dev_event_info *n1; 217 int rv; 218 219 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 220 while (TAILQ_EMPTY(&devsoftc.devq)) { 221 if (devsoftc.nonblock) { 222 lockmgr(&devsoftc.lock, LK_RELEASE); 223 return (EAGAIN); 224 } 225 tsleep_interlock(&devsoftc, PCATCH); 226 lockmgr(&devsoftc.lock, LK_RELEASE); 227 rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0); 228 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 229 if (rv) { 230 /* 231 * Need to translate ERESTART to EINTR here? -- jake 232 */ 233 lockmgr(&devsoftc.lock, LK_RELEASE); 234 return (rv); 235 } 236 } 237 n1 = TAILQ_FIRST(&devsoftc.devq); 238 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 239 lockmgr(&devsoftc.lock, LK_RELEASE); 240 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 241 kfree(n1->dei_data, M_BUS); 242 kfree(n1, M_BUS); 243 return (rv); 244 } 245 246 static int 247 devioctl(struct dev_ioctl_args *ap) 248 { 249 switch (ap->a_cmd) { 250 251 case FIONBIO: 252 if (*(int*)ap->a_data) 253 devsoftc.nonblock = 1; 254 else 255 devsoftc.nonblock = 0; 256 return (0); 257 case FIOASYNC: 258 if (*(int*)ap->a_data) 259 devsoftc.async_proc = curproc; 260 else 261 devsoftc.async_proc = NULL; 262 return (0); 263 264 /* (un)Support for other fcntl() calls. */ 265 case FIOCLEX: 266 case FIONCLEX: 267 case FIONREAD: 268 case FIOSETOWN: 269 case FIOGETOWN: 270 default: 271 break; 272 } 273 return (ENOTTY); 274 } 275 276 static void dev_filter_detach(struct knote *); 277 static int dev_filter_read(struct knote *, long); 278 279 static struct filterops dev_filtops = 280 { FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read }; 281 282 static int 283 devkqfilter(struct dev_kqfilter_args *ap) 284 { 285 struct knote *kn = ap->a_kn; 286 struct klist *klist; 287 288 ap->a_result = 0; 289 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 290 291 switch (kn->kn_filter) { 292 case EVFILT_READ: 293 kn->kn_fop = &dev_filtops; 294 break; 295 default: 296 ap->a_result = EOPNOTSUPP; 297 lockmgr(&devsoftc.lock, LK_RELEASE); 298 return (0); 299 } 300 301 klist = &devsoftc.kq.ki_note; 302 knote_insert(klist, kn); 303 304 lockmgr(&devsoftc.lock, LK_RELEASE); 305 306 return (0); 307 } 308 309 static void 310 dev_filter_detach(struct knote *kn) 311 { 312 struct klist *klist; 313 314 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 315 klist = &devsoftc.kq.ki_note; 316 knote_remove(klist, kn); 317 lockmgr(&devsoftc.lock, LK_RELEASE); 318 } 319 320 static int 321 dev_filter_read(struct knote *kn, long hint) 322 { 323 int ready = 0; 324 325 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 326 if (!TAILQ_EMPTY(&devsoftc.devq)) 327 ready = 1; 328 lockmgr(&devsoftc.lock, LK_RELEASE); 329 330 return (ready); 331 } 332 333 334 /** 335 * @brief Return whether the userland process is running 336 */ 337 boolean_t 338 devctl_process_running(void) 339 { 340 return (devsoftc.inuse == 1); 341 } 342 343 /** 344 * @brief Queue data to be read from the devctl device 345 * 346 * Generic interface to queue data to the devctl device. It is 347 * assumed that @p data is properly formatted. It is further assumed 348 * that @p data is allocated using the M_BUS malloc type. 349 */ 350 void 351 devctl_queue_data(char *data) 352 { 353 struct dev_event_info *n1 = NULL; 354 struct proc *p; 355 356 n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT); 357 if (n1 == NULL) 358 return; 359 n1->dei_data = data; 360 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 361 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 362 wakeup(&devsoftc); 363 lockmgr(&devsoftc.lock, LK_RELEASE); 364 get_mplock(); /* XXX */ 365 KNOTE(&devsoftc.kq.ki_note, 0); 366 rel_mplock(); /* XXX */ 367 p = devsoftc.async_proc; 368 if (p != NULL) 369 ksignal(p, SIGIO); 370 } 371 372 /** 373 * @brief Send a 'notification' to userland, using standard ways 374 */ 375 void 376 devctl_notify(const char *system, const char *subsystem, const char *type, 377 const char *data) 378 { 379 int len = 0; 380 char *msg; 381 382 if (system == NULL) 383 return; /* BOGUS! Must specify system. */ 384 if (subsystem == NULL) 385 return; /* BOGUS! Must specify subsystem. */ 386 if (type == NULL) 387 return; /* BOGUS! Must specify type. */ 388 len += strlen(" system=") + strlen(system); 389 len += strlen(" subsystem=") + strlen(subsystem); 390 len += strlen(" type=") + strlen(type); 391 /* add in the data message plus newline. */ 392 if (data != NULL) 393 len += strlen(data); 394 len += 3; /* '!', '\n', and NUL */ 395 msg = kmalloc(len, M_BUS, M_NOWAIT); 396 if (msg == NULL) 397 return; /* Drop it on the floor */ 398 if (data != NULL) 399 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 400 system, subsystem, type, data); 401 else 402 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 403 system, subsystem, type); 404 devctl_queue_data(msg); 405 } 406 407 /* 408 * Common routine that tries to make sending messages as easy as possible. 409 * We allocate memory for the data, copy strings into that, but do not 410 * free it unless there's an error. The dequeue part of the driver should 411 * free the data. We don't send data when the device is disabled. We do 412 * send data, even when we have no listeners, because we wish to avoid 413 * races relating to startup and restart of listening applications. 414 * 415 * devaddq is designed to string together the type of event, with the 416 * object of that event, plus the plug and play info and location info 417 * for that event. This is likely most useful for devices, but less 418 * useful for other consumers of this interface. Those should use 419 * the devctl_queue_data() interface instead. 420 */ 421 static void 422 devaddq(const char *type, const char *what, device_t dev) 423 { 424 char *data = NULL; 425 char *loc = NULL; 426 char *pnp = NULL; 427 const char *parstr; 428 429 if (devctl_disable) 430 return; 431 data = kmalloc(1024, M_BUS, M_NOWAIT); 432 if (data == NULL) 433 goto bad; 434 435 /* get the bus specific location of this device */ 436 loc = kmalloc(1024, M_BUS, M_NOWAIT); 437 if (loc == NULL) 438 goto bad; 439 *loc = '\0'; 440 bus_child_location_str(dev, loc, 1024); 441 442 /* Get the bus specific pnp info of this device */ 443 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 444 if (pnp == NULL) 445 goto bad; 446 *pnp = '\0'; 447 bus_child_pnpinfo_str(dev, pnp, 1024); 448 449 /* Get the parent of this device, or / if high enough in the tree. */ 450 if (device_get_parent(dev) == NULL) 451 parstr = "."; /* Or '/' ? */ 452 else 453 parstr = device_get_nameunit(device_get_parent(dev)); 454 /* String it all together. */ 455 ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 456 parstr); 457 kfree(loc, M_BUS); 458 kfree(pnp, M_BUS); 459 devctl_queue_data(data); 460 return; 461 bad: 462 kfree(pnp, M_BUS); 463 kfree(loc, M_BUS); 464 kfree(data, M_BUS); 465 return; 466 } 467 468 /* 469 * A device was added to the tree. We are called just after it successfully 470 * attaches (that is, probe and attach success for this device). No call 471 * is made if a device is merely parented into the tree. See devnomatch 472 * if probe fails. If attach fails, no notification is sent (but maybe 473 * we should have a different message for this). 474 */ 475 static void 476 devadded(device_t dev) 477 { 478 char *pnp = NULL; 479 char *tmp = NULL; 480 481 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 482 if (pnp == NULL) 483 goto fail; 484 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 485 if (tmp == NULL) 486 goto fail; 487 *pnp = '\0'; 488 bus_child_pnpinfo_str(dev, pnp, 1024); 489 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 490 devaddq("+", tmp, dev); 491 fail: 492 if (pnp != NULL) 493 kfree(pnp, M_BUS); 494 if (tmp != NULL) 495 kfree(tmp, M_BUS); 496 return; 497 } 498 499 /* 500 * A device was removed from the tree. We are called just before this 501 * happens. 502 */ 503 static void 504 devremoved(device_t dev) 505 { 506 char *pnp = NULL; 507 char *tmp = NULL; 508 509 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 510 if (pnp == NULL) 511 goto fail; 512 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 513 if (tmp == NULL) 514 goto fail; 515 *pnp = '\0'; 516 bus_child_pnpinfo_str(dev, pnp, 1024); 517 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 518 devaddq("-", tmp, dev); 519 fail: 520 if (pnp != NULL) 521 kfree(pnp, M_BUS); 522 if (tmp != NULL) 523 kfree(tmp, M_BUS); 524 return; 525 } 526 527 /* 528 * Called when there's no match for this device. This is only called 529 * the first time that no match happens, so we don't keep getitng this 530 * message. Should that prove to be undesirable, we can change it. 531 * This is called when all drivers that can attach to a given bus 532 * decline to accept this device. Other errrors may not be detected. 533 */ 534 static void 535 devnomatch(device_t dev) 536 { 537 devaddq("?", "", dev); 538 } 539 540 static int 541 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 542 { 543 struct dev_event_info *n1; 544 int dis, error; 545 546 dis = devctl_disable; 547 error = sysctl_handle_int(oidp, &dis, 0, req); 548 if (error || !req->newptr) 549 return (error); 550 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 551 devctl_disable = dis; 552 if (dis) { 553 while (!TAILQ_EMPTY(&devsoftc.devq)) { 554 n1 = TAILQ_FIRST(&devsoftc.devq); 555 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 556 kfree(n1->dei_data, M_BUS); 557 kfree(n1, M_BUS); 558 } 559 } 560 lockmgr(&devsoftc.lock, LK_RELEASE); 561 return (0); 562 } 563 564 /* End of /dev/devctl code */ 565 566 TAILQ_HEAD(,device) bus_data_devices; 567 static int bus_data_generation = 1; 568 569 kobj_method_t null_methods[] = { 570 { 0, 0 } 571 }; 572 573 DEFINE_CLASS(null, null_methods, 0); 574 575 /* 576 * Devclass implementation 577 */ 578 579 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 580 581 static devclass_t 582 devclass_find_internal(const char *classname, const char *parentname, 583 int create) 584 { 585 devclass_t dc; 586 587 PDEBUG(("looking for %s", classname)); 588 if (classname == NULL) 589 return(NULL); 590 591 TAILQ_FOREACH(dc, &devclasses, link) 592 if (!strcmp(dc->name, classname)) 593 break; 594 595 if (create && !dc) { 596 PDEBUG(("creating %s", classname)); 597 dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1, 598 M_BUS, M_INTWAIT | M_ZERO); 599 if (!dc) 600 return(NULL); 601 dc->parent = NULL; 602 dc->name = (char*) (dc + 1); 603 strcpy(dc->name, classname); 604 dc->devices = NULL; 605 dc->maxunit = 0; 606 TAILQ_INIT(&dc->drivers); 607 TAILQ_INSERT_TAIL(&devclasses, dc, link); 608 609 bus_data_generation_update(); 610 611 } 612 if (parentname && dc && !dc->parent) 613 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 614 615 return(dc); 616 } 617 618 devclass_t 619 devclass_create(const char *classname) 620 { 621 return(devclass_find_internal(classname, NULL, TRUE)); 622 } 623 624 devclass_t 625 devclass_find(const char *classname) 626 { 627 return(devclass_find_internal(classname, NULL, FALSE)); 628 } 629 630 device_t 631 devclass_find_unit(const char *classname, int unit) 632 { 633 devclass_t dc; 634 635 if ((dc = devclass_find(classname)) != NULL) 636 return(devclass_get_device(dc, unit)); 637 return (NULL); 638 } 639 640 int 641 devclass_add_driver(devclass_t dc, driver_t *driver) 642 { 643 driverlink_t dl; 644 device_t dev; 645 int i; 646 647 PDEBUG(("%s", DRIVERNAME(driver))); 648 649 dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO); 650 if (!dl) 651 return(ENOMEM); 652 653 /* 654 * Compile the driver's methods. Also increase the reference count 655 * so that the class doesn't get freed when the last instance 656 * goes. This means we can safely use static methods and avoids a 657 * double-free in devclass_delete_driver. 658 */ 659 kobj_class_instantiate(driver); 660 661 /* 662 * Make sure the devclass which the driver is implementing exists. 663 */ 664 devclass_find_internal(driver->name, NULL, TRUE); 665 666 dl->driver = driver; 667 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 668 669 /* 670 * Call BUS_DRIVER_ADDED for any existing busses in this class, 671 * but only if the bus has already been attached (otherwise we 672 * might probe too early). 673 * 674 * This is what will cause a newly loaded module to be associated 675 * with hardware. bus_generic_driver_added() is typically what ends 676 * up being called. 677 */ 678 for (i = 0; i < dc->maxunit; i++) { 679 if ((dev = dc->devices[i]) != NULL) { 680 if (dev->state >= DS_ATTACHED) 681 BUS_DRIVER_ADDED(dev, driver); 682 } 683 } 684 685 bus_data_generation_update(); 686 return(0); 687 } 688 689 int 690 devclass_delete_driver(devclass_t busclass, driver_t *driver) 691 { 692 devclass_t dc = devclass_find(driver->name); 693 driverlink_t dl; 694 device_t dev; 695 int i; 696 int error; 697 698 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 699 700 if (!dc) 701 return(0); 702 703 /* 704 * Find the link structure in the bus' list of drivers. 705 */ 706 TAILQ_FOREACH(dl, &busclass->drivers, link) 707 if (dl->driver == driver) 708 break; 709 710 if (!dl) { 711 PDEBUG(("%s not found in %s list", driver->name, busclass->name)); 712 return(ENOENT); 713 } 714 715 /* 716 * Disassociate from any devices. We iterate through all the 717 * devices in the devclass of the driver and detach any which are 718 * using the driver and which have a parent in the devclass which 719 * we are deleting from. 720 * 721 * Note that since a driver can be in multiple devclasses, we 722 * should not detach devices which are not children of devices in 723 * the affected devclass. 724 */ 725 for (i = 0; i < dc->maxunit; i++) 726 if (dc->devices[i]) { 727 dev = dc->devices[i]; 728 if (dev->driver == driver && dev->parent && 729 dev->parent->devclass == busclass) { 730 if ((error = device_detach(dev)) != 0) 731 return(error); 732 device_set_driver(dev, NULL); 733 } 734 } 735 736 TAILQ_REMOVE(&busclass->drivers, dl, link); 737 kfree(dl, M_BUS); 738 739 kobj_class_uninstantiate(driver); 740 741 bus_data_generation_update(); 742 return(0); 743 } 744 745 static driverlink_t 746 devclass_find_driver_internal(devclass_t dc, const char *classname) 747 { 748 driverlink_t dl; 749 750 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 751 752 TAILQ_FOREACH(dl, &dc->drivers, link) 753 if (!strcmp(dl->driver->name, classname)) 754 return(dl); 755 756 PDEBUG(("not found")); 757 return(NULL); 758 } 759 760 kobj_class_t 761 devclass_find_driver(devclass_t dc, const char *classname) 762 { 763 driverlink_t dl; 764 765 dl = devclass_find_driver_internal(dc, classname); 766 if (dl) 767 return(dl->driver); 768 else 769 return(NULL); 770 } 771 772 const char * 773 devclass_get_name(devclass_t dc) 774 { 775 return(dc->name); 776 } 777 778 device_t 779 devclass_get_device(devclass_t dc, int unit) 780 { 781 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 782 return(NULL); 783 return(dc->devices[unit]); 784 } 785 786 void * 787 devclass_get_softc(devclass_t dc, int unit) 788 { 789 device_t dev; 790 791 dev = devclass_get_device(dc, unit); 792 if (!dev) 793 return(NULL); 794 795 return(device_get_softc(dev)); 796 } 797 798 int 799 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 800 { 801 int i; 802 int count; 803 device_t *list; 804 805 count = 0; 806 for (i = 0; i < dc->maxunit; i++) 807 if (dc->devices[i]) 808 count++; 809 810 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 811 if (list == NULL) 812 return(ENOMEM); 813 814 count = 0; 815 for (i = 0; i < dc->maxunit; i++) 816 if (dc->devices[i]) { 817 list[count] = dc->devices[i]; 818 count++; 819 } 820 821 *devlistp = list; 822 *devcountp = count; 823 824 return(0); 825 } 826 827 /** 828 * @brief Get a list of drivers in the devclass 829 * 830 * An array containing a list of pointers to all the drivers in the 831 * given devclass is allocated and returned in @p *listp. The number 832 * of drivers in the array is returned in @p *countp. The caller should 833 * free the array using @c free(p, M_TEMP). 834 * 835 * @param dc the devclass to examine 836 * @param listp gives location for array pointer return value 837 * @param countp gives location for number of array elements 838 * return value 839 * 840 * @retval 0 success 841 * @retval ENOMEM the array allocation failed 842 */ 843 int 844 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 845 { 846 driverlink_t dl; 847 driver_t **list; 848 int count; 849 850 count = 0; 851 TAILQ_FOREACH(dl, &dc->drivers, link) 852 count++; 853 list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 854 if (list == NULL) 855 return (ENOMEM); 856 857 count = 0; 858 TAILQ_FOREACH(dl, &dc->drivers, link) { 859 list[count] = dl->driver; 860 count++; 861 } 862 *listp = list; 863 *countp = count; 864 865 return (0); 866 } 867 868 /** 869 * @brief Get the number of devices in a devclass 870 * 871 * @param dc the devclass to examine 872 */ 873 int 874 devclass_get_count(devclass_t dc) 875 { 876 int count, i; 877 878 count = 0; 879 for (i = 0; i < dc->maxunit; i++) 880 if (dc->devices[i]) 881 count++; 882 return (count); 883 } 884 885 int 886 devclass_get_maxunit(devclass_t dc) 887 { 888 return(dc->maxunit); 889 } 890 891 void 892 devclass_set_parent(devclass_t dc, devclass_t pdc) 893 { 894 dc->parent = pdc; 895 } 896 897 devclass_t 898 devclass_get_parent(devclass_t dc) 899 { 900 return(dc->parent); 901 } 902 903 static int 904 devclass_alloc_unit(devclass_t dc, int *unitp) 905 { 906 int unit = *unitp; 907 908 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 909 910 /* If we have been given a wired unit number, check for existing device */ 911 if (unit != -1) { 912 if (unit >= 0 && unit < dc->maxunit && 913 dc->devices[unit] != NULL) { 914 if (bootverbose) 915 kprintf("%s-: %s%d exists, using next available unit number\n", 916 dc->name, dc->name, unit); 917 /* find the next available slot */ 918 while (++unit < dc->maxunit && dc->devices[unit] != NULL) 919 ; 920 } 921 } else { 922 /* Unwired device, find the next available slot for it */ 923 unit = 0; 924 while (unit < dc->maxunit && dc->devices[unit] != NULL) 925 unit++; 926 } 927 928 /* 929 * We've selected a unit beyond the length of the table, so let's 930 * extend the table to make room for all units up to and including 931 * this one. 932 */ 933 if (unit >= dc->maxunit) { 934 device_t *newlist; 935 int newsize; 936 937 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 938 newlist = kmalloc(sizeof(device_t) * newsize, M_BUS, 939 M_INTWAIT | M_ZERO); 940 if (newlist == NULL) 941 return(ENOMEM); 942 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 943 if (dc->devices) 944 kfree(dc->devices, M_BUS); 945 dc->devices = newlist; 946 dc->maxunit = newsize; 947 } 948 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 949 950 *unitp = unit; 951 return(0); 952 } 953 954 static int 955 devclass_add_device(devclass_t dc, device_t dev) 956 { 957 int buflen, error; 958 959 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 960 961 buflen = strlen(dc->name) + 5; 962 dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO); 963 if (!dev->nameunit) 964 return(ENOMEM); 965 966 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 967 kfree(dev->nameunit, M_BUS); 968 dev->nameunit = NULL; 969 return(error); 970 } 971 dc->devices[dev->unit] = dev; 972 dev->devclass = dc; 973 ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 974 975 return(0); 976 } 977 978 static int 979 devclass_delete_device(devclass_t dc, device_t dev) 980 { 981 if (!dc || !dev) 982 return(0); 983 984 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 985 986 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 987 panic("devclass_delete_device: inconsistent device class"); 988 dc->devices[dev->unit] = NULL; 989 if (dev->flags & DF_WILDCARD) 990 dev->unit = -1; 991 dev->devclass = NULL; 992 kfree(dev->nameunit, M_BUS); 993 dev->nameunit = NULL; 994 995 return(0); 996 } 997 998 static device_t 999 make_device(device_t parent, const char *name, int unit) 1000 { 1001 device_t dev; 1002 devclass_t dc; 1003 1004 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1005 1006 if (name != NULL) { 1007 dc = devclass_find_internal(name, NULL, TRUE); 1008 if (!dc) { 1009 kprintf("make_device: can't find device class %s\n", name); 1010 return(NULL); 1011 } 1012 } else 1013 dc = NULL; 1014 1015 dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO); 1016 if (!dev) 1017 return(0); 1018 1019 dev->parent = parent; 1020 TAILQ_INIT(&dev->children); 1021 kobj_init((kobj_t) dev, &null_class); 1022 dev->driver = NULL; 1023 dev->devclass = NULL; 1024 dev->unit = unit; 1025 dev->nameunit = NULL; 1026 dev->desc = NULL; 1027 dev->busy = 0; 1028 dev->devflags = 0; 1029 dev->flags = DF_ENABLED; 1030 dev->order = 0; 1031 if (unit == -1) 1032 dev->flags |= DF_WILDCARD; 1033 if (name) { 1034 dev->flags |= DF_FIXEDCLASS; 1035 if (devclass_add_device(dc, dev) != 0) { 1036 kobj_delete((kobj_t)dev, M_BUS); 1037 return(NULL); 1038 } 1039 } 1040 dev->ivars = NULL; 1041 dev->softc = NULL; 1042 1043 dev->state = DS_NOTPRESENT; 1044 1045 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1046 bus_data_generation_update(); 1047 1048 return(dev); 1049 } 1050 1051 static int 1052 device_print_child(device_t dev, device_t child) 1053 { 1054 int retval = 0; 1055 1056 if (device_is_alive(child)) 1057 retval += BUS_PRINT_CHILD(dev, child); 1058 else 1059 retval += device_printf(child, " not found\n"); 1060 1061 return(retval); 1062 } 1063 1064 device_t 1065 device_add_child(device_t dev, const char *name, int unit) 1066 { 1067 return device_add_child_ordered(dev, 0, name, unit); 1068 } 1069 1070 device_t 1071 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1072 { 1073 device_t child; 1074 device_t place; 1075 1076 PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), 1077 order, unit)); 1078 1079 child = make_device(dev, name, unit); 1080 if (child == NULL) 1081 return child; 1082 child->order = order; 1083 1084 TAILQ_FOREACH(place, &dev->children, link) 1085 if (place->order > order) 1086 break; 1087 1088 if (place) { 1089 /* 1090 * The device 'place' is the first device whose order is 1091 * greater than the new child. 1092 */ 1093 TAILQ_INSERT_BEFORE(place, child, link); 1094 } else { 1095 /* 1096 * The new child's order is greater or equal to the order of 1097 * any existing device. Add the child to the tail of the list. 1098 */ 1099 TAILQ_INSERT_TAIL(&dev->children, child, link); 1100 } 1101 1102 bus_data_generation_update(); 1103 return(child); 1104 } 1105 1106 int 1107 device_delete_child(device_t dev, device_t child) 1108 { 1109 int error; 1110 device_t grandchild; 1111 1112 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1113 1114 /* remove children first */ 1115 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1116 error = device_delete_child(child, grandchild); 1117 if (error) 1118 return(error); 1119 } 1120 1121 if ((error = device_detach(child)) != 0) 1122 return(error); 1123 if (child->devclass) 1124 devclass_delete_device(child->devclass, child); 1125 TAILQ_REMOVE(&dev->children, child, link); 1126 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1127 device_set_desc(child, NULL); 1128 kobj_delete((kobj_t)child, M_BUS); 1129 1130 bus_data_generation_update(); 1131 return(0); 1132 } 1133 1134 /** 1135 * @brief Find a device given a unit number 1136 * 1137 * This is similar to devclass_get_devices() but only searches for 1138 * devices which have @p dev as a parent. 1139 * 1140 * @param dev the parent device to search 1141 * @param unit the unit number to search for. If the unit is -1, 1142 * return the first child of @p dev which has name 1143 * @p classname (that is, the one with the lowest unit.) 1144 * 1145 * @returns the device with the given unit number or @c 1146 * NULL if there is no such device 1147 */ 1148 device_t 1149 device_find_child(device_t dev, const char *classname, int unit) 1150 { 1151 devclass_t dc; 1152 device_t child; 1153 1154 dc = devclass_find(classname); 1155 if (!dc) 1156 return(NULL); 1157 1158 if (unit != -1) { 1159 child = devclass_get_device(dc, unit); 1160 if (child && child->parent == dev) 1161 return (child); 1162 } else { 1163 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1164 child = devclass_get_device(dc, unit); 1165 if (child && child->parent == dev) 1166 return (child); 1167 } 1168 } 1169 return(NULL); 1170 } 1171 1172 static driverlink_t 1173 first_matching_driver(devclass_t dc, device_t dev) 1174 { 1175 if (dev->devclass) 1176 return(devclass_find_driver_internal(dc, dev->devclass->name)); 1177 else 1178 return(TAILQ_FIRST(&dc->drivers)); 1179 } 1180 1181 static driverlink_t 1182 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1183 { 1184 if (dev->devclass) { 1185 driverlink_t dl; 1186 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1187 if (!strcmp(dev->devclass->name, dl->driver->name)) 1188 return(dl); 1189 return(NULL); 1190 } else 1191 return(TAILQ_NEXT(last, link)); 1192 } 1193 1194 static int 1195 device_probe_child(device_t dev, device_t child) 1196 { 1197 devclass_t dc; 1198 driverlink_t best = 0; 1199 driverlink_t dl; 1200 int result, pri = 0; 1201 int hasclass = (child->devclass != 0); 1202 1203 dc = dev->devclass; 1204 if (!dc) 1205 panic("device_probe_child: parent device has no devclass"); 1206 1207 if (child->state == DS_ALIVE) 1208 return(0); 1209 1210 for (; dc; dc = dc->parent) { 1211 for (dl = first_matching_driver(dc, child); dl; 1212 dl = next_matching_driver(dc, child, dl)) { 1213 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1214 device_set_driver(child, dl->driver); 1215 if (!hasclass) 1216 device_set_devclass(child, dl->driver->name); 1217 result = DEVICE_PROBE(child); 1218 if (!hasclass) 1219 device_set_devclass(child, 0); 1220 1221 /* 1222 * If the driver returns SUCCESS, there can be 1223 * no higher match for this device. 1224 */ 1225 if (result == 0) { 1226 best = dl; 1227 pri = 0; 1228 break; 1229 } 1230 1231 /* 1232 * The driver returned an error so it 1233 * certainly doesn't match. 1234 */ 1235 if (result > 0) { 1236 device_set_driver(child, 0); 1237 continue; 1238 } 1239 1240 /* 1241 * A priority lower than SUCCESS, remember the 1242 * best matching driver. Initialise the value 1243 * of pri for the first match. 1244 */ 1245 if (best == 0 || result > pri) { 1246 best = dl; 1247 pri = result; 1248 continue; 1249 } 1250 } 1251 /* 1252 * If we have unambiguous match in this devclass, 1253 * don't look in the parent. 1254 */ 1255 if (best && pri == 0) 1256 break; 1257 } 1258 1259 /* 1260 * If we found a driver, change state and initialise the devclass. 1261 */ 1262 if (best) { 1263 if (!child->devclass) 1264 device_set_devclass(child, best->driver->name); 1265 device_set_driver(child, best->driver); 1266 if (pri < 0) { 1267 /* 1268 * A bit bogus. Call the probe method again to make 1269 * sure that we have the right description. 1270 */ 1271 DEVICE_PROBE(child); 1272 } 1273 1274 bus_data_generation_update(); 1275 child->state = DS_ALIVE; 1276 return(0); 1277 } 1278 1279 return(ENXIO); 1280 } 1281 1282 device_t 1283 device_get_parent(device_t dev) 1284 { 1285 return dev->parent; 1286 } 1287 1288 int 1289 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1290 { 1291 int count; 1292 device_t child; 1293 device_t *list; 1294 1295 count = 0; 1296 TAILQ_FOREACH(child, &dev->children, link) 1297 count++; 1298 1299 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 1300 if (!list) 1301 return(ENOMEM); 1302 1303 count = 0; 1304 TAILQ_FOREACH(child, &dev->children, link) { 1305 list[count] = child; 1306 count++; 1307 } 1308 1309 *devlistp = list; 1310 *devcountp = count; 1311 1312 return(0); 1313 } 1314 1315 driver_t * 1316 device_get_driver(device_t dev) 1317 { 1318 return(dev->driver); 1319 } 1320 1321 devclass_t 1322 device_get_devclass(device_t dev) 1323 { 1324 return(dev->devclass); 1325 } 1326 1327 const char * 1328 device_get_name(device_t dev) 1329 { 1330 if (dev->devclass) 1331 return devclass_get_name(dev->devclass); 1332 return(NULL); 1333 } 1334 1335 const char * 1336 device_get_nameunit(device_t dev) 1337 { 1338 return(dev->nameunit); 1339 } 1340 1341 int 1342 device_get_unit(device_t dev) 1343 { 1344 return(dev->unit); 1345 } 1346 1347 const char * 1348 device_get_desc(device_t dev) 1349 { 1350 return(dev->desc); 1351 } 1352 1353 uint32_t 1354 device_get_flags(device_t dev) 1355 { 1356 return(dev->devflags); 1357 } 1358 1359 int 1360 device_print_prettyname(device_t dev) 1361 { 1362 const char *name = device_get_name(dev); 1363 1364 if (name == 0) 1365 return kprintf("unknown: "); 1366 else 1367 return kprintf("%s%d: ", name, device_get_unit(dev)); 1368 } 1369 1370 int 1371 device_printf(device_t dev, const char * fmt, ...) 1372 { 1373 __va_list ap; 1374 int retval; 1375 1376 retval = device_print_prettyname(dev); 1377 __va_start(ap, fmt); 1378 retval += kvprintf(fmt, ap); 1379 __va_end(ap); 1380 return retval; 1381 } 1382 1383 static void 1384 device_set_desc_internal(device_t dev, const char* desc, int copy) 1385 { 1386 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1387 kfree(dev->desc, M_BUS); 1388 dev->flags &= ~DF_DESCMALLOCED; 1389 dev->desc = NULL; 1390 } 1391 1392 if (copy && desc) { 1393 dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT); 1394 if (dev->desc) { 1395 strcpy(dev->desc, desc); 1396 dev->flags |= DF_DESCMALLOCED; 1397 } 1398 } else { 1399 /* Avoid a -Wcast-qual warning */ 1400 dev->desc = (char *)(uintptr_t) desc; 1401 } 1402 1403 bus_data_generation_update(); 1404 } 1405 1406 void 1407 device_set_desc(device_t dev, const char* desc) 1408 { 1409 device_set_desc_internal(dev, desc, FALSE); 1410 } 1411 1412 void 1413 device_set_desc_copy(device_t dev, const char* desc) 1414 { 1415 device_set_desc_internal(dev, desc, TRUE); 1416 } 1417 1418 void 1419 device_set_flags(device_t dev, uint32_t flags) 1420 { 1421 dev->devflags = flags; 1422 } 1423 1424 void * 1425 device_get_softc(device_t dev) 1426 { 1427 return dev->softc; 1428 } 1429 1430 void 1431 device_set_softc(device_t dev, void *softc) 1432 { 1433 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 1434 kfree(dev->softc, M_BUS); 1435 dev->softc = softc; 1436 if (dev->softc) 1437 dev->flags |= DF_EXTERNALSOFTC; 1438 else 1439 dev->flags &= ~DF_EXTERNALSOFTC; 1440 } 1441 1442 void 1443 device_set_async_attach(device_t dev, int enable) 1444 { 1445 if (enable) 1446 dev->flags |= DF_ASYNCPROBE; 1447 else 1448 dev->flags &= ~DF_ASYNCPROBE; 1449 } 1450 1451 void * 1452 device_get_ivars(device_t dev) 1453 { 1454 return dev->ivars; 1455 } 1456 1457 void 1458 device_set_ivars(device_t dev, void * ivars) 1459 { 1460 if (!dev) 1461 return; 1462 1463 dev->ivars = ivars; 1464 } 1465 1466 device_state_t 1467 device_get_state(device_t dev) 1468 { 1469 return(dev->state); 1470 } 1471 1472 void 1473 device_enable(device_t dev) 1474 { 1475 dev->flags |= DF_ENABLED; 1476 } 1477 1478 void 1479 device_disable(device_t dev) 1480 { 1481 dev->flags &= ~DF_ENABLED; 1482 } 1483 1484 /* 1485 * YYY cannot block 1486 */ 1487 void 1488 device_busy(device_t dev) 1489 { 1490 if (dev->state < DS_ATTACHED) 1491 panic("device_busy: called for unattached device"); 1492 if (dev->busy == 0 && dev->parent) 1493 device_busy(dev->parent); 1494 dev->busy++; 1495 dev->state = DS_BUSY; 1496 } 1497 1498 /* 1499 * YYY cannot block 1500 */ 1501 void 1502 device_unbusy(device_t dev) 1503 { 1504 if (dev->state != DS_BUSY) 1505 panic("device_unbusy: called for non-busy device"); 1506 dev->busy--; 1507 if (dev->busy == 0) { 1508 if (dev->parent) 1509 device_unbusy(dev->parent); 1510 dev->state = DS_ATTACHED; 1511 } 1512 } 1513 1514 void 1515 device_quiet(device_t dev) 1516 { 1517 dev->flags |= DF_QUIET; 1518 } 1519 1520 void 1521 device_verbose(device_t dev) 1522 { 1523 dev->flags &= ~DF_QUIET; 1524 } 1525 1526 int 1527 device_is_quiet(device_t dev) 1528 { 1529 return((dev->flags & DF_QUIET) != 0); 1530 } 1531 1532 int 1533 device_is_enabled(device_t dev) 1534 { 1535 return((dev->flags & DF_ENABLED) != 0); 1536 } 1537 1538 int 1539 device_is_alive(device_t dev) 1540 { 1541 return(dev->state >= DS_ALIVE); 1542 } 1543 1544 int 1545 device_is_attached(device_t dev) 1546 { 1547 return(dev->state >= DS_ATTACHED); 1548 } 1549 1550 int 1551 device_set_devclass(device_t dev, const char *classname) 1552 { 1553 devclass_t dc; 1554 int error; 1555 1556 if (!classname) { 1557 if (dev->devclass) 1558 devclass_delete_device(dev->devclass, dev); 1559 return(0); 1560 } 1561 1562 if (dev->devclass) { 1563 kprintf("device_set_devclass: device class already set\n"); 1564 return(EINVAL); 1565 } 1566 1567 dc = devclass_find_internal(classname, NULL, TRUE); 1568 if (!dc) 1569 return(ENOMEM); 1570 1571 error = devclass_add_device(dc, dev); 1572 1573 bus_data_generation_update(); 1574 return(error); 1575 } 1576 1577 int 1578 device_set_driver(device_t dev, driver_t *driver) 1579 { 1580 if (dev->state >= DS_ATTACHED) 1581 return(EBUSY); 1582 1583 if (dev->driver == driver) 1584 return(0); 1585 1586 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 1587 kfree(dev->softc, M_BUS); 1588 dev->softc = NULL; 1589 } 1590 kobj_delete((kobj_t) dev, 0); 1591 dev->driver = driver; 1592 if (driver) { 1593 kobj_init((kobj_t) dev, (kobj_class_t) driver); 1594 if (!(dev->flags & DF_EXTERNALSOFTC)) { 1595 dev->softc = kmalloc(driver->size, M_BUS, 1596 M_INTWAIT | M_ZERO); 1597 if (!dev->softc) { 1598 kobj_delete((kobj_t)dev, 0); 1599 kobj_init((kobj_t) dev, &null_class); 1600 dev->driver = NULL; 1601 return(ENOMEM); 1602 } 1603 } 1604 } else { 1605 kobj_init((kobj_t) dev, &null_class); 1606 } 1607 1608 bus_data_generation_update(); 1609 return(0); 1610 } 1611 1612 int 1613 device_probe_and_attach(device_t dev) 1614 { 1615 device_t bus = dev->parent; 1616 int error = 0; 1617 1618 if (dev->state >= DS_ALIVE) 1619 return(0); 1620 1621 if ((dev->flags & DF_ENABLED) == 0) { 1622 if (bootverbose) { 1623 device_print_prettyname(dev); 1624 kprintf("not probed (disabled)\n"); 1625 } 1626 return(0); 1627 } 1628 1629 error = device_probe_child(bus, dev); 1630 if (error) { 1631 if (!(dev->flags & DF_DONENOMATCH)) { 1632 BUS_PROBE_NOMATCH(bus, dev); 1633 devnomatch(dev); 1634 dev->flags |= DF_DONENOMATCH; 1635 } 1636 return(error); 1637 } 1638 1639 /* 1640 * Output the exact device chain prior to the attach in case the 1641 * system locks up during attach, and generate the full info after 1642 * the attach so correct irq and other information is displayed. 1643 */ 1644 if (bootverbose && !device_is_quiet(dev)) { 1645 device_t tmp; 1646 1647 kprintf("%s", device_get_nameunit(dev)); 1648 for (tmp = dev->parent; tmp; tmp = tmp->parent) 1649 kprintf(".%s", device_get_nameunit(tmp)); 1650 kprintf("\n"); 1651 } 1652 if (!device_is_quiet(dev)) 1653 device_print_child(bus, dev); 1654 if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { 1655 kprintf("%s: probing asynchronously\n", 1656 device_get_nameunit(dev)); 1657 dev->state = DS_INPROGRESS; 1658 device_attach_async(dev); 1659 error = 0; 1660 } else { 1661 error = device_doattach(dev); 1662 } 1663 return(error); 1664 } 1665 1666 /* 1667 * Device is known to be alive, do the attach asynchronously. 1668 * However, serialize the attaches with the mp lock. 1669 */ 1670 static void 1671 device_attach_async(device_t dev) 1672 { 1673 thread_t td; 1674 1675 atomic_add_int(&numasyncthreads, 1); 1676 lwkt_create(device_attach_thread, dev, &td, NULL, 1677 0, 0, (dev->desc ? dev->desc : "devattach")); 1678 } 1679 1680 static void 1681 device_attach_thread(void *arg) 1682 { 1683 device_t dev = arg; 1684 1685 get_mplock(); /* XXX replace with devattach_token later */ 1686 (void)device_doattach(dev); 1687 atomic_subtract_int(&numasyncthreads, 1); 1688 wakeup(&numasyncthreads); 1689 rel_mplock(); /* XXX replace with devattach_token later */ 1690 } 1691 1692 /* 1693 * Device is known to be alive, do the attach (synchronous or asynchronous) 1694 */ 1695 static int 1696 device_doattach(device_t dev) 1697 { 1698 device_t bus = dev->parent; 1699 int hasclass = (dev->devclass != 0); 1700 int error; 1701 1702 error = DEVICE_ATTACH(dev); 1703 if (error == 0) { 1704 dev->state = DS_ATTACHED; 1705 if (bootverbose && !device_is_quiet(dev)) 1706 device_print_child(bus, dev); 1707 devadded(dev); 1708 } else { 1709 kprintf("device_probe_and_attach: %s%d attach returned %d\n", 1710 dev->driver->name, dev->unit, error); 1711 /* Unset the class that was set in device_probe_child */ 1712 if (!hasclass) 1713 device_set_devclass(dev, 0); 1714 device_set_driver(dev, NULL); 1715 dev->state = DS_NOTPRESENT; 1716 } 1717 return(error); 1718 } 1719 1720 int 1721 device_detach(device_t dev) 1722 { 1723 int error; 1724 1725 PDEBUG(("%s", DEVICENAME(dev))); 1726 if (dev->state == DS_BUSY) 1727 return(EBUSY); 1728 if (dev->state != DS_ATTACHED) 1729 return(0); 1730 1731 if ((error = DEVICE_DETACH(dev)) != 0) 1732 return(error); 1733 devremoved(dev); 1734 device_printf(dev, "detached\n"); 1735 if (dev->parent) 1736 BUS_CHILD_DETACHED(dev->parent, dev); 1737 1738 if (!(dev->flags & DF_FIXEDCLASS)) 1739 devclass_delete_device(dev->devclass, dev); 1740 1741 dev->state = DS_NOTPRESENT; 1742 device_set_driver(dev, NULL); 1743 1744 return(0); 1745 } 1746 1747 int 1748 device_shutdown(device_t dev) 1749 { 1750 if (dev->state < DS_ATTACHED) 1751 return 0; 1752 PDEBUG(("%s", DEVICENAME(dev))); 1753 return DEVICE_SHUTDOWN(dev); 1754 } 1755 1756 int 1757 device_set_unit(device_t dev, int unit) 1758 { 1759 devclass_t dc; 1760 int err; 1761 1762 dc = device_get_devclass(dev); 1763 if (unit < dc->maxunit && dc->devices[unit]) 1764 return(EBUSY); 1765 err = devclass_delete_device(dc, dev); 1766 if (err) 1767 return(err); 1768 dev->unit = unit; 1769 err = devclass_add_device(dc, dev); 1770 if (err) 1771 return(err); 1772 1773 bus_data_generation_update(); 1774 return(0); 1775 } 1776 1777 /*======================================*/ 1778 /* 1779 * Access functions for device resources. 1780 */ 1781 1782 /* Supplied by config(8) in ioconf.c */ 1783 extern struct config_device config_devtab[]; 1784 extern int devtab_count; 1785 1786 /* Runtime version */ 1787 struct config_device *devtab = config_devtab; 1788 1789 static int 1790 resource_new_name(const char *name, int unit) 1791 { 1792 struct config_device *new; 1793 1794 new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP, 1795 M_INTWAIT | M_ZERO); 1796 if (new == NULL) 1797 return(-1); 1798 if (devtab && devtab_count > 0) 1799 bcopy(devtab, new, devtab_count * sizeof(*new)); 1800 new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT); 1801 if (new[devtab_count].name == NULL) { 1802 kfree(new, M_TEMP); 1803 return(-1); 1804 } 1805 strcpy(new[devtab_count].name, name); 1806 new[devtab_count].unit = unit; 1807 new[devtab_count].resource_count = 0; 1808 new[devtab_count].resources = NULL; 1809 if (devtab && devtab != config_devtab) 1810 kfree(devtab, M_TEMP); 1811 devtab = new; 1812 return devtab_count++; 1813 } 1814 1815 static int 1816 resource_new_resname(int j, const char *resname, resource_type type) 1817 { 1818 struct config_resource *new; 1819 int i; 1820 1821 i = devtab[j].resource_count; 1822 new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); 1823 if (new == NULL) 1824 return(-1); 1825 if (devtab[j].resources && i > 0) 1826 bcopy(devtab[j].resources, new, i * sizeof(*new)); 1827 new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT); 1828 if (new[i].name == NULL) { 1829 kfree(new, M_TEMP); 1830 return(-1); 1831 } 1832 strcpy(new[i].name, resname); 1833 new[i].type = type; 1834 if (devtab[j].resources) 1835 kfree(devtab[j].resources, M_TEMP); 1836 devtab[j].resources = new; 1837 devtab[j].resource_count = i + 1; 1838 return(i); 1839 } 1840 1841 static int 1842 resource_match_string(int i, const char *resname, const char *value) 1843 { 1844 int j; 1845 struct config_resource *res; 1846 1847 for (j = 0, res = devtab[i].resources; 1848 j < devtab[i].resource_count; j++, res++) 1849 if (!strcmp(res->name, resname) 1850 && res->type == RES_STRING 1851 && !strcmp(res->u.stringval, value)) 1852 return(j); 1853 return(-1); 1854 } 1855 1856 static int 1857 resource_find(const char *name, int unit, const char *resname, 1858 struct config_resource **result) 1859 { 1860 int i, j; 1861 struct config_resource *res; 1862 1863 /* 1864 * First check specific instances, then generic. 1865 */ 1866 for (i = 0; i < devtab_count; i++) { 1867 if (devtab[i].unit < 0) 1868 continue; 1869 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1870 res = devtab[i].resources; 1871 for (j = 0; j < devtab[i].resource_count; j++, res++) 1872 if (!strcmp(res->name, resname)) { 1873 *result = res; 1874 return(0); 1875 } 1876 } 1877 } 1878 for (i = 0; i < devtab_count; i++) { 1879 if (devtab[i].unit >= 0) 1880 continue; 1881 /* XXX should this `&& devtab[i].unit == unit' be here? */ 1882 /* XXX if so, then the generic match does nothing */ 1883 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1884 res = devtab[i].resources; 1885 for (j = 0; j < devtab[i].resource_count; j++, res++) 1886 if (!strcmp(res->name, resname)) { 1887 *result = res; 1888 return(0); 1889 } 1890 } 1891 } 1892 return(ENOENT); 1893 } 1894 1895 int 1896 resource_int_value(const char *name, int unit, const char *resname, int *result) 1897 { 1898 int error; 1899 struct config_resource *res; 1900 1901 if ((error = resource_find(name, unit, resname, &res)) != 0) 1902 return(error); 1903 if (res->type != RES_INT) 1904 return(EFTYPE); 1905 *result = res->u.intval; 1906 return(0); 1907 } 1908 1909 int 1910 resource_long_value(const char *name, int unit, const char *resname, 1911 long *result) 1912 { 1913 int error; 1914 struct config_resource *res; 1915 1916 if ((error = resource_find(name, unit, resname, &res)) != 0) 1917 return(error); 1918 if (res->type != RES_LONG) 1919 return(EFTYPE); 1920 *result = res->u.longval; 1921 return(0); 1922 } 1923 1924 int 1925 resource_string_value(const char *name, int unit, const char *resname, 1926 char **result) 1927 { 1928 int error; 1929 struct config_resource *res; 1930 1931 if ((error = resource_find(name, unit, resname, &res)) != 0) 1932 return(error); 1933 if (res->type != RES_STRING) 1934 return(EFTYPE); 1935 *result = res->u.stringval; 1936 return(0); 1937 } 1938 1939 int 1940 resource_query_string(int i, const char *resname, const char *value) 1941 { 1942 if (i < 0) 1943 i = 0; 1944 else 1945 i = i + 1; 1946 for (; i < devtab_count; i++) 1947 if (resource_match_string(i, resname, value) >= 0) 1948 return(i); 1949 return(-1); 1950 } 1951 1952 int 1953 resource_locate(int i, const char *resname) 1954 { 1955 if (i < 0) 1956 i = 0; 1957 else 1958 i = i + 1; 1959 for (; i < devtab_count; i++) 1960 if (!strcmp(devtab[i].name, resname)) 1961 return(i); 1962 return(-1); 1963 } 1964 1965 int 1966 resource_count(void) 1967 { 1968 return(devtab_count); 1969 } 1970 1971 char * 1972 resource_query_name(int i) 1973 { 1974 return(devtab[i].name); 1975 } 1976 1977 int 1978 resource_query_unit(int i) 1979 { 1980 return(devtab[i].unit); 1981 } 1982 1983 static int 1984 resource_create(const char *name, int unit, const char *resname, 1985 resource_type type, struct config_resource **result) 1986 { 1987 int i, j; 1988 struct config_resource *res = NULL; 1989 1990 for (i = 0; i < devtab_count; i++) 1991 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1992 res = devtab[i].resources; 1993 break; 1994 } 1995 if (res == NULL) { 1996 i = resource_new_name(name, unit); 1997 if (i < 0) 1998 return(ENOMEM); 1999 res = devtab[i].resources; 2000 } 2001 for (j = 0; j < devtab[i].resource_count; j++, res++) 2002 if (!strcmp(res->name, resname)) { 2003 *result = res; 2004 return(0); 2005 } 2006 j = resource_new_resname(i, resname, type); 2007 if (j < 0) 2008 return(ENOMEM); 2009 res = &devtab[i].resources[j]; 2010 *result = res; 2011 return(0); 2012 } 2013 2014 int 2015 resource_set_int(const char *name, int unit, const char *resname, int value) 2016 { 2017 int error; 2018 struct config_resource *res; 2019 2020 error = resource_create(name, unit, resname, RES_INT, &res); 2021 if (error) 2022 return(error); 2023 if (res->type != RES_INT) 2024 return(EFTYPE); 2025 res->u.intval = value; 2026 return(0); 2027 } 2028 2029 int 2030 resource_set_long(const char *name, int unit, const char *resname, long value) 2031 { 2032 int error; 2033 struct config_resource *res; 2034 2035 error = resource_create(name, unit, resname, RES_LONG, &res); 2036 if (error) 2037 return(error); 2038 if (res->type != RES_LONG) 2039 return(EFTYPE); 2040 res->u.longval = value; 2041 return(0); 2042 } 2043 2044 int 2045 resource_set_string(const char *name, int unit, const char *resname, 2046 const char *value) 2047 { 2048 int error; 2049 struct config_resource *res; 2050 2051 error = resource_create(name, unit, resname, RES_STRING, &res); 2052 if (error) 2053 return(error); 2054 if (res->type != RES_STRING) 2055 return(EFTYPE); 2056 if (res->u.stringval) 2057 kfree(res->u.stringval, M_TEMP); 2058 res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT); 2059 if (res->u.stringval == NULL) 2060 return(ENOMEM); 2061 strcpy(res->u.stringval, value); 2062 return(0); 2063 } 2064 2065 static void 2066 resource_cfgload(void *dummy __unused) 2067 { 2068 struct config_resource *res, *cfgres; 2069 int i, j; 2070 int error; 2071 char *name, *resname; 2072 int unit; 2073 resource_type type; 2074 char *stringval; 2075 int config_devtab_count; 2076 2077 config_devtab_count = devtab_count; 2078 devtab = NULL; 2079 devtab_count = 0; 2080 2081 for (i = 0; i < config_devtab_count; i++) { 2082 name = config_devtab[i].name; 2083 unit = config_devtab[i].unit; 2084 2085 for (j = 0; j < config_devtab[i].resource_count; j++) { 2086 cfgres = config_devtab[i].resources; 2087 resname = cfgres[j].name; 2088 type = cfgres[j].type; 2089 error = resource_create(name, unit, resname, type, 2090 &res); 2091 if (error) { 2092 kprintf("create resource %s%d: error %d\n", 2093 name, unit, error); 2094 continue; 2095 } 2096 if (res->type != type) { 2097 kprintf("type mismatch %s%d: %d != %d\n", 2098 name, unit, res->type, type); 2099 continue; 2100 } 2101 switch (type) { 2102 case RES_INT: 2103 res->u.intval = cfgres[j].u.intval; 2104 break; 2105 case RES_LONG: 2106 res->u.longval = cfgres[j].u.longval; 2107 break; 2108 case RES_STRING: 2109 if (res->u.stringval) 2110 kfree(res->u.stringval, M_TEMP); 2111 stringval = cfgres[j].u.stringval; 2112 res->u.stringval = kmalloc(strlen(stringval) + 1, 2113 M_TEMP, M_INTWAIT); 2114 if (res->u.stringval == NULL) 2115 break; 2116 strcpy(res->u.stringval, stringval); 2117 break; 2118 default: 2119 panic("unknown resource type %d", type); 2120 } 2121 } 2122 } 2123 } 2124 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0) 2125 2126 2127 /*======================================*/ 2128 /* 2129 * Some useful method implementations to make life easier for bus drivers. 2130 */ 2131 2132 void 2133 resource_list_init(struct resource_list *rl) 2134 { 2135 SLIST_INIT(rl); 2136 } 2137 2138 void 2139 resource_list_free(struct resource_list *rl) 2140 { 2141 struct resource_list_entry *rle; 2142 2143 while ((rle = SLIST_FIRST(rl)) != NULL) { 2144 if (rle->res) 2145 panic("resource_list_free: resource entry is busy"); 2146 SLIST_REMOVE_HEAD(rl, link); 2147 kfree(rle, M_BUS); 2148 } 2149 } 2150 2151 void 2152 resource_list_add(struct resource_list *rl, 2153 int type, int rid, 2154 u_long start, u_long end, u_long count) 2155 { 2156 struct resource_list_entry *rle; 2157 2158 rle = resource_list_find(rl, type, rid); 2159 if (rle == NULL) { 2160 rle = kmalloc(sizeof(struct resource_list_entry), M_BUS, 2161 M_INTWAIT); 2162 if (!rle) 2163 panic("resource_list_add: can't record entry"); 2164 SLIST_INSERT_HEAD(rl, rle, link); 2165 rle->type = type; 2166 rle->rid = rid; 2167 rle->res = NULL; 2168 } 2169 2170 if (rle->res) 2171 panic("resource_list_add: resource entry is busy"); 2172 2173 rle->start = start; 2174 rle->end = end; 2175 rle->count = count; 2176 } 2177 2178 struct resource_list_entry* 2179 resource_list_find(struct resource_list *rl, 2180 int type, int rid) 2181 { 2182 struct resource_list_entry *rle; 2183 2184 SLIST_FOREACH(rle, rl, link) 2185 if (rle->type == type && rle->rid == rid) 2186 return(rle); 2187 return(NULL); 2188 } 2189 2190 void 2191 resource_list_delete(struct resource_list *rl, 2192 int type, int rid) 2193 { 2194 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2195 2196 if (rle) { 2197 if (rle->res != NULL) 2198 panic("resource_list_delete: resource has not been released"); 2199 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2200 kfree(rle, M_BUS); 2201 } 2202 } 2203 2204 struct resource * 2205 resource_list_alloc(struct resource_list *rl, 2206 device_t bus, device_t child, 2207 int type, int *rid, 2208 u_long start, u_long end, 2209 u_long count, u_int flags) 2210 { 2211 struct resource_list_entry *rle = 0; 2212 int passthrough = (device_get_parent(child) != bus); 2213 int isdefault = (start == 0UL && end == ~0UL); 2214 2215 if (passthrough) { 2216 return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2217 type, rid, 2218 start, end, count, flags)); 2219 } 2220 2221 rle = resource_list_find(rl, type, *rid); 2222 2223 if (!rle) 2224 return(0); /* no resource of that type/rid */ 2225 2226 if (rle->res) 2227 panic("resource_list_alloc: resource entry is busy"); 2228 2229 if (isdefault) { 2230 start = rle->start; 2231 count = max(count, rle->count); 2232 end = max(rle->end, start + count - 1); 2233 } 2234 2235 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2236 type, rid, start, end, count, flags); 2237 2238 /* 2239 * Record the new range. 2240 */ 2241 if (rle->res) { 2242 rle->start = rman_get_start(rle->res); 2243 rle->end = rman_get_end(rle->res); 2244 rle->count = count; 2245 } 2246 2247 return(rle->res); 2248 } 2249 2250 int 2251 resource_list_release(struct resource_list *rl, 2252 device_t bus, device_t child, 2253 int type, int rid, struct resource *res) 2254 { 2255 struct resource_list_entry *rle = 0; 2256 int passthrough = (device_get_parent(child) != bus); 2257 int error; 2258 2259 if (passthrough) { 2260 return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2261 type, rid, res)); 2262 } 2263 2264 rle = resource_list_find(rl, type, rid); 2265 2266 if (!rle) 2267 panic("resource_list_release: can't find resource"); 2268 if (!rle->res) 2269 panic("resource_list_release: resource entry is not busy"); 2270 2271 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2272 type, rid, res); 2273 if (error) 2274 return(error); 2275 2276 rle->res = NULL; 2277 return(0); 2278 } 2279 2280 int 2281 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2282 const char *format) 2283 { 2284 struct resource_list_entry *rle; 2285 int printed, retval; 2286 2287 printed = 0; 2288 retval = 0; 2289 /* Yes, this is kinda cheating */ 2290 SLIST_FOREACH(rle, rl, link) { 2291 if (rle->type == type) { 2292 if (printed == 0) 2293 retval += kprintf(" %s ", name); 2294 else 2295 retval += kprintf(","); 2296 printed++; 2297 retval += kprintf(format, rle->start); 2298 if (rle->count > 1) { 2299 retval += kprintf("-"); 2300 retval += kprintf(format, rle->start + 2301 rle->count - 1); 2302 } 2303 } 2304 } 2305 return(retval); 2306 } 2307 2308 /* 2309 * Generic driver/device identify functions. These will install a device 2310 * rendezvous point under the parent using the same name as the driver 2311 * name, which will at a later time be probed and attached. 2312 * 2313 * These functions are used when the parent does not 'scan' its bus for 2314 * matching devices, or for the particular devices using these functions, 2315 * or when the device is a pseudo or synthesized device (such as can be 2316 * found under firewire and ppbus). 2317 */ 2318 int 2319 bus_generic_identify(driver_t *driver, device_t parent) 2320 { 2321 if (parent->state == DS_ATTACHED) 2322 return (0); 2323 BUS_ADD_CHILD(parent, parent, 0, driver->name, -1); 2324 return (0); 2325 } 2326 2327 int 2328 bus_generic_identify_sameunit(driver_t *driver, device_t parent) 2329 { 2330 if (parent->state == DS_ATTACHED) 2331 return (0); 2332 BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent)); 2333 return (0); 2334 } 2335 2336 /* 2337 * Call DEVICE_IDENTIFY for each driver. 2338 */ 2339 int 2340 bus_generic_probe(device_t dev) 2341 { 2342 devclass_t dc = dev->devclass; 2343 driverlink_t dl; 2344 2345 TAILQ_FOREACH(dl, &dc->drivers, link) { 2346 DEVICE_IDENTIFY(dl->driver, dev); 2347 } 2348 2349 return(0); 2350 } 2351 2352 /* 2353 * This is an aweful hack due to the isa bus and autoconf code not 2354 * probing the ISA devices until after everything else has configured. 2355 * The ISA bus did a dummy attach long ago so we have to set it back 2356 * to an earlier state so the probe thinks its the initial probe and 2357 * not a bus rescan. 2358 * 2359 * XXX remove by properly defering the ISA bus scan. 2360 */ 2361 int 2362 bus_generic_probe_hack(device_t dev) 2363 { 2364 if (dev->state == DS_ATTACHED) { 2365 dev->state = DS_ALIVE; 2366 bus_generic_probe(dev); 2367 dev->state = DS_ATTACHED; 2368 } 2369 return (0); 2370 } 2371 2372 int 2373 bus_generic_attach(device_t dev) 2374 { 2375 device_t child; 2376 2377 TAILQ_FOREACH(child, &dev->children, link) { 2378 device_probe_and_attach(child); 2379 } 2380 2381 return(0); 2382 } 2383 2384 int 2385 bus_generic_detach(device_t dev) 2386 { 2387 device_t child; 2388 int error; 2389 2390 if (dev->state != DS_ATTACHED) 2391 return(EBUSY); 2392 2393 TAILQ_FOREACH(child, &dev->children, link) 2394 if ((error = device_detach(child)) != 0) 2395 return(error); 2396 2397 return 0; 2398 } 2399 2400 int 2401 bus_generic_shutdown(device_t dev) 2402 { 2403 device_t child; 2404 2405 TAILQ_FOREACH(child, &dev->children, link) 2406 device_shutdown(child); 2407 2408 return(0); 2409 } 2410 2411 int 2412 bus_generic_suspend(device_t dev) 2413 { 2414 int error; 2415 device_t child, child2; 2416 2417 TAILQ_FOREACH(child, &dev->children, link) { 2418 error = DEVICE_SUSPEND(child); 2419 if (error) { 2420 for (child2 = TAILQ_FIRST(&dev->children); 2421 child2 && child2 != child; 2422 child2 = TAILQ_NEXT(child2, link)) 2423 DEVICE_RESUME(child2); 2424 return(error); 2425 } 2426 } 2427 return(0); 2428 } 2429 2430 int 2431 bus_generic_resume(device_t dev) 2432 { 2433 device_t child; 2434 2435 TAILQ_FOREACH(child, &dev->children, link) 2436 DEVICE_RESUME(child); 2437 /* if resume fails, there's nothing we can usefully do... */ 2438 2439 return(0); 2440 } 2441 2442 int 2443 bus_print_child_header(device_t dev, device_t child) 2444 { 2445 int retval = 0; 2446 2447 if (device_get_desc(child)) 2448 retval += device_printf(child, "<%s>", device_get_desc(child)); 2449 else 2450 retval += kprintf("%s", device_get_nameunit(child)); 2451 if (bootverbose) { 2452 if (child->state != DS_ATTACHED) 2453 kprintf(" [tentative]"); 2454 else 2455 kprintf(" [attached!]"); 2456 } 2457 return(retval); 2458 } 2459 2460 int 2461 bus_print_child_footer(device_t dev, device_t child) 2462 { 2463 return(kprintf(" on %s\n", device_get_nameunit(dev))); 2464 } 2465 2466 device_t 2467 bus_generic_add_child(device_t dev, device_t child, int order, 2468 const char *name, int unit) 2469 { 2470 if (dev->parent) 2471 dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit); 2472 else 2473 dev = device_add_child_ordered(child, order, name, unit); 2474 return(dev); 2475 2476 } 2477 2478 int 2479 bus_generic_print_child(device_t dev, device_t child) 2480 { 2481 int retval = 0; 2482 2483 retval += bus_print_child_header(dev, child); 2484 retval += bus_print_child_footer(dev, child); 2485 2486 return(retval); 2487 } 2488 2489 int 2490 bus_generic_read_ivar(device_t dev, device_t child, int index, 2491 uintptr_t * result) 2492 { 2493 int error; 2494 2495 if (dev->parent) 2496 error = BUS_READ_IVAR(dev->parent, child, index, result); 2497 else 2498 error = ENOENT; 2499 return (error); 2500 } 2501 2502 int 2503 bus_generic_write_ivar(device_t dev, device_t child, int index, 2504 uintptr_t value) 2505 { 2506 int error; 2507 2508 if (dev->parent) 2509 error = BUS_WRITE_IVAR(dev->parent, child, index, value); 2510 else 2511 error = ENOENT; 2512 return (error); 2513 } 2514 2515 /* 2516 * Resource list are used for iterations, do not recurse. 2517 */ 2518 struct resource_list * 2519 bus_generic_get_resource_list(device_t dev, device_t child) 2520 { 2521 return (NULL); 2522 } 2523 2524 void 2525 bus_generic_driver_added(device_t dev, driver_t *driver) 2526 { 2527 device_t child; 2528 2529 DEVICE_IDENTIFY(driver, dev); 2530 TAILQ_FOREACH(child, &dev->children, link) { 2531 if (child->state == DS_NOTPRESENT) 2532 device_probe_and_attach(child); 2533 } 2534 } 2535 2536 int 2537 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2538 int flags, driver_intr_t *intr, void *arg, 2539 void **cookiep, lwkt_serialize_t serializer) 2540 { 2541 /* Propagate up the bus hierarchy until someone handles it. */ 2542 if (dev->parent) 2543 return(BUS_SETUP_INTR(dev->parent, child, irq, flags, 2544 intr, arg, cookiep, serializer)); 2545 else 2546 return(EINVAL); 2547 } 2548 2549 int 2550 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2551 void *cookie) 2552 { 2553 /* Propagate up the bus hierarchy until someone handles it. */ 2554 if (dev->parent) 2555 return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2556 else 2557 return(EINVAL); 2558 } 2559 2560 int 2561 bus_generic_disable_intr(device_t dev, device_t child, void *cookie) 2562 { 2563 if (dev->parent) 2564 return(BUS_DISABLE_INTR(dev->parent, child, cookie)); 2565 else 2566 return(0); 2567 } 2568 2569 void 2570 bus_generic_enable_intr(device_t dev, device_t child, void *cookie) 2571 { 2572 if (dev->parent) 2573 BUS_ENABLE_INTR(dev->parent, child, cookie); 2574 } 2575 2576 int 2577 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig, 2578 enum intr_polarity pol) 2579 { 2580 /* Propagate up the bus hierarchy until someone handles it. */ 2581 if (dev->parent) 2582 return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol)); 2583 else 2584 return(EINVAL); 2585 } 2586 2587 struct resource * 2588 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2589 u_long start, u_long end, u_long count, u_int flags) 2590 { 2591 /* Propagate up the bus hierarchy until someone handles it. */ 2592 if (dev->parent) 2593 return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2594 start, end, count, flags)); 2595 else 2596 return(NULL); 2597 } 2598 2599 int 2600 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2601 struct resource *r) 2602 { 2603 /* Propagate up the bus hierarchy until someone handles it. */ 2604 if (dev->parent) 2605 return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); 2606 else 2607 return(EINVAL); 2608 } 2609 2610 int 2611 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2612 struct resource *r) 2613 { 2614 /* Propagate up the bus hierarchy until someone handles it. */ 2615 if (dev->parent) 2616 return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); 2617 else 2618 return(EINVAL); 2619 } 2620 2621 int 2622 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2623 int rid, struct resource *r) 2624 { 2625 /* Propagate up the bus hierarchy until someone handles it. */ 2626 if (dev->parent) 2627 return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2628 r)); 2629 else 2630 return(EINVAL); 2631 } 2632 2633 int 2634 bus_generic_get_resource(device_t dev, device_t child, int type, int rid, 2635 u_long *startp, u_long *countp) 2636 { 2637 int error; 2638 2639 error = ENOENT; 2640 if (dev->parent) { 2641 error = BUS_GET_RESOURCE(dev->parent, child, type, rid, 2642 startp, countp); 2643 } 2644 return (error); 2645 } 2646 2647 int 2648 bus_generic_set_resource(device_t dev, device_t child, int type, int rid, 2649 u_long start, u_long count) 2650 { 2651 int error; 2652 2653 error = EINVAL; 2654 if (dev->parent) { 2655 error = BUS_SET_RESOURCE(dev->parent, child, type, rid, 2656 start, count); 2657 } 2658 return (error); 2659 } 2660 2661 void 2662 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid) 2663 { 2664 if (dev->parent) 2665 BUS_DELETE_RESOURCE(dev, child, type, rid); 2666 } 2667 2668 int 2669 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 2670 u_long *startp, u_long *countp) 2671 { 2672 struct resource_list *rl = NULL; 2673 struct resource_list_entry *rle = NULL; 2674 2675 rl = BUS_GET_RESOURCE_LIST(dev, child); 2676 if (!rl) 2677 return(EINVAL); 2678 2679 rle = resource_list_find(rl, type, rid); 2680 if (!rle) 2681 return(ENOENT); 2682 2683 if (startp) 2684 *startp = rle->start; 2685 if (countp) 2686 *countp = rle->count; 2687 2688 return(0); 2689 } 2690 2691 int 2692 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 2693 u_long start, u_long count) 2694 { 2695 struct resource_list *rl = NULL; 2696 2697 rl = BUS_GET_RESOURCE_LIST(dev, child); 2698 if (!rl) 2699 return(EINVAL); 2700 2701 resource_list_add(rl, type, rid, start, (start + count - 1), count); 2702 2703 return(0); 2704 } 2705 2706 void 2707 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 2708 { 2709 struct resource_list *rl = NULL; 2710 2711 rl = BUS_GET_RESOURCE_LIST(dev, child); 2712 if (!rl) 2713 return; 2714 2715 resource_list_delete(rl, type, rid); 2716 } 2717 2718 int 2719 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 2720 int rid, struct resource *r) 2721 { 2722 struct resource_list *rl = NULL; 2723 2724 rl = BUS_GET_RESOURCE_LIST(dev, child); 2725 if (!rl) 2726 return(EINVAL); 2727 2728 return(resource_list_release(rl, dev, child, type, rid, r)); 2729 } 2730 2731 struct resource * 2732 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 2733 int *rid, u_long start, u_long end, u_long count, u_int flags) 2734 { 2735 struct resource_list *rl = NULL; 2736 2737 rl = BUS_GET_RESOURCE_LIST(dev, child); 2738 if (!rl) 2739 return(NULL); 2740 2741 return(resource_list_alloc(rl, dev, child, type, rid, 2742 start, end, count, flags)); 2743 } 2744 2745 int 2746 bus_generic_child_present(device_t bus, device_t child) 2747 { 2748 return(BUS_CHILD_PRESENT(device_get_parent(bus), bus)); 2749 } 2750 2751 2752 /* 2753 * Some convenience functions to make it easier for drivers to use the 2754 * resource-management functions. All these really do is hide the 2755 * indirection through the parent's method table, making for slightly 2756 * less-wordy code. In the future, it might make sense for this code 2757 * to maintain some sort of a list of resources allocated by each device. 2758 */ 2759 int 2760 bus_alloc_resources(device_t dev, struct resource_spec *rs, 2761 struct resource **res) 2762 { 2763 int i; 2764 2765 for (i = 0; rs[i].type != -1; i++) 2766 res[i] = NULL; 2767 for (i = 0; rs[i].type != -1; i++) { 2768 res[i] = bus_alloc_resource_any(dev, 2769 rs[i].type, &rs[i].rid, rs[i].flags); 2770 if (res[i] == NULL) { 2771 bus_release_resources(dev, rs, res); 2772 return (ENXIO); 2773 } 2774 } 2775 return (0); 2776 } 2777 2778 void 2779 bus_release_resources(device_t dev, const struct resource_spec *rs, 2780 struct resource **res) 2781 { 2782 int i; 2783 2784 for (i = 0; rs[i].type != -1; i++) 2785 if (res[i] != NULL) { 2786 bus_release_resource( 2787 dev, rs[i].type, rs[i].rid, res[i]); 2788 res[i] = NULL; 2789 } 2790 } 2791 2792 struct resource * 2793 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 2794 u_long count, u_int flags) 2795 { 2796 if (dev->parent == 0) 2797 return(0); 2798 return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 2799 count, flags)); 2800 } 2801 2802 int 2803 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 2804 { 2805 if (dev->parent == 0) 2806 return(EINVAL); 2807 return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2808 } 2809 2810 int 2811 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 2812 { 2813 if (dev->parent == 0) 2814 return(EINVAL); 2815 return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2816 } 2817 2818 int 2819 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 2820 { 2821 if (dev->parent == 0) 2822 return(EINVAL); 2823 return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 2824 } 2825 2826 int 2827 bus_setup_intr(device_t dev, struct resource *r, int flags, 2828 driver_intr_t handler, void *arg, 2829 void **cookiep, lwkt_serialize_t serializer) 2830 { 2831 if (dev->parent == 0) 2832 return(EINVAL); 2833 return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, 2834 cookiep, serializer)); 2835 } 2836 2837 int 2838 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 2839 { 2840 if (dev->parent == 0) 2841 return(EINVAL); 2842 return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 2843 } 2844 2845 void 2846 bus_enable_intr(device_t dev, void *cookie) 2847 { 2848 if (dev->parent) 2849 BUS_ENABLE_INTR(dev->parent, dev, cookie); 2850 } 2851 2852 int 2853 bus_disable_intr(device_t dev, void *cookie) 2854 { 2855 if (dev->parent) 2856 return(BUS_DISABLE_INTR(dev->parent, dev, cookie)); 2857 else 2858 return(0); 2859 } 2860 2861 int 2862 bus_set_resource(device_t dev, int type, int rid, 2863 u_long start, u_long count) 2864 { 2865 return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 2866 start, count)); 2867 } 2868 2869 int 2870 bus_get_resource(device_t dev, int type, int rid, 2871 u_long *startp, u_long *countp) 2872 { 2873 return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2874 startp, countp)); 2875 } 2876 2877 u_long 2878 bus_get_resource_start(device_t dev, int type, int rid) 2879 { 2880 u_long start, count; 2881 int error; 2882 2883 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2884 &start, &count); 2885 if (error) 2886 return(0); 2887 return(start); 2888 } 2889 2890 u_long 2891 bus_get_resource_count(device_t dev, int type, int rid) 2892 { 2893 u_long start, count; 2894 int error; 2895 2896 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2897 &start, &count); 2898 if (error) 2899 return(0); 2900 return(count); 2901 } 2902 2903 void 2904 bus_delete_resource(device_t dev, int type, int rid) 2905 { 2906 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 2907 } 2908 2909 int 2910 bus_child_present(device_t child) 2911 { 2912 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 2913 } 2914 2915 int 2916 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 2917 { 2918 device_t parent; 2919 2920 parent = device_get_parent(child); 2921 if (parent == NULL) { 2922 *buf = '\0'; 2923 return (0); 2924 } 2925 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 2926 } 2927 2928 int 2929 bus_child_location_str(device_t child, char *buf, size_t buflen) 2930 { 2931 device_t parent; 2932 2933 parent = device_get_parent(child); 2934 if (parent == NULL) { 2935 *buf = '\0'; 2936 return (0); 2937 } 2938 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 2939 } 2940 2941 static int 2942 root_print_child(device_t dev, device_t child) 2943 { 2944 return(0); 2945 } 2946 2947 static int 2948 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 2949 void **cookiep, lwkt_serialize_t serializer) 2950 { 2951 /* 2952 * If an interrupt mapping gets to here something bad has happened. 2953 */ 2954 panic("root_setup_intr"); 2955 } 2956 2957 /* 2958 * If we get here, assume that the device is permanant and really is 2959 * present in the system. Removable bus drivers are expected to intercept 2960 * this call long before it gets here. We return -1 so that drivers that 2961 * really care can check vs -1 or some ERRNO returned higher in the food 2962 * chain. 2963 */ 2964 static int 2965 root_child_present(device_t dev, device_t child) 2966 { 2967 return(-1); 2968 } 2969 2970 /* 2971 * XXX NOTE! other defaults may be set in bus_if.m 2972 */ 2973 static kobj_method_t root_methods[] = { 2974 /* Device interface */ 2975 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 2976 KOBJMETHOD(device_suspend, bus_generic_suspend), 2977 KOBJMETHOD(device_resume, bus_generic_resume), 2978 2979 /* Bus interface */ 2980 KOBJMETHOD(bus_add_child, bus_generic_add_child), 2981 KOBJMETHOD(bus_print_child, root_print_child), 2982 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 2983 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 2984 KOBJMETHOD(bus_setup_intr, root_setup_intr), 2985 KOBJMETHOD(bus_child_present, root_child_present), 2986 2987 { 0, 0 } 2988 }; 2989 2990 static driver_t root_driver = { 2991 "root", 2992 root_methods, 2993 1, /* no softc */ 2994 }; 2995 2996 device_t root_bus; 2997 devclass_t root_devclass; 2998 2999 static int 3000 root_bus_module_handler(module_t mod, int what, void* arg) 3001 { 3002 switch (what) { 3003 case MOD_LOAD: 3004 TAILQ_INIT(&bus_data_devices); 3005 root_bus = make_device(NULL, "root", 0); 3006 root_bus->desc = "System root bus"; 3007 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3008 root_bus->driver = &root_driver; 3009 root_bus->state = DS_ALIVE; 3010 root_devclass = devclass_find_internal("root", NULL, FALSE); 3011 devinit(); 3012 return(0); 3013 3014 case MOD_SHUTDOWN: 3015 device_shutdown(root_bus); 3016 return(0); 3017 default: 3018 return(0); 3019 } 3020 } 3021 3022 static moduledata_t root_bus_mod = { 3023 "rootbus", 3024 root_bus_module_handler, 3025 0 3026 }; 3027 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3028 3029 void 3030 root_bus_configure(void) 3031 { 3032 int warncount; 3033 device_t dev; 3034 3035 PDEBUG((".")); 3036 3037 /* 3038 * handle device_identify based device attachments to the root_bus 3039 * (typically nexus). 3040 */ 3041 bus_generic_probe(root_bus); 3042 3043 /* 3044 * Probe and attach the devices under root_bus. 3045 */ 3046 TAILQ_FOREACH(dev, &root_bus->children, link) { 3047 device_probe_and_attach(dev); 3048 } 3049 3050 /* 3051 * Wait for all asynchronous attaches to complete. If we don't 3052 * our legacy ISA bus scan could steal device unit numbers or 3053 * even I/O ports. 3054 */ 3055 warncount = 10; 3056 if (numasyncthreads) 3057 kprintf("Waiting for async drivers to attach\n"); 3058 while (numasyncthreads > 0) { 3059 if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK) 3060 --warncount; 3061 if (warncount == 0) { 3062 kprintf("Warning: Still waiting for %d " 3063 "drivers to attach\n", numasyncthreads); 3064 } else if (warncount == -30) { 3065 kprintf("Giving up on %d drivers\n", numasyncthreads); 3066 break; 3067 } 3068 } 3069 root_bus->state = DS_ATTACHED; 3070 } 3071 3072 int 3073 driver_module_handler(module_t mod, int what, void *arg) 3074 { 3075 int error; 3076 struct driver_module_data *dmd; 3077 devclass_t bus_devclass; 3078 kobj_class_t driver; 3079 const char *parentname; 3080 3081 dmd = (struct driver_module_data *)arg; 3082 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3083 error = 0; 3084 3085 switch (what) { 3086 case MOD_LOAD: 3087 if (dmd->dmd_chainevh) 3088 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3089 3090 driver = dmd->dmd_driver; 3091 PDEBUG(("Loading module: driver %s on bus %s", 3092 DRIVERNAME(driver), dmd->dmd_busname)); 3093 3094 /* 3095 * If the driver has any base classes, make the 3096 * devclass inherit from the devclass of the driver's 3097 * first base class. This will allow the system to 3098 * search for drivers in both devclasses for children 3099 * of a device using this driver. 3100 */ 3101 if (driver->baseclasses) 3102 parentname = driver->baseclasses[0]->name; 3103 else 3104 parentname = NULL; 3105 *dmd->dmd_devclass = devclass_find_internal(driver->name, 3106 parentname, TRUE); 3107 3108 error = devclass_add_driver(bus_devclass, driver); 3109 if (error) 3110 break; 3111 break; 3112 3113 case MOD_UNLOAD: 3114 PDEBUG(("Unloading module: driver %s from bus %s", 3115 DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); 3116 error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); 3117 3118 if (!error && dmd->dmd_chainevh) 3119 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3120 break; 3121 } 3122 3123 return (error); 3124 } 3125 3126 #ifdef BUS_DEBUG 3127 3128 /* 3129 * The _short versions avoid iteration by not calling anything that prints 3130 * more than oneliners. I love oneliners. 3131 */ 3132 3133 static void 3134 print_device_short(device_t dev, int indent) 3135 { 3136 if (!dev) 3137 return; 3138 3139 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3140 dev->unit, dev->desc, 3141 (dev->parent? "":"no "), 3142 (TAILQ_EMPTY(&dev->children)? "no ":""), 3143 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3144 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3145 (dev->flags&DF_WILDCARD? "wildcard,":""), 3146 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3147 (dev->ivars? "":"no "), 3148 (dev->softc? "":"no "), 3149 dev->busy)); 3150 } 3151 3152 static void 3153 print_device(device_t dev, int indent) 3154 { 3155 if (!dev) 3156 return; 3157 3158 print_device_short(dev, indent); 3159 3160 indentprintf(("Parent:\n")); 3161 print_device_short(dev->parent, indent+1); 3162 indentprintf(("Driver:\n")); 3163 print_driver_short(dev->driver, indent+1); 3164 indentprintf(("Devclass:\n")); 3165 print_devclass_short(dev->devclass, indent+1); 3166 } 3167 3168 /* 3169 * Print the device and all its children (indented). 3170 */ 3171 void 3172 print_device_tree_short(device_t dev, int indent) 3173 { 3174 device_t child; 3175 3176 if (!dev) 3177 return; 3178 3179 print_device_short(dev, indent); 3180 3181 TAILQ_FOREACH(child, &dev->children, link) 3182 print_device_tree_short(child, indent+1); 3183 } 3184 3185 /* 3186 * Print the device and all its children (indented). 3187 */ 3188 void 3189 print_device_tree(device_t dev, int indent) 3190 { 3191 device_t child; 3192 3193 if (!dev) 3194 return; 3195 3196 print_device(dev, indent); 3197 3198 TAILQ_FOREACH(child, &dev->children, link) 3199 print_device_tree(child, indent+1); 3200 } 3201 3202 static void 3203 print_driver_short(driver_t *driver, int indent) 3204 { 3205 if (!driver) 3206 return; 3207 3208 indentprintf(("driver %s: softc size = %zu\n", 3209 driver->name, driver->size)); 3210 } 3211 3212 static void 3213 print_driver(driver_t *driver, int indent) 3214 { 3215 if (!driver) 3216 return; 3217 3218 print_driver_short(driver, indent); 3219 } 3220 3221 3222 static void 3223 print_driver_list(driver_list_t drivers, int indent) 3224 { 3225 driverlink_t driver; 3226 3227 TAILQ_FOREACH(driver, &drivers, link) 3228 print_driver(driver->driver, indent); 3229 } 3230 3231 static void 3232 print_devclass_short(devclass_t dc, int indent) 3233 { 3234 if (!dc) 3235 return; 3236 3237 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3238 } 3239 3240 static void 3241 print_devclass(devclass_t dc, int indent) 3242 { 3243 int i; 3244 3245 if (!dc) 3246 return; 3247 3248 print_devclass_short(dc, indent); 3249 indentprintf(("Drivers:\n")); 3250 print_driver_list(dc->drivers, indent+1); 3251 3252 indentprintf(("Devices:\n")); 3253 for (i = 0; i < dc->maxunit; i++) 3254 if (dc->devices[i]) 3255 print_device(dc->devices[i], indent+1); 3256 } 3257 3258 void 3259 print_devclass_list_short(void) 3260 { 3261 devclass_t dc; 3262 3263 kprintf("Short listing of devclasses, drivers & devices:\n"); 3264 TAILQ_FOREACH(dc, &devclasses, link) { 3265 print_devclass_short(dc, 0); 3266 } 3267 } 3268 3269 void 3270 print_devclass_list(void) 3271 { 3272 devclass_t dc; 3273 3274 kprintf("Full listing of devclasses, drivers & devices:\n"); 3275 TAILQ_FOREACH(dc, &devclasses, link) { 3276 print_devclass(dc, 0); 3277 } 3278 } 3279 3280 #endif 3281 3282 /* 3283 * Check to see if a device is disabled via a disabled hint. 3284 */ 3285 int 3286 resource_disabled(const char *name, int unit) 3287 { 3288 int error, value; 3289 3290 error = resource_int_value(name, unit, "disabled", &value); 3291 if (error) 3292 return(0); 3293 return(value); 3294 } 3295 3296 /* 3297 * User-space access to the device tree. 3298 * 3299 * We implement a small set of nodes: 3300 * 3301 * hw.bus Single integer read method to obtain the 3302 * current generation count. 3303 * hw.bus.devices Reads the entire device tree in flat space. 3304 * hw.bus.rman Resource manager interface 3305 * 3306 * We might like to add the ability to scan devclasses and/or drivers to 3307 * determine what else is currently loaded/available. 3308 */ 3309 3310 static int 3311 sysctl_bus(SYSCTL_HANDLER_ARGS) 3312 { 3313 struct u_businfo ubus; 3314 3315 ubus.ub_version = BUS_USER_VERSION; 3316 ubus.ub_generation = bus_data_generation; 3317 3318 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3319 } 3320 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3321 "bus-related data"); 3322 3323 static int 3324 sysctl_devices(SYSCTL_HANDLER_ARGS) 3325 { 3326 int *name = (int *)arg1; 3327 u_int namelen = arg2; 3328 int index; 3329 struct device *dev; 3330 struct u_device udev; /* XXX this is a bit big */ 3331 int error; 3332 3333 if (namelen != 2) 3334 return (EINVAL); 3335 3336 if (bus_data_generation_check(name[0])) 3337 return (EINVAL); 3338 3339 index = name[1]; 3340 3341 /* 3342 * Scan the list of devices, looking for the requested index. 3343 */ 3344 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3345 if (index-- == 0) 3346 break; 3347 } 3348 if (dev == NULL) 3349 return (ENOENT); 3350 3351 /* 3352 * Populate the return array. 3353 */ 3354 bzero(&udev, sizeof(udev)); 3355 udev.dv_handle = (uintptr_t)dev; 3356 udev.dv_parent = (uintptr_t)dev->parent; 3357 if (dev->nameunit != NULL) 3358 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3359 if (dev->desc != NULL) 3360 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3361 if (dev->driver != NULL && dev->driver->name != NULL) 3362 strlcpy(udev.dv_drivername, dev->driver->name, 3363 sizeof(udev.dv_drivername)); 3364 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3365 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3366 udev.dv_devflags = dev->devflags; 3367 udev.dv_flags = dev->flags; 3368 udev.dv_state = dev->state; 3369 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3370 return (error); 3371 } 3372 3373 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3374 "system device tree"); 3375 3376 int 3377 bus_data_generation_check(int generation) 3378 { 3379 if (generation != bus_data_generation) 3380 return (1); 3381 3382 /* XXX generate optimised lists here? */ 3383 return (0); 3384 } 3385 3386 void 3387 bus_data_generation_update(void) 3388 { 3389 bus_data_generation++; 3390 } 3391