1 /* 2 * Copyright (c) 1997,1998 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $ 27 * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $ 28 */ 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kobj.h> 38 #include <sys/bus_private.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/rman.h> 43 #include <sys/device.h> 44 #include <sys/lock.h> 45 #include <sys/conf.h> 46 #include <sys/selinfo.h> 47 #include <sys/uio.h> 48 #include <sys/filio.h> 49 #include <sys/event.h> 50 #include <sys/signalvar.h> 51 52 #include <machine/stdarg.h> /* for device_printf() */ 53 54 #include <sys/thread2.h> 55 #include <sys/mplock2.h> 56 57 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 58 59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 60 61 #ifdef BUS_DEBUG 62 #define PDEBUG(a) (kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n")) 63 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 64 #define DRIVERNAME(d) ((d)? d->name : "no driver") 65 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 66 67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to 68 * prevent syslog from deleting initial spaces 69 */ 70 #define indentprintf(p) do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf(" "); kprintf p ; } while(0) 71 72 static void print_device_short(device_t dev, int indent); 73 static void print_device(device_t dev, int indent); 74 void print_device_tree_short(device_t dev, int indent); 75 void print_device_tree(device_t dev, int indent); 76 static void print_driver_short(driver_t *driver, int indent); 77 static void print_driver(driver_t *driver, int indent); 78 static void print_driver_list(driver_list_t drivers, int indent); 79 static void print_devclass_short(devclass_t dc, int indent); 80 static void print_devclass(devclass_t dc, int indent); 81 void print_devclass_list_short(void); 82 void print_devclass_list(void); 83 84 #else 85 /* Make the compiler ignore the function calls */ 86 #define PDEBUG(a) /* nop */ 87 #define DEVICENAME(d) /* nop */ 88 #define DRIVERNAME(d) /* nop */ 89 #define DEVCLANAME(d) /* nop */ 90 91 #define print_device_short(d,i) /* nop */ 92 #define print_device(d,i) /* nop */ 93 #define print_device_tree_short(d,i) /* nop */ 94 #define print_device_tree(d,i) /* nop */ 95 #define print_driver_short(d,i) /* nop */ 96 #define print_driver(d,i) /* nop */ 97 #define print_driver_list(d,i) /* nop */ 98 #define print_devclass_short(d,i) /* nop */ 99 #define print_devclass(d,i) /* nop */ 100 #define print_devclass_list_short() /* nop */ 101 #define print_devclass_list() /* nop */ 102 #endif 103 104 static void device_attach_async(device_t dev); 105 static void device_attach_thread(void *arg); 106 static int device_doattach(device_t dev); 107 108 static int do_async_attach = 0; 109 static int numasyncthreads; 110 TUNABLE_INT("kern.do_async_attach", &do_async_attach); 111 112 /* 113 * /dev/devctl implementation 114 */ 115 116 /* 117 * This design allows only one reader for /dev/devctl. This is not desirable 118 * in the long run, but will get a lot of hair out of this implementation. 119 * Maybe we should make this device a clonable device. 120 * 121 * Also note: we specifically do not attach a device to the device_t tree 122 * to avoid potential chicken and egg problems. One could argue that all 123 * of this belongs to the root node. One could also further argue that the 124 * sysctl interface that we have not might more properly be an ioctl 125 * interface, but at this stage of the game, I'm not inclined to rock that 126 * boat. 127 * 128 * I'm also not sure that the SIGIO support is done correctly or not, as 129 * I copied it from a driver that had SIGIO support that likely hasn't been 130 * tested since 3.4 or 2.2.8! 131 */ 132 133 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 134 static int devctl_disable = 0; 135 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 136 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 137 sysctl_devctl_disable, "I", "devctl disable"); 138 139 #define CDEV_MAJOR 188 140 141 static d_open_t devopen; 142 static d_close_t devclose; 143 static d_read_t devread; 144 static d_ioctl_t devioctl; 145 static d_kqfilter_t devkqfilter; 146 147 static struct dev_ops devctl_ops = { 148 { "devctl", CDEV_MAJOR, 0 }, 149 .d_open = devopen, 150 .d_close = devclose, 151 .d_read = devread, 152 .d_ioctl = devioctl, 153 .d_kqfilter = devkqfilter 154 }; 155 156 struct dev_event_info 157 { 158 char *dei_data; 159 TAILQ_ENTRY(dev_event_info) dei_link; 160 }; 161 162 TAILQ_HEAD(devq, dev_event_info); 163 164 static struct dev_softc 165 { 166 int inuse; 167 int nonblock; 168 struct lock lock; 169 struct selinfo sel; 170 struct devq devq; 171 struct proc *async_proc; 172 } devsoftc; 173 174 static void 175 devinit(void) 176 { 177 make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl"); 178 lockinit(&devsoftc.lock, "dev mtx", 0, 0); 179 TAILQ_INIT(&devsoftc.devq); 180 } 181 182 static int 183 devopen(struct dev_open_args *ap) 184 { 185 if (devsoftc.inuse) 186 return (EBUSY); 187 /* move to init */ 188 devsoftc.inuse = 1; 189 devsoftc.nonblock = 0; 190 devsoftc.async_proc = NULL; 191 return (0); 192 } 193 194 static int 195 devclose(struct dev_close_args *ap) 196 { 197 devsoftc.inuse = 0; 198 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 199 wakeup(&devsoftc); 200 lockmgr(&devsoftc.lock, LK_RELEASE); 201 202 return (0); 203 } 204 205 /* 206 * The read channel for this device is used to report changes to 207 * userland in realtime. We are required to free the data as well as 208 * the n1 object because we allocate them separately. Also note that 209 * we return one record at a time. If you try to read this device a 210 * character at a time, you will lose the rest of the data. Listening 211 * programs are expected to cope. 212 */ 213 static int 214 devread(struct dev_read_args *ap) 215 { 216 struct uio *uio = ap->a_uio; 217 struct dev_event_info *n1; 218 int rv; 219 220 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 221 while (TAILQ_EMPTY(&devsoftc.devq)) { 222 if (devsoftc.nonblock) { 223 lockmgr(&devsoftc.lock, LK_RELEASE); 224 return (EAGAIN); 225 } 226 tsleep_interlock(&devsoftc, PCATCH); 227 lockmgr(&devsoftc.lock, LK_RELEASE); 228 rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0); 229 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 230 if (rv) { 231 /* 232 * Need to translate ERESTART to EINTR here? -- jake 233 */ 234 lockmgr(&devsoftc.lock, LK_RELEASE); 235 return (rv); 236 } 237 } 238 n1 = TAILQ_FIRST(&devsoftc.devq); 239 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 240 lockmgr(&devsoftc.lock, LK_RELEASE); 241 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 242 kfree(n1->dei_data, M_BUS); 243 kfree(n1, M_BUS); 244 return (rv); 245 } 246 247 static int 248 devioctl(struct dev_ioctl_args *ap) 249 { 250 switch (ap->a_cmd) { 251 252 case FIONBIO: 253 if (*(int*)ap->a_data) 254 devsoftc.nonblock = 1; 255 else 256 devsoftc.nonblock = 0; 257 return (0); 258 case FIOASYNC: 259 if (*(int*)ap->a_data) 260 devsoftc.async_proc = curproc; 261 else 262 devsoftc.async_proc = NULL; 263 return (0); 264 265 /* (un)Support for other fcntl() calls. */ 266 case FIOCLEX: 267 case FIONCLEX: 268 case FIONREAD: 269 case FIOSETOWN: 270 case FIOGETOWN: 271 default: 272 break; 273 } 274 return (ENOTTY); 275 } 276 277 static void dev_filter_detach(struct knote *); 278 static int dev_filter_read(struct knote *, long); 279 280 static struct filterops dev_filtops = 281 { 1, NULL, dev_filter_detach, dev_filter_read }; 282 283 static int 284 devkqfilter(struct dev_kqfilter_args *ap) 285 { 286 struct knote *kn = ap->a_kn; 287 struct klist *klist; 288 289 ap->a_result = 0; 290 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 291 292 switch (kn->kn_filter) { 293 case EVFILT_READ: 294 kn->kn_fop = &dev_filtops; 295 break; 296 default: 297 ap->a_result = EOPNOTSUPP; 298 lockmgr(&devsoftc.lock, LK_RELEASE); 299 return (0); 300 } 301 302 crit_enter(); 303 klist = &devsoftc.sel.si_note; 304 SLIST_INSERT_HEAD(klist, kn, kn_selnext); 305 crit_exit(); 306 307 lockmgr(&devsoftc.lock, LK_RELEASE); 308 309 return (0); 310 } 311 312 static void 313 dev_filter_detach(struct knote *kn) 314 { 315 struct klist *klist; 316 317 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 318 crit_enter(); 319 klist = &devsoftc.sel.si_note; 320 SLIST_INSERT_HEAD(klist, kn, kn_selnext); 321 crit_exit(); 322 lockmgr(&devsoftc.lock, LK_RELEASE); 323 } 324 325 static int 326 dev_filter_read(struct knote *kn, long hint) 327 { 328 int ready = 0; 329 330 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 331 if (!TAILQ_EMPTY(&devsoftc.devq)) 332 ready = 1; 333 lockmgr(&devsoftc.lock, LK_RELEASE); 334 335 return (ready); 336 } 337 338 339 /** 340 * @brief Return whether the userland process is running 341 */ 342 boolean_t 343 devctl_process_running(void) 344 { 345 return (devsoftc.inuse == 1); 346 } 347 348 /** 349 * @brief Queue data to be read from the devctl device 350 * 351 * Generic interface to queue data to the devctl device. It is 352 * assumed that @p data is properly formatted. It is further assumed 353 * that @p data is allocated using the M_BUS malloc type. 354 */ 355 void 356 devctl_queue_data(char *data) 357 { 358 struct dev_event_info *n1 = NULL; 359 struct proc *p; 360 361 n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT); 362 if (n1 == NULL) 363 return; 364 n1->dei_data = data; 365 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 366 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 367 wakeup(&devsoftc); 368 lockmgr(&devsoftc.lock, LK_RELEASE); 369 get_mplock(); /* XXX */ 370 KNOTE(&devsoftc.sel.si_note, 0); 371 rel_mplock(); /* XXX */ 372 p = devsoftc.async_proc; 373 if (p != NULL) 374 ksignal(p, SIGIO); 375 } 376 377 /** 378 * @brief Send a 'notification' to userland, using standard ways 379 */ 380 void 381 devctl_notify(const char *system, const char *subsystem, const char *type, 382 const char *data) 383 { 384 int len = 0; 385 char *msg; 386 387 if (system == NULL) 388 return; /* BOGUS! Must specify system. */ 389 if (subsystem == NULL) 390 return; /* BOGUS! Must specify subsystem. */ 391 if (type == NULL) 392 return; /* BOGUS! Must specify type. */ 393 len += strlen(" system=") + strlen(system); 394 len += strlen(" subsystem=") + strlen(subsystem); 395 len += strlen(" type=") + strlen(type); 396 /* add in the data message plus newline. */ 397 if (data != NULL) 398 len += strlen(data); 399 len += 3; /* '!', '\n', and NUL */ 400 msg = kmalloc(len, M_BUS, M_NOWAIT); 401 if (msg == NULL) 402 return; /* Drop it on the floor */ 403 if (data != NULL) 404 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 405 system, subsystem, type, data); 406 else 407 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 408 system, subsystem, type); 409 devctl_queue_data(msg); 410 } 411 412 /* 413 * Common routine that tries to make sending messages as easy as possible. 414 * We allocate memory for the data, copy strings into that, but do not 415 * free it unless there's an error. The dequeue part of the driver should 416 * free the data. We don't send data when the device is disabled. We do 417 * send data, even when we have no listeners, because we wish to avoid 418 * races relating to startup and restart of listening applications. 419 * 420 * devaddq is designed to string together the type of event, with the 421 * object of that event, plus the plug and play info and location info 422 * for that event. This is likely most useful for devices, but less 423 * useful for other consumers of this interface. Those should use 424 * the devctl_queue_data() interface instead. 425 */ 426 static void 427 devaddq(const char *type, const char *what, device_t dev) 428 { 429 char *data = NULL; 430 char *loc = NULL; 431 char *pnp = NULL; 432 const char *parstr; 433 434 if (devctl_disable) 435 return; 436 data = kmalloc(1024, M_BUS, M_NOWAIT); 437 if (data == NULL) 438 goto bad; 439 440 /* get the bus specific location of this device */ 441 loc = kmalloc(1024, M_BUS, M_NOWAIT); 442 if (loc == NULL) 443 goto bad; 444 *loc = '\0'; 445 bus_child_location_str(dev, loc, 1024); 446 447 /* Get the bus specific pnp info of this device */ 448 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 449 if (pnp == NULL) 450 goto bad; 451 *pnp = '\0'; 452 bus_child_pnpinfo_str(dev, pnp, 1024); 453 454 /* Get the parent of this device, or / if high enough in the tree. */ 455 if (device_get_parent(dev) == NULL) 456 parstr = "."; /* Or '/' ? */ 457 else 458 parstr = device_get_nameunit(device_get_parent(dev)); 459 /* String it all together. */ 460 ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 461 parstr); 462 kfree(loc, M_BUS); 463 kfree(pnp, M_BUS); 464 devctl_queue_data(data); 465 return; 466 bad: 467 kfree(pnp, M_BUS); 468 kfree(loc, M_BUS); 469 kfree(data, M_BUS); 470 return; 471 } 472 473 /* 474 * A device was added to the tree. We are called just after it successfully 475 * attaches (that is, probe and attach success for this device). No call 476 * is made if a device is merely parented into the tree. See devnomatch 477 * if probe fails. If attach fails, no notification is sent (but maybe 478 * we should have a different message for this). 479 */ 480 static void 481 devadded(device_t dev) 482 { 483 char *pnp = NULL; 484 char *tmp = NULL; 485 486 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 487 if (pnp == NULL) 488 goto fail; 489 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 490 if (tmp == NULL) 491 goto fail; 492 *pnp = '\0'; 493 bus_child_pnpinfo_str(dev, pnp, 1024); 494 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 495 devaddq("+", tmp, dev); 496 fail: 497 if (pnp != NULL) 498 kfree(pnp, M_BUS); 499 if (tmp != NULL) 500 kfree(tmp, M_BUS); 501 return; 502 } 503 504 /* 505 * A device was removed from the tree. We are called just before this 506 * happens. 507 */ 508 static void 509 devremoved(device_t dev) 510 { 511 char *pnp = NULL; 512 char *tmp = NULL; 513 514 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 515 if (pnp == NULL) 516 goto fail; 517 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 518 if (tmp == NULL) 519 goto fail; 520 *pnp = '\0'; 521 bus_child_pnpinfo_str(dev, pnp, 1024); 522 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 523 devaddq("-", tmp, dev); 524 fail: 525 if (pnp != NULL) 526 kfree(pnp, M_BUS); 527 if (tmp != NULL) 528 kfree(tmp, M_BUS); 529 return; 530 } 531 532 /* 533 * Called when there's no match for this device. This is only called 534 * the first time that no match happens, so we don't keep getitng this 535 * message. Should that prove to be undesirable, we can change it. 536 * This is called when all drivers that can attach to a given bus 537 * decline to accept this device. Other errrors may not be detected. 538 */ 539 static void 540 devnomatch(device_t dev) 541 { 542 devaddq("?", "", dev); 543 } 544 545 static int 546 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 547 { 548 struct dev_event_info *n1; 549 int dis, error; 550 551 dis = devctl_disable; 552 error = sysctl_handle_int(oidp, &dis, 0, req); 553 if (error || !req->newptr) 554 return (error); 555 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 556 devctl_disable = dis; 557 if (dis) { 558 while (!TAILQ_EMPTY(&devsoftc.devq)) { 559 n1 = TAILQ_FIRST(&devsoftc.devq); 560 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 561 kfree(n1->dei_data, M_BUS); 562 kfree(n1, M_BUS); 563 } 564 } 565 lockmgr(&devsoftc.lock, LK_RELEASE); 566 return (0); 567 } 568 569 /* End of /dev/devctl code */ 570 571 TAILQ_HEAD(,device) bus_data_devices; 572 static int bus_data_generation = 1; 573 574 kobj_method_t null_methods[] = { 575 { 0, 0 } 576 }; 577 578 DEFINE_CLASS(null, null_methods, 0); 579 580 /* 581 * Devclass implementation 582 */ 583 584 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 585 586 static devclass_t 587 devclass_find_internal(const char *classname, const char *parentname, 588 int create) 589 { 590 devclass_t dc; 591 592 PDEBUG(("looking for %s", classname)); 593 if (classname == NULL) 594 return(NULL); 595 596 TAILQ_FOREACH(dc, &devclasses, link) 597 if (!strcmp(dc->name, classname)) 598 break; 599 600 if (create && !dc) { 601 PDEBUG(("creating %s", classname)); 602 dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1, 603 M_BUS, M_INTWAIT | M_ZERO); 604 if (!dc) 605 return(NULL); 606 dc->parent = NULL; 607 dc->name = (char*) (dc + 1); 608 strcpy(dc->name, classname); 609 dc->devices = NULL; 610 dc->maxunit = 0; 611 TAILQ_INIT(&dc->drivers); 612 TAILQ_INSERT_TAIL(&devclasses, dc, link); 613 614 bus_data_generation_update(); 615 616 } 617 if (parentname && dc && !dc->parent) 618 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 619 620 return(dc); 621 } 622 623 devclass_t 624 devclass_create(const char *classname) 625 { 626 return(devclass_find_internal(classname, NULL, TRUE)); 627 } 628 629 devclass_t 630 devclass_find(const char *classname) 631 { 632 return(devclass_find_internal(classname, NULL, FALSE)); 633 } 634 635 device_t 636 devclass_find_unit(const char *classname, int unit) 637 { 638 devclass_t dc; 639 640 if ((dc = devclass_find(classname)) != NULL) 641 return(devclass_get_device(dc, unit)); 642 return (NULL); 643 } 644 645 int 646 devclass_add_driver(devclass_t dc, driver_t *driver) 647 { 648 driverlink_t dl; 649 device_t dev; 650 int i; 651 652 PDEBUG(("%s", DRIVERNAME(driver))); 653 654 dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO); 655 if (!dl) 656 return(ENOMEM); 657 658 /* 659 * Compile the driver's methods. Also increase the reference count 660 * so that the class doesn't get freed when the last instance 661 * goes. This means we can safely use static methods and avoids a 662 * double-free in devclass_delete_driver. 663 */ 664 kobj_class_instantiate(driver); 665 666 /* 667 * Make sure the devclass which the driver is implementing exists. 668 */ 669 devclass_find_internal(driver->name, NULL, TRUE); 670 671 dl->driver = driver; 672 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 673 674 /* 675 * Call BUS_DRIVER_ADDED for any existing busses in this class, 676 * but only if the bus has already been attached (otherwise we 677 * might probe too early). 678 * 679 * This is what will cause a newly loaded module to be associated 680 * with hardware. bus_generic_driver_added() is typically what ends 681 * up being called. 682 */ 683 for (i = 0; i < dc->maxunit; i++) { 684 if ((dev = dc->devices[i]) != NULL) { 685 if (dev->state >= DS_ATTACHED) 686 BUS_DRIVER_ADDED(dev, driver); 687 } 688 } 689 690 bus_data_generation_update(); 691 return(0); 692 } 693 694 int 695 devclass_delete_driver(devclass_t busclass, driver_t *driver) 696 { 697 devclass_t dc = devclass_find(driver->name); 698 driverlink_t dl; 699 device_t dev; 700 int i; 701 int error; 702 703 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 704 705 if (!dc) 706 return(0); 707 708 /* 709 * Find the link structure in the bus' list of drivers. 710 */ 711 TAILQ_FOREACH(dl, &busclass->drivers, link) 712 if (dl->driver == driver) 713 break; 714 715 if (!dl) { 716 PDEBUG(("%s not found in %s list", driver->name, busclass->name)); 717 return(ENOENT); 718 } 719 720 /* 721 * Disassociate from any devices. We iterate through all the 722 * devices in the devclass of the driver and detach any which are 723 * using the driver and which have a parent in the devclass which 724 * we are deleting from. 725 * 726 * Note that since a driver can be in multiple devclasses, we 727 * should not detach devices which are not children of devices in 728 * the affected devclass. 729 */ 730 for (i = 0; i < dc->maxunit; i++) 731 if (dc->devices[i]) { 732 dev = dc->devices[i]; 733 if (dev->driver == driver && dev->parent && 734 dev->parent->devclass == busclass) { 735 if ((error = device_detach(dev)) != 0) 736 return(error); 737 device_set_driver(dev, NULL); 738 } 739 } 740 741 TAILQ_REMOVE(&busclass->drivers, dl, link); 742 kfree(dl, M_BUS); 743 744 kobj_class_uninstantiate(driver); 745 746 bus_data_generation_update(); 747 return(0); 748 } 749 750 static driverlink_t 751 devclass_find_driver_internal(devclass_t dc, const char *classname) 752 { 753 driverlink_t dl; 754 755 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 756 757 TAILQ_FOREACH(dl, &dc->drivers, link) 758 if (!strcmp(dl->driver->name, classname)) 759 return(dl); 760 761 PDEBUG(("not found")); 762 return(NULL); 763 } 764 765 kobj_class_t 766 devclass_find_driver(devclass_t dc, const char *classname) 767 { 768 driverlink_t dl; 769 770 dl = devclass_find_driver_internal(dc, classname); 771 if (dl) 772 return(dl->driver); 773 else 774 return(NULL); 775 } 776 777 const char * 778 devclass_get_name(devclass_t dc) 779 { 780 return(dc->name); 781 } 782 783 device_t 784 devclass_get_device(devclass_t dc, int unit) 785 { 786 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 787 return(NULL); 788 return(dc->devices[unit]); 789 } 790 791 void * 792 devclass_get_softc(devclass_t dc, int unit) 793 { 794 device_t dev; 795 796 dev = devclass_get_device(dc, unit); 797 if (!dev) 798 return(NULL); 799 800 return(device_get_softc(dev)); 801 } 802 803 int 804 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 805 { 806 int i; 807 int count; 808 device_t *list; 809 810 count = 0; 811 for (i = 0; i < dc->maxunit; i++) 812 if (dc->devices[i]) 813 count++; 814 815 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 816 if (list == NULL) 817 return(ENOMEM); 818 819 count = 0; 820 for (i = 0; i < dc->maxunit; i++) 821 if (dc->devices[i]) { 822 list[count] = dc->devices[i]; 823 count++; 824 } 825 826 *devlistp = list; 827 *devcountp = count; 828 829 return(0); 830 } 831 832 /** 833 * @brief Get a list of drivers in the devclass 834 * 835 * An array containing a list of pointers to all the drivers in the 836 * given devclass is allocated and returned in @p *listp. The number 837 * of drivers in the array is returned in @p *countp. The caller should 838 * free the array using @c free(p, M_TEMP). 839 * 840 * @param dc the devclass to examine 841 * @param listp gives location for array pointer return value 842 * @param countp gives location for number of array elements 843 * return value 844 * 845 * @retval 0 success 846 * @retval ENOMEM the array allocation failed 847 */ 848 int 849 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 850 { 851 driverlink_t dl; 852 driver_t **list; 853 int count; 854 855 count = 0; 856 TAILQ_FOREACH(dl, &dc->drivers, link) 857 count++; 858 list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 859 if (list == NULL) 860 return (ENOMEM); 861 862 count = 0; 863 TAILQ_FOREACH(dl, &dc->drivers, link) { 864 list[count] = dl->driver; 865 count++; 866 } 867 *listp = list; 868 *countp = count; 869 870 return (0); 871 } 872 873 /** 874 * @brief Get the number of devices in a devclass 875 * 876 * @param dc the devclass to examine 877 */ 878 int 879 devclass_get_count(devclass_t dc) 880 { 881 int count, i; 882 883 count = 0; 884 for (i = 0; i < dc->maxunit; i++) 885 if (dc->devices[i]) 886 count++; 887 return (count); 888 } 889 890 int 891 devclass_get_maxunit(devclass_t dc) 892 { 893 return(dc->maxunit); 894 } 895 896 void 897 devclass_set_parent(devclass_t dc, devclass_t pdc) 898 { 899 dc->parent = pdc; 900 } 901 902 devclass_t 903 devclass_get_parent(devclass_t dc) 904 { 905 return(dc->parent); 906 } 907 908 static int 909 devclass_alloc_unit(devclass_t dc, int *unitp) 910 { 911 int unit = *unitp; 912 913 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 914 915 /* If we have been given a wired unit number, check for existing device */ 916 if (unit != -1) { 917 if (unit >= 0 && unit < dc->maxunit && 918 dc->devices[unit] != NULL) { 919 if (bootverbose) 920 kprintf("%s-: %s%d exists, using next available unit number\n", 921 dc->name, dc->name, unit); 922 /* find the next available slot */ 923 while (++unit < dc->maxunit && dc->devices[unit] != NULL) 924 ; 925 } 926 } else { 927 /* Unwired device, find the next available slot for it */ 928 unit = 0; 929 while (unit < dc->maxunit && dc->devices[unit] != NULL) 930 unit++; 931 } 932 933 /* 934 * We've selected a unit beyond the length of the table, so let's 935 * extend the table to make room for all units up to and including 936 * this one. 937 */ 938 if (unit >= dc->maxunit) { 939 device_t *newlist; 940 int newsize; 941 942 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 943 newlist = kmalloc(sizeof(device_t) * newsize, M_BUS, 944 M_INTWAIT | M_ZERO); 945 if (newlist == NULL) 946 return(ENOMEM); 947 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 948 if (dc->devices) 949 kfree(dc->devices, M_BUS); 950 dc->devices = newlist; 951 dc->maxunit = newsize; 952 } 953 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 954 955 *unitp = unit; 956 return(0); 957 } 958 959 static int 960 devclass_add_device(devclass_t dc, device_t dev) 961 { 962 int buflen, error; 963 964 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 965 966 buflen = strlen(dc->name) + 5; 967 dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO); 968 if (!dev->nameunit) 969 return(ENOMEM); 970 971 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 972 kfree(dev->nameunit, M_BUS); 973 dev->nameunit = NULL; 974 return(error); 975 } 976 dc->devices[dev->unit] = dev; 977 dev->devclass = dc; 978 ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 979 980 return(0); 981 } 982 983 static int 984 devclass_delete_device(devclass_t dc, device_t dev) 985 { 986 if (!dc || !dev) 987 return(0); 988 989 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 990 991 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 992 panic("devclass_delete_device: inconsistent device class"); 993 dc->devices[dev->unit] = NULL; 994 if (dev->flags & DF_WILDCARD) 995 dev->unit = -1; 996 dev->devclass = NULL; 997 kfree(dev->nameunit, M_BUS); 998 dev->nameunit = NULL; 999 1000 return(0); 1001 } 1002 1003 static device_t 1004 make_device(device_t parent, const char *name, int unit) 1005 { 1006 device_t dev; 1007 devclass_t dc; 1008 1009 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1010 1011 if (name != NULL) { 1012 dc = devclass_find_internal(name, NULL, TRUE); 1013 if (!dc) { 1014 kprintf("make_device: can't find device class %s\n", name); 1015 return(NULL); 1016 } 1017 } else 1018 dc = NULL; 1019 1020 dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO); 1021 if (!dev) 1022 return(0); 1023 1024 dev->parent = parent; 1025 TAILQ_INIT(&dev->children); 1026 kobj_init((kobj_t) dev, &null_class); 1027 dev->driver = NULL; 1028 dev->devclass = NULL; 1029 dev->unit = unit; 1030 dev->nameunit = NULL; 1031 dev->desc = NULL; 1032 dev->busy = 0; 1033 dev->devflags = 0; 1034 dev->flags = DF_ENABLED; 1035 dev->order = 0; 1036 if (unit == -1) 1037 dev->flags |= DF_WILDCARD; 1038 if (name) { 1039 dev->flags |= DF_FIXEDCLASS; 1040 if (devclass_add_device(dc, dev) != 0) { 1041 kobj_delete((kobj_t)dev, M_BUS); 1042 return(NULL); 1043 } 1044 } 1045 dev->ivars = NULL; 1046 dev->softc = NULL; 1047 1048 dev->state = DS_NOTPRESENT; 1049 1050 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1051 bus_data_generation_update(); 1052 1053 return(dev); 1054 } 1055 1056 static int 1057 device_print_child(device_t dev, device_t child) 1058 { 1059 int retval = 0; 1060 1061 if (device_is_alive(child)) 1062 retval += BUS_PRINT_CHILD(dev, child); 1063 else 1064 retval += device_printf(child, " not found\n"); 1065 1066 return(retval); 1067 } 1068 1069 device_t 1070 device_add_child(device_t dev, const char *name, int unit) 1071 { 1072 return device_add_child_ordered(dev, 0, name, unit); 1073 } 1074 1075 device_t 1076 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1077 { 1078 device_t child; 1079 device_t place; 1080 1081 PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), 1082 order, unit)); 1083 1084 child = make_device(dev, name, unit); 1085 if (child == NULL) 1086 return child; 1087 child->order = order; 1088 1089 TAILQ_FOREACH(place, &dev->children, link) 1090 if (place->order > order) 1091 break; 1092 1093 if (place) { 1094 /* 1095 * The device 'place' is the first device whose order is 1096 * greater than the new child. 1097 */ 1098 TAILQ_INSERT_BEFORE(place, child, link); 1099 } else { 1100 /* 1101 * The new child's order is greater or equal to the order of 1102 * any existing device. Add the child to the tail of the list. 1103 */ 1104 TAILQ_INSERT_TAIL(&dev->children, child, link); 1105 } 1106 1107 bus_data_generation_update(); 1108 return(child); 1109 } 1110 1111 int 1112 device_delete_child(device_t dev, device_t child) 1113 { 1114 int error; 1115 device_t grandchild; 1116 1117 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1118 1119 /* remove children first */ 1120 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1121 error = device_delete_child(child, grandchild); 1122 if (error) 1123 return(error); 1124 } 1125 1126 if ((error = device_detach(child)) != 0) 1127 return(error); 1128 if (child->devclass) 1129 devclass_delete_device(child->devclass, child); 1130 TAILQ_REMOVE(&dev->children, child, link); 1131 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1132 device_set_desc(child, NULL); 1133 kobj_delete((kobj_t)child, M_BUS); 1134 1135 bus_data_generation_update(); 1136 return(0); 1137 } 1138 1139 /** 1140 * @brief Find a device given a unit number 1141 * 1142 * This is similar to devclass_get_devices() but only searches for 1143 * devices which have @p dev as a parent. 1144 * 1145 * @param dev the parent device to search 1146 * @param unit the unit number to search for. If the unit is -1, 1147 * return the first child of @p dev which has name 1148 * @p classname (that is, the one with the lowest unit.) 1149 * 1150 * @returns the device with the given unit number or @c 1151 * NULL if there is no such device 1152 */ 1153 device_t 1154 device_find_child(device_t dev, const char *classname, int unit) 1155 { 1156 devclass_t dc; 1157 device_t child; 1158 1159 dc = devclass_find(classname); 1160 if (!dc) 1161 return(NULL); 1162 1163 if (unit != -1) { 1164 child = devclass_get_device(dc, unit); 1165 if (child && child->parent == dev) 1166 return (child); 1167 } else { 1168 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1169 child = devclass_get_device(dc, unit); 1170 if (child && child->parent == dev) 1171 return (child); 1172 } 1173 } 1174 return(NULL); 1175 } 1176 1177 static driverlink_t 1178 first_matching_driver(devclass_t dc, device_t dev) 1179 { 1180 if (dev->devclass) 1181 return(devclass_find_driver_internal(dc, dev->devclass->name)); 1182 else 1183 return(TAILQ_FIRST(&dc->drivers)); 1184 } 1185 1186 static driverlink_t 1187 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1188 { 1189 if (dev->devclass) { 1190 driverlink_t dl; 1191 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1192 if (!strcmp(dev->devclass->name, dl->driver->name)) 1193 return(dl); 1194 return(NULL); 1195 } else 1196 return(TAILQ_NEXT(last, link)); 1197 } 1198 1199 static int 1200 device_probe_child(device_t dev, device_t child) 1201 { 1202 devclass_t dc; 1203 driverlink_t best = 0; 1204 driverlink_t dl; 1205 int result, pri = 0; 1206 int hasclass = (child->devclass != 0); 1207 1208 dc = dev->devclass; 1209 if (!dc) 1210 panic("device_probe_child: parent device has no devclass"); 1211 1212 if (child->state == DS_ALIVE) 1213 return(0); 1214 1215 for (; dc; dc = dc->parent) { 1216 for (dl = first_matching_driver(dc, child); dl; 1217 dl = next_matching_driver(dc, child, dl)) { 1218 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1219 device_set_driver(child, dl->driver); 1220 if (!hasclass) 1221 device_set_devclass(child, dl->driver->name); 1222 result = DEVICE_PROBE(child); 1223 if (!hasclass) 1224 device_set_devclass(child, 0); 1225 1226 /* 1227 * If the driver returns SUCCESS, there can be 1228 * no higher match for this device. 1229 */ 1230 if (result == 0) { 1231 best = dl; 1232 pri = 0; 1233 break; 1234 } 1235 1236 /* 1237 * The driver returned an error so it 1238 * certainly doesn't match. 1239 */ 1240 if (result > 0) { 1241 device_set_driver(child, 0); 1242 continue; 1243 } 1244 1245 /* 1246 * A priority lower than SUCCESS, remember the 1247 * best matching driver. Initialise the value 1248 * of pri for the first match. 1249 */ 1250 if (best == 0 || result > pri) { 1251 best = dl; 1252 pri = result; 1253 continue; 1254 } 1255 } 1256 /* 1257 * If we have unambiguous match in this devclass, 1258 * don't look in the parent. 1259 */ 1260 if (best && pri == 0) 1261 break; 1262 } 1263 1264 /* 1265 * If we found a driver, change state and initialise the devclass. 1266 */ 1267 if (best) { 1268 if (!child->devclass) 1269 device_set_devclass(child, best->driver->name); 1270 device_set_driver(child, best->driver); 1271 if (pri < 0) { 1272 /* 1273 * A bit bogus. Call the probe method again to make 1274 * sure that we have the right description. 1275 */ 1276 DEVICE_PROBE(child); 1277 } 1278 1279 bus_data_generation_update(); 1280 child->state = DS_ALIVE; 1281 return(0); 1282 } 1283 1284 return(ENXIO); 1285 } 1286 1287 device_t 1288 device_get_parent(device_t dev) 1289 { 1290 return dev->parent; 1291 } 1292 1293 int 1294 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1295 { 1296 int count; 1297 device_t child; 1298 device_t *list; 1299 1300 count = 0; 1301 TAILQ_FOREACH(child, &dev->children, link) 1302 count++; 1303 1304 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 1305 if (!list) 1306 return(ENOMEM); 1307 1308 count = 0; 1309 TAILQ_FOREACH(child, &dev->children, link) { 1310 list[count] = child; 1311 count++; 1312 } 1313 1314 *devlistp = list; 1315 *devcountp = count; 1316 1317 return(0); 1318 } 1319 1320 driver_t * 1321 device_get_driver(device_t dev) 1322 { 1323 return(dev->driver); 1324 } 1325 1326 devclass_t 1327 device_get_devclass(device_t dev) 1328 { 1329 return(dev->devclass); 1330 } 1331 1332 const char * 1333 device_get_name(device_t dev) 1334 { 1335 if (dev->devclass) 1336 return devclass_get_name(dev->devclass); 1337 return(NULL); 1338 } 1339 1340 const char * 1341 device_get_nameunit(device_t dev) 1342 { 1343 return(dev->nameunit); 1344 } 1345 1346 int 1347 device_get_unit(device_t dev) 1348 { 1349 return(dev->unit); 1350 } 1351 1352 const char * 1353 device_get_desc(device_t dev) 1354 { 1355 return(dev->desc); 1356 } 1357 1358 uint32_t 1359 device_get_flags(device_t dev) 1360 { 1361 return(dev->devflags); 1362 } 1363 1364 int 1365 device_print_prettyname(device_t dev) 1366 { 1367 const char *name = device_get_name(dev); 1368 1369 if (name == 0) 1370 return kprintf("unknown: "); 1371 else 1372 return kprintf("%s%d: ", name, device_get_unit(dev)); 1373 } 1374 1375 int 1376 device_printf(device_t dev, const char * fmt, ...) 1377 { 1378 __va_list ap; 1379 int retval; 1380 1381 retval = device_print_prettyname(dev); 1382 __va_start(ap, fmt); 1383 retval += kvprintf(fmt, ap); 1384 __va_end(ap); 1385 return retval; 1386 } 1387 1388 static void 1389 device_set_desc_internal(device_t dev, const char* desc, int copy) 1390 { 1391 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1392 kfree(dev->desc, M_BUS); 1393 dev->flags &= ~DF_DESCMALLOCED; 1394 dev->desc = NULL; 1395 } 1396 1397 if (copy && desc) { 1398 dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT); 1399 if (dev->desc) { 1400 strcpy(dev->desc, desc); 1401 dev->flags |= DF_DESCMALLOCED; 1402 } 1403 } else { 1404 /* Avoid a -Wcast-qual warning */ 1405 dev->desc = (char *)(uintptr_t) desc; 1406 } 1407 1408 bus_data_generation_update(); 1409 } 1410 1411 void 1412 device_set_desc(device_t dev, const char* desc) 1413 { 1414 device_set_desc_internal(dev, desc, FALSE); 1415 } 1416 1417 void 1418 device_set_desc_copy(device_t dev, const char* desc) 1419 { 1420 device_set_desc_internal(dev, desc, TRUE); 1421 } 1422 1423 void 1424 device_set_flags(device_t dev, uint32_t flags) 1425 { 1426 dev->devflags = flags; 1427 } 1428 1429 void * 1430 device_get_softc(device_t dev) 1431 { 1432 return dev->softc; 1433 } 1434 1435 void 1436 device_set_softc(device_t dev, void *softc) 1437 { 1438 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 1439 kfree(dev->softc, M_BUS); 1440 dev->softc = softc; 1441 if (dev->softc) 1442 dev->flags |= DF_EXTERNALSOFTC; 1443 else 1444 dev->flags &= ~DF_EXTERNALSOFTC; 1445 } 1446 1447 void 1448 device_set_async_attach(device_t dev, int enable) 1449 { 1450 if (enable) 1451 dev->flags |= DF_ASYNCPROBE; 1452 else 1453 dev->flags &= ~DF_ASYNCPROBE; 1454 } 1455 1456 void * 1457 device_get_ivars(device_t dev) 1458 { 1459 return dev->ivars; 1460 } 1461 1462 void 1463 device_set_ivars(device_t dev, void * ivars) 1464 { 1465 if (!dev) 1466 return; 1467 1468 dev->ivars = ivars; 1469 } 1470 1471 device_state_t 1472 device_get_state(device_t dev) 1473 { 1474 return(dev->state); 1475 } 1476 1477 void 1478 device_enable(device_t dev) 1479 { 1480 dev->flags |= DF_ENABLED; 1481 } 1482 1483 void 1484 device_disable(device_t dev) 1485 { 1486 dev->flags &= ~DF_ENABLED; 1487 } 1488 1489 /* 1490 * YYY cannot block 1491 */ 1492 void 1493 device_busy(device_t dev) 1494 { 1495 if (dev->state < DS_ATTACHED) 1496 panic("device_busy: called for unattached device"); 1497 if (dev->busy == 0 && dev->parent) 1498 device_busy(dev->parent); 1499 dev->busy++; 1500 dev->state = DS_BUSY; 1501 } 1502 1503 /* 1504 * YYY cannot block 1505 */ 1506 void 1507 device_unbusy(device_t dev) 1508 { 1509 if (dev->state != DS_BUSY) 1510 panic("device_unbusy: called for non-busy device"); 1511 dev->busy--; 1512 if (dev->busy == 0) { 1513 if (dev->parent) 1514 device_unbusy(dev->parent); 1515 dev->state = DS_ATTACHED; 1516 } 1517 } 1518 1519 void 1520 device_quiet(device_t dev) 1521 { 1522 dev->flags |= DF_QUIET; 1523 } 1524 1525 void 1526 device_verbose(device_t dev) 1527 { 1528 dev->flags &= ~DF_QUIET; 1529 } 1530 1531 int 1532 device_is_quiet(device_t dev) 1533 { 1534 return((dev->flags & DF_QUIET) != 0); 1535 } 1536 1537 int 1538 device_is_enabled(device_t dev) 1539 { 1540 return((dev->flags & DF_ENABLED) != 0); 1541 } 1542 1543 int 1544 device_is_alive(device_t dev) 1545 { 1546 return(dev->state >= DS_ALIVE); 1547 } 1548 1549 int 1550 device_is_attached(device_t dev) 1551 { 1552 return(dev->state >= DS_ATTACHED); 1553 } 1554 1555 int 1556 device_set_devclass(device_t dev, const char *classname) 1557 { 1558 devclass_t dc; 1559 int error; 1560 1561 if (!classname) { 1562 if (dev->devclass) 1563 devclass_delete_device(dev->devclass, dev); 1564 return(0); 1565 } 1566 1567 if (dev->devclass) { 1568 kprintf("device_set_devclass: device class already set\n"); 1569 return(EINVAL); 1570 } 1571 1572 dc = devclass_find_internal(classname, NULL, TRUE); 1573 if (!dc) 1574 return(ENOMEM); 1575 1576 error = devclass_add_device(dc, dev); 1577 1578 bus_data_generation_update(); 1579 return(error); 1580 } 1581 1582 int 1583 device_set_driver(device_t dev, driver_t *driver) 1584 { 1585 if (dev->state >= DS_ATTACHED) 1586 return(EBUSY); 1587 1588 if (dev->driver == driver) 1589 return(0); 1590 1591 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 1592 kfree(dev->softc, M_BUS); 1593 dev->softc = NULL; 1594 } 1595 kobj_delete((kobj_t) dev, 0); 1596 dev->driver = driver; 1597 if (driver) { 1598 kobj_init((kobj_t) dev, (kobj_class_t) driver); 1599 if (!(dev->flags & DF_EXTERNALSOFTC)) { 1600 dev->softc = kmalloc(driver->size, M_BUS, 1601 M_INTWAIT | M_ZERO); 1602 if (!dev->softc) { 1603 kobj_delete((kobj_t)dev, 0); 1604 kobj_init((kobj_t) dev, &null_class); 1605 dev->driver = NULL; 1606 return(ENOMEM); 1607 } 1608 } 1609 } else { 1610 kobj_init((kobj_t) dev, &null_class); 1611 } 1612 1613 bus_data_generation_update(); 1614 return(0); 1615 } 1616 1617 int 1618 device_probe_and_attach(device_t dev) 1619 { 1620 device_t bus = dev->parent; 1621 int error = 0; 1622 1623 if (dev->state >= DS_ALIVE) 1624 return(0); 1625 1626 if ((dev->flags & DF_ENABLED) == 0) { 1627 if (bootverbose) { 1628 device_print_prettyname(dev); 1629 kprintf("not probed (disabled)\n"); 1630 } 1631 return(0); 1632 } 1633 1634 error = device_probe_child(bus, dev); 1635 if (error) { 1636 if (!(dev->flags & DF_DONENOMATCH)) { 1637 BUS_PROBE_NOMATCH(bus, dev); 1638 devnomatch(dev); 1639 dev->flags |= DF_DONENOMATCH; 1640 } 1641 return(error); 1642 } 1643 1644 /* 1645 * Output the exact device chain prior to the attach in case the 1646 * system locks up during attach, and generate the full info after 1647 * the attach so correct irq and other information is displayed. 1648 */ 1649 if (bootverbose && !device_is_quiet(dev)) { 1650 device_t tmp; 1651 1652 kprintf("%s", device_get_nameunit(dev)); 1653 for (tmp = dev->parent; tmp; tmp = tmp->parent) 1654 kprintf(".%s", device_get_nameunit(tmp)); 1655 kprintf("\n"); 1656 } 1657 if (!device_is_quiet(dev)) 1658 device_print_child(bus, dev); 1659 if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { 1660 kprintf("%s: probing asynchronously\n", 1661 device_get_nameunit(dev)); 1662 dev->state = DS_INPROGRESS; 1663 device_attach_async(dev); 1664 error = 0; 1665 } else { 1666 error = device_doattach(dev); 1667 } 1668 return(error); 1669 } 1670 1671 /* 1672 * Device is known to be alive, do the attach asynchronously. 1673 * 1674 * The MP lock is held by all threads. 1675 */ 1676 static void 1677 device_attach_async(device_t dev) 1678 { 1679 thread_t td; 1680 1681 atomic_add_int(&numasyncthreads, 1); 1682 lwkt_create(device_attach_thread, dev, &td, NULL, 1683 0, 0, (dev->desc ? dev->desc : "devattach")); 1684 } 1685 1686 static void 1687 device_attach_thread(void *arg) 1688 { 1689 device_t dev = arg; 1690 1691 (void)device_doattach(dev); 1692 atomic_subtract_int(&numasyncthreads, 1); 1693 wakeup(&numasyncthreads); 1694 } 1695 1696 /* 1697 * Device is known to be alive, do the attach (synchronous or asynchronous) 1698 */ 1699 static int 1700 device_doattach(device_t dev) 1701 { 1702 device_t bus = dev->parent; 1703 int hasclass = (dev->devclass != 0); 1704 int error; 1705 1706 error = DEVICE_ATTACH(dev); 1707 if (error == 0) { 1708 dev->state = DS_ATTACHED; 1709 if (bootverbose && !device_is_quiet(dev)) 1710 device_print_child(bus, dev); 1711 devadded(dev); 1712 } else { 1713 kprintf("device_probe_and_attach: %s%d attach returned %d\n", 1714 dev->driver->name, dev->unit, error); 1715 /* Unset the class that was set in device_probe_child */ 1716 if (!hasclass) 1717 device_set_devclass(dev, 0); 1718 device_set_driver(dev, NULL); 1719 dev->state = DS_NOTPRESENT; 1720 } 1721 return(error); 1722 } 1723 1724 int 1725 device_detach(device_t dev) 1726 { 1727 int error; 1728 1729 PDEBUG(("%s", DEVICENAME(dev))); 1730 if (dev->state == DS_BUSY) 1731 return(EBUSY); 1732 if (dev->state != DS_ATTACHED) 1733 return(0); 1734 1735 if ((error = DEVICE_DETACH(dev)) != 0) 1736 return(error); 1737 devremoved(dev); 1738 device_printf(dev, "detached\n"); 1739 if (dev->parent) 1740 BUS_CHILD_DETACHED(dev->parent, dev); 1741 1742 if (!(dev->flags & DF_FIXEDCLASS)) 1743 devclass_delete_device(dev->devclass, dev); 1744 1745 dev->state = DS_NOTPRESENT; 1746 device_set_driver(dev, NULL); 1747 1748 return(0); 1749 } 1750 1751 int 1752 device_shutdown(device_t dev) 1753 { 1754 if (dev->state < DS_ATTACHED) 1755 return 0; 1756 PDEBUG(("%s", DEVICENAME(dev))); 1757 return DEVICE_SHUTDOWN(dev); 1758 } 1759 1760 int 1761 device_set_unit(device_t dev, int unit) 1762 { 1763 devclass_t dc; 1764 int err; 1765 1766 dc = device_get_devclass(dev); 1767 if (unit < dc->maxunit && dc->devices[unit]) 1768 return(EBUSY); 1769 err = devclass_delete_device(dc, dev); 1770 if (err) 1771 return(err); 1772 dev->unit = unit; 1773 err = devclass_add_device(dc, dev); 1774 if (err) 1775 return(err); 1776 1777 bus_data_generation_update(); 1778 return(0); 1779 } 1780 1781 /*======================================*/ 1782 /* 1783 * Access functions for device resources. 1784 */ 1785 1786 /* Supplied by config(8) in ioconf.c */ 1787 extern struct config_device config_devtab[]; 1788 extern int devtab_count; 1789 1790 /* Runtime version */ 1791 struct config_device *devtab = config_devtab; 1792 1793 static int 1794 resource_new_name(const char *name, int unit) 1795 { 1796 struct config_device *new; 1797 1798 new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP, 1799 M_INTWAIT | M_ZERO); 1800 if (new == NULL) 1801 return(-1); 1802 if (devtab && devtab_count > 0) 1803 bcopy(devtab, new, devtab_count * sizeof(*new)); 1804 new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT); 1805 if (new[devtab_count].name == NULL) { 1806 kfree(new, M_TEMP); 1807 return(-1); 1808 } 1809 strcpy(new[devtab_count].name, name); 1810 new[devtab_count].unit = unit; 1811 new[devtab_count].resource_count = 0; 1812 new[devtab_count].resources = NULL; 1813 if (devtab && devtab != config_devtab) 1814 kfree(devtab, M_TEMP); 1815 devtab = new; 1816 return devtab_count++; 1817 } 1818 1819 static int 1820 resource_new_resname(int j, const char *resname, resource_type type) 1821 { 1822 struct config_resource *new; 1823 int i; 1824 1825 i = devtab[j].resource_count; 1826 new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); 1827 if (new == NULL) 1828 return(-1); 1829 if (devtab[j].resources && i > 0) 1830 bcopy(devtab[j].resources, new, i * sizeof(*new)); 1831 new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT); 1832 if (new[i].name == NULL) { 1833 kfree(new, M_TEMP); 1834 return(-1); 1835 } 1836 strcpy(new[i].name, resname); 1837 new[i].type = type; 1838 if (devtab[j].resources) 1839 kfree(devtab[j].resources, M_TEMP); 1840 devtab[j].resources = new; 1841 devtab[j].resource_count = i + 1; 1842 return(i); 1843 } 1844 1845 static int 1846 resource_match_string(int i, const char *resname, const char *value) 1847 { 1848 int j; 1849 struct config_resource *res; 1850 1851 for (j = 0, res = devtab[i].resources; 1852 j < devtab[i].resource_count; j++, res++) 1853 if (!strcmp(res->name, resname) 1854 && res->type == RES_STRING 1855 && !strcmp(res->u.stringval, value)) 1856 return(j); 1857 return(-1); 1858 } 1859 1860 static int 1861 resource_find(const char *name, int unit, const char *resname, 1862 struct config_resource **result) 1863 { 1864 int i, j; 1865 struct config_resource *res; 1866 1867 /* 1868 * First check specific instances, then generic. 1869 */ 1870 for (i = 0; i < devtab_count; i++) { 1871 if (devtab[i].unit < 0) 1872 continue; 1873 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1874 res = devtab[i].resources; 1875 for (j = 0; j < devtab[i].resource_count; j++, res++) 1876 if (!strcmp(res->name, resname)) { 1877 *result = res; 1878 return(0); 1879 } 1880 } 1881 } 1882 for (i = 0; i < devtab_count; i++) { 1883 if (devtab[i].unit >= 0) 1884 continue; 1885 /* XXX should this `&& devtab[i].unit == unit' be here? */ 1886 /* XXX if so, then the generic match does nothing */ 1887 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1888 res = devtab[i].resources; 1889 for (j = 0; j < devtab[i].resource_count; j++, res++) 1890 if (!strcmp(res->name, resname)) { 1891 *result = res; 1892 return(0); 1893 } 1894 } 1895 } 1896 return(ENOENT); 1897 } 1898 1899 int 1900 resource_int_value(const char *name, int unit, const char *resname, int *result) 1901 { 1902 int error; 1903 struct config_resource *res; 1904 1905 if ((error = resource_find(name, unit, resname, &res)) != 0) 1906 return(error); 1907 if (res->type != RES_INT) 1908 return(EFTYPE); 1909 *result = res->u.intval; 1910 return(0); 1911 } 1912 1913 int 1914 resource_long_value(const char *name, int unit, const char *resname, 1915 long *result) 1916 { 1917 int error; 1918 struct config_resource *res; 1919 1920 if ((error = resource_find(name, unit, resname, &res)) != 0) 1921 return(error); 1922 if (res->type != RES_LONG) 1923 return(EFTYPE); 1924 *result = res->u.longval; 1925 return(0); 1926 } 1927 1928 int 1929 resource_string_value(const char *name, int unit, const char *resname, 1930 char **result) 1931 { 1932 int error; 1933 struct config_resource *res; 1934 1935 if ((error = resource_find(name, unit, resname, &res)) != 0) 1936 return(error); 1937 if (res->type != RES_STRING) 1938 return(EFTYPE); 1939 *result = res->u.stringval; 1940 return(0); 1941 } 1942 1943 int 1944 resource_query_string(int i, const char *resname, const char *value) 1945 { 1946 if (i < 0) 1947 i = 0; 1948 else 1949 i = i + 1; 1950 for (; i < devtab_count; i++) 1951 if (resource_match_string(i, resname, value) >= 0) 1952 return(i); 1953 return(-1); 1954 } 1955 1956 int 1957 resource_locate(int i, const char *resname) 1958 { 1959 if (i < 0) 1960 i = 0; 1961 else 1962 i = i + 1; 1963 for (; i < devtab_count; i++) 1964 if (!strcmp(devtab[i].name, resname)) 1965 return(i); 1966 return(-1); 1967 } 1968 1969 int 1970 resource_count(void) 1971 { 1972 return(devtab_count); 1973 } 1974 1975 char * 1976 resource_query_name(int i) 1977 { 1978 return(devtab[i].name); 1979 } 1980 1981 int 1982 resource_query_unit(int i) 1983 { 1984 return(devtab[i].unit); 1985 } 1986 1987 static int 1988 resource_create(const char *name, int unit, const char *resname, 1989 resource_type type, struct config_resource **result) 1990 { 1991 int i, j; 1992 struct config_resource *res = NULL; 1993 1994 for (i = 0; i < devtab_count; i++) 1995 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1996 res = devtab[i].resources; 1997 break; 1998 } 1999 if (res == NULL) { 2000 i = resource_new_name(name, unit); 2001 if (i < 0) 2002 return(ENOMEM); 2003 res = devtab[i].resources; 2004 } 2005 for (j = 0; j < devtab[i].resource_count; j++, res++) 2006 if (!strcmp(res->name, resname)) { 2007 *result = res; 2008 return(0); 2009 } 2010 j = resource_new_resname(i, resname, type); 2011 if (j < 0) 2012 return(ENOMEM); 2013 res = &devtab[i].resources[j]; 2014 *result = res; 2015 return(0); 2016 } 2017 2018 int 2019 resource_set_int(const char *name, int unit, const char *resname, int value) 2020 { 2021 int error; 2022 struct config_resource *res; 2023 2024 error = resource_create(name, unit, resname, RES_INT, &res); 2025 if (error) 2026 return(error); 2027 if (res->type != RES_INT) 2028 return(EFTYPE); 2029 res->u.intval = value; 2030 return(0); 2031 } 2032 2033 int 2034 resource_set_long(const char *name, int unit, const char *resname, long value) 2035 { 2036 int error; 2037 struct config_resource *res; 2038 2039 error = resource_create(name, unit, resname, RES_LONG, &res); 2040 if (error) 2041 return(error); 2042 if (res->type != RES_LONG) 2043 return(EFTYPE); 2044 res->u.longval = value; 2045 return(0); 2046 } 2047 2048 int 2049 resource_set_string(const char *name, int unit, const char *resname, 2050 const char *value) 2051 { 2052 int error; 2053 struct config_resource *res; 2054 2055 error = resource_create(name, unit, resname, RES_STRING, &res); 2056 if (error) 2057 return(error); 2058 if (res->type != RES_STRING) 2059 return(EFTYPE); 2060 if (res->u.stringval) 2061 kfree(res->u.stringval, M_TEMP); 2062 res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT); 2063 if (res->u.stringval == NULL) 2064 return(ENOMEM); 2065 strcpy(res->u.stringval, value); 2066 return(0); 2067 } 2068 2069 static void 2070 resource_cfgload(void *dummy __unused) 2071 { 2072 struct config_resource *res, *cfgres; 2073 int i, j; 2074 int error; 2075 char *name, *resname; 2076 int unit; 2077 resource_type type; 2078 char *stringval; 2079 int config_devtab_count; 2080 2081 config_devtab_count = devtab_count; 2082 devtab = NULL; 2083 devtab_count = 0; 2084 2085 for (i = 0; i < config_devtab_count; i++) { 2086 name = config_devtab[i].name; 2087 unit = config_devtab[i].unit; 2088 2089 for (j = 0; j < config_devtab[i].resource_count; j++) { 2090 cfgres = config_devtab[i].resources; 2091 resname = cfgres[j].name; 2092 type = cfgres[j].type; 2093 error = resource_create(name, unit, resname, type, 2094 &res); 2095 if (error) { 2096 kprintf("create resource %s%d: error %d\n", 2097 name, unit, error); 2098 continue; 2099 } 2100 if (res->type != type) { 2101 kprintf("type mismatch %s%d: %d != %d\n", 2102 name, unit, res->type, type); 2103 continue; 2104 } 2105 switch (type) { 2106 case RES_INT: 2107 res->u.intval = cfgres[j].u.intval; 2108 break; 2109 case RES_LONG: 2110 res->u.longval = cfgres[j].u.longval; 2111 break; 2112 case RES_STRING: 2113 if (res->u.stringval) 2114 kfree(res->u.stringval, M_TEMP); 2115 stringval = cfgres[j].u.stringval; 2116 res->u.stringval = kmalloc(strlen(stringval) + 1, 2117 M_TEMP, M_INTWAIT); 2118 if (res->u.stringval == NULL) 2119 break; 2120 strcpy(res->u.stringval, stringval); 2121 break; 2122 default: 2123 panic("unknown resource type %d", type); 2124 } 2125 } 2126 } 2127 } 2128 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0) 2129 2130 2131 /*======================================*/ 2132 /* 2133 * Some useful method implementations to make life easier for bus drivers. 2134 */ 2135 2136 void 2137 resource_list_init(struct resource_list *rl) 2138 { 2139 SLIST_INIT(rl); 2140 } 2141 2142 void 2143 resource_list_free(struct resource_list *rl) 2144 { 2145 struct resource_list_entry *rle; 2146 2147 while ((rle = SLIST_FIRST(rl)) != NULL) { 2148 if (rle->res) 2149 panic("resource_list_free: resource entry is busy"); 2150 SLIST_REMOVE_HEAD(rl, link); 2151 kfree(rle, M_BUS); 2152 } 2153 } 2154 2155 void 2156 resource_list_add(struct resource_list *rl, 2157 int type, int rid, 2158 u_long start, u_long end, u_long count) 2159 { 2160 struct resource_list_entry *rle; 2161 2162 rle = resource_list_find(rl, type, rid); 2163 if (rle == NULL) { 2164 rle = kmalloc(sizeof(struct resource_list_entry), M_BUS, 2165 M_INTWAIT); 2166 if (!rle) 2167 panic("resource_list_add: can't record entry"); 2168 SLIST_INSERT_HEAD(rl, rle, link); 2169 rle->type = type; 2170 rle->rid = rid; 2171 rle->res = NULL; 2172 } 2173 2174 if (rle->res) 2175 panic("resource_list_add: resource entry is busy"); 2176 2177 rle->start = start; 2178 rle->end = end; 2179 rle->count = count; 2180 } 2181 2182 struct resource_list_entry* 2183 resource_list_find(struct resource_list *rl, 2184 int type, int rid) 2185 { 2186 struct resource_list_entry *rle; 2187 2188 SLIST_FOREACH(rle, rl, link) 2189 if (rle->type == type && rle->rid == rid) 2190 return(rle); 2191 return(NULL); 2192 } 2193 2194 void 2195 resource_list_delete(struct resource_list *rl, 2196 int type, int rid) 2197 { 2198 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2199 2200 if (rle) { 2201 if (rle->res != NULL) 2202 panic("resource_list_delete: resource has not been released"); 2203 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2204 kfree(rle, M_BUS); 2205 } 2206 } 2207 2208 struct resource * 2209 resource_list_alloc(struct resource_list *rl, 2210 device_t bus, device_t child, 2211 int type, int *rid, 2212 u_long start, u_long end, 2213 u_long count, u_int flags) 2214 { 2215 struct resource_list_entry *rle = 0; 2216 int passthrough = (device_get_parent(child) != bus); 2217 int isdefault = (start == 0UL && end == ~0UL); 2218 2219 if (passthrough) { 2220 return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2221 type, rid, 2222 start, end, count, flags)); 2223 } 2224 2225 rle = resource_list_find(rl, type, *rid); 2226 2227 if (!rle) 2228 return(0); /* no resource of that type/rid */ 2229 2230 if (rle->res) 2231 panic("resource_list_alloc: resource entry is busy"); 2232 2233 if (isdefault) { 2234 start = rle->start; 2235 count = max(count, rle->count); 2236 end = max(rle->end, start + count - 1); 2237 } 2238 2239 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2240 type, rid, start, end, count, flags); 2241 2242 /* 2243 * Record the new range. 2244 */ 2245 if (rle->res) { 2246 rle->start = rman_get_start(rle->res); 2247 rle->end = rman_get_end(rle->res); 2248 rle->count = count; 2249 } 2250 2251 return(rle->res); 2252 } 2253 2254 int 2255 resource_list_release(struct resource_list *rl, 2256 device_t bus, device_t child, 2257 int type, int rid, struct resource *res) 2258 { 2259 struct resource_list_entry *rle = 0; 2260 int passthrough = (device_get_parent(child) != bus); 2261 int error; 2262 2263 if (passthrough) { 2264 return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2265 type, rid, res)); 2266 } 2267 2268 rle = resource_list_find(rl, type, rid); 2269 2270 if (!rle) 2271 panic("resource_list_release: can't find resource"); 2272 if (!rle->res) 2273 panic("resource_list_release: resource entry is not busy"); 2274 2275 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2276 type, rid, res); 2277 if (error) 2278 return(error); 2279 2280 rle->res = NULL; 2281 return(0); 2282 } 2283 2284 int 2285 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2286 const char *format) 2287 { 2288 struct resource_list_entry *rle; 2289 int printed, retval; 2290 2291 printed = 0; 2292 retval = 0; 2293 /* Yes, this is kinda cheating */ 2294 SLIST_FOREACH(rle, rl, link) { 2295 if (rle->type == type) { 2296 if (printed == 0) 2297 retval += kprintf(" %s ", name); 2298 else 2299 retval += kprintf(","); 2300 printed++; 2301 retval += kprintf(format, rle->start); 2302 if (rle->count > 1) { 2303 retval += kprintf("-"); 2304 retval += kprintf(format, rle->start + 2305 rle->count - 1); 2306 } 2307 } 2308 } 2309 return(retval); 2310 } 2311 2312 /* 2313 * Generic driver/device identify functions. These will install a device 2314 * rendezvous point under the parent using the same name as the driver 2315 * name, which will at a later time be probed and attached. 2316 * 2317 * These functions are used when the parent does not 'scan' its bus for 2318 * matching devices, or for the particular devices using these functions, 2319 * or when the device is a pseudo or synthesized device (such as can be 2320 * found under firewire and ppbus). 2321 */ 2322 int 2323 bus_generic_identify(driver_t *driver, device_t parent) 2324 { 2325 if (parent->state == DS_ATTACHED) 2326 return (0); 2327 BUS_ADD_CHILD(parent, parent, 0, driver->name, -1); 2328 return (0); 2329 } 2330 2331 int 2332 bus_generic_identify_sameunit(driver_t *driver, device_t parent) 2333 { 2334 if (parent->state == DS_ATTACHED) 2335 return (0); 2336 BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent)); 2337 return (0); 2338 } 2339 2340 /* 2341 * Call DEVICE_IDENTIFY for each driver. 2342 */ 2343 int 2344 bus_generic_probe(device_t dev) 2345 { 2346 devclass_t dc = dev->devclass; 2347 driverlink_t dl; 2348 2349 TAILQ_FOREACH(dl, &dc->drivers, link) { 2350 DEVICE_IDENTIFY(dl->driver, dev); 2351 } 2352 2353 return(0); 2354 } 2355 2356 /* 2357 * This is an aweful hack due to the isa bus and autoconf code not 2358 * probing the ISA devices until after everything else has configured. 2359 * The ISA bus did a dummy attach long ago so we have to set it back 2360 * to an earlier state so the probe thinks its the initial probe and 2361 * not a bus rescan. 2362 * 2363 * XXX remove by properly defering the ISA bus scan. 2364 */ 2365 int 2366 bus_generic_probe_hack(device_t dev) 2367 { 2368 if (dev->state == DS_ATTACHED) { 2369 dev->state = DS_ALIVE; 2370 bus_generic_probe(dev); 2371 dev->state = DS_ATTACHED; 2372 } 2373 return (0); 2374 } 2375 2376 int 2377 bus_generic_attach(device_t dev) 2378 { 2379 device_t child; 2380 2381 TAILQ_FOREACH(child, &dev->children, link) { 2382 device_probe_and_attach(child); 2383 } 2384 2385 return(0); 2386 } 2387 2388 int 2389 bus_generic_detach(device_t dev) 2390 { 2391 device_t child; 2392 int error; 2393 2394 if (dev->state != DS_ATTACHED) 2395 return(EBUSY); 2396 2397 TAILQ_FOREACH(child, &dev->children, link) 2398 if ((error = device_detach(child)) != 0) 2399 return(error); 2400 2401 return 0; 2402 } 2403 2404 int 2405 bus_generic_shutdown(device_t dev) 2406 { 2407 device_t child; 2408 2409 TAILQ_FOREACH(child, &dev->children, link) 2410 device_shutdown(child); 2411 2412 return(0); 2413 } 2414 2415 int 2416 bus_generic_suspend(device_t dev) 2417 { 2418 int error; 2419 device_t child, child2; 2420 2421 TAILQ_FOREACH(child, &dev->children, link) { 2422 error = DEVICE_SUSPEND(child); 2423 if (error) { 2424 for (child2 = TAILQ_FIRST(&dev->children); 2425 child2 && child2 != child; 2426 child2 = TAILQ_NEXT(child2, link)) 2427 DEVICE_RESUME(child2); 2428 return(error); 2429 } 2430 } 2431 return(0); 2432 } 2433 2434 int 2435 bus_generic_resume(device_t dev) 2436 { 2437 device_t child; 2438 2439 TAILQ_FOREACH(child, &dev->children, link) 2440 DEVICE_RESUME(child); 2441 /* if resume fails, there's nothing we can usefully do... */ 2442 2443 return(0); 2444 } 2445 2446 int 2447 bus_print_child_header(device_t dev, device_t child) 2448 { 2449 int retval = 0; 2450 2451 if (device_get_desc(child)) 2452 retval += device_printf(child, "<%s>", device_get_desc(child)); 2453 else 2454 retval += kprintf("%s", device_get_nameunit(child)); 2455 if (bootverbose) { 2456 if (child->state != DS_ATTACHED) 2457 kprintf(" [tentative]"); 2458 else 2459 kprintf(" [attached!]"); 2460 } 2461 return(retval); 2462 } 2463 2464 int 2465 bus_print_child_footer(device_t dev, device_t child) 2466 { 2467 return(kprintf(" on %s\n", device_get_nameunit(dev))); 2468 } 2469 2470 device_t 2471 bus_generic_add_child(device_t dev, device_t child, int order, 2472 const char *name, int unit) 2473 { 2474 if (dev->parent) 2475 dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit); 2476 else 2477 dev = device_add_child_ordered(child, order, name, unit); 2478 return(dev); 2479 2480 } 2481 2482 int 2483 bus_generic_print_child(device_t dev, device_t child) 2484 { 2485 int retval = 0; 2486 2487 retval += bus_print_child_header(dev, child); 2488 retval += bus_print_child_footer(dev, child); 2489 2490 return(retval); 2491 } 2492 2493 int 2494 bus_generic_read_ivar(device_t dev, device_t child, int index, 2495 uintptr_t * result) 2496 { 2497 int error; 2498 2499 if (dev->parent) 2500 error = BUS_READ_IVAR(dev->parent, child, index, result); 2501 else 2502 error = ENOENT; 2503 return (error); 2504 } 2505 2506 int 2507 bus_generic_write_ivar(device_t dev, device_t child, int index, 2508 uintptr_t value) 2509 { 2510 int error; 2511 2512 if (dev->parent) 2513 error = BUS_WRITE_IVAR(dev->parent, child, index, value); 2514 else 2515 error = ENOENT; 2516 return (error); 2517 } 2518 2519 /* 2520 * Resource list are used for iterations, do not recurse. 2521 */ 2522 struct resource_list * 2523 bus_generic_get_resource_list(device_t dev, device_t child) 2524 { 2525 return (NULL); 2526 } 2527 2528 void 2529 bus_generic_driver_added(device_t dev, driver_t *driver) 2530 { 2531 device_t child; 2532 2533 DEVICE_IDENTIFY(driver, dev); 2534 TAILQ_FOREACH(child, &dev->children, link) { 2535 if (child->state == DS_NOTPRESENT) 2536 device_probe_and_attach(child); 2537 } 2538 } 2539 2540 int 2541 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2542 int flags, driver_intr_t *intr, void *arg, 2543 void **cookiep, lwkt_serialize_t serializer) 2544 { 2545 /* Propagate up the bus hierarchy until someone handles it. */ 2546 if (dev->parent) 2547 return(BUS_SETUP_INTR(dev->parent, child, irq, flags, 2548 intr, arg, cookiep, serializer)); 2549 else 2550 return(EINVAL); 2551 } 2552 2553 int 2554 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2555 void *cookie) 2556 { 2557 /* Propagate up the bus hierarchy until someone handles it. */ 2558 if (dev->parent) 2559 return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2560 else 2561 return(EINVAL); 2562 } 2563 2564 int 2565 bus_generic_disable_intr(device_t dev, device_t child, void *cookie) 2566 { 2567 if (dev->parent) 2568 return(BUS_DISABLE_INTR(dev->parent, child, cookie)); 2569 else 2570 return(0); 2571 } 2572 2573 void 2574 bus_generic_enable_intr(device_t dev, device_t child, void *cookie) 2575 { 2576 if (dev->parent) 2577 BUS_ENABLE_INTR(dev->parent, child, cookie); 2578 } 2579 2580 int 2581 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig, 2582 enum intr_polarity pol) 2583 { 2584 /* Propagate up the bus hierarchy until someone handles it. */ 2585 if (dev->parent) 2586 return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol)); 2587 else 2588 return(EINVAL); 2589 } 2590 2591 struct resource * 2592 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2593 u_long start, u_long end, u_long count, u_int flags) 2594 { 2595 /* Propagate up the bus hierarchy until someone handles it. */ 2596 if (dev->parent) 2597 return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2598 start, end, count, flags)); 2599 else 2600 return(NULL); 2601 } 2602 2603 int 2604 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2605 struct resource *r) 2606 { 2607 /* Propagate up the bus hierarchy until someone handles it. */ 2608 if (dev->parent) 2609 return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); 2610 else 2611 return(EINVAL); 2612 } 2613 2614 int 2615 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2616 struct resource *r) 2617 { 2618 /* Propagate up the bus hierarchy until someone handles it. */ 2619 if (dev->parent) 2620 return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); 2621 else 2622 return(EINVAL); 2623 } 2624 2625 int 2626 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2627 int rid, struct resource *r) 2628 { 2629 /* Propagate up the bus hierarchy until someone handles it. */ 2630 if (dev->parent) 2631 return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2632 r)); 2633 else 2634 return(EINVAL); 2635 } 2636 2637 int 2638 bus_generic_get_resource(device_t dev, device_t child, int type, int rid, 2639 u_long *startp, u_long *countp) 2640 { 2641 int error; 2642 2643 error = ENOENT; 2644 if (dev->parent) { 2645 error = BUS_GET_RESOURCE(dev->parent, child, type, rid, 2646 startp, countp); 2647 } 2648 return (error); 2649 } 2650 2651 int 2652 bus_generic_set_resource(device_t dev, device_t child, int type, int rid, 2653 u_long start, u_long count) 2654 { 2655 int error; 2656 2657 error = EINVAL; 2658 if (dev->parent) { 2659 error = BUS_SET_RESOURCE(dev->parent, child, type, rid, 2660 start, count); 2661 } 2662 return (error); 2663 } 2664 2665 void 2666 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid) 2667 { 2668 if (dev->parent) 2669 BUS_DELETE_RESOURCE(dev, child, type, rid); 2670 } 2671 2672 int 2673 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 2674 u_long *startp, u_long *countp) 2675 { 2676 struct resource_list *rl = NULL; 2677 struct resource_list_entry *rle = NULL; 2678 2679 rl = BUS_GET_RESOURCE_LIST(dev, child); 2680 if (!rl) 2681 return(EINVAL); 2682 2683 rle = resource_list_find(rl, type, rid); 2684 if (!rle) 2685 return(ENOENT); 2686 2687 if (startp) 2688 *startp = rle->start; 2689 if (countp) 2690 *countp = rle->count; 2691 2692 return(0); 2693 } 2694 2695 int 2696 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 2697 u_long start, u_long count) 2698 { 2699 struct resource_list *rl = NULL; 2700 2701 rl = BUS_GET_RESOURCE_LIST(dev, child); 2702 if (!rl) 2703 return(EINVAL); 2704 2705 resource_list_add(rl, type, rid, start, (start + count - 1), count); 2706 2707 return(0); 2708 } 2709 2710 void 2711 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 2712 { 2713 struct resource_list *rl = NULL; 2714 2715 rl = BUS_GET_RESOURCE_LIST(dev, child); 2716 if (!rl) 2717 return; 2718 2719 resource_list_delete(rl, type, rid); 2720 } 2721 2722 int 2723 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 2724 int rid, struct resource *r) 2725 { 2726 struct resource_list *rl = NULL; 2727 2728 rl = BUS_GET_RESOURCE_LIST(dev, child); 2729 if (!rl) 2730 return(EINVAL); 2731 2732 return(resource_list_release(rl, dev, child, type, rid, r)); 2733 } 2734 2735 struct resource * 2736 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 2737 int *rid, u_long start, u_long end, u_long count, u_int flags) 2738 { 2739 struct resource_list *rl = NULL; 2740 2741 rl = BUS_GET_RESOURCE_LIST(dev, child); 2742 if (!rl) 2743 return(NULL); 2744 2745 return(resource_list_alloc(rl, dev, child, type, rid, 2746 start, end, count, flags)); 2747 } 2748 2749 int 2750 bus_generic_child_present(device_t bus, device_t child) 2751 { 2752 return(BUS_CHILD_PRESENT(device_get_parent(bus), bus)); 2753 } 2754 2755 2756 /* 2757 * Some convenience functions to make it easier for drivers to use the 2758 * resource-management functions. All these really do is hide the 2759 * indirection through the parent's method table, making for slightly 2760 * less-wordy code. In the future, it might make sense for this code 2761 * to maintain some sort of a list of resources allocated by each device. 2762 */ 2763 int 2764 bus_alloc_resources(device_t dev, struct resource_spec *rs, 2765 struct resource **res) 2766 { 2767 int i; 2768 2769 for (i = 0; rs[i].type != -1; i++) 2770 res[i] = NULL; 2771 for (i = 0; rs[i].type != -1; i++) { 2772 res[i] = bus_alloc_resource_any(dev, 2773 rs[i].type, &rs[i].rid, rs[i].flags); 2774 if (res[i] == NULL) { 2775 bus_release_resources(dev, rs, res); 2776 return (ENXIO); 2777 } 2778 } 2779 return (0); 2780 } 2781 2782 void 2783 bus_release_resources(device_t dev, const struct resource_spec *rs, 2784 struct resource **res) 2785 { 2786 int i; 2787 2788 for (i = 0; rs[i].type != -1; i++) 2789 if (res[i] != NULL) { 2790 bus_release_resource( 2791 dev, rs[i].type, rs[i].rid, res[i]); 2792 res[i] = NULL; 2793 } 2794 } 2795 2796 struct resource * 2797 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 2798 u_long count, u_int flags) 2799 { 2800 if (dev->parent == 0) 2801 return(0); 2802 return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 2803 count, flags)); 2804 } 2805 2806 int 2807 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 2808 { 2809 if (dev->parent == 0) 2810 return(EINVAL); 2811 return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2812 } 2813 2814 int 2815 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 2816 { 2817 if (dev->parent == 0) 2818 return(EINVAL); 2819 return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2820 } 2821 2822 int 2823 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 2824 { 2825 if (dev->parent == 0) 2826 return(EINVAL); 2827 return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 2828 } 2829 2830 int 2831 bus_setup_intr(device_t dev, struct resource *r, int flags, 2832 driver_intr_t handler, void *arg, 2833 void **cookiep, lwkt_serialize_t serializer) 2834 { 2835 if (dev->parent == 0) 2836 return(EINVAL); 2837 return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, 2838 cookiep, serializer)); 2839 } 2840 2841 int 2842 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 2843 { 2844 if (dev->parent == 0) 2845 return(EINVAL); 2846 return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 2847 } 2848 2849 void 2850 bus_enable_intr(device_t dev, void *cookie) 2851 { 2852 if (dev->parent) 2853 BUS_ENABLE_INTR(dev->parent, dev, cookie); 2854 } 2855 2856 int 2857 bus_disable_intr(device_t dev, void *cookie) 2858 { 2859 if (dev->parent) 2860 return(BUS_DISABLE_INTR(dev->parent, dev, cookie)); 2861 else 2862 return(0); 2863 } 2864 2865 int 2866 bus_set_resource(device_t dev, int type, int rid, 2867 u_long start, u_long count) 2868 { 2869 return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 2870 start, count)); 2871 } 2872 2873 int 2874 bus_get_resource(device_t dev, int type, int rid, 2875 u_long *startp, u_long *countp) 2876 { 2877 return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2878 startp, countp)); 2879 } 2880 2881 u_long 2882 bus_get_resource_start(device_t dev, int type, int rid) 2883 { 2884 u_long start, count; 2885 int error; 2886 2887 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2888 &start, &count); 2889 if (error) 2890 return(0); 2891 return(start); 2892 } 2893 2894 u_long 2895 bus_get_resource_count(device_t dev, int type, int rid) 2896 { 2897 u_long start, count; 2898 int error; 2899 2900 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2901 &start, &count); 2902 if (error) 2903 return(0); 2904 return(count); 2905 } 2906 2907 void 2908 bus_delete_resource(device_t dev, int type, int rid) 2909 { 2910 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 2911 } 2912 2913 int 2914 bus_child_present(device_t child) 2915 { 2916 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 2917 } 2918 2919 int 2920 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 2921 { 2922 device_t parent; 2923 2924 parent = device_get_parent(child); 2925 if (parent == NULL) { 2926 *buf = '\0'; 2927 return (0); 2928 } 2929 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 2930 } 2931 2932 int 2933 bus_child_location_str(device_t child, char *buf, size_t buflen) 2934 { 2935 device_t parent; 2936 2937 parent = device_get_parent(child); 2938 if (parent == NULL) { 2939 *buf = '\0'; 2940 return (0); 2941 } 2942 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 2943 } 2944 2945 static int 2946 root_print_child(device_t dev, device_t child) 2947 { 2948 return(0); 2949 } 2950 2951 static int 2952 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 2953 void **cookiep, lwkt_serialize_t serializer) 2954 { 2955 /* 2956 * If an interrupt mapping gets to here something bad has happened. 2957 */ 2958 panic("root_setup_intr"); 2959 } 2960 2961 /* 2962 * If we get here, assume that the device is permanant and really is 2963 * present in the system. Removable bus drivers are expected to intercept 2964 * this call long before it gets here. We return -1 so that drivers that 2965 * really care can check vs -1 or some ERRNO returned higher in the food 2966 * chain. 2967 */ 2968 static int 2969 root_child_present(device_t dev, device_t child) 2970 { 2971 return(-1); 2972 } 2973 2974 /* 2975 * XXX NOTE! other defaults may be set in bus_if.m 2976 */ 2977 static kobj_method_t root_methods[] = { 2978 /* Device interface */ 2979 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 2980 KOBJMETHOD(device_suspend, bus_generic_suspend), 2981 KOBJMETHOD(device_resume, bus_generic_resume), 2982 2983 /* Bus interface */ 2984 KOBJMETHOD(bus_add_child, bus_generic_add_child), 2985 KOBJMETHOD(bus_print_child, root_print_child), 2986 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 2987 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 2988 KOBJMETHOD(bus_setup_intr, root_setup_intr), 2989 KOBJMETHOD(bus_child_present, root_child_present), 2990 2991 { 0, 0 } 2992 }; 2993 2994 static driver_t root_driver = { 2995 "root", 2996 root_methods, 2997 1, /* no softc */ 2998 }; 2999 3000 device_t root_bus; 3001 devclass_t root_devclass; 3002 3003 static int 3004 root_bus_module_handler(module_t mod, int what, void* arg) 3005 { 3006 switch (what) { 3007 case MOD_LOAD: 3008 TAILQ_INIT(&bus_data_devices); 3009 root_bus = make_device(NULL, "root", 0); 3010 root_bus->desc = "System root bus"; 3011 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3012 root_bus->driver = &root_driver; 3013 root_bus->state = DS_ALIVE; 3014 root_devclass = devclass_find_internal("root", NULL, FALSE); 3015 devinit(); 3016 return(0); 3017 3018 case MOD_SHUTDOWN: 3019 device_shutdown(root_bus); 3020 return(0); 3021 default: 3022 return(0); 3023 } 3024 } 3025 3026 static moduledata_t root_bus_mod = { 3027 "rootbus", 3028 root_bus_module_handler, 3029 0 3030 }; 3031 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3032 3033 void 3034 root_bus_configure(void) 3035 { 3036 int warncount; 3037 device_t dev; 3038 3039 PDEBUG((".")); 3040 3041 /* 3042 * handle device_identify based device attachments to the root_bus 3043 * (typically nexus). 3044 */ 3045 bus_generic_probe(root_bus); 3046 3047 /* 3048 * Probe and attach the devices under root_bus. 3049 */ 3050 TAILQ_FOREACH(dev, &root_bus->children, link) { 3051 device_probe_and_attach(dev); 3052 } 3053 3054 /* 3055 * Wait for all asynchronous attaches to complete. If we don't 3056 * our legacy ISA bus scan could steal device unit numbers or 3057 * even I/O ports. 3058 */ 3059 warncount = 10; 3060 if (numasyncthreads) 3061 kprintf("Waiting for async drivers to attach\n"); 3062 while (numasyncthreads > 0) { 3063 if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK) 3064 --warncount; 3065 if (warncount == 0) { 3066 kprintf("Warning: Still waiting for %d " 3067 "drivers to attach\n", numasyncthreads); 3068 } else if (warncount == -30) { 3069 kprintf("Giving up on %d drivers\n", numasyncthreads); 3070 break; 3071 } 3072 } 3073 root_bus->state = DS_ATTACHED; 3074 } 3075 3076 int 3077 driver_module_handler(module_t mod, int what, void *arg) 3078 { 3079 int error; 3080 struct driver_module_data *dmd; 3081 devclass_t bus_devclass; 3082 kobj_class_t driver; 3083 const char *parentname; 3084 3085 dmd = (struct driver_module_data *)arg; 3086 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3087 error = 0; 3088 3089 switch (what) { 3090 case MOD_LOAD: 3091 if (dmd->dmd_chainevh) 3092 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3093 3094 driver = dmd->dmd_driver; 3095 PDEBUG(("Loading module: driver %s on bus %s", 3096 DRIVERNAME(driver), dmd->dmd_busname)); 3097 3098 /* 3099 * If the driver has any base classes, make the 3100 * devclass inherit from the devclass of the driver's 3101 * first base class. This will allow the system to 3102 * search for drivers in both devclasses for children 3103 * of a device using this driver. 3104 */ 3105 if (driver->baseclasses) 3106 parentname = driver->baseclasses[0]->name; 3107 else 3108 parentname = NULL; 3109 *dmd->dmd_devclass = devclass_find_internal(driver->name, 3110 parentname, TRUE); 3111 3112 error = devclass_add_driver(bus_devclass, driver); 3113 if (error) 3114 break; 3115 break; 3116 3117 case MOD_UNLOAD: 3118 PDEBUG(("Unloading module: driver %s from bus %s", 3119 DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); 3120 error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); 3121 3122 if (!error && dmd->dmd_chainevh) 3123 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3124 break; 3125 } 3126 3127 return (error); 3128 } 3129 3130 #ifdef BUS_DEBUG 3131 3132 /* 3133 * The _short versions avoid iteration by not calling anything that prints 3134 * more than oneliners. I love oneliners. 3135 */ 3136 3137 static void 3138 print_device_short(device_t dev, int indent) 3139 { 3140 if (!dev) 3141 return; 3142 3143 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3144 dev->unit, dev->desc, 3145 (dev->parent? "":"no "), 3146 (TAILQ_EMPTY(&dev->children)? "no ":""), 3147 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3148 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3149 (dev->flags&DF_WILDCARD? "wildcard,":""), 3150 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3151 (dev->ivars? "":"no "), 3152 (dev->softc? "":"no "), 3153 dev->busy)); 3154 } 3155 3156 static void 3157 print_device(device_t dev, int indent) 3158 { 3159 if (!dev) 3160 return; 3161 3162 print_device_short(dev, indent); 3163 3164 indentprintf(("Parent:\n")); 3165 print_device_short(dev->parent, indent+1); 3166 indentprintf(("Driver:\n")); 3167 print_driver_short(dev->driver, indent+1); 3168 indentprintf(("Devclass:\n")); 3169 print_devclass_short(dev->devclass, indent+1); 3170 } 3171 3172 /* 3173 * Print the device and all its children (indented). 3174 */ 3175 void 3176 print_device_tree_short(device_t dev, int indent) 3177 { 3178 device_t child; 3179 3180 if (!dev) 3181 return; 3182 3183 print_device_short(dev, indent); 3184 3185 TAILQ_FOREACH(child, &dev->children, link) 3186 print_device_tree_short(child, indent+1); 3187 } 3188 3189 /* 3190 * Print the device and all its children (indented). 3191 */ 3192 void 3193 print_device_tree(device_t dev, int indent) 3194 { 3195 device_t child; 3196 3197 if (!dev) 3198 return; 3199 3200 print_device(dev, indent); 3201 3202 TAILQ_FOREACH(child, &dev->children, link) 3203 print_device_tree(child, indent+1); 3204 } 3205 3206 static void 3207 print_driver_short(driver_t *driver, int indent) 3208 { 3209 if (!driver) 3210 return; 3211 3212 indentprintf(("driver %s: softc size = %zu\n", 3213 driver->name, driver->size)); 3214 } 3215 3216 static void 3217 print_driver(driver_t *driver, int indent) 3218 { 3219 if (!driver) 3220 return; 3221 3222 print_driver_short(driver, indent); 3223 } 3224 3225 3226 static void 3227 print_driver_list(driver_list_t drivers, int indent) 3228 { 3229 driverlink_t driver; 3230 3231 TAILQ_FOREACH(driver, &drivers, link) 3232 print_driver(driver->driver, indent); 3233 } 3234 3235 static void 3236 print_devclass_short(devclass_t dc, int indent) 3237 { 3238 if (!dc) 3239 return; 3240 3241 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3242 } 3243 3244 static void 3245 print_devclass(devclass_t dc, int indent) 3246 { 3247 int i; 3248 3249 if (!dc) 3250 return; 3251 3252 print_devclass_short(dc, indent); 3253 indentprintf(("Drivers:\n")); 3254 print_driver_list(dc->drivers, indent+1); 3255 3256 indentprintf(("Devices:\n")); 3257 for (i = 0; i < dc->maxunit; i++) 3258 if (dc->devices[i]) 3259 print_device(dc->devices[i], indent+1); 3260 } 3261 3262 void 3263 print_devclass_list_short(void) 3264 { 3265 devclass_t dc; 3266 3267 kprintf("Short listing of devclasses, drivers & devices:\n"); 3268 TAILQ_FOREACH(dc, &devclasses, link) { 3269 print_devclass_short(dc, 0); 3270 } 3271 } 3272 3273 void 3274 print_devclass_list(void) 3275 { 3276 devclass_t dc; 3277 3278 kprintf("Full listing of devclasses, drivers & devices:\n"); 3279 TAILQ_FOREACH(dc, &devclasses, link) { 3280 print_devclass(dc, 0); 3281 } 3282 } 3283 3284 #endif 3285 3286 /* 3287 * Check to see if a device is disabled via a disabled hint. 3288 */ 3289 int 3290 resource_disabled(const char *name, int unit) 3291 { 3292 int error, value; 3293 3294 error = resource_int_value(name, unit, "disabled", &value); 3295 if (error) 3296 return(0); 3297 return(value); 3298 } 3299 3300 /* 3301 * User-space access to the device tree. 3302 * 3303 * We implement a small set of nodes: 3304 * 3305 * hw.bus Single integer read method to obtain the 3306 * current generation count. 3307 * hw.bus.devices Reads the entire device tree in flat space. 3308 * hw.bus.rman Resource manager interface 3309 * 3310 * We might like to add the ability to scan devclasses and/or drivers to 3311 * determine what else is currently loaded/available. 3312 */ 3313 3314 static int 3315 sysctl_bus(SYSCTL_HANDLER_ARGS) 3316 { 3317 struct u_businfo ubus; 3318 3319 ubus.ub_version = BUS_USER_VERSION; 3320 ubus.ub_generation = bus_data_generation; 3321 3322 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3323 } 3324 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3325 "bus-related data"); 3326 3327 static int 3328 sysctl_devices(SYSCTL_HANDLER_ARGS) 3329 { 3330 int *name = (int *)arg1; 3331 u_int namelen = arg2; 3332 int index; 3333 struct device *dev; 3334 struct u_device udev; /* XXX this is a bit big */ 3335 int error; 3336 3337 if (namelen != 2) 3338 return (EINVAL); 3339 3340 if (bus_data_generation_check(name[0])) 3341 return (EINVAL); 3342 3343 index = name[1]; 3344 3345 /* 3346 * Scan the list of devices, looking for the requested index. 3347 */ 3348 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3349 if (index-- == 0) 3350 break; 3351 } 3352 if (dev == NULL) 3353 return (ENOENT); 3354 3355 /* 3356 * Populate the return array. 3357 */ 3358 bzero(&udev, sizeof(udev)); 3359 udev.dv_handle = (uintptr_t)dev; 3360 udev.dv_parent = (uintptr_t)dev->parent; 3361 if (dev->nameunit != NULL) 3362 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3363 if (dev->desc != NULL) 3364 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3365 if (dev->driver != NULL && dev->driver->name != NULL) 3366 strlcpy(udev.dv_drivername, dev->driver->name, 3367 sizeof(udev.dv_drivername)); 3368 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3369 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3370 udev.dv_devflags = dev->devflags; 3371 udev.dv_flags = dev->flags; 3372 udev.dv_state = dev->state; 3373 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3374 return (error); 3375 } 3376 3377 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3378 "system device tree"); 3379 3380 int 3381 bus_data_generation_check(int generation) 3382 { 3383 if (generation != bus_data_generation) 3384 return (1); 3385 3386 /* XXX generate optimised lists here? */ 3387 return (0); 3388 } 3389 3390 void 3391 bus_data_generation_update(void) 3392 { 3393 bus_data_generation++; 3394 } 3395