xref: /dflybsd-src/sys/kern/subr_bus.c (revision d2d1103f52e6fb116ee65a9940477c5449933f28)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kobj.h>
38 #include <sys/bus_private.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/device.h>
44 #include <sys/lock.h>
45 #include <sys/conf.h>
46 #include <sys/uio.h>
47 #include <sys/filio.h>
48 #include <sys/event.h>
49 #include <sys/signalvar.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 #define	CDEV_MAJOR	188
139 
140 static d_open_t		devopen;
141 static d_close_t	devclose;
142 static d_read_t		devread;
143 static d_ioctl_t	devioctl;
144 static d_kqfilter_t	devkqfilter;
145 
146 static struct dev_ops devctl_ops = {
147 	{ "devctl", CDEV_MAJOR, 0 },
148 	.d_open =	devopen,
149 	.d_close =	devclose,
150 	.d_read =	devread,
151 	.d_ioctl =	devioctl,
152 	.d_kqfilter =	devkqfilter
153 };
154 
155 struct dev_event_info
156 {
157 	char *dei_data;
158 	TAILQ_ENTRY(dev_event_info) dei_link;
159 };
160 
161 TAILQ_HEAD(devq, dev_event_info);
162 
163 static struct dev_softc
164 {
165 	int	inuse;
166 	int	nonblock;
167 	struct lock lock;
168 	struct kqinfo kq;
169 	struct devq devq;
170 	struct proc *async_proc;
171 } devsoftc;
172 
173 static void
174 devinit(void)
175 {
176 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
177 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
178 	TAILQ_INIT(&devsoftc.devq);
179 }
180 
181 static int
182 devopen(struct dev_open_args *ap)
183 {
184 	if (devsoftc.inuse)
185 		return (EBUSY);
186 	/* move to init */
187 	devsoftc.inuse = 1;
188 	devsoftc.nonblock = 0;
189 	devsoftc.async_proc = NULL;
190 	return (0);
191 }
192 
193 static int
194 devclose(struct dev_close_args *ap)
195 {
196 	devsoftc.inuse = 0;
197 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
198 	wakeup(&devsoftc);
199 	lockmgr(&devsoftc.lock, LK_RELEASE);
200 
201 	return (0);
202 }
203 
204 /*
205  * The read channel for this device is used to report changes to
206  * userland in realtime.  We are required to free the data as well as
207  * the n1 object because we allocate them separately.  Also note that
208  * we return one record at a time.  If you try to read this device a
209  * character at a time, you will lose the rest of the data.  Listening
210  * programs are expected to cope.
211  */
212 static int
213 devread(struct dev_read_args *ap)
214 {
215 	struct uio *uio = ap->a_uio;
216 	struct dev_event_info *n1;
217 	int rv;
218 
219 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
220 	while (TAILQ_EMPTY(&devsoftc.devq)) {
221 		if (devsoftc.nonblock) {
222 			lockmgr(&devsoftc.lock, LK_RELEASE);
223 			return (EAGAIN);
224 		}
225 		tsleep_interlock(&devsoftc, PCATCH);
226 		lockmgr(&devsoftc.lock, LK_RELEASE);
227 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
228 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
229 		if (rv) {
230 			/*
231 			 * Need to translate ERESTART to EINTR here? -- jake
232 			 */
233 			lockmgr(&devsoftc.lock, LK_RELEASE);
234 			return (rv);
235 		}
236 	}
237 	n1 = TAILQ_FIRST(&devsoftc.devq);
238 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
239 	lockmgr(&devsoftc.lock, LK_RELEASE);
240 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
241 	kfree(n1->dei_data, M_BUS);
242 	kfree(n1, M_BUS);
243 	return (rv);
244 }
245 
246 static	int
247 devioctl(struct dev_ioctl_args *ap)
248 {
249 	switch (ap->a_cmd) {
250 
251 	case FIONBIO:
252 		if (*(int*)ap->a_data)
253 			devsoftc.nonblock = 1;
254 		else
255 			devsoftc.nonblock = 0;
256 		return (0);
257 	case FIOASYNC:
258 		if (*(int*)ap->a_data)
259 			devsoftc.async_proc = curproc;
260 		else
261 			devsoftc.async_proc = NULL;
262 		return (0);
263 
264 		/* (un)Support for other fcntl() calls. */
265 	case FIOCLEX:
266 	case FIONCLEX:
267 	case FIONREAD:
268 	case FIOSETOWN:
269 	case FIOGETOWN:
270 	default:
271 		break;
272 	}
273 	return (ENOTTY);
274 }
275 
276 static void dev_filter_detach(struct knote *);
277 static int dev_filter_read(struct knote *, long);
278 
279 static struct filterops dev_filtops =
280 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
281 
282 static int
283 devkqfilter(struct dev_kqfilter_args *ap)
284 {
285 	struct knote *kn = ap->a_kn;
286 	struct klist *klist;
287 
288 	ap->a_result = 0;
289 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
290 
291 	switch (kn->kn_filter) {
292 	case EVFILT_READ:
293 		kn->kn_fop = &dev_filtops;
294 		break;
295 	default:
296 		ap->a_result = EOPNOTSUPP;
297 		lockmgr(&devsoftc.lock, LK_RELEASE);
298 		return (0);
299 	}
300 
301 	klist = &devsoftc.kq.ki_note;
302 	knote_insert(klist, kn);
303 
304 	lockmgr(&devsoftc.lock, LK_RELEASE);
305 
306 	return (0);
307 }
308 
309 static void
310 dev_filter_detach(struct knote *kn)
311 {
312 	struct klist *klist;
313 
314 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
315 	klist = &devsoftc.kq.ki_note;
316 	knote_remove(klist, kn);
317 	lockmgr(&devsoftc.lock, LK_RELEASE);
318 }
319 
320 static int
321 dev_filter_read(struct knote *kn, long hint)
322 {
323 	int ready = 0;
324 
325 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
326 	if (!TAILQ_EMPTY(&devsoftc.devq))
327 		ready = 1;
328 	lockmgr(&devsoftc.lock, LK_RELEASE);
329 
330 	return (ready);
331 }
332 
333 
334 /**
335  * @brief Return whether the userland process is running
336  */
337 boolean_t
338 devctl_process_running(void)
339 {
340 	return (devsoftc.inuse == 1);
341 }
342 
343 /**
344  * @brief Queue data to be read from the devctl device
345  *
346  * Generic interface to queue data to the devctl device.  It is
347  * assumed that @p data is properly formatted.  It is further assumed
348  * that @p data is allocated using the M_BUS malloc type.
349  */
350 void
351 devctl_queue_data(char *data)
352 {
353 	struct dev_event_info *n1 = NULL;
354 	struct proc *p;
355 
356 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
357 	if (n1 == NULL)
358 		return;
359 	n1->dei_data = data;
360 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
361 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
362 	wakeup(&devsoftc);
363 	lockmgr(&devsoftc.lock, LK_RELEASE);
364 	get_mplock();	/* XXX */
365 	KNOTE(&devsoftc.kq.ki_note, 0);
366 	rel_mplock();	/* XXX */
367 	p = devsoftc.async_proc;
368 	if (p != NULL)
369 		ksignal(p, SIGIO);
370 }
371 
372 /**
373  * @brief Send a 'notification' to userland, using standard ways
374  */
375 void
376 devctl_notify(const char *system, const char *subsystem, const char *type,
377     const char *data)
378 {
379 	int len = 0;
380 	char *msg;
381 
382 	if (system == NULL)
383 		return;		/* BOGUS!  Must specify system. */
384 	if (subsystem == NULL)
385 		return;		/* BOGUS!  Must specify subsystem. */
386 	if (type == NULL)
387 		return;		/* BOGUS!  Must specify type. */
388 	len += strlen(" system=") + strlen(system);
389 	len += strlen(" subsystem=") + strlen(subsystem);
390 	len += strlen(" type=") + strlen(type);
391 	/* add in the data message plus newline. */
392 	if (data != NULL)
393 		len += strlen(data);
394 	len += 3;	/* '!', '\n', and NUL */
395 	msg = kmalloc(len, M_BUS, M_NOWAIT);
396 	if (msg == NULL)
397 		return;		/* Drop it on the floor */
398 	if (data != NULL)
399 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
400 		    system, subsystem, type, data);
401 	else
402 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
403 		    system, subsystem, type);
404 	devctl_queue_data(msg);
405 }
406 
407 /*
408  * Common routine that tries to make sending messages as easy as possible.
409  * We allocate memory for the data, copy strings into that, but do not
410  * free it unless there's an error.  The dequeue part of the driver should
411  * free the data.  We don't send data when the device is disabled.  We do
412  * send data, even when we have no listeners, because we wish to avoid
413  * races relating to startup and restart of listening applications.
414  *
415  * devaddq is designed to string together the type of event, with the
416  * object of that event, plus the plug and play info and location info
417  * for that event.  This is likely most useful for devices, but less
418  * useful for other consumers of this interface.  Those should use
419  * the devctl_queue_data() interface instead.
420  */
421 static void
422 devaddq(const char *type, const char *what, device_t dev)
423 {
424 	char *data = NULL;
425 	char *loc = NULL;
426 	char *pnp = NULL;
427 	const char *parstr;
428 
429 	if (devctl_disable)
430 		return;
431 	data = kmalloc(1024, M_BUS, M_NOWAIT);
432 	if (data == NULL)
433 		goto bad;
434 
435 	/* get the bus specific location of this device */
436 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
437 	if (loc == NULL)
438 		goto bad;
439 	*loc = '\0';
440 	bus_child_location_str(dev, loc, 1024);
441 
442 	/* Get the bus specific pnp info of this device */
443 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
444 	if (pnp == NULL)
445 		goto bad;
446 	*pnp = '\0';
447 	bus_child_pnpinfo_str(dev, pnp, 1024);
448 
449 	/* Get the parent of this device, or / if high enough in the tree. */
450 	if (device_get_parent(dev) == NULL)
451 		parstr = ".";	/* Or '/' ? */
452 	else
453 		parstr = device_get_nameunit(device_get_parent(dev));
454 	/* String it all together. */
455 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
456 	  parstr);
457 	kfree(loc, M_BUS);
458 	kfree(pnp, M_BUS);
459 	devctl_queue_data(data);
460 	return;
461 bad:
462 	kfree(pnp, M_BUS);
463 	kfree(loc, M_BUS);
464 	kfree(data, M_BUS);
465 	return;
466 }
467 
468 /*
469  * A device was added to the tree.  We are called just after it successfully
470  * attaches (that is, probe and attach success for this device).  No call
471  * is made if a device is merely parented into the tree.  See devnomatch
472  * if probe fails.  If attach fails, no notification is sent (but maybe
473  * we should have a different message for this).
474  */
475 static void
476 devadded(device_t dev)
477 {
478 	char *pnp = NULL;
479 	char *tmp = NULL;
480 
481 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
482 	if (pnp == NULL)
483 		goto fail;
484 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
485 	if (tmp == NULL)
486 		goto fail;
487 	*pnp = '\0';
488 	bus_child_pnpinfo_str(dev, pnp, 1024);
489 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
490 	devaddq("+", tmp, dev);
491 fail:
492 	if (pnp != NULL)
493 		kfree(pnp, M_BUS);
494 	if (tmp != NULL)
495 		kfree(tmp, M_BUS);
496 	return;
497 }
498 
499 /*
500  * A device was removed from the tree.  We are called just before this
501  * happens.
502  */
503 static void
504 devremoved(device_t dev)
505 {
506 	char *pnp = NULL;
507 	char *tmp = NULL;
508 
509 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
510 	if (pnp == NULL)
511 		goto fail;
512 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
513 	if (tmp == NULL)
514 		goto fail;
515 	*pnp = '\0';
516 	bus_child_pnpinfo_str(dev, pnp, 1024);
517 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
518 	devaddq("-", tmp, dev);
519 fail:
520 	if (pnp != NULL)
521 		kfree(pnp, M_BUS);
522 	if (tmp != NULL)
523 		kfree(tmp, M_BUS);
524 	return;
525 }
526 
527 /*
528  * Called when there's no match for this device.  This is only called
529  * the first time that no match happens, so we don't keep getitng this
530  * message.  Should that prove to be undesirable, we can change it.
531  * This is called when all drivers that can attach to a given bus
532  * decline to accept this device.  Other errrors may not be detected.
533  */
534 static void
535 devnomatch(device_t dev)
536 {
537 	devaddq("?", "", dev);
538 }
539 
540 static int
541 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
542 {
543 	struct dev_event_info *n1;
544 	int dis, error;
545 
546 	dis = devctl_disable;
547 	error = sysctl_handle_int(oidp, &dis, 0, req);
548 	if (error || !req->newptr)
549 		return (error);
550 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
551 	devctl_disable = dis;
552 	if (dis) {
553 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
554 			n1 = TAILQ_FIRST(&devsoftc.devq);
555 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
556 			kfree(n1->dei_data, M_BUS);
557 			kfree(n1, M_BUS);
558 		}
559 	}
560 	lockmgr(&devsoftc.lock, LK_RELEASE);
561 	return (0);
562 }
563 
564 /* End of /dev/devctl code */
565 
566 TAILQ_HEAD(,device)	bus_data_devices;
567 static int bus_data_generation = 1;
568 
569 kobj_method_t null_methods[] = {
570 	{ 0, 0 }
571 };
572 
573 DEFINE_CLASS(null, null_methods, 0);
574 
575 /*
576  * Devclass implementation
577  */
578 
579 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
580 
581 static devclass_t
582 devclass_find_internal(const char *classname, const char *parentname,
583 		       int create)
584 {
585 	devclass_t dc;
586 
587 	PDEBUG(("looking for %s", classname));
588 	if (classname == NULL)
589 		return(NULL);
590 
591 	TAILQ_FOREACH(dc, &devclasses, link)
592 		if (!strcmp(dc->name, classname))
593 			break;
594 
595 	if (create && !dc) {
596 		PDEBUG(("creating %s", classname));
597 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
598 			    M_BUS, M_INTWAIT | M_ZERO);
599 		if (!dc)
600 			return(NULL);
601 		dc->parent = NULL;
602 		dc->name = (char*) (dc + 1);
603 		strcpy(dc->name, classname);
604 		dc->devices = NULL;
605 		dc->maxunit = 0;
606 		TAILQ_INIT(&dc->drivers);
607 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
608 
609 		bus_data_generation_update();
610 
611 	}
612 	if (parentname && dc && !dc->parent)
613 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
614 
615 	return(dc);
616 }
617 
618 devclass_t
619 devclass_create(const char *classname)
620 {
621 	return(devclass_find_internal(classname, NULL, TRUE));
622 }
623 
624 devclass_t
625 devclass_find(const char *classname)
626 {
627 	return(devclass_find_internal(classname, NULL, FALSE));
628 }
629 
630 device_t
631 devclass_find_unit(const char *classname, int unit)
632 {
633 	devclass_t dc;
634 
635 	if ((dc = devclass_find(classname)) != NULL)
636 	    return(devclass_get_device(dc, unit));
637 	return (NULL);
638 }
639 
640 int
641 devclass_add_driver(devclass_t dc, driver_t *driver)
642 {
643 	driverlink_t dl;
644 	device_t dev;
645 	int i;
646 
647 	PDEBUG(("%s", DRIVERNAME(driver)));
648 
649 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
650 	if (!dl)
651 		return(ENOMEM);
652 
653 	/*
654 	 * Compile the driver's methods. Also increase the reference count
655 	 * so that the class doesn't get freed when the last instance
656 	 * goes. This means we can safely use static methods and avoids a
657 	 * double-free in devclass_delete_driver.
658 	 */
659 	kobj_class_instantiate(driver);
660 
661 	/*
662 	 * Make sure the devclass which the driver is implementing exists.
663 	 */
664 	devclass_find_internal(driver->name, NULL, TRUE);
665 
666 	dl->driver = driver;
667 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
668 
669 	/*
670 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
671 	 * but only if the bus has already been attached (otherwise we
672 	 * might probe too early).
673 	 *
674 	 * This is what will cause a newly loaded module to be associated
675 	 * with hardware.  bus_generic_driver_added() is typically what ends
676 	 * up being called.
677 	 */
678 	for (i = 0; i < dc->maxunit; i++) {
679 		if ((dev = dc->devices[i]) != NULL) {
680 			if (dev->state >= DS_ATTACHED)
681 				BUS_DRIVER_ADDED(dev, driver);
682 		}
683 	}
684 
685 	bus_data_generation_update();
686 	return(0);
687 }
688 
689 int
690 devclass_delete_driver(devclass_t busclass, driver_t *driver)
691 {
692 	devclass_t dc = devclass_find(driver->name);
693 	driverlink_t dl;
694 	device_t dev;
695 	int i;
696 	int error;
697 
698 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
699 
700 	if (!dc)
701 		return(0);
702 
703 	/*
704 	 * Find the link structure in the bus' list of drivers.
705 	 */
706 	TAILQ_FOREACH(dl, &busclass->drivers, link)
707 		if (dl->driver == driver)
708 			break;
709 
710 	if (!dl) {
711 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
712 		return(ENOENT);
713 	}
714 
715 	/*
716 	 * Disassociate from any devices.  We iterate through all the
717 	 * devices in the devclass of the driver and detach any which are
718 	 * using the driver and which have a parent in the devclass which
719 	 * we are deleting from.
720 	 *
721 	 * Note that since a driver can be in multiple devclasses, we
722 	 * should not detach devices which are not children of devices in
723 	 * the affected devclass.
724 	 */
725 	for (i = 0; i < dc->maxunit; i++)
726 		if (dc->devices[i]) {
727 			dev = dc->devices[i];
728 			if (dev->driver == driver && dev->parent &&
729 			    dev->parent->devclass == busclass) {
730 				if ((error = device_detach(dev)) != 0)
731 					return(error);
732 				device_set_driver(dev, NULL);
733 		    	}
734 		}
735 
736 	TAILQ_REMOVE(&busclass->drivers, dl, link);
737 	kfree(dl, M_BUS);
738 
739 	kobj_class_uninstantiate(driver);
740 
741 	bus_data_generation_update();
742 	return(0);
743 }
744 
745 static driverlink_t
746 devclass_find_driver_internal(devclass_t dc, const char *classname)
747 {
748 	driverlink_t dl;
749 
750 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
751 
752 	TAILQ_FOREACH(dl, &dc->drivers, link)
753 		if (!strcmp(dl->driver->name, classname))
754 			return(dl);
755 
756 	PDEBUG(("not found"));
757 	return(NULL);
758 }
759 
760 kobj_class_t
761 devclass_find_driver(devclass_t dc, const char *classname)
762 {
763 	driverlink_t dl;
764 
765 	dl = devclass_find_driver_internal(dc, classname);
766 	if (dl)
767 		return(dl->driver);
768 	else
769 		return(NULL);
770 }
771 
772 const char *
773 devclass_get_name(devclass_t dc)
774 {
775 	return(dc->name);
776 }
777 
778 device_t
779 devclass_get_device(devclass_t dc, int unit)
780 {
781 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
782 		return(NULL);
783 	return(dc->devices[unit]);
784 }
785 
786 void *
787 devclass_get_softc(devclass_t dc, int unit)
788 {
789 	device_t dev;
790 
791 	dev = devclass_get_device(dc, unit);
792 	if (!dev)
793 		return(NULL);
794 
795 	return(device_get_softc(dev));
796 }
797 
798 int
799 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
800 {
801 	int i;
802 	int count;
803 	device_t *list;
804 
805 	count = 0;
806 	for (i = 0; i < dc->maxunit; i++)
807 		if (dc->devices[i])
808 			count++;
809 
810 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
811 	if (list == NULL)
812 		return(ENOMEM);
813 
814 	count = 0;
815 	for (i = 0; i < dc->maxunit; i++)
816 		if (dc->devices[i]) {
817 			list[count] = dc->devices[i];
818 			count++;
819 		}
820 
821 	*devlistp = list;
822 	*devcountp = count;
823 
824 	return(0);
825 }
826 
827 /**
828  * @brief Get a list of drivers in the devclass
829  *
830  * An array containing a list of pointers to all the drivers in the
831  * given devclass is allocated and returned in @p *listp.  The number
832  * of drivers in the array is returned in @p *countp. The caller should
833  * free the array using @c free(p, M_TEMP).
834  *
835  * @param dc            the devclass to examine
836  * @param listp         gives location for array pointer return value
837  * @param countp        gives location for number of array elements
838  *                      return value
839  *
840  * @retval 0            success
841  * @retval ENOMEM       the array allocation failed
842  */
843 int
844 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
845 {
846         driverlink_t dl;
847         driver_t **list;
848         int count;
849 
850         count = 0;
851         TAILQ_FOREACH(dl, &dc->drivers, link)
852                 count++;
853         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
854         if (list == NULL)
855                 return (ENOMEM);
856 
857         count = 0;
858         TAILQ_FOREACH(dl, &dc->drivers, link) {
859                 list[count] = dl->driver;
860                 count++;
861         }
862         *listp = list;
863         *countp = count;
864 
865         return (0);
866 }
867 
868 /**
869  * @brief Get the number of devices in a devclass
870  *
871  * @param dc		the devclass to examine
872  */
873 int
874 devclass_get_count(devclass_t dc)
875 {
876 	int count, i;
877 
878 	count = 0;
879 	for (i = 0; i < dc->maxunit; i++)
880 		if (dc->devices[i])
881 			count++;
882 	return (count);
883 }
884 
885 int
886 devclass_get_maxunit(devclass_t dc)
887 {
888 	return(dc->maxunit);
889 }
890 
891 void
892 devclass_set_parent(devclass_t dc, devclass_t pdc)
893 {
894         dc->parent = pdc;
895 }
896 
897 devclass_t
898 devclass_get_parent(devclass_t dc)
899 {
900 	return(dc->parent);
901 }
902 
903 static int
904 devclass_alloc_unit(devclass_t dc, int *unitp)
905 {
906 	int unit = *unitp;
907 
908 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
909 
910 	/* If we have been given a wired unit number, check for existing device */
911 	if (unit != -1) {
912 		if (unit >= 0 && unit < dc->maxunit &&
913 		    dc->devices[unit] != NULL) {
914 			if (bootverbose)
915 				kprintf("%s-: %s%d exists, using next available unit number\n",
916 				       dc->name, dc->name, unit);
917 			/* find the next available slot */
918 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
919 				;
920 		}
921 	} else {
922 		/* Unwired device, find the next available slot for it */
923 		unit = 0;
924 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
925 			unit++;
926 	}
927 
928 	/*
929 	 * We've selected a unit beyond the length of the table, so let's
930 	 * extend the table to make room for all units up to and including
931 	 * this one.
932 	 */
933 	if (unit >= dc->maxunit) {
934 		device_t *newlist;
935 		int newsize;
936 
937 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
938 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
939 				 M_INTWAIT | M_ZERO);
940 		if (newlist == NULL)
941 			return(ENOMEM);
942 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
943 		if (dc->devices)
944 			kfree(dc->devices, M_BUS);
945 		dc->devices = newlist;
946 		dc->maxunit = newsize;
947 	}
948 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
949 
950 	*unitp = unit;
951 	return(0);
952 }
953 
954 static int
955 devclass_add_device(devclass_t dc, device_t dev)
956 {
957 	int buflen, error;
958 
959 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
960 
961 	buflen = strlen(dc->name) + 5;
962 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
963 	if (!dev->nameunit)
964 		return(ENOMEM);
965 
966 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
967 		kfree(dev->nameunit, M_BUS);
968 		dev->nameunit = NULL;
969 		return(error);
970 	}
971 	dc->devices[dev->unit] = dev;
972 	dev->devclass = dc;
973 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
974 
975 	return(0);
976 }
977 
978 static int
979 devclass_delete_device(devclass_t dc, device_t dev)
980 {
981 	if (!dc || !dev)
982 		return(0);
983 
984 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
985 
986 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
987 		panic("devclass_delete_device: inconsistent device class");
988 	dc->devices[dev->unit] = NULL;
989 	if (dev->flags & DF_WILDCARD)
990 		dev->unit = -1;
991 	dev->devclass = NULL;
992 	kfree(dev->nameunit, M_BUS);
993 	dev->nameunit = NULL;
994 
995 	return(0);
996 }
997 
998 static device_t
999 make_device(device_t parent, const char *name, int unit)
1000 {
1001 	device_t dev;
1002 	devclass_t dc;
1003 
1004 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1005 
1006 	if (name != NULL) {
1007 		dc = devclass_find_internal(name, NULL, TRUE);
1008 		if (!dc) {
1009 			kprintf("make_device: can't find device class %s\n", name);
1010 			return(NULL);
1011 		}
1012 	} else
1013 		dc = NULL;
1014 
1015 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1016 	if (!dev)
1017 		return(0);
1018 
1019 	dev->parent = parent;
1020 	TAILQ_INIT(&dev->children);
1021 	kobj_init((kobj_t) dev, &null_class);
1022 	dev->driver = NULL;
1023 	dev->devclass = NULL;
1024 	dev->unit = unit;
1025 	dev->nameunit = NULL;
1026 	dev->desc = NULL;
1027 	dev->busy = 0;
1028 	dev->devflags = 0;
1029 	dev->flags = DF_ENABLED;
1030 	dev->order = 0;
1031 	if (unit == -1)
1032 		dev->flags |= DF_WILDCARD;
1033 	if (name) {
1034 		dev->flags |= DF_FIXEDCLASS;
1035 		if (devclass_add_device(dc, dev) != 0) {
1036 			kobj_delete((kobj_t)dev, M_BUS);
1037 			return(NULL);
1038 		}
1039     	}
1040 	dev->ivars = NULL;
1041 	dev->softc = NULL;
1042 
1043 	dev->state = DS_NOTPRESENT;
1044 
1045 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1046 	bus_data_generation_update();
1047 
1048 	return(dev);
1049 }
1050 
1051 static int
1052 device_print_child(device_t dev, device_t child)
1053 {
1054 	int retval = 0;
1055 
1056 	if (device_is_alive(child))
1057 		retval += BUS_PRINT_CHILD(dev, child);
1058 	else
1059 		retval += device_printf(child, " not found\n");
1060 
1061 	return(retval);
1062 }
1063 
1064 device_t
1065 device_add_child(device_t dev, const char *name, int unit)
1066 {
1067 	return device_add_child_ordered(dev, 0, name, unit);
1068 }
1069 
1070 device_t
1071 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1072 {
1073 	device_t child;
1074 	device_t place;
1075 
1076 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1077 		order, unit));
1078 
1079 	child = make_device(dev, name, unit);
1080 	if (child == NULL)
1081 		return child;
1082 	child->order = order;
1083 
1084 	TAILQ_FOREACH(place, &dev->children, link)
1085 		if (place->order > order)
1086 			break;
1087 
1088 	if (place) {
1089 		/*
1090 		 * The device 'place' is the first device whose order is
1091 		 * greater than the new child.
1092 		 */
1093 		TAILQ_INSERT_BEFORE(place, child, link);
1094 	} else {
1095 		/*
1096 		 * The new child's order is greater or equal to the order of
1097 		 * any existing device. Add the child to the tail of the list.
1098 		 */
1099 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1100     	}
1101 
1102 	bus_data_generation_update();
1103 	return(child);
1104 }
1105 
1106 int
1107 device_delete_child(device_t dev, device_t child)
1108 {
1109 	int error;
1110 	device_t grandchild;
1111 
1112 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1113 
1114 	/* remove children first */
1115 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1116         	error = device_delete_child(child, grandchild);
1117 		if (error)
1118 			return(error);
1119 	}
1120 
1121 	if ((error = device_detach(child)) != 0)
1122 		return(error);
1123 	if (child->devclass)
1124 		devclass_delete_device(child->devclass, child);
1125 	TAILQ_REMOVE(&dev->children, child, link);
1126 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1127 	device_set_desc(child, NULL);
1128 	kobj_delete((kobj_t)child, M_BUS);
1129 
1130 	bus_data_generation_update();
1131 	return(0);
1132 }
1133 
1134 /**
1135  * @brief Find a device given a unit number
1136  *
1137  * This is similar to devclass_get_devices() but only searches for
1138  * devices which have @p dev as a parent.
1139  *
1140  * @param dev		the parent device to search
1141  * @param unit		the unit number to search for.  If the unit is -1,
1142  *			return the first child of @p dev which has name
1143  *			@p classname (that is, the one with the lowest unit.)
1144  *
1145  * @returns		the device with the given unit number or @c
1146  *			NULL if there is no such device
1147  */
1148 device_t
1149 device_find_child(device_t dev, const char *classname, int unit)
1150 {
1151 	devclass_t dc;
1152 	device_t child;
1153 
1154 	dc = devclass_find(classname);
1155 	if (!dc)
1156 		return(NULL);
1157 
1158 	if (unit != -1) {
1159 		child = devclass_get_device(dc, unit);
1160 		if (child && child->parent == dev)
1161 			return (child);
1162 	} else {
1163 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1164 			child = devclass_get_device(dc, unit);
1165 			if (child && child->parent == dev)
1166 				return (child);
1167 		}
1168 	}
1169 	return(NULL);
1170 }
1171 
1172 static driverlink_t
1173 first_matching_driver(devclass_t dc, device_t dev)
1174 {
1175 	if (dev->devclass)
1176 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1177 	else
1178 		return(TAILQ_FIRST(&dc->drivers));
1179 }
1180 
1181 static driverlink_t
1182 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1183 {
1184 	if (dev->devclass) {
1185 		driverlink_t dl;
1186 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1187 			if (!strcmp(dev->devclass->name, dl->driver->name))
1188 				return(dl);
1189 		return(NULL);
1190 	} else
1191 		return(TAILQ_NEXT(last, link));
1192 }
1193 
1194 static int
1195 device_probe_child(device_t dev, device_t child)
1196 {
1197 	devclass_t dc;
1198 	driverlink_t best = 0;
1199 	driverlink_t dl;
1200 	int result, pri = 0;
1201 	int hasclass = (child->devclass != 0);
1202 
1203 	dc = dev->devclass;
1204 	if (!dc)
1205 		panic("device_probe_child: parent device has no devclass");
1206 
1207 	if (child->state == DS_ALIVE)
1208 		return(0);
1209 
1210 	for (; dc; dc = dc->parent) {
1211     		for (dl = first_matching_driver(dc, child); dl;
1212 		     dl = next_matching_driver(dc, child, dl)) {
1213 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1214 			device_set_driver(child, dl->driver);
1215 			if (!hasclass)
1216 				device_set_devclass(child, dl->driver->name);
1217 			result = DEVICE_PROBE(child);
1218 			if (!hasclass)
1219 				device_set_devclass(child, 0);
1220 
1221 			/*
1222 			 * If the driver returns SUCCESS, there can be
1223 			 * no higher match for this device.
1224 			 */
1225 			if (result == 0) {
1226 				best = dl;
1227 				pri = 0;
1228 				break;
1229 			}
1230 
1231 			/*
1232 			 * The driver returned an error so it
1233 			 * certainly doesn't match.
1234 			 */
1235 			if (result > 0) {
1236 				device_set_driver(child, 0);
1237 				continue;
1238 			}
1239 
1240 			/*
1241 			 * A priority lower than SUCCESS, remember the
1242 			 * best matching driver. Initialise the value
1243 			 * of pri for the first match.
1244 			 */
1245 			if (best == 0 || result > pri) {
1246 				best = dl;
1247 				pri = result;
1248 				continue;
1249 			}
1250 	        }
1251 		/*
1252 	         * If we have unambiguous match in this devclass,
1253 	         * don't look in the parent.
1254 	         */
1255 	        if (best && pri == 0)
1256 	    	        break;
1257 	}
1258 
1259 	/*
1260 	 * If we found a driver, change state and initialise the devclass.
1261 	 */
1262 	if (best) {
1263 		if (!child->devclass)
1264 			device_set_devclass(child, best->driver->name);
1265 		device_set_driver(child, best->driver);
1266 		if (pri < 0) {
1267 			/*
1268 			 * A bit bogus. Call the probe method again to make
1269 			 * sure that we have the right description.
1270 			 */
1271 			DEVICE_PROBE(child);
1272 		}
1273 
1274 		bus_data_generation_update();
1275 		child->state = DS_ALIVE;
1276 		return(0);
1277 	}
1278 
1279 	return(ENXIO);
1280 }
1281 
1282 device_t
1283 device_get_parent(device_t dev)
1284 {
1285 	return dev->parent;
1286 }
1287 
1288 int
1289 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1290 {
1291 	int count;
1292 	device_t child;
1293 	device_t *list;
1294 
1295 	count = 0;
1296 	TAILQ_FOREACH(child, &dev->children, link)
1297 		count++;
1298 
1299 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1300 	if (!list)
1301 		return(ENOMEM);
1302 
1303 	count = 0;
1304 	TAILQ_FOREACH(child, &dev->children, link) {
1305 		list[count] = child;
1306 		count++;
1307 	}
1308 
1309 	*devlistp = list;
1310 	*devcountp = count;
1311 
1312 	return(0);
1313 }
1314 
1315 driver_t *
1316 device_get_driver(device_t dev)
1317 {
1318 	return(dev->driver);
1319 }
1320 
1321 devclass_t
1322 device_get_devclass(device_t dev)
1323 {
1324 	return(dev->devclass);
1325 }
1326 
1327 const char *
1328 device_get_name(device_t dev)
1329 {
1330 	if (dev->devclass)
1331 		return devclass_get_name(dev->devclass);
1332 	return(NULL);
1333 }
1334 
1335 const char *
1336 device_get_nameunit(device_t dev)
1337 {
1338 	return(dev->nameunit);
1339 }
1340 
1341 int
1342 device_get_unit(device_t dev)
1343 {
1344 	return(dev->unit);
1345 }
1346 
1347 const char *
1348 device_get_desc(device_t dev)
1349 {
1350 	return(dev->desc);
1351 }
1352 
1353 uint32_t
1354 device_get_flags(device_t dev)
1355 {
1356 	return(dev->devflags);
1357 }
1358 
1359 int
1360 device_print_prettyname(device_t dev)
1361 {
1362 	const char *name = device_get_name(dev);
1363 
1364 	if (name == 0)
1365 		return kprintf("unknown: ");
1366 	else
1367 		return kprintf("%s%d: ", name, device_get_unit(dev));
1368 }
1369 
1370 int
1371 device_printf(device_t dev, const char * fmt, ...)
1372 {
1373 	__va_list ap;
1374 	int retval;
1375 
1376 	retval = device_print_prettyname(dev);
1377 	__va_start(ap, fmt);
1378 	retval += kvprintf(fmt, ap);
1379 	__va_end(ap);
1380 	return retval;
1381 }
1382 
1383 static void
1384 device_set_desc_internal(device_t dev, const char* desc, int copy)
1385 {
1386 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1387 		kfree(dev->desc, M_BUS);
1388 		dev->flags &= ~DF_DESCMALLOCED;
1389 		dev->desc = NULL;
1390 	}
1391 
1392 	if (copy && desc) {
1393 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1394 		if (dev->desc) {
1395 			strcpy(dev->desc, desc);
1396 			dev->flags |= DF_DESCMALLOCED;
1397 		}
1398 	} else {
1399 		/* Avoid a -Wcast-qual warning */
1400 		dev->desc = (char *)(uintptr_t) desc;
1401 	}
1402 
1403 	bus_data_generation_update();
1404 }
1405 
1406 void
1407 device_set_desc(device_t dev, const char* desc)
1408 {
1409 	device_set_desc_internal(dev, desc, FALSE);
1410 }
1411 
1412 void
1413 device_set_desc_copy(device_t dev, const char* desc)
1414 {
1415 	device_set_desc_internal(dev, desc, TRUE);
1416 }
1417 
1418 void
1419 device_set_flags(device_t dev, uint32_t flags)
1420 {
1421 	dev->devflags = flags;
1422 }
1423 
1424 void *
1425 device_get_softc(device_t dev)
1426 {
1427 	return dev->softc;
1428 }
1429 
1430 void
1431 device_set_softc(device_t dev, void *softc)
1432 {
1433 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1434 		kfree(dev->softc, M_BUS);
1435 	dev->softc = softc;
1436 	if (dev->softc)
1437 		dev->flags |= DF_EXTERNALSOFTC;
1438 	else
1439 		dev->flags &= ~DF_EXTERNALSOFTC;
1440 }
1441 
1442 void
1443 device_set_async_attach(device_t dev, int enable)
1444 {
1445 	if (enable)
1446 		dev->flags |= DF_ASYNCPROBE;
1447 	else
1448 		dev->flags &= ~DF_ASYNCPROBE;
1449 }
1450 
1451 void *
1452 device_get_ivars(device_t dev)
1453 {
1454 	return dev->ivars;
1455 }
1456 
1457 void
1458 device_set_ivars(device_t dev, void * ivars)
1459 {
1460 	if (!dev)
1461 		return;
1462 
1463 	dev->ivars = ivars;
1464 }
1465 
1466 device_state_t
1467 device_get_state(device_t dev)
1468 {
1469 	return(dev->state);
1470 }
1471 
1472 void
1473 device_enable(device_t dev)
1474 {
1475 	dev->flags |= DF_ENABLED;
1476 }
1477 
1478 void
1479 device_disable(device_t dev)
1480 {
1481 	dev->flags &= ~DF_ENABLED;
1482 }
1483 
1484 /*
1485  * YYY cannot block
1486  */
1487 void
1488 device_busy(device_t dev)
1489 {
1490 	if (dev->state < DS_ATTACHED)
1491 		panic("device_busy: called for unattached device");
1492 	if (dev->busy == 0 && dev->parent)
1493 		device_busy(dev->parent);
1494 	dev->busy++;
1495 	dev->state = DS_BUSY;
1496 }
1497 
1498 /*
1499  * YYY cannot block
1500  */
1501 void
1502 device_unbusy(device_t dev)
1503 {
1504 	if (dev->state != DS_BUSY)
1505 		panic("device_unbusy: called for non-busy device");
1506 	dev->busy--;
1507 	if (dev->busy == 0) {
1508 		if (dev->parent)
1509 			device_unbusy(dev->parent);
1510 		dev->state = DS_ATTACHED;
1511 	}
1512 }
1513 
1514 void
1515 device_quiet(device_t dev)
1516 {
1517 	dev->flags |= DF_QUIET;
1518 }
1519 
1520 void
1521 device_verbose(device_t dev)
1522 {
1523 	dev->flags &= ~DF_QUIET;
1524 }
1525 
1526 int
1527 device_is_quiet(device_t dev)
1528 {
1529 	return((dev->flags & DF_QUIET) != 0);
1530 }
1531 
1532 int
1533 device_is_enabled(device_t dev)
1534 {
1535 	return((dev->flags & DF_ENABLED) != 0);
1536 }
1537 
1538 int
1539 device_is_alive(device_t dev)
1540 {
1541 	return(dev->state >= DS_ALIVE);
1542 }
1543 
1544 int
1545 device_is_attached(device_t dev)
1546 {
1547 	return(dev->state >= DS_ATTACHED);
1548 }
1549 
1550 int
1551 device_set_devclass(device_t dev, const char *classname)
1552 {
1553 	devclass_t dc;
1554 	int error;
1555 
1556 	if (!classname) {
1557 		if (dev->devclass)
1558 			devclass_delete_device(dev->devclass, dev);
1559 		return(0);
1560 	}
1561 
1562 	if (dev->devclass) {
1563 		kprintf("device_set_devclass: device class already set\n");
1564 		return(EINVAL);
1565 	}
1566 
1567 	dc = devclass_find_internal(classname, NULL, TRUE);
1568 	if (!dc)
1569 		return(ENOMEM);
1570 
1571 	error = devclass_add_device(dc, dev);
1572 
1573 	bus_data_generation_update();
1574 	return(error);
1575 }
1576 
1577 int
1578 device_set_driver(device_t dev, driver_t *driver)
1579 {
1580 	if (dev->state >= DS_ATTACHED)
1581 		return(EBUSY);
1582 
1583 	if (dev->driver == driver)
1584 		return(0);
1585 
1586 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1587 		kfree(dev->softc, M_BUS);
1588 		dev->softc = NULL;
1589 	}
1590 	kobj_delete((kobj_t) dev, 0);
1591 	dev->driver = driver;
1592 	if (driver) {
1593 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1594 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1595 			dev->softc = kmalloc(driver->size, M_BUS,
1596 					    M_INTWAIT | M_ZERO);
1597 			if (!dev->softc) {
1598 				kobj_delete((kobj_t)dev, 0);
1599 				kobj_init((kobj_t) dev, &null_class);
1600 				dev->driver = NULL;
1601 				return(ENOMEM);
1602 	    		}
1603 		}
1604 	} else {
1605 		kobj_init((kobj_t) dev, &null_class);
1606 	}
1607 
1608 	bus_data_generation_update();
1609 	return(0);
1610 }
1611 
1612 int
1613 device_probe_and_attach(device_t dev)
1614 {
1615 	device_t bus = dev->parent;
1616 	int error = 0;
1617 
1618 	if (dev->state >= DS_ALIVE)
1619 		return(0);
1620 
1621 	if ((dev->flags & DF_ENABLED) == 0) {
1622 		if (bootverbose) {
1623 			device_print_prettyname(dev);
1624 			kprintf("not probed (disabled)\n");
1625 		}
1626 		return(0);
1627 	}
1628 
1629 	error = device_probe_child(bus, dev);
1630 	if (error) {
1631 		if (!(dev->flags & DF_DONENOMATCH)) {
1632 			BUS_PROBE_NOMATCH(bus, dev);
1633 			devnomatch(dev);
1634 			dev->flags |= DF_DONENOMATCH;
1635 		}
1636 		return(error);
1637 	}
1638 
1639 	/*
1640 	 * Output the exact device chain prior to the attach in case the
1641 	 * system locks up during attach, and generate the full info after
1642 	 * the attach so correct irq and other information is displayed.
1643 	 */
1644 	if (bootverbose && !device_is_quiet(dev)) {
1645 		device_t tmp;
1646 
1647 		kprintf("%s", device_get_nameunit(dev));
1648 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1649 			kprintf(".%s", device_get_nameunit(tmp));
1650 		kprintf("\n");
1651 	}
1652 	if (!device_is_quiet(dev))
1653 		device_print_child(bus, dev);
1654 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1655 		kprintf("%s: probing asynchronously\n",
1656 			device_get_nameunit(dev));
1657 		dev->state = DS_INPROGRESS;
1658 		device_attach_async(dev);
1659 		error = 0;
1660 	} else {
1661 		error = device_doattach(dev);
1662 	}
1663 	return(error);
1664 }
1665 
1666 /*
1667  * Device is known to be alive, do the attach asynchronously.
1668  * However, serialize the attaches with the mp lock.
1669  */
1670 static void
1671 device_attach_async(device_t dev)
1672 {
1673 	thread_t td;
1674 
1675 	atomic_add_int(&numasyncthreads, 1);
1676 	lwkt_create(device_attach_thread, dev, &td, NULL,
1677 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1678 }
1679 
1680 static void
1681 device_attach_thread(void *arg)
1682 {
1683 	device_t dev = arg;
1684 
1685 	get_mplock();	/* XXX replace with devattach_token later */
1686 	(void)device_doattach(dev);
1687 	atomic_subtract_int(&numasyncthreads, 1);
1688 	wakeup(&numasyncthreads);
1689 	rel_mplock();	/* XXX replace with devattach_token later */
1690 }
1691 
1692 /*
1693  * Device is known to be alive, do the attach (synchronous or asynchronous)
1694  */
1695 static int
1696 device_doattach(device_t dev)
1697 {
1698 	device_t bus = dev->parent;
1699 	int hasclass = (dev->devclass != 0);
1700 	int error;
1701 
1702 	error = DEVICE_ATTACH(dev);
1703 	if (error == 0) {
1704 		dev->state = DS_ATTACHED;
1705 		if (bootverbose && !device_is_quiet(dev))
1706 			device_print_child(bus, dev);
1707 		devadded(dev);
1708 	} else {
1709 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1710 		       dev->driver->name, dev->unit, error);
1711 		/* Unset the class that was set in device_probe_child */
1712 		if (!hasclass)
1713 			device_set_devclass(dev, 0);
1714 		device_set_driver(dev, NULL);
1715 		dev->state = DS_NOTPRESENT;
1716 	}
1717 	return(error);
1718 }
1719 
1720 int
1721 device_detach(device_t dev)
1722 {
1723 	int error;
1724 
1725 	PDEBUG(("%s", DEVICENAME(dev)));
1726 	if (dev->state == DS_BUSY)
1727 		return(EBUSY);
1728 	if (dev->state != DS_ATTACHED)
1729 		return(0);
1730 
1731 	if ((error = DEVICE_DETACH(dev)) != 0)
1732 		return(error);
1733 	devremoved(dev);
1734 	device_printf(dev, "detached\n");
1735 	if (dev->parent)
1736 		BUS_CHILD_DETACHED(dev->parent, dev);
1737 
1738 	if (!(dev->flags & DF_FIXEDCLASS))
1739 		devclass_delete_device(dev->devclass, dev);
1740 
1741 	dev->state = DS_NOTPRESENT;
1742 	device_set_driver(dev, NULL);
1743 
1744 	return(0);
1745 }
1746 
1747 int
1748 device_shutdown(device_t dev)
1749 {
1750 	if (dev->state < DS_ATTACHED)
1751 		return 0;
1752 	PDEBUG(("%s", DEVICENAME(dev)));
1753 	return DEVICE_SHUTDOWN(dev);
1754 }
1755 
1756 int
1757 device_set_unit(device_t dev, int unit)
1758 {
1759 	devclass_t dc;
1760 	int err;
1761 
1762 	dc = device_get_devclass(dev);
1763 	if (unit < dc->maxunit && dc->devices[unit])
1764 		return(EBUSY);
1765 	err = devclass_delete_device(dc, dev);
1766 	if (err)
1767 		return(err);
1768 	dev->unit = unit;
1769 	err = devclass_add_device(dc, dev);
1770 	if (err)
1771 		return(err);
1772 
1773 	bus_data_generation_update();
1774 	return(0);
1775 }
1776 
1777 /*======================================*/
1778 /*
1779  * Access functions for device resources.
1780  */
1781 
1782 /* Supplied by config(8) in ioconf.c */
1783 extern struct config_device config_devtab[];
1784 extern int devtab_count;
1785 
1786 /* Runtime version */
1787 struct config_device *devtab = config_devtab;
1788 
1789 static int
1790 resource_new_name(const char *name, int unit)
1791 {
1792 	struct config_device *new;
1793 
1794 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1795 		     M_INTWAIT | M_ZERO);
1796 	if (new == NULL)
1797 		return(-1);
1798 	if (devtab && devtab_count > 0)
1799 		bcopy(devtab, new, devtab_count * sizeof(*new));
1800 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1801 	if (new[devtab_count].name == NULL) {
1802 		kfree(new, M_TEMP);
1803 		return(-1);
1804 	}
1805 	strcpy(new[devtab_count].name, name);
1806 	new[devtab_count].unit = unit;
1807 	new[devtab_count].resource_count = 0;
1808 	new[devtab_count].resources = NULL;
1809 	if (devtab && devtab != config_devtab)
1810 		kfree(devtab, M_TEMP);
1811 	devtab = new;
1812 	return devtab_count++;
1813 }
1814 
1815 static int
1816 resource_new_resname(int j, const char *resname, resource_type type)
1817 {
1818 	struct config_resource *new;
1819 	int i;
1820 
1821 	i = devtab[j].resource_count;
1822 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1823 	if (new == NULL)
1824 		return(-1);
1825 	if (devtab[j].resources && i > 0)
1826 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1827 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1828 	if (new[i].name == NULL) {
1829 		kfree(new, M_TEMP);
1830 		return(-1);
1831 	}
1832 	strcpy(new[i].name, resname);
1833 	new[i].type = type;
1834 	if (devtab[j].resources)
1835 		kfree(devtab[j].resources, M_TEMP);
1836 	devtab[j].resources = new;
1837 	devtab[j].resource_count = i + 1;
1838 	return(i);
1839 }
1840 
1841 static int
1842 resource_match_string(int i, const char *resname, const char *value)
1843 {
1844 	int j;
1845 	struct config_resource *res;
1846 
1847 	for (j = 0, res = devtab[i].resources;
1848 	     j < devtab[i].resource_count; j++, res++)
1849 		if (!strcmp(res->name, resname)
1850 		    && res->type == RES_STRING
1851 		    && !strcmp(res->u.stringval, value))
1852 			return(j);
1853 	return(-1);
1854 }
1855 
1856 static int
1857 resource_find(const char *name, int unit, const char *resname,
1858 	      struct config_resource **result)
1859 {
1860 	int i, j;
1861 	struct config_resource *res;
1862 
1863 	/*
1864 	 * First check specific instances, then generic.
1865 	 */
1866 	for (i = 0; i < devtab_count; i++) {
1867 		if (devtab[i].unit < 0)
1868 			continue;
1869 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1870 			res = devtab[i].resources;
1871 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1872 				if (!strcmp(res->name, resname)) {
1873 					*result = res;
1874 					return(0);
1875 				}
1876 		}
1877 	}
1878 	for (i = 0; i < devtab_count; i++) {
1879 		if (devtab[i].unit >= 0)
1880 			continue;
1881 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1882 		/* XXX if so, then the generic match does nothing */
1883 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1884 			res = devtab[i].resources;
1885 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1886 				if (!strcmp(res->name, resname)) {
1887 					*result = res;
1888 					return(0);
1889 				}
1890 		}
1891 	}
1892 	return(ENOENT);
1893 }
1894 
1895 int
1896 resource_int_value(const char *name, int unit, const char *resname, int *result)
1897 {
1898 	int error;
1899 	struct config_resource *res;
1900 
1901 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1902 		return(error);
1903 	if (res->type != RES_INT)
1904 		return(EFTYPE);
1905 	*result = res->u.intval;
1906 	return(0);
1907 }
1908 
1909 int
1910 resource_long_value(const char *name, int unit, const char *resname,
1911 		    long *result)
1912 {
1913 	int error;
1914 	struct config_resource *res;
1915 
1916 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1917 		return(error);
1918 	if (res->type != RES_LONG)
1919 		return(EFTYPE);
1920 	*result = res->u.longval;
1921 	return(0);
1922 }
1923 
1924 int
1925 resource_string_value(const char *name, int unit, const char *resname,
1926 		      char **result)
1927 {
1928 	int error;
1929 	struct config_resource *res;
1930 
1931 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1932 		return(error);
1933 	if (res->type != RES_STRING)
1934 		return(EFTYPE);
1935 	*result = res->u.stringval;
1936 	return(0);
1937 }
1938 
1939 int
1940 resource_query_string(int i, const char *resname, const char *value)
1941 {
1942 	if (i < 0)
1943 		i = 0;
1944 	else
1945 		i = i + 1;
1946 	for (; i < devtab_count; i++)
1947 		if (resource_match_string(i, resname, value) >= 0)
1948 			return(i);
1949 	return(-1);
1950 }
1951 
1952 int
1953 resource_locate(int i, const char *resname)
1954 {
1955 	if (i < 0)
1956 		i = 0;
1957 	else
1958 		i = i + 1;
1959 	for (; i < devtab_count; i++)
1960 		if (!strcmp(devtab[i].name, resname))
1961 			return(i);
1962 	return(-1);
1963 }
1964 
1965 int
1966 resource_count(void)
1967 {
1968 	return(devtab_count);
1969 }
1970 
1971 char *
1972 resource_query_name(int i)
1973 {
1974 	return(devtab[i].name);
1975 }
1976 
1977 int
1978 resource_query_unit(int i)
1979 {
1980 	return(devtab[i].unit);
1981 }
1982 
1983 static int
1984 resource_create(const char *name, int unit, const char *resname,
1985 		resource_type type, struct config_resource **result)
1986 {
1987 	int i, j;
1988 	struct config_resource *res = NULL;
1989 
1990 	for (i = 0; i < devtab_count; i++)
1991 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1992 			res = devtab[i].resources;
1993 			break;
1994 		}
1995 	if (res == NULL) {
1996 		i = resource_new_name(name, unit);
1997 		if (i < 0)
1998 			return(ENOMEM);
1999 		res = devtab[i].resources;
2000 	}
2001 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2002 		if (!strcmp(res->name, resname)) {
2003 			*result = res;
2004 			return(0);
2005 		}
2006 	j = resource_new_resname(i, resname, type);
2007 	if (j < 0)
2008 		return(ENOMEM);
2009 	res = &devtab[i].resources[j];
2010 	*result = res;
2011 	return(0);
2012 }
2013 
2014 int
2015 resource_set_int(const char *name, int unit, const char *resname, int value)
2016 {
2017 	int error;
2018 	struct config_resource *res;
2019 
2020 	error = resource_create(name, unit, resname, RES_INT, &res);
2021 	if (error)
2022 		return(error);
2023 	if (res->type != RES_INT)
2024 		return(EFTYPE);
2025 	res->u.intval = value;
2026 	return(0);
2027 }
2028 
2029 int
2030 resource_set_long(const char *name, int unit, const char *resname, long value)
2031 {
2032 	int error;
2033 	struct config_resource *res;
2034 
2035 	error = resource_create(name, unit, resname, RES_LONG, &res);
2036 	if (error)
2037 		return(error);
2038 	if (res->type != RES_LONG)
2039 		return(EFTYPE);
2040 	res->u.longval = value;
2041 	return(0);
2042 }
2043 
2044 int
2045 resource_set_string(const char *name, int unit, const char *resname,
2046 		    const char *value)
2047 {
2048 	int error;
2049 	struct config_resource *res;
2050 
2051 	error = resource_create(name, unit, resname, RES_STRING, &res);
2052 	if (error)
2053 		return(error);
2054 	if (res->type != RES_STRING)
2055 		return(EFTYPE);
2056 	if (res->u.stringval)
2057 		kfree(res->u.stringval, M_TEMP);
2058 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2059 	if (res->u.stringval == NULL)
2060 		return(ENOMEM);
2061 	strcpy(res->u.stringval, value);
2062 	return(0);
2063 }
2064 
2065 static void
2066 resource_cfgload(void *dummy __unused)
2067 {
2068 	struct config_resource *res, *cfgres;
2069 	int i, j;
2070 	int error;
2071 	char *name, *resname;
2072 	int unit;
2073 	resource_type type;
2074 	char *stringval;
2075 	int config_devtab_count;
2076 
2077 	config_devtab_count = devtab_count;
2078 	devtab = NULL;
2079 	devtab_count = 0;
2080 
2081 	for (i = 0; i < config_devtab_count; i++) {
2082 		name = config_devtab[i].name;
2083 		unit = config_devtab[i].unit;
2084 
2085 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2086 			cfgres = config_devtab[i].resources;
2087 			resname = cfgres[j].name;
2088 			type = cfgres[j].type;
2089 			error = resource_create(name, unit, resname, type,
2090 						&res);
2091 			if (error) {
2092 				kprintf("create resource %s%d: error %d\n",
2093 					name, unit, error);
2094 				continue;
2095 			}
2096 			if (res->type != type) {
2097 				kprintf("type mismatch %s%d: %d != %d\n",
2098 					name, unit, res->type, type);
2099 				continue;
2100 			}
2101 			switch (type) {
2102 			case RES_INT:
2103 				res->u.intval = cfgres[j].u.intval;
2104 				break;
2105 			case RES_LONG:
2106 				res->u.longval = cfgres[j].u.longval;
2107 				break;
2108 			case RES_STRING:
2109 				if (res->u.stringval)
2110 					kfree(res->u.stringval, M_TEMP);
2111 				stringval = cfgres[j].u.stringval;
2112 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2113 							  M_TEMP, M_INTWAIT);
2114 				if (res->u.stringval == NULL)
2115 					break;
2116 				strcpy(res->u.stringval, stringval);
2117 				break;
2118 			default:
2119 				panic("unknown resource type %d", type);
2120 			}
2121 		}
2122 	}
2123 }
2124 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2125 
2126 
2127 /*======================================*/
2128 /*
2129  * Some useful method implementations to make life easier for bus drivers.
2130  */
2131 
2132 void
2133 resource_list_init(struct resource_list *rl)
2134 {
2135 	SLIST_INIT(rl);
2136 }
2137 
2138 void
2139 resource_list_free(struct resource_list *rl)
2140 {
2141 	struct resource_list_entry *rle;
2142 
2143 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2144 		if (rle->res)
2145 			panic("resource_list_free: resource entry is busy");
2146 		SLIST_REMOVE_HEAD(rl, link);
2147 		kfree(rle, M_BUS);
2148 	}
2149 }
2150 
2151 void
2152 resource_list_add(struct resource_list *rl,
2153 		  int type, int rid,
2154 		  u_long start, u_long end, u_long count)
2155 {
2156 	struct resource_list_entry *rle;
2157 
2158 	rle = resource_list_find(rl, type, rid);
2159 	if (rle == NULL) {
2160 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2161 			     M_INTWAIT);
2162 		if (!rle)
2163 			panic("resource_list_add: can't record entry");
2164 		SLIST_INSERT_HEAD(rl, rle, link);
2165 		rle->type = type;
2166 		rle->rid = rid;
2167 		rle->res = NULL;
2168 	}
2169 
2170 	if (rle->res)
2171 		panic("resource_list_add: resource entry is busy");
2172 
2173 	rle->start = start;
2174 	rle->end = end;
2175 	rle->count = count;
2176 }
2177 
2178 struct resource_list_entry*
2179 resource_list_find(struct resource_list *rl,
2180 		   int type, int rid)
2181 {
2182 	struct resource_list_entry *rle;
2183 
2184 	SLIST_FOREACH(rle, rl, link)
2185 		if (rle->type == type && rle->rid == rid)
2186 			return(rle);
2187 	return(NULL);
2188 }
2189 
2190 void
2191 resource_list_delete(struct resource_list *rl,
2192 		     int type, int rid)
2193 {
2194 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2195 
2196 	if (rle) {
2197 		if (rle->res != NULL)
2198 			panic("resource_list_delete: resource has not been released");
2199 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2200 		kfree(rle, M_BUS);
2201 	}
2202 }
2203 
2204 struct resource *
2205 resource_list_alloc(struct resource_list *rl,
2206 		    device_t bus, device_t child,
2207 		    int type, int *rid,
2208 		    u_long start, u_long end,
2209 		    u_long count, u_int flags)
2210 {
2211 	struct resource_list_entry *rle = 0;
2212 	int passthrough = (device_get_parent(child) != bus);
2213 	int isdefault = (start == 0UL && end == ~0UL);
2214 
2215 	if (passthrough) {
2216 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2217 					  type, rid,
2218 					  start, end, count, flags));
2219 	}
2220 
2221 	rle = resource_list_find(rl, type, *rid);
2222 
2223 	if (!rle)
2224 		return(0);		/* no resource of that type/rid */
2225 
2226 	if (rle->res)
2227 		panic("resource_list_alloc: resource entry is busy");
2228 
2229 	if (isdefault) {
2230 		start = rle->start;
2231 		count = max(count, rle->count);
2232 		end = max(rle->end, start + count - 1);
2233 	}
2234 
2235 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2236 				      type, rid, start, end, count, flags);
2237 
2238 	/*
2239 	 * Record the new range.
2240 	 */
2241 	if (rle->res) {
2242 		rle->start = rman_get_start(rle->res);
2243 		rle->end = rman_get_end(rle->res);
2244 		rle->count = count;
2245 	}
2246 
2247 	return(rle->res);
2248 }
2249 
2250 int
2251 resource_list_release(struct resource_list *rl,
2252 		      device_t bus, device_t child,
2253 		      int type, int rid, struct resource *res)
2254 {
2255 	struct resource_list_entry *rle = 0;
2256 	int passthrough = (device_get_parent(child) != bus);
2257 	int error;
2258 
2259 	if (passthrough) {
2260 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2261 					    type, rid, res));
2262 	}
2263 
2264 	rle = resource_list_find(rl, type, rid);
2265 
2266 	if (!rle)
2267 		panic("resource_list_release: can't find resource");
2268 	if (!rle->res)
2269 		panic("resource_list_release: resource entry is not busy");
2270 
2271 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2272 				     type, rid, res);
2273 	if (error)
2274 		return(error);
2275 
2276 	rle->res = NULL;
2277 	return(0);
2278 }
2279 
2280 int
2281 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2282 			 const char *format)
2283 {
2284 	struct resource_list_entry *rle;
2285 	int printed, retval;
2286 
2287 	printed = 0;
2288 	retval = 0;
2289 	/* Yes, this is kinda cheating */
2290 	SLIST_FOREACH(rle, rl, link) {
2291 		if (rle->type == type) {
2292 			if (printed == 0)
2293 				retval += kprintf(" %s ", name);
2294 			else
2295 				retval += kprintf(",");
2296 			printed++;
2297 			retval += kprintf(format, rle->start);
2298 			if (rle->count > 1) {
2299 				retval += kprintf("-");
2300 				retval += kprintf(format, rle->start +
2301 						 rle->count - 1);
2302 			}
2303 		}
2304 	}
2305 	return(retval);
2306 }
2307 
2308 /*
2309  * Generic driver/device identify functions.  These will install a device
2310  * rendezvous point under the parent using the same name as the driver
2311  * name, which will at a later time be probed and attached.
2312  *
2313  * These functions are used when the parent does not 'scan' its bus for
2314  * matching devices, or for the particular devices using these functions,
2315  * or when the device is a pseudo or synthesized device (such as can be
2316  * found under firewire and ppbus).
2317  */
2318 int
2319 bus_generic_identify(driver_t *driver, device_t parent)
2320 {
2321 	if (parent->state == DS_ATTACHED)
2322 		return (0);
2323 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2324 	return (0);
2325 }
2326 
2327 int
2328 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2329 {
2330 	if (parent->state == DS_ATTACHED)
2331 		return (0);
2332 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2333 	return (0);
2334 }
2335 
2336 /*
2337  * Call DEVICE_IDENTIFY for each driver.
2338  */
2339 int
2340 bus_generic_probe(device_t dev)
2341 {
2342 	devclass_t dc = dev->devclass;
2343 	driverlink_t dl;
2344 
2345 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2346 		DEVICE_IDENTIFY(dl->driver, dev);
2347 	}
2348 
2349 	return(0);
2350 }
2351 
2352 /*
2353  * This is an aweful hack due to the isa bus and autoconf code not
2354  * probing the ISA devices until after everything else has configured.
2355  * The ISA bus did a dummy attach long ago so we have to set it back
2356  * to an earlier state so the probe thinks its the initial probe and
2357  * not a bus rescan.
2358  *
2359  * XXX remove by properly defering the ISA bus scan.
2360  */
2361 int
2362 bus_generic_probe_hack(device_t dev)
2363 {
2364 	if (dev->state == DS_ATTACHED) {
2365 		dev->state = DS_ALIVE;
2366 		bus_generic_probe(dev);
2367 		dev->state = DS_ATTACHED;
2368 	}
2369 	return (0);
2370 }
2371 
2372 int
2373 bus_generic_attach(device_t dev)
2374 {
2375 	device_t child;
2376 
2377 	TAILQ_FOREACH(child, &dev->children, link) {
2378 		device_probe_and_attach(child);
2379 	}
2380 
2381 	return(0);
2382 }
2383 
2384 int
2385 bus_generic_detach(device_t dev)
2386 {
2387 	device_t child;
2388 	int error;
2389 
2390 	if (dev->state != DS_ATTACHED)
2391 		return(EBUSY);
2392 
2393 	TAILQ_FOREACH(child, &dev->children, link)
2394 		if ((error = device_detach(child)) != 0)
2395 			return(error);
2396 
2397 	return 0;
2398 }
2399 
2400 int
2401 bus_generic_shutdown(device_t dev)
2402 {
2403 	device_t child;
2404 
2405 	TAILQ_FOREACH(child, &dev->children, link)
2406 		device_shutdown(child);
2407 
2408 	return(0);
2409 }
2410 
2411 int
2412 bus_generic_suspend(device_t dev)
2413 {
2414 	int error;
2415 	device_t child, child2;
2416 
2417 	TAILQ_FOREACH(child, &dev->children, link) {
2418 		error = DEVICE_SUSPEND(child);
2419 		if (error) {
2420 			for (child2 = TAILQ_FIRST(&dev->children);
2421 			     child2 && child2 != child;
2422 			     child2 = TAILQ_NEXT(child2, link))
2423 				DEVICE_RESUME(child2);
2424 			return(error);
2425 		}
2426 	}
2427 	return(0);
2428 }
2429 
2430 int
2431 bus_generic_resume(device_t dev)
2432 {
2433 	device_t child;
2434 
2435 	TAILQ_FOREACH(child, &dev->children, link)
2436 		DEVICE_RESUME(child);
2437 		/* if resume fails, there's nothing we can usefully do... */
2438 
2439 	return(0);
2440 }
2441 
2442 int
2443 bus_print_child_header(device_t dev, device_t child)
2444 {
2445 	int retval = 0;
2446 
2447 	if (device_get_desc(child))
2448 		retval += device_printf(child, "<%s>", device_get_desc(child));
2449 	else
2450 		retval += kprintf("%s", device_get_nameunit(child));
2451 	if (bootverbose) {
2452 		if (child->state != DS_ATTACHED)
2453 			kprintf(" [tentative]");
2454 		else
2455 			kprintf(" [attached!]");
2456 	}
2457 	return(retval);
2458 }
2459 
2460 int
2461 bus_print_child_footer(device_t dev, device_t child)
2462 {
2463 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2464 }
2465 
2466 device_t
2467 bus_generic_add_child(device_t dev, device_t child, int order,
2468 		      const char *name, int unit)
2469 {
2470 	if (dev->parent)
2471 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2472 	else
2473 		dev = device_add_child_ordered(child, order, name, unit);
2474 	return(dev);
2475 
2476 }
2477 
2478 int
2479 bus_generic_print_child(device_t dev, device_t child)
2480 {
2481 	int retval = 0;
2482 
2483 	retval += bus_print_child_header(dev, child);
2484 	retval += bus_print_child_footer(dev, child);
2485 
2486 	return(retval);
2487 }
2488 
2489 int
2490 bus_generic_read_ivar(device_t dev, device_t child, int index,
2491 		      uintptr_t * result)
2492 {
2493 	int error;
2494 
2495 	if (dev->parent)
2496 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2497 	else
2498 		error = ENOENT;
2499 	return (error);
2500 }
2501 
2502 int
2503 bus_generic_write_ivar(device_t dev, device_t child, int index,
2504 		       uintptr_t value)
2505 {
2506 	int error;
2507 
2508 	if (dev->parent)
2509 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2510 	else
2511 		error = ENOENT;
2512 	return (error);
2513 }
2514 
2515 /*
2516  * Resource list are used for iterations, do not recurse.
2517  */
2518 struct resource_list *
2519 bus_generic_get_resource_list(device_t dev, device_t child)
2520 {
2521 	return (NULL);
2522 }
2523 
2524 void
2525 bus_generic_driver_added(device_t dev, driver_t *driver)
2526 {
2527 	device_t child;
2528 
2529 	DEVICE_IDENTIFY(driver, dev);
2530 	TAILQ_FOREACH(child, &dev->children, link) {
2531 		if (child->state == DS_NOTPRESENT)
2532 			device_probe_and_attach(child);
2533 	}
2534 }
2535 
2536 int
2537 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2538 		       int flags, driver_intr_t *intr, void *arg,
2539 		       void **cookiep, lwkt_serialize_t serializer)
2540 {
2541 	/* Propagate up the bus hierarchy until someone handles it. */
2542 	if (dev->parent)
2543 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2544 				      intr, arg, cookiep, serializer));
2545 	else
2546 		return(EINVAL);
2547 }
2548 
2549 int
2550 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2551 			  void *cookie)
2552 {
2553 	/* Propagate up the bus hierarchy until someone handles it. */
2554 	if (dev->parent)
2555 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2556 	else
2557 		return(EINVAL);
2558 }
2559 
2560 int
2561 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2562 {
2563 	if (dev->parent)
2564 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2565 	else
2566 		return(0);
2567 }
2568 
2569 void
2570 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2571 {
2572 	if (dev->parent)
2573 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2574 }
2575 
2576 int
2577 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2578     enum intr_polarity pol)
2579 {
2580 	/* Propagate up the bus hierarchy until someone handles it. */
2581 	if (dev->parent)
2582 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2583 	else
2584 		return(EINVAL);
2585 }
2586 
2587 struct resource *
2588 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2589 			   u_long start, u_long end, u_long count, u_int flags)
2590 {
2591 	/* Propagate up the bus hierarchy until someone handles it. */
2592 	if (dev->parent)
2593 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2594 					   start, end, count, flags));
2595 	else
2596 		return(NULL);
2597 }
2598 
2599 int
2600 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2601 			     struct resource *r)
2602 {
2603 	/* Propagate up the bus hierarchy until someone handles it. */
2604 	if (dev->parent)
2605 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2606 	else
2607 		return(EINVAL);
2608 }
2609 
2610 int
2611 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2612 			      struct resource *r)
2613 {
2614 	/* Propagate up the bus hierarchy until someone handles it. */
2615 	if (dev->parent)
2616 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2617 	else
2618 		return(EINVAL);
2619 }
2620 
2621 int
2622 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2623 				int rid, struct resource *r)
2624 {
2625 	/* Propagate up the bus hierarchy until someone handles it. */
2626 	if (dev->parent)
2627 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2628 					       r));
2629 	else
2630 		return(EINVAL);
2631 }
2632 
2633 int
2634 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2635 			 u_long *startp, u_long *countp)
2636 {
2637 	int error;
2638 
2639 	error = ENOENT;
2640 	if (dev->parent) {
2641 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2642 					 startp, countp);
2643 	}
2644 	return (error);
2645 }
2646 
2647 int
2648 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2649 			u_long start, u_long count)
2650 {
2651 	int error;
2652 
2653 	error = EINVAL;
2654 	if (dev->parent) {
2655 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2656 					 start, count);
2657 	}
2658 	return (error);
2659 }
2660 
2661 void
2662 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2663 {
2664 	if (dev->parent)
2665 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2666 }
2667 
2668 int
2669 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2670     u_long *startp, u_long *countp)
2671 {
2672 	struct resource_list *rl = NULL;
2673 	struct resource_list_entry *rle = NULL;
2674 
2675 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2676 	if (!rl)
2677 		return(EINVAL);
2678 
2679 	rle = resource_list_find(rl, type, rid);
2680 	if (!rle)
2681 		return(ENOENT);
2682 
2683 	if (startp)
2684 		*startp = rle->start;
2685 	if (countp)
2686 		*countp = rle->count;
2687 
2688 	return(0);
2689 }
2690 
2691 int
2692 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2693     u_long start, u_long count)
2694 {
2695 	struct resource_list *rl = NULL;
2696 
2697 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2698 	if (!rl)
2699 		return(EINVAL);
2700 
2701 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2702 
2703 	return(0);
2704 }
2705 
2706 void
2707 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2708 {
2709 	struct resource_list *rl = NULL;
2710 
2711 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2712 	if (!rl)
2713 		return;
2714 
2715 	resource_list_delete(rl, type, rid);
2716 }
2717 
2718 int
2719 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2720     int rid, struct resource *r)
2721 {
2722 	struct resource_list *rl = NULL;
2723 
2724 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2725 	if (!rl)
2726 		return(EINVAL);
2727 
2728 	return(resource_list_release(rl, dev, child, type, rid, r));
2729 }
2730 
2731 struct resource *
2732 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2733     int *rid, u_long start, u_long end, u_long count, u_int flags)
2734 {
2735 	struct resource_list *rl = NULL;
2736 
2737 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2738 	if (!rl)
2739 		return(NULL);
2740 
2741 	return(resource_list_alloc(rl, dev, child, type, rid,
2742 	    start, end, count, flags));
2743 }
2744 
2745 int
2746 bus_generic_child_present(device_t bus, device_t child)
2747 {
2748 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2749 }
2750 
2751 
2752 /*
2753  * Some convenience functions to make it easier for drivers to use the
2754  * resource-management functions.  All these really do is hide the
2755  * indirection through the parent's method table, making for slightly
2756  * less-wordy code.  In the future, it might make sense for this code
2757  * to maintain some sort of a list of resources allocated by each device.
2758  */
2759 int
2760 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2761     struct resource **res)
2762 {
2763 	int i;
2764 
2765 	for (i = 0; rs[i].type != -1; i++)
2766 	        res[i] = NULL;
2767 	for (i = 0; rs[i].type != -1; i++) {
2768 		res[i] = bus_alloc_resource_any(dev,
2769 		    rs[i].type, &rs[i].rid, rs[i].flags);
2770 		if (res[i] == NULL) {
2771 			bus_release_resources(dev, rs, res);
2772 			return (ENXIO);
2773 		}
2774 	}
2775 	return (0);
2776 }
2777 
2778 void
2779 bus_release_resources(device_t dev, const struct resource_spec *rs,
2780     struct resource **res)
2781 {
2782 	int i;
2783 
2784 	for (i = 0; rs[i].type != -1; i++)
2785 		if (res[i] != NULL) {
2786 			bus_release_resource(
2787 			    dev, rs[i].type, rs[i].rid, res[i]);
2788 			res[i] = NULL;
2789 		}
2790 }
2791 
2792 struct resource *
2793 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2794 		   u_long count, u_int flags)
2795 {
2796 	if (dev->parent == 0)
2797 		return(0);
2798 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2799 				  count, flags));
2800 }
2801 
2802 int
2803 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2804 {
2805 	if (dev->parent == 0)
2806 		return(EINVAL);
2807 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2808 }
2809 
2810 int
2811 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2812 {
2813 	if (dev->parent == 0)
2814 		return(EINVAL);
2815 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2816 }
2817 
2818 int
2819 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2820 {
2821 	if (dev->parent == 0)
2822 		return(EINVAL);
2823 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2824 }
2825 
2826 int
2827 bus_setup_intr(device_t dev, struct resource *r, int flags,
2828 	       driver_intr_t handler, void *arg,
2829 	       void **cookiep, lwkt_serialize_t serializer)
2830 {
2831 	if (dev->parent == 0)
2832 		return(EINVAL);
2833 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2834 			      cookiep, serializer));
2835 }
2836 
2837 int
2838 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2839 {
2840 	if (dev->parent == 0)
2841 		return(EINVAL);
2842 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2843 }
2844 
2845 void
2846 bus_enable_intr(device_t dev, void *cookie)
2847 {
2848 	if (dev->parent)
2849 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2850 }
2851 
2852 int
2853 bus_disable_intr(device_t dev, void *cookie)
2854 {
2855 	if (dev->parent)
2856 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2857 	else
2858 		return(0);
2859 }
2860 
2861 int
2862 bus_set_resource(device_t dev, int type, int rid,
2863 		 u_long start, u_long count)
2864 {
2865 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2866 				start, count));
2867 }
2868 
2869 int
2870 bus_get_resource(device_t dev, int type, int rid,
2871 		 u_long *startp, u_long *countp)
2872 {
2873 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2874 				startp, countp));
2875 }
2876 
2877 u_long
2878 bus_get_resource_start(device_t dev, int type, int rid)
2879 {
2880 	u_long start, count;
2881 	int error;
2882 
2883 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2884 				 &start, &count);
2885 	if (error)
2886 		return(0);
2887 	return(start);
2888 }
2889 
2890 u_long
2891 bus_get_resource_count(device_t dev, int type, int rid)
2892 {
2893 	u_long start, count;
2894 	int error;
2895 
2896 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2897 				 &start, &count);
2898 	if (error)
2899 		return(0);
2900 	return(count);
2901 }
2902 
2903 void
2904 bus_delete_resource(device_t dev, int type, int rid)
2905 {
2906 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2907 }
2908 
2909 int
2910 bus_child_present(device_t child)
2911 {
2912 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2913 }
2914 
2915 int
2916 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2917 {
2918 	device_t parent;
2919 
2920 	parent = device_get_parent(child);
2921 	if (parent == NULL) {
2922 		*buf = '\0';
2923 		return (0);
2924 	}
2925 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2926 }
2927 
2928 int
2929 bus_child_location_str(device_t child, char *buf, size_t buflen)
2930 {
2931 	device_t parent;
2932 
2933 	parent = device_get_parent(child);
2934 	if (parent == NULL) {
2935 		*buf = '\0';
2936 		return (0);
2937 	}
2938 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2939 }
2940 
2941 static int
2942 root_print_child(device_t dev, device_t child)
2943 {
2944 	return(0);
2945 }
2946 
2947 static int
2948 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2949 		void **cookiep, lwkt_serialize_t serializer)
2950 {
2951 	/*
2952 	 * If an interrupt mapping gets to here something bad has happened.
2953 	 */
2954 	panic("root_setup_intr");
2955 }
2956 
2957 /*
2958  * If we get here, assume that the device is permanant and really is
2959  * present in the system.  Removable bus drivers are expected to intercept
2960  * this call long before it gets here.  We return -1 so that drivers that
2961  * really care can check vs -1 or some ERRNO returned higher in the food
2962  * chain.
2963  */
2964 static int
2965 root_child_present(device_t dev, device_t child)
2966 {
2967 	return(-1);
2968 }
2969 
2970 /*
2971  * XXX NOTE! other defaults may be set in bus_if.m
2972  */
2973 static kobj_method_t root_methods[] = {
2974 	/* Device interface */
2975 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2976 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2977 	KOBJMETHOD(device_resume,	bus_generic_resume),
2978 
2979 	/* Bus interface */
2980 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2981 	KOBJMETHOD(bus_print_child,	root_print_child),
2982 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2983 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2984 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2985 	KOBJMETHOD(bus_child_present,   root_child_present),
2986 
2987 	{ 0, 0 }
2988 };
2989 
2990 static driver_t root_driver = {
2991 	"root",
2992 	root_methods,
2993 	1,			/* no softc */
2994 };
2995 
2996 device_t	root_bus;
2997 devclass_t	root_devclass;
2998 
2999 static int
3000 root_bus_module_handler(module_t mod, int what, void* arg)
3001 {
3002 	switch (what) {
3003 	case MOD_LOAD:
3004 		TAILQ_INIT(&bus_data_devices);
3005 		root_bus = make_device(NULL, "root", 0);
3006 		root_bus->desc = "System root bus";
3007 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3008 		root_bus->driver = &root_driver;
3009 		root_bus->state = DS_ALIVE;
3010 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3011 		devinit();
3012 		return(0);
3013 
3014 	case MOD_SHUTDOWN:
3015 		device_shutdown(root_bus);
3016 		return(0);
3017 	default:
3018 		return(0);
3019 	}
3020 }
3021 
3022 static moduledata_t root_bus_mod = {
3023 	"rootbus",
3024 	root_bus_module_handler,
3025 	0
3026 };
3027 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3028 
3029 void
3030 root_bus_configure(void)
3031 {
3032 	int warncount;
3033 	device_t dev;
3034 
3035 	PDEBUG(("."));
3036 
3037 	/*
3038 	 * handle device_identify based device attachments to the root_bus
3039 	 * (typically nexus).
3040 	 */
3041 	bus_generic_probe(root_bus);
3042 
3043 	/*
3044 	 * Probe and attach the devices under root_bus.
3045 	 */
3046 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3047 		device_probe_and_attach(dev);
3048 	}
3049 
3050 	/*
3051 	 * Wait for all asynchronous attaches to complete.  If we don't
3052 	 * our legacy ISA bus scan could steal device unit numbers or
3053 	 * even I/O ports.
3054 	 */
3055 	warncount = 10;
3056 	if (numasyncthreads)
3057 		kprintf("Waiting for async drivers to attach\n");
3058 	while (numasyncthreads > 0) {
3059 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3060 			--warncount;
3061 		if (warncount == 0) {
3062 			kprintf("Warning: Still waiting for %d "
3063 				"drivers to attach\n", numasyncthreads);
3064 		} else if (warncount == -30) {
3065 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3066 			break;
3067 		}
3068 	}
3069 	root_bus->state = DS_ATTACHED;
3070 }
3071 
3072 int
3073 driver_module_handler(module_t mod, int what, void *arg)
3074 {
3075 	int error;
3076 	struct driver_module_data *dmd;
3077 	devclass_t bus_devclass;
3078 	kobj_class_t driver;
3079         const char *parentname;
3080 
3081 	dmd = (struct driver_module_data *)arg;
3082 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3083 	error = 0;
3084 
3085 	switch (what) {
3086 	case MOD_LOAD:
3087 		if (dmd->dmd_chainevh)
3088 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3089 
3090 		driver = dmd->dmd_driver;
3091 		PDEBUG(("Loading module: driver %s on bus %s",
3092 		        DRIVERNAME(driver), dmd->dmd_busname));
3093 
3094 		/*
3095 		 * If the driver has any base classes, make the
3096 		 * devclass inherit from the devclass of the driver's
3097 		 * first base class. This will allow the system to
3098 		 * search for drivers in both devclasses for children
3099 		 * of a device using this driver.
3100 		 */
3101 		if (driver->baseclasses)
3102 			parentname = driver->baseclasses[0]->name;
3103 		else
3104 			parentname = NULL;
3105 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3106 							    parentname, TRUE);
3107 
3108 		error = devclass_add_driver(bus_devclass, driver);
3109 		if (error)
3110 			break;
3111 		break;
3112 
3113 	case MOD_UNLOAD:
3114 		PDEBUG(("Unloading module: driver %s from bus %s",
3115 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3116 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3117 
3118 		if (!error && dmd->dmd_chainevh)
3119 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3120 		break;
3121 	}
3122 
3123 	return (error);
3124 }
3125 
3126 #ifdef BUS_DEBUG
3127 
3128 /*
3129  * The _short versions avoid iteration by not calling anything that prints
3130  * more than oneliners. I love oneliners.
3131  */
3132 
3133 static void
3134 print_device_short(device_t dev, int indent)
3135 {
3136 	if (!dev)
3137 		return;
3138 
3139 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3140 		      dev->unit, dev->desc,
3141 		      (dev->parent? "":"no "),
3142 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3143 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3144 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3145 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3146 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3147 		      (dev->ivars? "":"no "),
3148 		      (dev->softc? "":"no "),
3149 		      dev->busy));
3150 }
3151 
3152 static void
3153 print_device(device_t dev, int indent)
3154 {
3155 	if (!dev)
3156 		return;
3157 
3158 	print_device_short(dev, indent);
3159 
3160 	indentprintf(("Parent:\n"));
3161 	print_device_short(dev->parent, indent+1);
3162 	indentprintf(("Driver:\n"));
3163 	print_driver_short(dev->driver, indent+1);
3164 	indentprintf(("Devclass:\n"));
3165 	print_devclass_short(dev->devclass, indent+1);
3166 }
3167 
3168 /*
3169  * Print the device and all its children (indented).
3170  */
3171 void
3172 print_device_tree_short(device_t dev, int indent)
3173 {
3174 	device_t child;
3175 
3176 	if (!dev)
3177 		return;
3178 
3179 	print_device_short(dev, indent);
3180 
3181 	TAILQ_FOREACH(child, &dev->children, link)
3182 		print_device_tree_short(child, indent+1);
3183 }
3184 
3185 /*
3186  * Print the device and all its children (indented).
3187  */
3188 void
3189 print_device_tree(device_t dev, int indent)
3190 {
3191 	device_t child;
3192 
3193 	if (!dev)
3194 		return;
3195 
3196 	print_device(dev, indent);
3197 
3198 	TAILQ_FOREACH(child, &dev->children, link)
3199 		print_device_tree(child, indent+1);
3200 }
3201 
3202 static void
3203 print_driver_short(driver_t *driver, int indent)
3204 {
3205 	if (!driver)
3206 		return;
3207 
3208 	indentprintf(("driver %s: softc size = %zu\n",
3209 		      driver->name, driver->size));
3210 }
3211 
3212 static void
3213 print_driver(driver_t *driver, int indent)
3214 {
3215 	if (!driver)
3216 		return;
3217 
3218 	print_driver_short(driver, indent);
3219 }
3220 
3221 
3222 static void
3223 print_driver_list(driver_list_t drivers, int indent)
3224 {
3225 	driverlink_t driver;
3226 
3227 	TAILQ_FOREACH(driver, &drivers, link)
3228 		print_driver(driver->driver, indent);
3229 }
3230 
3231 static void
3232 print_devclass_short(devclass_t dc, int indent)
3233 {
3234 	if (!dc)
3235 		return;
3236 
3237 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3238 }
3239 
3240 static void
3241 print_devclass(devclass_t dc, int indent)
3242 {
3243 	int i;
3244 
3245 	if (!dc)
3246 		return;
3247 
3248 	print_devclass_short(dc, indent);
3249 	indentprintf(("Drivers:\n"));
3250 	print_driver_list(dc->drivers, indent+1);
3251 
3252 	indentprintf(("Devices:\n"));
3253 	for (i = 0; i < dc->maxunit; i++)
3254 		if (dc->devices[i])
3255 			print_device(dc->devices[i], indent+1);
3256 }
3257 
3258 void
3259 print_devclass_list_short(void)
3260 {
3261 	devclass_t dc;
3262 
3263 	kprintf("Short listing of devclasses, drivers & devices:\n");
3264 	TAILQ_FOREACH(dc, &devclasses, link) {
3265 		print_devclass_short(dc, 0);
3266 	}
3267 }
3268 
3269 void
3270 print_devclass_list(void)
3271 {
3272 	devclass_t dc;
3273 
3274 	kprintf("Full listing of devclasses, drivers & devices:\n");
3275 	TAILQ_FOREACH(dc, &devclasses, link) {
3276 		print_devclass(dc, 0);
3277 	}
3278 }
3279 
3280 #endif
3281 
3282 /*
3283  * Check to see if a device is disabled via a disabled hint.
3284  */
3285 int
3286 resource_disabled(const char *name, int unit)
3287 {
3288 	int error, value;
3289 
3290 	error = resource_int_value(name, unit, "disabled", &value);
3291 	if (error)
3292 	       return(0);
3293 	return(value);
3294 }
3295 
3296 /*
3297  * User-space access to the device tree.
3298  *
3299  * We implement a small set of nodes:
3300  *
3301  * hw.bus			Single integer read method to obtain the
3302  *				current generation count.
3303  * hw.bus.devices		Reads the entire device tree in flat space.
3304  * hw.bus.rman			Resource manager interface
3305  *
3306  * We might like to add the ability to scan devclasses and/or drivers to
3307  * determine what else is currently loaded/available.
3308  */
3309 
3310 static int
3311 sysctl_bus(SYSCTL_HANDLER_ARGS)
3312 {
3313 	struct u_businfo	ubus;
3314 
3315 	ubus.ub_version = BUS_USER_VERSION;
3316 	ubus.ub_generation = bus_data_generation;
3317 
3318 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3319 }
3320 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3321     "bus-related data");
3322 
3323 static int
3324 sysctl_devices(SYSCTL_HANDLER_ARGS)
3325 {
3326 	int			*name = (int *)arg1;
3327 	u_int			namelen = arg2;
3328 	int			index;
3329 	struct device		*dev;
3330 	struct u_device		udev;	/* XXX this is a bit big */
3331 	int			error;
3332 
3333 	if (namelen != 2)
3334 		return (EINVAL);
3335 
3336 	if (bus_data_generation_check(name[0]))
3337 		return (EINVAL);
3338 
3339 	index = name[1];
3340 
3341 	/*
3342 	 * Scan the list of devices, looking for the requested index.
3343 	 */
3344 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3345 		if (index-- == 0)
3346 			break;
3347 	}
3348 	if (dev == NULL)
3349 		return (ENOENT);
3350 
3351 	/*
3352 	 * Populate the return array.
3353 	 */
3354 	bzero(&udev, sizeof(udev));
3355 	udev.dv_handle = (uintptr_t)dev;
3356 	udev.dv_parent = (uintptr_t)dev->parent;
3357 	if (dev->nameunit != NULL)
3358 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3359 	if (dev->desc != NULL)
3360 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3361 	if (dev->driver != NULL && dev->driver->name != NULL)
3362 		strlcpy(udev.dv_drivername, dev->driver->name,
3363 		    sizeof(udev.dv_drivername));
3364 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3365 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3366 	udev.dv_devflags = dev->devflags;
3367 	udev.dv_flags = dev->flags;
3368 	udev.dv_state = dev->state;
3369 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3370 	return (error);
3371 }
3372 
3373 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3374     "system device tree");
3375 
3376 int
3377 bus_data_generation_check(int generation)
3378 {
3379 	if (generation != bus_data_generation)
3380 		return (1);
3381 
3382 	/* XXX generate optimised lists here? */
3383 	return (0);
3384 }
3385 
3386 void
3387 bus_data_generation_update(void)
3388 {
3389 	bus_data_generation++;
3390 }
3391