1 /* 2 * Copyright (c) 1997,1998 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $ 27 * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $ 28 */ 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kobj.h> 38 #include <sys/bus_private.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/rman.h> 43 #include <sys/device.h> 44 #include <sys/lock.h> 45 #include <sys/conf.h> 46 #include <sys/selinfo.h> 47 #include <sys/uio.h> 48 #include <sys/filio.h> 49 #include <sys/poll.h> 50 #include <sys/event.h> 51 #include <sys/signalvar.h> 52 53 #include <machine/stdarg.h> /* for device_printf() */ 54 55 #include <sys/thread2.h> 56 #include <sys/mplock2.h> 57 58 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL); 59 60 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 61 62 #ifdef BUS_DEBUG 63 #define PDEBUG(a) (kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n")) 64 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 65 #define DRIVERNAME(d) ((d)? d->name : "no driver") 66 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 67 68 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to 69 * prevent syslog from deleting initial spaces 70 */ 71 #define indentprintf(p) do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf(" "); kprintf p ; } while(0) 72 73 static void print_device_short(device_t dev, int indent); 74 static void print_device(device_t dev, int indent); 75 void print_device_tree_short(device_t dev, int indent); 76 void print_device_tree(device_t dev, int indent); 77 static void print_driver_short(driver_t *driver, int indent); 78 static void print_driver(driver_t *driver, int indent); 79 static void print_driver_list(driver_list_t drivers, int indent); 80 static void print_devclass_short(devclass_t dc, int indent); 81 static void print_devclass(devclass_t dc, int indent); 82 void print_devclass_list_short(void); 83 void print_devclass_list(void); 84 85 #else 86 /* Make the compiler ignore the function calls */ 87 #define PDEBUG(a) /* nop */ 88 #define DEVICENAME(d) /* nop */ 89 #define DRIVERNAME(d) /* nop */ 90 #define DEVCLANAME(d) /* nop */ 91 92 #define print_device_short(d,i) /* nop */ 93 #define print_device(d,i) /* nop */ 94 #define print_device_tree_short(d,i) /* nop */ 95 #define print_device_tree(d,i) /* nop */ 96 #define print_driver_short(d,i) /* nop */ 97 #define print_driver(d,i) /* nop */ 98 #define print_driver_list(d,i) /* nop */ 99 #define print_devclass_short(d,i) /* nop */ 100 #define print_devclass(d,i) /* nop */ 101 #define print_devclass_list_short() /* nop */ 102 #define print_devclass_list() /* nop */ 103 #endif 104 105 static void device_attach_async(device_t dev); 106 static void device_attach_thread(void *arg); 107 static int device_doattach(device_t dev); 108 109 static int do_async_attach = 0; 110 static int numasyncthreads; 111 TUNABLE_INT("kern.do_async_attach", &do_async_attach); 112 113 /* 114 * /dev/devctl implementation 115 */ 116 117 /* 118 * This design allows only one reader for /dev/devctl. This is not desirable 119 * in the long run, but will get a lot of hair out of this implementation. 120 * Maybe we should make this device a clonable device. 121 * 122 * Also note: we specifically do not attach a device to the device_t tree 123 * to avoid potential chicken and egg problems. One could argue that all 124 * of this belongs to the root node. One could also further argue that the 125 * sysctl interface that we have not might more properly be an ioctl 126 * interface, but at this stage of the game, I'm not inclined to rock that 127 * boat. 128 * 129 * I'm also not sure that the SIGIO support is done correctly or not, as 130 * I copied it from a driver that had SIGIO support that likely hasn't been 131 * tested since 3.4 or 2.2.8! 132 */ 133 134 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS); 135 static int devctl_disable = 0; 136 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable); 137 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 138 sysctl_devctl_disable, "I", "devctl disable"); 139 140 #define CDEV_MAJOR 188 141 142 static d_open_t devopen; 143 static d_close_t devclose; 144 static d_read_t devread; 145 static d_ioctl_t devioctl; 146 static d_poll_t devpoll; 147 static d_kqfilter_t devkqfilter; 148 149 static struct dev_ops devctl_ops = { 150 { "devctl", CDEV_MAJOR, 0 }, 151 .d_open = devopen, 152 .d_close = devclose, 153 .d_read = devread, 154 .d_ioctl = devioctl, 155 .d_poll = devpoll, 156 .d_kqfilter = devkqfilter 157 }; 158 159 struct dev_event_info 160 { 161 char *dei_data; 162 TAILQ_ENTRY(dev_event_info) dei_link; 163 }; 164 165 TAILQ_HEAD(devq, dev_event_info); 166 167 static struct dev_softc 168 { 169 int inuse; 170 int nonblock; 171 struct lock lock; 172 struct selinfo sel; 173 struct devq devq; 174 struct proc *async_proc; 175 } devsoftc; 176 177 static void 178 devinit(void) 179 { 180 make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl"); 181 lockinit(&devsoftc.lock, "dev mtx", 0, 0); 182 TAILQ_INIT(&devsoftc.devq); 183 } 184 185 static int 186 devopen(struct dev_open_args *ap) 187 { 188 if (devsoftc.inuse) 189 return (EBUSY); 190 /* move to init */ 191 devsoftc.inuse = 1; 192 devsoftc.nonblock = 0; 193 devsoftc.async_proc = NULL; 194 return (0); 195 } 196 197 static int 198 devclose(struct dev_close_args *ap) 199 { 200 devsoftc.inuse = 0; 201 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 202 wakeup(&devsoftc); 203 lockmgr(&devsoftc.lock, LK_RELEASE); 204 205 return (0); 206 } 207 208 /* 209 * The read channel for this device is used to report changes to 210 * userland in realtime. We are required to free the data as well as 211 * the n1 object because we allocate them separately. Also note that 212 * we return one record at a time. If you try to read this device a 213 * character at a time, you will lose the rest of the data. Listening 214 * programs are expected to cope. 215 */ 216 static int 217 devread(struct dev_read_args *ap) 218 { 219 struct uio *uio = ap->a_uio; 220 struct dev_event_info *n1; 221 int rv; 222 223 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 224 while (TAILQ_EMPTY(&devsoftc.devq)) { 225 if (devsoftc.nonblock) { 226 lockmgr(&devsoftc.lock, LK_RELEASE); 227 return (EAGAIN); 228 } 229 tsleep_interlock(&devsoftc, PCATCH); 230 lockmgr(&devsoftc.lock, LK_RELEASE); 231 rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0); 232 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 233 if (rv) { 234 /* 235 * Need to translate ERESTART to EINTR here? -- jake 236 */ 237 lockmgr(&devsoftc.lock, LK_RELEASE); 238 return (rv); 239 } 240 } 241 n1 = TAILQ_FIRST(&devsoftc.devq); 242 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 243 lockmgr(&devsoftc.lock, LK_RELEASE); 244 rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); 245 kfree(n1->dei_data, M_BUS); 246 kfree(n1, M_BUS); 247 return (rv); 248 } 249 250 static int 251 devioctl(struct dev_ioctl_args *ap) 252 { 253 switch (ap->a_cmd) { 254 255 case FIONBIO: 256 if (*(int*)ap->a_data) 257 devsoftc.nonblock = 1; 258 else 259 devsoftc.nonblock = 0; 260 return (0); 261 case FIOASYNC: 262 if (*(int*)ap->a_data) 263 devsoftc.async_proc = curproc; 264 else 265 devsoftc.async_proc = NULL; 266 return (0); 267 268 /* (un)Support for other fcntl() calls. */ 269 case FIOCLEX: 270 case FIONCLEX: 271 case FIONREAD: 272 case FIOSETOWN: 273 case FIOGETOWN: 274 default: 275 break; 276 } 277 return (ENOTTY); 278 } 279 280 static int 281 devpoll(struct dev_poll_args *ap) 282 { 283 int revents = 0; 284 285 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 286 if (ap->a_events & (POLLIN | POLLRDNORM)) { 287 if (!TAILQ_EMPTY(&devsoftc.devq)) 288 revents = ap->a_events & (POLLIN | POLLRDNORM); 289 else 290 selrecord(curthread, &devsoftc.sel); 291 } 292 lockmgr(&devsoftc.lock, LK_RELEASE); 293 294 ap->a_events = revents; 295 return (0); 296 } 297 298 static void dev_filter_detach(struct knote *); 299 static int dev_filter_read(struct knote *, long); 300 301 static struct filterops dev_filtops = 302 { 1, NULL, dev_filter_detach, dev_filter_read }; 303 304 static int 305 devkqfilter(struct dev_kqfilter_args *ap) 306 { 307 struct knote *kn = ap->a_kn; 308 struct klist *klist; 309 310 ap->a_result = 0; 311 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 312 313 switch (kn->kn_filter) { 314 case EVFILT_READ: 315 kn->kn_fop = &dev_filtops; 316 break; 317 default: 318 ap->a_result = EOPNOTSUPP; 319 lockmgr(&devsoftc.lock, LK_RELEASE); 320 return (0); 321 } 322 323 crit_enter(); 324 klist = &devsoftc.sel.si_note; 325 SLIST_INSERT_HEAD(klist, kn, kn_selnext); 326 crit_exit(); 327 328 lockmgr(&devsoftc.lock, LK_RELEASE); 329 330 return (0); 331 } 332 333 static void 334 dev_filter_detach(struct knote *kn) 335 { 336 struct klist *klist; 337 338 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 339 crit_enter(); 340 klist = &devsoftc.sel.si_note; 341 SLIST_INSERT_HEAD(klist, kn, kn_selnext); 342 crit_exit(); 343 lockmgr(&devsoftc.lock, LK_RELEASE); 344 } 345 346 static int 347 dev_filter_read(struct knote *kn, long hint) 348 { 349 int ready = 0; 350 351 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 352 if (!TAILQ_EMPTY(&devsoftc.devq)) 353 ready = 1; 354 lockmgr(&devsoftc.lock, LK_RELEASE); 355 356 return (ready); 357 } 358 359 360 /** 361 * @brief Return whether the userland process is running 362 */ 363 boolean_t 364 devctl_process_running(void) 365 { 366 return (devsoftc.inuse == 1); 367 } 368 369 /** 370 * @brief Queue data to be read from the devctl device 371 * 372 * Generic interface to queue data to the devctl device. It is 373 * assumed that @p data is properly formatted. It is further assumed 374 * that @p data is allocated using the M_BUS malloc type. 375 */ 376 void 377 devctl_queue_data(char *data) 378 { 379 struct dev_event_info *n1 = NULL; 380 struct proc *p; 381 382 n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT); 383 if (n1 == NULL) 384 return; 385 n1->dei_data = data; 386 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 387 TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link); 388 wakeup(&devsoftc); 389 lockmgr(&devsoftc.lock, LK_RELEASE); 390 get_mplock(); /* XXX */ 391 selwakeup(&devsoftc.sel); 392 rel_mplock(); /* XXX */ 393 p = devsoftc.async_proc; 394 if (p != NULL) 395 ksignal(p, SIGIO); 396 } 397 398 /** 399 * @brief Send a 'notification' to userland, using standard ways 400 */ 401 void 402 devctl_notify(const char *system, const char *subsystem, const char *type, 403 const char *data) 404 { 405 int len = 0; 406 char *msg; 407 408 if (system == NULL) 409 return; /* BOGUS! Must specify system. */ 410 if (subsystem == NULL) 411 return; /* BOGUS! Must specify subsystem. */ 412 if (type == NULL) 413 return; /* BOGUS! Must specify type. */ 414 len += strlen(" system=") + strlen(system); 415 len += strlen(" subsystem=") + strlen(subsystem); 416 len += strlen(" type=") + strlen(type); 417 /* add in the data message plus newline. */ 418 if (data != NULL) 419 len += strlen(data); 420 len += 3; /* '!', '\n', and NUL */ 421 msg = kmalloc(len, M_BUS, M_NOWAIT); 422 if (msg == NULL) 423 return; /* Drop it on the floor */ 424 if (data != NULL) 425 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", 426 system, subsystem, type, data); 427 else 428 ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n", 429 system, subsystem, type); 430 devctl_queue_data(msg); 431 } 432 433 /* 434 * Common routine that tries to make sending messages as easy as possible. 435 * We allocate memory for the data, copy strings into that, but do not 436 * free it unless there's an error. The dequeue part of the driver should 437 * free the data. We don't send data when the device is disabled. We do 438 * send data, even when we have no listeners, because we wish to avoid 439 * races relating to startup and restart of listening applications. 440 * 441 * devaddq is designed to string together the type of event, with the 442 * object of that event, plus the plug and play info and location info 443 * for that event. This is likely most useful for devices, but less 444 * useful for other consumers of this interface. Those should use 445 * the devctl_queue_data() interface instead. 446 */ 447 static void 448 devaddq(const char *type, const char *what, device_t dev) 449 { 450 char *data = NULL; 451 char *loc = NULL; 452 char *pnp = NULL; 453 const char *parstr; 454 455 if (devctl_disable) 456 return; 457 data = kmalloc(1024, M_BUS, M_NOWAIT); 458 if (data == NULL) 459 goto bad; 460 461 /* get the bus specific location of this device */ 462 loc = kmalloc(1024, M_BUS, M_NOWAIT); 463 if (loc == NULL) 464 goto bad; 465 *loc = '\0'; 466 bus_child_location_str(dev, loc, 1024); 467 468 /* Get the bus specific pnp info of this device */ 469 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 470 if (pnp == NULL) 471 goto bad; 472 *pnp = '\0'; 473 bus_child_pnpinfo_str(dev, pnp, 1024); 474 475 /* Get the parent of this device, or / if high enough in the tree. */ 476 if (device_get_parent(dev) == NULL) 477 parstr = "."; /* Or '/' ? */ 478 else 479 parstr = device_get_nameunit(device_get_parent(dev)); 480 /* String it all together. */ 481 ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp, 482 parstr); 483 kfree(loc, M_BUS); 484 kfree(pnp, M_BUS); 485 devctl_queue_data(data); 486 return; 487 bad: 488 kfree(pnp, M_BUS); 489 kfree(loc, M_BUS); 490 kfree(data, M_BUS); 491 return; 492 } 493 494 /* 495 * A device was added to the tree. We are called just after it successfully 496 * attaches (that is, probe and attach success for this device). No call 497 * is made if a device is merely parented into the tree. See devnomatch 498 * if probe fails. If attach fails, no notification is sent (but maybe 499 * we should have a different message for this). 500 */ 501 static void 502 devadded(device_t dev) 503 { 504 char *pnp = NULL; 505 char *tmp = NULL; 506 507 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 508 if (pnp == NULL) 509 goto fail; 510 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 511 if (tmp == NULL) 512 goto fail; 513 *pnp = '\0'; 514 bus_child_pnpinfo_str(dev, pnp, 1024); 515 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 516 devaddq("+", tmp, dev); 517 fail: 518 if (pnp != NULL) 519 kfree(pnp, M_BUS); 520 if (tmp != NULL) 521 kfree(tmp, M_BUS); 522 return; 523 } 524 525 /* 526 * A device was removed from the tree. We are called just before this 527 * happens. 528 */ 529 static void 530 devremoved(device_t dev) 531 { 532 char *pnp = NULL; 533 char *tmp = NULL; 534 535 pnp = kmalloc(1024, M_BUS, M_NOWAIT); 536 if (pnp == NULL) 537 goto fail; 538 tmp = kmalloc(1024, M_BUS, M_NOWAIT); 539 if (tmp == NULL) 540 goto fail; 541 *pnp = '\0'; 542 bus_child_pnpinfo_str(dev, pnp, 1024); 543 ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp); 544 devaddq("-", tmp, dev); 545 fail: 546 if (pnp != NULL) 547 kfree(pnp, M_BUS); 548 if (tmp != NULL) 549 kfree(tmp, M_BUS); 550 return; 551 } 552 553 /* 554 * Called when there's no match for this device. This is only called 555 * the first time that no match happens, so we don't keep getitng this 556 * message. Should that prove to be undesirable, we can change it. 557 * This is called when all drivers that can attach to a given bus 558 * decline to accept this device. Other errrors may not be detected. 559 */ 560 static void 561 devnomatch(device_t dev) 562 { 563 devaddq("?", "", dev); 564 } 565 566 static int 567 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS) 568 { 569 struct dev_event_info *n1; 570 int dis, error; 571 572 dis = devctl_disable; 573 error = sysctl_handle_int(oidp, &dis, 0, req); 574 if (error || !req->newptr) 575 return (error); 576 lockmgr(&devsoftc.lock, LK_EXCLUSIVE); 577 devctl_disable = dis; 578 if (dis) { 579 while (!TAILQ_EMPTY(&devsoftc.devq)) { 580 n1 = TAILQ_FIRST(&devsoftc.devq); 581 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link); 582 kfree(n1->dei_data, M_BUS); 583 kfree(n1, M_BUS); 584 } 585 } 586 lockmgr(&devsoftc.lock, LK_RELEASE); 587 return (0); 588 } 589 590 /* End of /dev/devctl code */ 591 592 TAILQ_HEAD(,device) bus_data_devices; 593 static int bus_data_generation = 1; 594 595 kobj_method_t null_methods[] = { 596 { 0, 0 } 597 }; 598 599 DEFINE_CLASS(null, null_methods, 0); 600 601 /* 602 * Devclass implementation 603 */ 604 605 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 606 607 static devclass_t 608 devclass_find_internal(const char *classname, const char *parentname, 609 int create) 610 { 611 devclass_t dc; 612 613 PDEBUG(("looking for %s", classname)); 614 if (classname == NULL) 615 return(NULL); 616 617 TAILQ_FOREACH(dc, &devclasses, link) 618 if (!strcmp(dc->name, classname)) 619 break; 620 621 if (create && !dc) { 622 PDEBUG(("creating %s", classname)); 623 dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1, 624 M_BUS, M_INTWAIT | M_ZERO); 625 if (!dc) 626 return(NULL); 627 dc->parent = NULL; 628 dc->name = (char*) (dc + 1); 629 strcpy(dc->name, classname); 630 dc->devices = NULL; 631 dc->maxunit = 0; 632 TAILQ_INIT(&dc->drivers); 633 TAILQ_INSERT_TAIL(&devclasses, dc, link); 634 635 bus_data_generation_update(); 636 637 } 638 if (parentname && dc && !dc->parent) 639 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 640 641 return(dc); 642 } 643 644 devclass_t 645 devclass_create(const char *classname) 646 { 647 return(devclass_find_internal(classname, NULL, TRUE)); 648 } 649 650 devclass_t 651 devclass_find(const char *classname) 652 { 653 return(devclass_find_internal(classname, NULL, FALSE)); 654 } 655 656 device_t 657 devclass_find_unit(const char *classname, int unit) 658 { 659 devclass_t dc; 660 661 if ((dc = devclass_find(classname)) != NULL) 662 return(devclass_get_device(dc, unit)); 663 return (NULL); 664 } 665 666 int 667 devclass_add_driver(devclass_t dc, driver_t *driver) 668 { 669 driverlink_t dl; 670 device_t dev; 671 int i; 672 673 PDEBUG(("%s", DRIVERNAME(driver))); 674 675 dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO); 676 if (!dl) 677 return(ENOMEM); 678 679 /* 680 * Compile the driver's methods. Also increase the reference count 681 * so that the class doesn't get freed when the last instance 682 * goes. This means we can safely use static methods and avoids a 683 * double-free in devclass_delete_driver. 684 */ 685 kobj_class_instantiate(driver); 686 687 /* 688 * Make sure the devclass which the driver is implementing exists. 689 */ 690 devclass_find_internal(driver->name, NULL, TRUE); 691 692 dl->driver = driver; 693 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 694 695 /* 696 * Call BUS_DRIVER_ADDED for any existing busses in this class, 697 * but only if the bus has already been attached (otherwise we 698 * might probe too early). 699 * 700 * This is what will cause a newly loaded module to be associated 701 * with hardware. bus_generic_driver_added() is typically what ends 702 * up being called. 703 */ 704 for (i = 0; i < dc->maxunit; i++) { 705 if ((dev = dc->devices[i]) != NULL) { 706 if (dev->state >= DS_ATTACHED) 707 BUS_DRIVER_ADDED(dev, driver); 708 } 709 } 710 711 bus_data_generation_update(); 712 return(0); 713 } 714 715 int 716 devclass_delete_driver(devclass_t busclass, driver_t *driver) 717 { 718 devclass_t dc = devclass_find(driver->name); 719 driverlink_t dl; 720 device_t dev; 721 int i; 722 int error; 723 724 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 725 726 if (!dc) 727 return(0); 728 729 /* 730 * Find the link structure in the bus' list of drivers. 731 */ 732 TAILQ_FOREACH(dl, &busclass->drivers, link) 733 if (dl->driver == driver) 734 break; 735 736 if (!dl) { 737 PDEBUG(("%s not found in %s list", driver->name, busclass->name)); 738 return(ENOENT); 739 } 740 741 /* 742 * Disassociate from any devices. We iterate through all the 743 * devices in the devclass of the driver and detach any which are 744 * using the driver and which have a parent in the devclass which 745 * we are deleting from. 746 * 747 * Note that since a driver can be in multiple devclasses, we 748 * should not detach devices which are not children of devices in 749 * the affected devclass. 750 */ 751 for (i = 0; i < dc->maxunit; i++) 752 if (dc->devices[i]) { 753 dev = dc->devices[i]; 754 if (dev->driver == driver && dev->parent && 755 dev->parent->devclass == busclass) { 756 if ((error = device_detach(dev)) != 0) 757 return(error); 758 device_set_driver(dev, NULL); 759 } 760 } 761 762 TAILQ_REMOVE(&busclass->drivers, dl, link); 763 kfree(dl, M_BUS); 764 765 kobj_class_uninstantiate(driver); 766 767 bus_data_generation_update(); 768 return(0); 769 } 770 771 static driverlink_t 772 devclass_find_driver_internal(devclass_t dc, const char *classname) 773 { 774 driverlink_t dl; 775 776 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 777 778 TAILQ_FOREACH(dl, &dc->drivers, link) 779 if (!strcmp(dl->driver->name, classname)) 780 return(dl); 781 782 PDEBUG(("not found")); 783 return(NULL); 784 } 785 786 kobj_class_t 787 devclass_find_driver(devclass_t dc, const char *classname) 788 { 789 driverlink_t dl; 790 791 dl = devclass_find_driver_internal(dc, classname); 792 if (dl) 793 return(dl->driver); 794 else 795 return(NULL); 796 } 797 798 const char * 799 devclass_get_name(devclass_t dc) 800 { 801 return(dc->name); 802 } 803 804 device_t 805 devclass_get_device(devclass_t dc, int unit) 806 { 807 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 808 return(NULL); 809 return(dc->devices[unit]); 810 } 811 812 void * 813 devclass_get_softc(devclass_t dc, int unit) 814 { 815 device_t dev; 816 817 dev = devclass_get_device(dc, unit); 818 if (!dev) 819 return(NULL); 820 821 return(device_get_softc(dev)); 822 } 823 824 int 825 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 826 { 827 int i; 828 int count; 829 device_t *list; 830 831 count = 0; 832 for (i = 0; i < dc->maxunit; i++) 833 if (dc->devices[i]) 834 count++; 835 836 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 837 if (list == NULL) 838 return(ENOMEM); 839 840 count = 0; 841 for (i = 0; i < dc->maxunit; i++) 842 if (dc->devices[i]) { 843 list[count] = dc->devices[i]; 844 count++; 845 } 846 847 *devlistp = list; 848 *devcountp = count; 849 850 return(0); 851 } 852 853 /** 854 * @brief Get a list of drivers in the devclass 855 * 856 * An array containing a list of pointers to all the drivers in the 857 * given devclass is allocated and returned in @p *listp. The number 858 * of drivers in the array is returned in @p *countp. The caller should 859 * free the array using @c free(p, M_TEMP). 860 * 861 * @param dc the devclass to examine 862 * @param listp gives location for array pointer return value 863 * @param countp gives location for number of array elements 864 * return value 865 * 866 * @retval 0 success 867 * @retval ENOMEM the array allocation failed 868 */ 869 int 870 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 871 { 872 driverlink_t dl; 873 driver_t **list; 874 int count; 875 876 count = 0; 877 TAILQ_FOREACH(dl, &dc->drivers, link) 878 count++; 879 list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 880 if (list == NULL) 881 return (ENOMEM); 882 883 count = 0; 884 TAILQ_FOREACH(dl, &dc->drivers, link) { 885 list[count] = dl->driver; 886 count++; 887 } 888 *listp = list; 889 *countp = count; 890 891 return (0); 892 } 893 894 /** 895 * @brief Get the number of devices in a devclass 896 * 897 * @param dc the devclass to examine 898 */ 899 int 900 devclass_get_count(devclass_t dc) 901 { 902 int count, i; 903 904 count = 0; 905 for (i = 0; i < dc->maxunit; i++) 906 if (dc->devices[i]) 907 count++; 908 return (count); 909 } 910 911 int 912 devclass_get_maxunit(devclass_t dc) 913 { 914 return(dc->maxunit); 915 } 916 917 void 918 devclass_set_parent(devclass_t dc, devclass_t pdc) 919 { 920 dc->parent = pdc; 921 } 922 923 devclass_t 924 devclass_get_parent(devclass_t dc) 925 { 926 return(dc->parent); 927 } 928 929 static int 930 devclass_alloc_unit(devclass_t dc, int *unitp) 931 { 932 int unit = *unitp; 933 934 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 935 936 /* If we have been given a wired unit number, check for existing device */ 937 if (unit != -1) { 938 if (unit >= 0 && unit < dc->maxunit && 939 dc->devices[unit] != NULL) { 940 if (bootverbose) 941 kprintf("%s-: %s%d exists, using next available unit number\n", 942 dc->name, dc->name, unit); 943 /* find the next available slot */ 944 while (++unit < dc->maxunit && dc->devices[unit] != NULL) 945 ; 946 } 947 } else { 948 /* Unwired device, find the next available slot for it */ 949 unit = 0; 950 while (unit < dc->maxunit && dc->devices[unit] != NULL) 951 unit++; 952 } 953 954 /* 955 * We've selected a unit beyond the length of the table, so let's 956 * extend the table to make room for all units up to and including 957 * this one. 958 */ 959 if (unit >= dc->maxunit) { 960 device_t *newlist; 961 int newsize; 962 963 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 964 newlist = kmalloc(sizeof(device_t) * newsize, M_BUS, 965 M_INTWAIT | M_ZERO); 966 if (newlist == NULL) 967 return(ENOMEM); 968 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 969 if (dc->devices) 970 kfree(dc->devices, M_BUS); 971 dc->devices = newlist; 972 dc->maxunit = newsize; 973 } 974 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 975 976 *unitp = unit; 977 return(0); 978 } 979 980 static int 981 devclass_add_device(devclass_t dc, device_t dev) 982 { 983 int buflen, error; 984 985 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 986 987 buflen = strlen(dc->name) + 5; 988 dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO); 989 if (!dev->nameunit) 990 return(ENOMEM); 991 992 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 993 kfree(dev->nameunit, M_BUS); 994 dev->nameunit = NULL; 995 return(error); 996 } 997 dc->devices[dev->unit] = dev; 998 dev->devclass = dc; 999 ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 1000 1001 return(0); 1002 } 1003 1004 static int 1005 devclass_delete_device(devclass_t dc, device_t dev) 1006 { 1007 if (!dc || !dev) 1008 return(0); 1009 1010 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 1011 1012 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 1013 panic("devclass_delete_device: inconsistent device class"); 1014 dc->devices[dev->unit] = NULL; 1015 if (dev->flags & DF_WILDCARD) 1016 dev->unit = -1; 1017 dev->devclass = NULL; 1018 kfree(dev->nameunit, M_BUS); 1019 dev->nameunit = NULL; 1020 1021 return(0); 1022 } 1023 1024 static device_t 1025 make_device(device_t parent, const char *name, int unit) 1026 { 1027 device_t dev; 1028 devclass_t dc; 1029 1030 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 1031 1032 if (name != NULL) { 1033 dc = devclass_find_internal(name, NULL, TRUE); 1034 if (!dc) { 1035 kprintf("make_device: can't find device class %s\n", name); 1036 return(NULL); 1037 } 1038 } else 1039 dc = NULL; 1040 1041 dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO); 1042 if (!dev) 1043 return(0); 1044 1045 dev->parent = parent; 1046 TAILQ_INIT(&dev->children); 1047 kobj_init((kobj_t) dev, &null_class); 1048 dev->driver = NULL; 1049 dev->devclass = NULL; 1050 dev->unit = unit; 1051 dev->nameunit = NULL; 1052 dev->desc = NULL; 1053 dev->busy = 0; 1054 dev->devflags = 0; 1055 dev->flags = DF_ENABLED; 1056 dev->order = 0; 1057 if (unit == -1) 1058 dev->flags |= DF_WILDCARD; 1059 if (name) { 1060 dev->flags |= DF_FIXEDCLASS; 1061 if (devclass_add_device(dc, dev) != 0) { 1062 kobj_delete((kobj_t)dev, M_BUS); 1063 return(NULL); 1064 } 1065 } 1066 dev->ivars = NULL; 1067 dev->softc = NULL; 1068 1069 dev->state = DS_NOTPRESENT; 1070 1071 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); 1072 bus_data_generation_update(); 1073 1074 return(dev); 1075 } 1076 1077 static int 1078 device_print_child(device_t dev, device_t child) 1079 { 1080 int retval = 0; 1081 1082 if (device_is_alive(child)) 1083 retval += BUS_PRINT_CHILD(dev, child); 1084 else 1085 retval += device_printf(child, " not found\n"); 1086 1087 return(retval); 1088 } 1089 1090 device_t 1091 device_add_child(device_t dev, const char *name, int unit) 1092 { 1093 return device_add_child_ordered(dev, 0, name, unit); 1094 } 1095 1096 device_t 1097 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 1098 { 1099 device_t child; 1100 device_t place; 1101 1102 PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), 1103 order, unit)); 1104 1105 child = make_device(dev, name, unit); 1106 if (child == NULL) 1107 return child; 1108 child->order = order; 1109 1110 TAILQ_FOREACH(place, &dev->children, link) 1111 if (place->order > order) 1112 break; 1113 1114 if (place) { 1115 /* 1116 * The device 'place' is the first device whose order is 1117 * greater than the new child. 1118 */ 1119 TAILQ_INSERT_BEFORE(place, child, link); 1120 } else { 1121 /* 1122 * The new child's order is greater or equal to the order of 1123 * any existing device. Add the child to the tail of the list. 1124 */ 1125 TAILQ_INSERT_TAIL(&dev->children, child, link); 1126 } 1127 1128 bus_data_generation_update(); 1129 return(child); 1130 } 1131 1132 int 1133 device_delete_child(device_t dev, device_t child) 1134 { 1135 int error; 1136 device_t grandchild; 1137 1138 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 1139 1140 /* remove children first */ 1141 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 1142 error = device_delete_child(child, grandchild); 1143 if (error) 1144 return(error); 1145 } 1146 1147 if ((error = device_detach(child)) != 0) 1148 return(error); 1149 if (child->devclass) 1150 devclass_delete_device(child->devclass, child); 1151 TAILQ_REMOVE(&dev->children, child, link); 1152 TAILQ_REMOVE(&bus_data_devices, child, devlink); 1153 device_set_desc(child, NULL); 1154 kobj_delete((kobj_t)child, M_BUS); 1155 1156 bus_data_generation_update(); 1157 return(0); 1158 } 1159 1160 /** 1161 * @brief Find a device given a unit number 1162 * 1163 * This is similar to devclass_get_devices() but only searches for 1164 * devices which have @p dev as a parent. 1165 * 1166 * @param dev the parent device to search 1167 * @param unit the unit number to search for. If the unit is -1, 1168 * return the first child of @p dev which has name 1169 * @p classname (that is, the one with the lowest unit.) 1170 * 1171 * @returns the device with the given unit number or @c 1172 * NULL if there is no such device 1173 */ 1174 device_t 1175 device_find_child(device_t dev, const char *classname, int unit) 1176 { 1177 devclass_t dc; 1178 device_t child; 1179 1180 dc = devclass_find(classname); 1181 if (!dc) 1182 return(NULL); 1183 1184 if (unit != -1) { 1185 child = devclass_get_device(dc, unit); 1186 if (child && child->parent == dev) 1187 return (child); 1188 } else { 1189 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 1190 child = devclass_get_device(dc, unit); 1191 if (child && child->parent == dev) 1192 return (child); 1193 } 1194 } 1195 return(NULL); 1196 } 1197 1198 static driverlink_t 1199 first_matching_driver(devclass_t dc, device_t dev) 1200 { 1201 if (dev->devclass) 1202 return(devclass_find_driver_internal(dc, dev->devclass->name)); 1203 else 1204 return(TAILQ_FIRST(&dc->drivers)); 1205 } 1206 1207 static driverlink_t 1208 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 1209 { 1210 if (dev->devclass) { 1211 driverlink_t dl; 1212 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 1213 if (!strcmp(dev->devclass->name, dl->driver->name)) 1214 return(dl); 1215 return(NULL); 1216 } else 1217 return(TAILQ_NEXT(last, link)); 1218 } 1219 1220 static int 1221 device_probe_child(device_t dev, device_t child) 1222 { 1223 devclass_t dc; 1224 driverlink_t best = 0; 1225 driverlink_t dl; 1226 int result, pri = 0; 1227 int hasclass = (child->devclass != 0); 1228 1229 dc = dev->devclass; 1230 if (!dc) 1231 panic("device_probe_child: parent device has no devclass"); 1232 1233 if (child->state == DS_ALIVE) 1234 return(0); 1235 1236 for (; dc; dc = dc->parent) { 1237 for (dl = first_matching_driver(dc, child); dl; 1238 dl = next_matching_driver(dc, child, dl)) { 1239 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 1240 device_set_driver(child, dl->driver); 1241 if (!hasclass) 1242 device_set_devclass(child, dl->driver->name); 1243 result = DEVICE_PROBE(child); 1244 if (!hasclass) 1245 device_set_devclass(child, 0); 1246 1247 /* 1248 * If the driver returns SUCCESS, there can be 1249 * no higher match for this device. 1250 */ 1251 if (result == 0) { 1252 best = dl; 1253 pri = 0; 1254 break; 1255 } 1256 1257 /* 1258 * The driver returned an error so it 1259 * certainly doesn't match. 1260 */ 1261 if (result > 0) { 1262 device_set_driver(child, 0); 1263 continue; 1264 } 1265 1266 /* 1267 * A priority lower than SUCCESS, remember the 1268 * best matching driver. Initialise the value 1269 * of pri for the first match. 1270 */ 1271 if (best == 0 || result > pri) { 1272 best = dl; 1273 pri = result; 1274 continue; 1275 } 1276 } 1277 /* 1278 * If we have unambiguous match in this devclass, 1279 * don't look in the parent. 1280 */ 1281 if (best && pri == 0) 1282 break; 1283 } 1284 1285 /* 1286 * If we found a driver, change state and initialise the devclass. 1287 */ 1288 if (best) { 1289 if (!child->devclass) 1290 device_set_devclass(child, best->driver->name); 1291 device_set_driver(child, best->driver); 1292 if (pri < 0) { 1293 /* 1294 * A bit bogus. Call the probe method again to make 1295 * sure that we have the right description. 1296 */ 1297 DEVICE_PROBE(child); 1298 } 1299 1300 bus_data_generation_update(); 1301 child->state = DS_ALIVE; 1302 return(0); 1303 } 1304 1305 return(ENXIO); 1306 } 1307 1308 device_t 1309 device_get_parent(device_t dev) 1310 { 1311 return dev->parent; 1312 } 1313 1314 int 1315 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 1316 { 1317 int count; 1318 device_t child; 1319 device_t *list; 1320 1321 count = 0; 1322 TAILQ_FOREACH(child, &dev->children, link) 1323 count++; 1324 1325 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 1326 if (!list) 1327 return(ENOMEM); 1328 1329 count = 0; 1330 TAILQ_FOREACH(child, &dev->children, link) { 1331 list[count] = child; 1332 count++; 1333 } 1334 1335 *devlistp = list; 1336 *devcountp = count; 1337 1338 return(0); 1339 } 1340 1341 driver_t * 1342 device_get_driver(device_t dev) 1343 { 1344 return(dev->driver); 1345 } 1346 1347 devclass_t 1348 device_get_devclass(device_t dev) 1349 { 1350 return(dev->devclass); 1351 } 1352 1353 const char * 1354 device_get_name(device_t dev) 1355 { 1356 if (dev->devclass) 1357 return devclass_get_name(dev->devclass); 1358 return(NULL); 1359 } 1360 1361 const char * 1362 device_get_nameunit(device_t dev) 1363 { 1364 return(dev->nameunit); 1365 } 1366 1367 int 1368 device_get_unit(device_t dev) 1369 { 1370 return(dev->unit); 1371 } 1372 1373 const char * 1374 device_get_desc(device_t dev) 1375 { 1376 return(dev->desc); 1377 } 1378 1379 uint32_t 1380 device_get_flags(device_t dev) 1381 { 1382 return(dev->devflags); 1383 } 1384 1385 int 1386 device_print_prettyname(device_t dev) 1387 { 1388 const char *name = device_get_name(dev); 1389 1390 if (name == 0) 1391 return kprintf("unknown: "); 1392 else 1393 return kprintf("%s%d: ", name, device_get_unit(dev)); 1394 } 1395 1396 int 1397 device_printf(device_t dev, const char * fmt, ...) 1398 { 1399 __va_list ap; 1400 int retval; 1401 1402 retval = device_print_prettyname(dev); 1403 __va_start(ap, fmt); 1404 retval += kvprintf(fmt, ap); 1405 __va_end(ap); 1406 return retval; 1407 } 1408 1409 static void 1410 device_set_desc_internal(device_t dev, const char* desc, int copy) 1411 { 1412 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 1413 kfree(dev->desc, M_BUS); 1414 dev->flags &= ~DF_DESCMALLOCED; 1415 dev->desc = NULL; 1416 } 1417 1418 if (copy && desc) { 1419 dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT); 1420 if (dev->desc) { 1421 strcpy(dev->desc, desc); 1422 dev->flags |= DF_DESCMALLOCED; 1423 } 1424 } else { 1425 /* Avoid a -Wcast-qual warning */ 1426 dev->desc = (char *)(uintptr_t) desc; 1427 } 1428 1429 bus_data_generation_update(); 1430 } 1431 1432 void 1433 device_set_desc(device_t dev, const char* desc) 1434 { 1435 device_set_desc_internal(dev, desc, FALSE); 1436 } 1437 1438 void 1439 device_set_desc_copy(device_t dev, const char* desc) 1440 { 1441 device_set_desc_internal(dev, desc, TRUE); 1442 } 1443 1444 void 1445 device_set_flags(device_t dev, uint32_t flags) 1446 { 1447 dev->devflags = flags; 1448 } 1449 1450 void * 1451 device_get_softc(device_t dev) 1452 { 1453 return dev->softc; 1454 } 1455 1456 void 1457 device_set_softc(device_t dev, void *softc) 1458 { 1459 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 1460 kfree(dev->softc, M_BUS); 1461 dev->softc = softc; 1462 if (dev->softc) 1463 dev->flags |= DF_EXTERNALSOFTC; 1464 else 1465 dev->flags &= ~DF_EXTERNALSOFTC; 1466 } 1467 1468 void 1469 device_set_async_attach(device_t dev, int enable) 1470 { 1471 if (enable) 1472 dev->flags |= DF_ASYNCPROBE; 1473 else 1474 dev->flags &= ~DF_ASYNCPROBE; 1475 } 1476 1477 void * 1478 device_get_ivars(device_t dev) 1479 { 1480 return dev->ivars; 1481 } 1482 1483 void 1484 device_set_ivars(device_t dev, void * ivars) 1485 { 1486 if (!dev) 1487 return; 1488 1489 dev->ivars = ivars; 1490 } 1491 1492 device_state_t 1493 device_get_state(device_t dev) 1494 { 1495 return(dev->state); 1496 } 1497 1498 void 1499 device_enable(device_t dev) 1500 { 1501 dev->flags |= DF_ENABLED; 1502 } 1503 1504 void 1505 device_disable(device_t dev) 1506 { 1507 dev->flags &= ~DF_ENABLED; 1508 } 1509 1510 /* 1511 * YYY cannot block 1512 */ 1513 void 1514 device_busy(device_t dev) 1515 { 1516 if (dev->state < DS_ATTACHED) 1517 panic("device_busy: called for unattached device"); 1518 if (dev->busy == 0 && dev->parent) 1519 device_busy(dev->parent); 1520 dev->busy++; 1521 dev->state = DS_BUSY; 1522 } 1523 1524 /* 1525 * YYY cannot block 1526 */ 1527 void 1528 device_unbusy(device_t dev) 1529 { 1530 if (dev->state != DS_BUSY) 1531 panic("device_unbusy: called for non-busy device"); 1532 dev->busy--; 1533 if (dev->busy == 0) { 1534 if (dev->parent) 1535 device_unbusy(dev->parent); 1536 dev->state = DS_ATTACHED; 1537 } 1538 } 1539 1540 void 1541 device_quiet(device_t dev) 1542 { 1543 dev->flags |= DF_QUIET; 1544 } 1545 1546 void 1547 device_verbose(device_t dev) 1548 { 1549 dev->flags &= ~DF_QUIET; 1550 } 1551 1552 int 1553 device_is_quiet(device_t dev) 1554 { 1555 return((dev->flags & DF_QUIET) != 0); 1556 } 1557 1558 int 1559 device_is_enabled(device_t dev) 1560 { 1561 return((dev->flags & DF_ENABLED) != 0); 1562 } 1563 1564 int 1565 device_is_alive(device_t dev) 1566 { 1567 return(dev->state >= DS_ALIVE); 1568 } 1569 1570 int 1571 device_is_attached(device_t dev) 1572 { 1573 return(dev->state >= DS_ATTACHED); 1574 } 1575 1576 int 1577 device_set_devclass(device_t dev, const char *classname) 1578 { 1579 devclass_t dc; 1580 int error; 1581 1582 if (!classname) { 1583 if (dev->devclass) 1584 devclass_delete_device(dev->devclass, dev); 1585 return(0); 1586 } 1587 1588 if (dev->devclass) { 1589 kprintf("device_set_devclass: device class already set\n"); 1590 return(EINVAL); 1591 } 1592 1593 dc = devclass_find_internal(classname, NULL, TRUE); 1594 if (!dc) 1595 return(ENOMEM); 1596 1597 error = devclass_add_device(dc, dev); 1598 1599 bus_data_generation_update(); 1600 return(error); 1601 } 1602 1603 int 1604 device_set_driver(device_t dev, driver_t *driver) 1605 { 1606 if (dev->state >= DS_ATTACHED) 1607 return(EBUSY); 1608 1609 if (dev->driver == driver) 1610 return(0); 1611 1612 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 1613 kfree(dev->softc, M_BUS); 1614 dev->softc = NULL; 1615 } 1616 kobj_delete((kobj_t) dev, 0); 1617 dev->driver = driver; 1618 if (driver) { 1619 kobj_init((kobj_t) dev, (kobj_class_t) driver); 1620 if (!(dev->flags & DF_EXTERNALSOFTC)) { 1621 dev->softc = kmalloc(driver->size, M_BUS, 1622 M_INTWAIT | M_ZERO); 1623 if (!dev->softc) { 1624 kobj_delete((kobj_t)dev, 0); 1625 kobj_init((kobj_t) dev, &null_class); 1626 dev->driver = NULL; 1627 return(ENOMEM); 1628 } 1629 } 1630 } else { 1631 kobj_init((kobj_t) dev, &null_class); 1632 } 1633 1634 bus_data_generation_update(); 1635 return(0); 1636 } 1637 1638 int 1639 device_probe_and_attach(device_t dev) 1640 { 1641 device_t bus = dev->parent; 1642 int error = 0; 1643 1644 if (dev->state >= DS_ALIVE) 1645 return(0); 1646 1647 if ((dev->flags & DF_ENABLED) == 0) { 1648 if (bootverbose) { 1649 device_print_prettyname(dev); 1650 kprintf("not probed (disabled)\n"); 1651 } 1652 return(0); 1653 } 1654 1655 error = device_probe_child(bus, dev); 1656 if (error) { 1657 if (!(dev->flags & DF_DONENOMATCH)) { 1658 BUS_PROBE_NOMATCH(bus, dev); 1659 devnomatch(dev); 1660 dev->flags |= DF_DONENOMATCH; 1661 } 1662 return(error); 1663 } 1664 1665 /* 1666 * Output the exact device chain prior to the attach in case the 1667 * system locks up during attach, and generate the full info after 1668 * the attach so correct irq and other information is displayed. 1669 */ 1670 if (bootverbose && !device_is_quiet(dev)) { 1671 device_t tmp; 1672 1673 kprintf("%s", device_get_nameunit(dev)); 1674 for (tmp = dev->parent; tmp; tmp = tmp->parent) 1675 kprintf(".%s", device_get_nameunit(tmp)); 1676 kprintf("\n"); 1677 } 1678 if (!device_is_quiet(dev)) 1679 device_print_child(bus, dev); 1680 if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { 1681 kprintf("%s: probing asynchronously\n", 1682 device_get_nameunit(dev)); 1683 dev->state = DS_INPROGRESS; 1684 device_attach_async(dev); 1685 error = 0; 1686 } else { 1687 error = device_doattach(dev); 1688 } 1689 return(error); 1690 } 1691 1692 /* 1693 * Device is known to be alive, do the attach asynchronously. 1694 * 1695 * The MP lock is held by all threads. 1696 */ 1697 static void 1698 device_attach_async(device_t dev) 1699 { 1700 thread_t td; 1701 1702 atomic_add_int(&numasyncthreads, 1); 1703 lwkt_create(device_attach_thread, dev, &td, NULL, 1704 0, 0, (dev->desc ? dev->desc : "devattach")); 1705 } 1706 1707 static void 1708 device_attach_thread(void *arg) 1709 { 1710 device_t dev = arg; 1711 1712 (void)device_doattach(dev); 1713 atomic_subtract_int(&numasyncthreads, 1); 1714 wakeup(&numasyncthreads); 1715 } 1716 1717 /* 1718 * Device is known to be alive, do the attach (synchronous or asynchronous) 1719 */ 1720 static int 1721 device_doattach(device_t dev) 1722 { 1723 device_t bus = dev->parent; 1724 int hasclass = (dev->devclass != 0); 1725 int error; 1726 1727 error = DEVICE_ATTACH(dev); 1728 if (error == 0) { 1729 dev->state = DS_ATTACHED; 1730 if (bootverbose && !device_is_quiet(dev)) 1731 device_print_child(bus, dev); 1732 devadded(dev); 1733 } else { 1734 kprintf("device_probe_and_attach: %s%d attach returned %d\n", 1735 dev->driver->name, dev->unit, error); 1736 /* Unset the class that was set in device_probe_child */ 1737 if (!hasclass) 1738 device_set_devclass(dev, 0); 1739 device_set_driver(dev, NULL); 1740 dev->state = DS_NOTPRESENT; 1741 } 1742 return(error); 1743 } 1744 1745 int 1746 device_detach(device_t dev) 1747 { 1748 int error; 1749 1750 PDEBUG(("%s", DEVICENAME(dev))); 1751 if (dev->state == DS_BUSY) 1752 return(EBUSY); 1753 if (dev->state != DS_ATTACHED) 1754 return(0); 1755 1756 if ((error = DEVICE_DETACH(dev)) != 0) 1757 return(error); 1758 devremoved(dev); 1759 device_printf(dev, "detached\n"); 1760 if (dev->parent) 1761 BUS_CHILD_DETACHED(dev->parent, dev); 1762 1763 if (!(dev->flags & DF_FIXEDCLASS)) 1764 devclass_delete_device(dev->devclass, dev); 1765 1766 dev->state = DS_NOTPRESENT; 1767 device_set_driver(dev, NULL); 1768 1769 return(0); 1770 } 1771 1772 int 1773 device_shutdown(device_t dev) 1774 { 1775 if (dev->state < DS_ATTACHED) 1776 return 0; 1777 PDEBUG(("%s", DEVICENAME(dev))); 1778 return DEVICE_SHUTDOWN(dev); 1779 } 1780 1781 int 1782 device_set_unit(device_t dev, int unit) 1783 { 1784 devclass_t dc; 1785 int err; 1786 1787 dc = device_get_devclass(dev); 1788 if (unit < dc->maxunit && dc->devices[unit]) 1789 return(EBUSY); 1790 err = devclass_delete_device(dc, dev); 1791 if (err) 1792 return(err); 1793 dev->unit = unit; 1794 err = devclass_add_device(dc, dev); 1795 if (err) 1796 return(err); 1797 1798 bus_data_generation_update(); 1799 return(0); 1800 } 1801 1802 /*======================================*/ 1803 /* 1804 * Access functions for device resources. 1805 */ 1806 1807 /* Supplied by config(8) in ioconf.c */ 1808 extern struct config_device config_devtab[]; 1809 extern int devtab_count; 1810 1811 /* Runtime version */ 1812 struct config_device *devtab = config_devtab; 1813 1814 static int 1815 resource_new_name(const char *name, int unit) 1816 { 1817 struct config_device *new; 1818 1819 new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP, 1820 M_INTWAIT | M_ZERO); 1821 if (new == NULL) 1822 return(-1); 1823 if (devtab && devtab_count > 0) 1824 bcopy(devtab, new, devtab_count * sizeof(*new)); 1825 new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT); 1826 if (new[devtab_count].name == NULL) { 1827 kfree(new, M_TEMP); 1828 return(-1); 1829 } 1830 strcpy(new[devtab_count].name, name); 1831 new[devtab_count].unit = unit; 1832 new[devtab_count].resource_count = 0; 1833 new[devtab_count].resources = NULL; 1834 if (devtab && devtab != config_devtab) 1835 kfree(devtab, M_TEMP); 1836 devtab = new; 1837 return devtab_count++; 1838 } 1839 1840 static int 1841 resource_new_resname(int j, const char *resname, resource_type type) 1842 { 1843 struct config_resource *new; 1844 int i; 1845 1846 i = devtab[j].resource_count; 1847 new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); 1848 if (new == NULL) 1849 return(-1); 1850 if (devtab[j].resources && i > 0) 1851 bcopy(devtab[j].resources, new, i * sizeof(*new)); 1852 new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT); 1853 if (new[i].name == NULL) { 1854 kfree(new, M_TEMP); 1855 return(-1); 1856 } 1857 strcpy(new[i].name, resname); 1858 new[i].type = type; 1859 if (devtab[j].resources) 1860 kfree(devtab[j].resources, M_TEMP); 1861 devtab[j].resources = new; 1862 devtab[j].resource_count = i + 1; 1863 return(i); 1864 } 1865 1866 static int 1867 resource_match_string(int i, const char *resname, const char *value) 1868 { 1869 int j; 1870 struct config_resource *res; 1871 1872 for (j = 0, res = devtab[i].resources; 1873 j < devtab[i].resource_count; j++, res++) 1874 if (!strcmp(res->name, resname) 1875 && res->type == RES_STRING 1876 && !strcmp(res->u.stringval, value)) 1877 return(j); 1878 return(-1); 1879 } 1880 1881 static int 1882 resource_find(const char *name, int unit, const char *resname, 1883 struct config_resource **result) 1884 { 1885 int i, j; 1886 struct config_resource *res; 1887 1888 /* 1889 * First check specific instances, then generic. 1890 */ 1891 for (i = 0; i < devtab_count; i++) { 1892 if (devtab[i].unit < 0) 1893 continue; 1894 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1895 res = devtab[i].resources; 1896 for (j = 0; j < devtab[i].resource_count; j++, res++) 1897 if (!strcmp(res->name, resname)) { 1898 *result = res; 1899 return(0); 1900 } 1901 } 1902 } 1903 for (i = 0; i < devtab_count; i++) { 1904 if (devtab[i].unit >= 0) 1905 continue; 1906 /* XXX should this `&& devtab[i].unit == unit' be here? */ 1907 /* XXX if so, then the generic match does nothing */ 1908 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1909 res = devtab[i].resources; 1910 for (j = 0; j < devtab[i].resource_count; j++, res++) 1911 if (!strcmp(res->name, resname)) { 1912 *result = res; 1913 return(0); 1914 } 1915 } 1916 } 1917 return(ENOENT); 1918 } 1919 1920 int 1921 resource_int_value(const char *name, int unit, const char *resname, int *result) 1922 { 1923 int error; 1924 struct config_resource *res; 1925 1926 if ((error = resource_find(name, unit, resname, &res)) != 0) 1927 return(error); 1928 if (res->type != RES_INT) 1929 return(EFTYPE); 1930 *result = res->u.intval; 1931 return(0); 1932 } 1933 1934 int 1935 resource_long_value(const char *name, int unit, const char *resname, 1936 long *result) 1937 { 1938 int error; 1939 struct config_resource *res; 1940 1941 if ((error = resource_find(name, unit, resname, &res)) != 0) 1942 return(error); 1943 if (res->type != RES_LONG) 1944 return(EFTYPE); 1945 *result = res->u.longval; 1946 return(0); 1947 } 1948 1949 int 1950 resource_string_value(const char *name, int unit, const char *resname, 1951 char **result) 1952 { 1953 int error; 1954 struct config_resource *res; 1955 1956 if ((error = resource_find(name, unit, resname, &res)) != 0) 1957 return(error); 1958 if (res->type != RES_STRING) 1959 return(EFTYPE); 1960 *result = res->u.stringval; 1961 return(0); 1962 } 1963 1964 int 1965 resource_query_string(int i, const char *resname, const char *value) 1966 { 1967 if (i < 0) 1968 i = 0; 1969 else 1970 i = i + 1; 1971 for (; i < devtab_count; i++) 1972 if (resource_match_string(i, resname, value) >= 0) 1973 return(i); 1974 return(-1); 1975 } 1976 1977 int 1978 resource_locate(int i, const char *resname) 1979 { 1980 if (i < 0) 1981 i = 0; 1982 else 1983 i = i + 1; 1984 for (; i < devtab_count; i++) 1985 if (!strcmp(devtab[i].name, resname)) 1986 return(i); 1987 return(-1); 1988 } 1989 1990 int 1991 resource_count(void) 1992 { 1993 return(devtab_count); 1994 } 1995 1996 char * 1997 resource_query_name(int i) 1998 { 1999 return(devtab[i].name); 2000 } 2001 2002 int 2003 resource_query_unit(int i) 2004 { 2005 return(devtab[i].unit); 2006 } 2007 2008 static int 2009 resource_create(const char *name, int unit, const char *resname, 2010 resource_type type, struct config_resource **result) 2011 { 2012 int i, j; 2013 struct config_resource *res = NULL; 2014 2015 for (i = 0; i < devtab_count; i++) 2016 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 2017 res = devtab[i].resources; 2018 break; 2019 } 2020 if (res == NULL) { 2021 i = resource_new_name(name, unit); 2022 if (i < 0) 2023 return(ENOMEM); 2024 res = devtab[i].resources; 2025 } 2026 for (j = 0; j < devtab[i].resource_count; j++, res++) 2027 if (!strcmp(res->name, resname)) { 2028 *result = res; 2029 return(0); 2030 } 2031 j = resource_new_resname(i, resname, type); 2032 if (j < 0) 2033 return(ENOMEM); 2034 res = &devtab[i].resources[j]; 2035 *result = res; 2036 return(0); 2037 } 2038 2039 int 2040 resource_set_int(const char *name, int unit, const char *resname, int value) 2041 { 2042 int error; 2043 struct config_resource *res; 2044 2045 error = resource_create(name, unit, resname, RES_INT, &res); 2046 if (error) 2047 return(error); 2048 if (res->type != RES_INT) 2049 return(EFTYPE); 2050 res->u.intval = value; 2051 return(0); 2052 } 2053 2054 int 2055 resource_set_long(const char *name, int unit, const char *resname, long value) 2056 { 2057 int error; 2058 struct config_resource *res; 2059 2060 error = resource_create(name, unit, resname, RES_LONG, &res); 2061 if (error) 2062 return(error); 2063 if (res->type != RES_LONG) 2064 return(EFTYPE); 2065 res->u.longval = value; 2066 return(0); 2067 } 2068 2069 int 2070 resource_set_string(const char *name, int unit, const char *resname, 2071 const char *value) 2072 { 2073 int error; 2074 struct config_resource *res; 2075 2076 error = resource_create(name, unit, resname, RES_STRING, &res); 2077 if (error) 2078 return(error); 2079 if (res->type != RES_STRING) 2080 return(EFTYPE); 2081 if (res->u.stringval) 2082 kfree(res->u.stringval, M_TEMP); 2083 res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT); 2084 if (res->u.stringval == NULL) 2085 return(ENOMEM); 2086 strcpy(res->u.stringval, value); 2087 return(0); 2088 } 2089 2090 static void 2091 resource_cfgload(void *dummy __unused) 2092 { 2093 struct config_resource *res, *cfgres; 2094 int i, j; 2095 int error; 2096 char *name, *resname; 2097 int unit; 2098 resource_type type; 2099 char *stringval; 2100 int config_devtab_count; 2101 2102 config_devtab_count = devtab_count; 2103 devtab = NULL; 2104 devtab_count = 0; 2105 2106 for (i = 0; i < config_devtab_count; i++) { 2107 name = config_devtab[i].name; 2108 unit = config_devtab[i].unit; 2109 2110 for (j = 0; j < config_devtab[i].resource_count; j++) { 2111 cfgres = config_devtab[i].resources; 2112 resname = cfgres[j].name; 2113 type = cfgres[j].type; 2114 error = resource_create(name, unit, resname, type, 2115 &res); 2116 if (error) { 2117 kprintf("create resource %s%d: error %d\n", 2118 name, unit, error); 2119 continue; 2120 } 2121 if (res->type != type) { 2122 kprintf("type mismatch %s%d: %d != %d\n", 2123 name, unit, res->type, type); 2124 continue; 2125 } 2126 switch (type) { 2127 case RES_INT: 2128 res->u.intval = cfgres[j].u.intval; 2129 break; 2130 case RES_LONG: 2131 res->u.longval = cfgres[j].u.longval; 2132 break; 2133 case RES_STRING: 2134 if (res->u.stringval) 2135 kfree(res->u.stringval, M_TEMP); 2136 stringval = cfgres[j].u.stringval; 2137 res->u.stringval = kmalloc(strlen(stringval) + 1, 2138 M_TEMP, M_INTWAIT); 2139 if (res->u.stringval == NULL) 2140 break; 2141 strcpy(res->u.stringval, stringval); 2142 break; 2143 default: 2144 panic("unknown resource type %d", type); 2145 } 2146 } 2147 } 2148 } 2149 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0) 2150 2151 2152 /*======================================*/ 2153 /* 2154 * Some useful method implementations to make life easier for bus drivers. 2155 */ 2156 2157 void 2158 resource_list_init(struct resource_list *rl) 2159 { 2160 SLIST_INIT(rl); 2161 } 2162 2163 void 2164 resource_list_free(struct resource_list *rl) 2165 { 2166 struct resource_list_entry *rle; 2167 2168 while ((rle = SLIST_FIRST(rl)) != NULL) { 2169 if (rle->res) 2170 panic("resource_list_free: resource entry is busy"); 2171 SLIST_REMOVE_HEAD(rl, link); 2172 kfree(rle, M_BUS); 2173 } 2174 } 2175 2176 void 2177 resource_list_add(struct resource_list *rl, 2178 int type, int rid, 2179 u_long start, u_long end, u_long count) 2180 { 2181 struct resource_list_entry *rle; 2182 2183 rle = resource_list_find(rl, type, rid); 2184 if (rle == NULL) { 2185 rle = kmalloc(sizeof(struct resource_list_entry), M_BUS, 2186 M_INTWAIT); 2187 if (!rle) 2188 panic("resource_list_add: can't record entry"); 2189 SLIST_INSERT_HEAD(rl, rle, link); 2190 rle->type = type; 2191 rle->rid = rid; 2192 rle->res = NULL; 2193 } 2194 2195 if (rle->res) 2196 panic("resource_list_add: resource entry is busy"); 2197 2198 rle->start = start; 2199 rle->end = end; 2200 rle->count = count; 2201 } 2202 2203 struct resource_list_entry* 2204 resource_list_find(struct resource_list *rl, 2205 int type, int rid) 2206 { 2207 struct resource_list_entry *rle; 2208 2209 SLIST_FOREACH(rle, rl, link) 2210 if (rle->type == type && rle->rid == rid) 2211 return(rle); 2212 return(NULL); 2213 } 2214 2215 void 2216 resource_list_delete(struct resource_list *rl, 2217 int type, int rid) 2218 { 2219 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 2220 2221 if (rle) { 2222 if (rle->res != NULL) 2223 panic("resource_list_delete: resource has not been released"); 2224 SLIST_REMOVE(rl, rle, resource_list_entry, link); 2225 kfree(rle, M_BUS); 2226 } 2227 } 2228 2229 struct resource * 2230 resource_list_alloc(struct resource_list *rl, 2231 device_t bus, device_t child, 2232 int type, int *rid, 2233 u_long start, u_long end, 2234 u_long count, u_int flags) 2235 { 2236 struct resource_list_entry *rle = 0; 2237 int passthrough = (device_get_parent(child) != bus); 2238 int isdefault = (start == 0UL && end == ~0UL); 2239 2240 if (passthrough) { 2241 return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2242 type, rid, 2243 start, end, count, flags)); 2244 } 2245 2246 rle = resource_list_find(rl, type, *rid); 2247 2248 if (!rle) 2249 return(0); /* no resource of that type/rid */ 2250 2251 if (rle->res) 2252 panic("resource_list_alloc: resource entry is busy"); 2253 2254 if (isdefault) { 2255 start = rle->start; 2256 count = max(count, rle->count); 2257 end = max(rle->end, start + count - 1); 2258 } 2259 2260 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 2261 type, rid, start, end, count, flags); 2262 2263 /* 2264 * Record the new range. 2265 */ 2266 if (rle->res) { 2267 rle->start = rman_get_start(rle->res); 2268 rle->end = rman_get_end(rle->res); 2269 rle->count = count; 2270 } 2271 2272 return(rle->res); 2273 } 2274 2275 int 2276 resource_list_release(struct resource_list *rl, 2277 device_t bus, device_t child, 2278 int type, int rid, struct resource *res) 2279 { 2280 struct resource_list_entry *rle = 0; 2281 int passthrough = (device_get_parent(child) != bus); 2282 int error; 2283 2284 if (passthrough) { 2285 return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2286 type, rid, res)); 2287 } 2288 2289 rle = resource_list_find(rl, type, rid); 2290 2291 if (!rle) 2292 panic("resource_list_release: can't find resource"); 2293 if (!rle->res) 2294 panic("resource_list_release: resource entry is not busy"); 2295 2296 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 2297 type, rid, res); 2298 if (error) 2299 return(error); 2300 2301 rle->res = NULL; 2302 return(0); 2303 } 2304 2305 int 2306 resource_list_print_type(struct resource_list *rl, const char *name, int type, 2307 const char *format) 2308 { 2309 struct resource_list_entry *rle; 2310 int printed, retval; 2311 2312 printed = 0; 2313 retval = 0; 2314 /* Yes, this is kinda cheating */ 2315 SLIST_FOREACH(rle, rl, link) { 2316 if (rle->type == type) { 2317 if (printed == 0) 2318 retval += kprintf(" %s ", name); 2319 else 2320 retval += kprintf(","); 2321 printed++; 2322 retval += kprintf(format, rle->start); 2323 if (rle->count > 1) { 2324 retval += kprintf("-"); 2325 retval += kprintf(format, rle->start + 2326 rle->count - 1); 2327 } 2328 } 2329 } 2330 return(retval); 2331 } 2332 2333 /* 2334 * Generic driver/device identify functions. These will install a device 2335 * rendezvous point under the parent using the same name as the driver 2336 * name, which will at a later time be probed and attached. 2337 * 2338 * These functions are used when the parent does not 'scan' its bus for 2339 * matching devices, or for the particular devices using these functions, 2340 * or when the device is a pseudo or synthesized device (such as can be 2341 * found under firewire and ppbus). 2342 */ 2343 int 2344 bus_generic_identify(driver_t *driver, device_t parent) 2345 { 2346 if (parent->state == DS_ATTACHED) 2347 return (0); 2348 BUS_ADD_CHILD(parent, parent, 0, driver->name, -1); 2349 return (0); 2350 } 2351 2352 int 2353 bus_generic_identify_sameunit(driver_t *driver, device_t parent) 2354 { 2355 if (parent->state == DS_ATTACHED) 2356 return (0); 2357 BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent)); 2358 return (0); 2359 } 2360 2361 /* 2362 * Call DEVICE_IDENTIFY for each driver. 2363 */ 2364 int 2365 bus_generic_probe(device_t dev) 2366 { 2367 devclass_t dc = dev->devclass; 2368 driverlink_t dl; 2369 2370 TAILQ_FOREACH(dl, &dc->drivers, link) { 2371 DEVICE_IDENTIFY(dl->driver, dev); 2372 } 2373 2374 return(0); 2375 } 2376 2377 /* 2378 * This is an aweful hack due to the isa bus and autoconf code not 2379 * probing the ISA devices until after everything else has configured. 2380 * The ISA bus did a dummy attach long ago so we have to set it back 2381 * to an earlier state so the probe thinks its the initial probe and 2382 * not a bus rescan. 2383 * 2384 * XXX remove by properly defering the ISA bus scan. 2385 */ 2386 int 2387 bus_generic_probe_hack(device_t dev) 2388 { 2389 if (dev->state == DS_ATTACHED) { 2390 dev->state = DS_ALIVE; 2391 bus_generic_probe(dev); 2392 dev->state = DS_ATTACHED; 2393 } 2394 return (0); 2395 } 2396 2397 int 2398 bus_generic_attach(device_t dev) 2399 { 2400 device_t child; 2401 2402 TAILQ_FOREACH(child, &dev->children, link) { 2403 device_probe_and_attach(child); 2404 } 2405 2406 return(0); 2407 } 2408 2409 int 2410 bus_generic_detach(device_t dev) 2411 { 2412 device_t child; 2413 int error; 2414 2415 if (dev->state != DS_ATTACHED) 2416 return(EBUSY); 2417 2418 TAILQ_FOREACH(child, &dev->children, link) 2419 if ((error = device_detach(child)) != 0) 2420 return(error); 2421 2422 return 0; 2423 } 2424 2425 int 2426 bus_generic_shutdown(device_t dev) 2427 { 2428 device_t child; 2429 2430 TAILQ_FOREACH(child, &dev->children, link) 2431 device_shutdown(child); 2432 2433 return(0); 2434 } 2435 2436 int 2437 bus_generic_suspend(device_t dev) 2438 { 2439 int error; 2440 device_t child, child2; 2441 2442 TAILQ_FOREACH(child, &dev->children, link) { 2443 error = DEVICE_SUSPEND(child); 2444 if (error) { 2445 for (child2 = TAILQ_FIRST(&dev->children); 2446 child2 && child2 != child; 2447 child2 = TAILQ_NEXT(child2, link)) 2448 DEVICE_RESUME(child2); 2449 return(error); 2450 } 2451 } 2452 return(0); 2453 } 2454 2455 int 2456 bus_generic_resume(device_t dev) 2457 { 2458 device_t child; 2459 2460 TAILQ_FOREACH(child, &dev->children, link) 2461 DEVICE_RESUME(child); 2462 /* if resume fails, there's nothing we can usefully do... */ 2463 2464 return(0); 2465 } 2466 2467 int 2468 bus_print_child_header(device_t dev, device_t child) 2469 { 2470 int retval = 0; 2471 2472 if (device_get_desc(child)) 2473 retval += device_printf(child, "<%s>", device_get_desc(child)); 2474 else 2475 retval += kprintf("%s", device_get_nameunit(child)); 2476 if (bootverbose) { 2477 if (child->state != DS_ATTACHED) 2478 kprintf(" [tentative]"); 2479 else 2480 kprintf(" [attached!]"); 2481 } 2482 return(retval); 2483 } 2484 2485 int 2486 bus_print_child_footer(device_t dev, device_t child) 2487 { 2488 return(kprintf(" on %s\n", device_get_nameunit(dev))); 2489 } 2490 2491 device_t 2492 bus_generic_add_child(device_t dev, device_t child, int order, 2493 const char *name, int unit) 2494 { 2495 if (dev->parent) 2496 dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit); 2497 else 2498 dev = device_add_child_ordered(child, order, name, unit); 2499 return(dev); 2500 2501 } 2502 2503 int 2504 bus_generic_print_child(device_t dev, device_t child) 2505 { 2506 int retval = 0; 2507 2508 retval += bus_print_child_header(dev, child); 2509 retval += bus_print_child_footer(dev, child); 2510 2511 return(retval); 2512 } 2513 2514 int 2515 bus_generic_read_ivar(device_t dev, device_t child, int index, 2516 uintptr_t * result) 2517 { 2518 int error; 2519 2520 if (dev->parent) 2521 error = BUS_READ_IVAR(dev->parent, child, index, result); 2522 else 2523 error = ENOENT; 2524 return (error); 2525 } 2526 2527 int 2528 bus_generic_write_ivar(device_t dev, device_t child, int index, 2529 uintptr_t value) 2530 { 2531 int error; 2532 2533 if (dev->parent) 2534 error = BUS_WRITE_IVAR(dev->parent, child, index, value); 2535 else 2536 error = ENOENT; 2537 return (error); 2538 } 2539 2540 /* 2541 * Resource list are used for iterations, do not recurse. 2542 */ 2543 struct resource_list * 2544 bus_generic_get_resource_list(device_t dev, device_t child) 2545 { 2546 return (NULL); 2547 } 2548 2549 void 2550 bus_generic_driver_added(device_t dev, driver_t *driver) 2551 { 2552 device_t child; 2553 2554 DEVICE_IDENTIFY(driver, dev); 2555 TAILQ_FOREACH(child, &dev->children, link) { 2556 if (child->state == DS_NOTPRESENT) 2557 device_probe_and_attach(child); 2558 } 2559 } 2560 2561 int 2562 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2563 int flags, driver_intr_t *intr, void *arg, 2564 void **cookiep, lwkt_serialize_t serializer) 2565 { 2566 /* Propagate up the bus hierarchy until someone handles it. */ 2567 if (dev->parent) 2568 return(BUS_SETUP_INTR(dev->parent, child, irq, flags, 2569 intr, arg, cookiep, serializer)); 2570 else 2571 return(EINVAL); 2572 } 2573 2574 int 2575 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2576 void *cookie) 2577 { 2578 /* Propagate up the bus hierarchy until someone handles it. */ 2579 if (dev->parent) 2580 return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2581 else 2582 return(EINVAL); 2583 } 2584 2585 int 2586 bus_generic_disable_intr(device_t dev, device_t child, void *cookie) 2587 { 2588 if (dev->parent) 2589 return(BUS_DISABLE_INTR(dev->parent, child, cookie)); 2590 else 2591 return(0); 2592 } 2593 2594 void 2595 bus_generic_enable_intr(device_t dev, device_t child, void *cookie) 2596 { 2597 if (dev->parent) 2598 BUS_ENABLE_INTR(dev->parent, child, cookie); 2599 } 2600 2601 int 2602 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig, 2603 enum intr_polarity pol) 2604 { 2605 /* Propagate up the bus hierarchy until someone handles it. */ 2606 if (dev->parent) 2607 return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol)); 2608 else 2609 return(EINVAL); 2610 } 2611 2612 struct resource * 2613 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2614 u_long start, u_long end, u_long count, u_int flags) 2615 { 2616 /* Propagate up the bus hierarchy until someone handles it. */ 2617 if (dev->parent) 2618 return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2619 start, end, count, flags)); 2620 else 2621 return(NULL); 2622 } 2623 2624 int 2625 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2626 struct resource *r) 2627 { 2628 /* Propagate up the bus hierarchy until someone handles it. */ 2629 if (dev->parent) 2630 return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); 2631 else 2632 return(EINVAL); 2633 } 2634 2635 int 2636 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2637 struct resource *r) 2638 { 2639 /* Propagate up the bus hierarchy until someone handles it. */ 2640 if (dev->parent) 2641 return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); 2642 else 2643 return(EINVAL); 2644 } 2645 2646 int 2647 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2648 int rid, struct resource *r) 2649 { 2650 /* Propagate up the bus hierarchy until someone handles it. */ 2651 if (dev->parent) 2652 return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2653 r)); 2654 else 2655 return(EINVAL); 2656 } 2657 2658 int 2659 bus_generic_get_resource(device_t dev, device_t child, int type, int rid, 2660 u_long *startp, u_long *countp) 2661 { 2662 int error; 2663 2664 error = ENOENT; 2665 if (dev->parent) { 2666 error = BUS_GET_RESOURCE(dev->parent, child, type, rid, 2667 startp, countp); 2668 } 2669 return (error); 2670 } 2671 2672 int 2673 bus_generic_set_resource(device_t dev, device_t child, int type, int rid, 2674 u_long start, u_long count) 2675 { 2676 int error; 2677 2678 error = EINVAL; 2679 if (dev->parent) { 2680 error = BUS_SET_RESOURCE(dev->parent, child, type, rid, 2681 start, count); 2682 } 2683 return (error); 2684 } 2685 2686 void 2687 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid) 2688 { 2689 if (dev->parent) 2690 BUS_DELETE_RESOURCE(dev, child, type, rid); 2691 } 2692 2693 int 2694 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 2695 u_long *startp, u_long *countp) 2696 { 2697 struct resource_list *rl = NULL; 2698 struct resource_list_entry *rle = NULL; 2699 2700 rl = BUS_GET_RESOURCE_LIST(dev, child); 2701 if (!rl) 2702 return(EINVAL); 2703 2704 rle = resource_list_find(rl, type, rid); 2705 if (!rle) 2706 return(ENOENT); 2707 2708 if (startp) 2709 *startp = rle->start; 2710 if (countp) 2711 *countp = rle->count; 2712 2713 return(0); 2714 } 2715 2716 int 2717 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 2718 u_long start, u_long count) 2719 { 2720 struct resource_list *rl = NULL; 2721 2722 rl = BUS_GET_RESOURCE_LIST(dev, child); 2723 if (!rl) 2724 return(EINVAL); 2725 2726 resource_list_add(rl, type, rid, start, (start + count - 1), count); 2727 2728 return(0); 2729 } 2730 2731 void 2732 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 2733 { 2734 struct resource_list *rl = NULL; 2735 2736 rl = BUS_GET_RESOURCE_LIST(dev, child); 2737 if (!rl) 2738 return; 2739 2740 resource_list_delete(rl, type, rid); 2741 } 2742 2743 int 2744 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 2745 int rid, struct resource *r) 2746 { 2747 struct resource_list *rl = NULL; 2748 2749 rl = BUS_GET_RESOURCE_LIST(dev, child); 2750 if (!rl) 2751 return(EINVAL); 2752 2753 return(resource_list_release(rl, dev, child, type, rid, r)); 2754 } 2755 2756 struct resource * 2757 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 2758 int *rid, u_long start, u_long end, u_long count, u_int flags) 2759 { 2760 struct resource_list *rl = NULL; 2761 2762 rl = BUS_GET_RESOURCE_LIST(dev, child); 2763 if (!rl) 2764 return(NULL); 2765 2766 return(resource_list_alloc(rl, dev, child, type, rid, 2767 start, end, count, flags)); 2768 } 2769 2770 int 2771 bus_generic_child_present(device_t bus, device_t child) 2772 { 2773 return(BUS_CHILD_PRESENT(device_get_parent(bus), bus)); 2774 } 2775 2776 2777 /* 2778 * Some convenience functions to make it easier for drivers to use the 2779 * resource-management functions. All these really do is hide the 2780 * indirection through the parent's method table, making for slightly 2781 * less-wordy code. In the future, it might make sense for this code 2782 * to maintain some sort of a list of resources allocated by each device. 2783 */ 2784 int 2785 bus_alloc_resources(device_t dev, struct resource_spec *rs, 2786 struct resource **res) 2787 { 2788 int i; 2789 2790 for (i = 0; rs[i].type != -1; i++) 2791 res[i] = NULL; 2792 for (i = 0; rs[i].type != -1; i++) { 2793 res[i] = bus_alloc_resource_any(dev, 2794 rs[i].type, &rs[i].rid, rs[i].flags); 2795 if (res[i] == NULL) { 2796 bus_release_resources(dev, rs, res); 2797 return (ENXIO); 2798 } 2799 } 2800 return (0); 2801 } 2802 2803 void 2804 bus_release_resources(device_t dev, const struct resource_spec *rs, 2805 struct resource **res) 2806 { 2807 int i; 2808 2809 for (i = 0; rs[i].type != -1; i++) 2810 if (res[i] != NULL) { 2811 bus_release_resource( 2812 dev, rs[i].type, rs[i].rid, res[i]); 2813 res[i] = NULL; 2814 } 2815 } 2816 2817 struct resource * 2818 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 2819 u_long count, u_int flags) 2820 { 2821 if (dev->parent == 0) 2822 return(0); 2823 return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 2824 count, flags)); 2825 } 2826 2827 int 2828 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 2829 { 2830 if (dev->parent == 0) 2831 return(EINVAL); 2832 return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2833 } 2834 2835 int 2836 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 2837 { 2838 if (dev->parent == 0) 2839 return(EINVAL); 2840 return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2841 } 2842 2843 int 2844 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 2845 { 2846 if (dev->parent == 0) 2847 return(EINVAL); 2848 return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 2849 } 2850 2851 int 2852 bus_setup_intr(device_t dev, struct resource *r, int flags, 2853 driver_intr_t handler, void *arg, 2854 void **cookiep, lwkt_serialize_t serializer) 2855 { 2856 if (dev->parent == 0) 2857 return(EINVAL); 2858 return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, 2859 cookiep, serializer)); 2860 } 2861 2862 int 2863 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 2864 { 2865 if (dev->parent == 0) 2866 return(EINVAL); 2867 return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 2868 } 2869 2870 void 2871 bus_enable_intr(device_t dev, void *cookie) 2872 { 2873 if (dev->parent) 2874 BUS_ENABLE_INTR(dev->parent, dev, cookie); 2875 } 2876 2877 int 2878 bus_disable_intr(device_t dev, void *cookie) 2879 { 2880 if (dev->parent) 2881 return(BUS_DISABLE_INTR(dev->parent, dev, cookie)); 2882 else 2883 return(0); 2884 } 2885 2886 int 2887 bus_set_resource(device_t dev, int type, int rid, 2888 u_long start, u_long count) 2889 { 2890 return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 2891 start, count)); 2892 } 2893 2894 int 2895 bus_get_resource(device_t dev, int type, int rid, 2896 u_long *startp, u_long *countp) 2897 { 2898 return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2899 startp, countp)); 2900 } 2901 2902 u_long 2903 bus_get_resource_start(device_t dev, int type, int rid) 2904 { 2905 u_long start, count; 2906 int error; 2907 2908 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2909 &start, &count); 2910 if (error) 2911 return(0); 2912 return(start); 2913 } 2914 2915 u_long 2916 bus_get_resource_count(device_t dev, int type, int rid) 2917 { 2918 u_long start, count; 2919 int error; 2920 2921 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2922 &start, &count); 2923 if (error) 2924 return(0); 2925 return(count); 2926 } 2927 2928 void 2929 bus_delete_resource(device_t dev, int type, int rid) 2930 { 2931 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 2932 } 2933 2934 int 2935 bus_child_present(device_t child) 2936 { 2937 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 2938 } 2939 2940 int 2941 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 2942 { 2943 device_t parent; 2944 2945 parent = device_get_parent(child); 2946 if (parent == NULL) { 2947 *buf = '\0'; 2948 return (0); 2949 } 2950 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 2951 } 2952 2953 int 2954 bus_child_location_str(device_t child, char *buf, size_t buflen) 2955 { 2956 device_t parent; 2957 2958 parent = device_get_parent(child); 2959 if (parent == NULL) { 2960 *buf = '\0'; 2961 return (0); 2962 } 2963 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 2964 } 2965 2966 static int 2967 root_print_child(device_t dev, device_t child) 2968 { 2969 return(0); 2970 } 2971 2972 static int 2973 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 2974 void **cookiep, lwkt_serialize_t serializer) 2975 { 2976 /* 2977 * If an interrupt mapping gets to here something bad has happened. 2978 */ 2979 panic("root_setup_intr"); 2980 } 2981 2982 /* 2983 * If we get here, assume that the device is permanant and really is 2984 * present in the system. Removable bus drivers are expected to intercept 2985 * this call long before it gets here. We return -1 so that drivers that 2986 * really care can check vs -1 or some ERRNO returned higher in the food 2987 * chain. 2988 */ 2989 static int 2990 root_child_present(device_t dev, device_t child) 2991 { 2992 return(-1); 2993 } 2994 2995 /* 2996 * XXX NOTE! other defaults may be set in bus_if.m 2997 */ 2998 static kobj_method_t root_methods[] = { 2999 /* Device interface */ 3000 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 3001 KOBJMETHOD(device_suspend, bus_generic_suspend), 3002 KOBJMETHOD(device_resume, bus_generic_resume), 3003 3004 /* Bus interface */ 3005 KOBJMETHOD(bus_add_child, bus_generic_add_child), 3006 KOBJMETHOD(bus_print_child, root_print_child), 3007 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 3008 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 3009 KOBJMETHOD(bus_setup_intr, root_setup_intr), 3010 KOBJMETHOD(bus_child_present, root_child_present), 3011 3012 { 0, 0 } 3013 }; 3014 3015 static driver_t root_driver = { 3016 "root", 3017 root_methods, 3018 1, /* no softc */ 3019 }; 3020 3021 device_t root_bus; 3022 devclass_t root_devclass; 3023 3024 static int 3025 root_bus_module_handler(module_t mod, int what, void* arg) 3026 { 3027 switch (what) { 3028 case MOD_LOAD: 3029 TAILQ_INIT(&bus_data_devices); 3030 root_bus = make_device(NULL, "root", 0); 3031 root_bus->desc = "System root bus"; 3032 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 3033 root_bus->driver = &root_driver; 3034 root_bus->state = DS_ALIVE; 3035 root_devclass = devclass_find_internal("root", NULL, FALSE); 3036 devinit(); 3037 return(0); 3038 3039 case MOD_SHUTDOWN: 3040 device_shutdown(root_bus); 3041 return(0); 3042 default: 3043 return(0); 3044 } 3045 } 3046 3047 static moduledata_t root_bus_mod = { 3048 "rootbus", 3049 root_bus_module_handler, 3050 0 3051 }; 3052 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 3053 3054 void 3055 root_bus_configure(void) 3056 { 3057 int warncount; 3058 device_t dev; 3059 3060 PDEBUG((".")); 3061 3062 /* 3063 * handle device_identify based device attachments to the root_bus 3064 * (typically nexus). 3065 */ 3066 bus_generic_probe(root_bus); 3067 3068 /* 3069 * Probe and attach the devices under root_bus. 3070 */ 3071 TAILQ_FOREACH(dev, &root_bus->children, link) { 3072 device_probe_and_attach(dev); 3073 } 3074 3075 /* 3076 * Wait for all asynchronous attaches to complete. If we don't 3077 * our legacy ISA bus scan could steal device unit numbers or 3078 * even I/O ports. 3079 */ 3080 warncount = 10; 3081 if (numasyncthreads) 3082 kprintf("Waiting for async drivers to attach\n"); 3083 while (numasyncthreads > 0) { 3084 if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK) 3085 --warncount; 3086 if (warncount == 0) { 3087 kprintf("Warning: Still waiting for %d " 3088 "drivers to attach\n", numasyncthreads); 3089 } else if (warncount == -30) { 3090 kprintf("Giving up on %d drivers\n", numasyncthreads); 3091 break; 3092 } 3093 } 3094 root_bus->state = DS_ATTACHED; 3095 } 3096 3097 int 3098 driver_module_handler(module_t mod, int what, void *arg) 3099 { 3100 int error; 3101 struct driver_module_data *dmd; 3102 devclass_t bus_devclass; 3103 kobj_class_t driver; 3104 const char *parentname; 3105 3106 dmd = (struct driver_module_data *)arg; 3107 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 3108 error = 0; 3109 3110 switch (what) { 3111 case MOD_LOAD: 3112 if (dmd->dmd_chainevh) 3113 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3114 3115 driver = dmd->dmd_driver; 3116 PDEBUG(("Loading module: driver %s on bus %s", 3117 DRIVERNAME(driver), dmd->dmd_busname)); 3118 3119 /* 3120 * If the driver has any base classes, make the 3121 * devclass inherit from the devclass of the driver's 3122 * first base class. This will allow the system to 3123 * search for drivers in both devclasses for children 3124 * of a device using this driver. 3125 */ 3126 if (driver->baseclasses) 3127 parentname = driver->baseclasses[0]->name; 3128 else 3129 parentname = NULL; 3130 *dmd->dmd_devclass = devclass_find_internal(driver->name, 3131 parentname, TRUE); 3132 3133 error = devclass_add_driver(bus_devclass, driver); 3134 if (error) 3135 break; 3136 break; 3137 3138 case MOD_UNLOAD: 3139 PDEBUG(("Unloading module: driver %s from bus %s", 3140 DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); 3141 error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); 3142 3143 if (!error && dmd->dmd_chainevh) 3144 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 3145 break; 3146 } 3147 3148 return (error); 3149 } 3150 3151 #ifdef BUS_DEBUG 3152 3153 /* 3154 * The _short versions avoid iteration by not calling anything that prints 3155 * more than oneliners. I love oneliners. 3156 */ 3157 3158 static void 3159 print_device_short(device_t dev, int indent) 3160 { 3161 if (!dev) 3162 return; 3163 3164 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 3165 dev->unit, dev->desc, 3166 (dev->parent? "":"no "), 3167 (TAILQ_EMPTY(&dev->children)? "no ":""), 3168 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 3169 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 3170 (dev->flags&DF_WILDCARD? "wildcard,":""), 3171 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 3172 (dev->ivars? "":"no "), 3173 (dev->softc? "":"no "), 3174 dev->busy)); 3175 } 3176 3177 static void 3178 print_device(device_t dev, int indent) 3179 { 3180 if (!dev) 3181 return; 3182 3183 print_device_short(dev, indent); 3184 3185 indentprintf(("Parent:\n")); 3186 print_device_short(dev->parent, indent+1); 3187 indentprintf(("Driver:\n")); 3188 print_driver_short(dev->driver, indent+1); 3189 indentprintf(("Devclass:\n")); 3190 print_devclass_short(dev->devclass, indent+1); 3191 } 3192 3193 /* 3194 * Print the device and all its children (indented). 3195 */ 3196 void 3197 print_device_tree_short(device_t dev, int indent) 3198 { 3199 device_t child; 3200 3201 if (!dev) 3202 return; 3203 3204 print_device_short(dev, indent); 3205 3206 TAILQ_FOREACH(child, &dev->children, link) 3207 print_device_tree_short(child, indent+1); 3208 } 3209 3210 /* 3211 * Print the device and all its children (indented). 3212 */ 3213 void 3214 print_device_tree(device_t dev, int indent) 3215 { 3216 device_t child; 3217 3218 if (!dev) 3219 return; 3220 3221 print_device(dev, indent); 3222 3223 TAILQ_FOREACH(child, &dev->children, link) 3224 print_device_tree(child, indent+1); 3225 } 3226 3227 static void 3228 print_driver_short(driver_t *driver, int indent) 3229 { 3230 if (!driver) 3231 return; 3232 3233 indentprintf(("driver %s: softc size = %zu\n", 3234 driver->name, driver->size)); 3235 } 3236 3237 static void 3238 print_driver(driver_t *driver, int indent) 3239 { 3240 if (!driver) 3241 return; 3242 3243 print_driver_short(driver, indent); 3244 } 3245 3246 3247 static void 3248 print_driver_list(driver_list_t drivers, int indent) 3249 { 3250 driverlink_t driver; 3251 3252 TAILQ_FOREACH(driver, &drivers, link) 3253 print_driver(driver->driver, indent); 3254 } 3255 3256 static void 3257 print_devclass_short(devclass_t dc, int indent) 3258 { 3259 if (!dc) 3260 return; 3261 3262 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 3263 } 3264 3265 static void 3266 print_devclass(devclass_t dc, int indent) 3267 { 3268 int i; 3269 3270 if (!dc) 3271 return; 3272 3273 print_devclass_short(dc, indent); 3274 indentprintf(("Drivers:\n")); 3275 print_driver_list(dc->drivers, indent+1); 3276 3277 indentprintf(("Devices:\n")); 3278 for (i = 0; i < dc->maxunit; i++) 3279 if (dc->devices[i]) 3280 print_device(dc->devices[i], indent+1); 3281 } 3282 3283 void 3284 print_devclass_list_short(void) 3285 { 3286 devclass_t dc; 3287 3288 kprintf("Short listing of devclasses, drivers & devices:\n"); 3289 TAILQ_FOREACH(dc, &devclasses, link) { 3290 print_devclass_short(dc, 0); 3291 } 3292 } 3293 3294 void 3295 print_devclass_list(void) 3296 { 3297 devclass_t dc; 3298 3299 kprintf("Full listing of devclasses, drivers & devices:\n"); 3300 TAILQ_FOREACH(dc, &devclasses, link) { 3301 print_devclass(dc, 0); 3302 } 3303 } 3304 3305 #endif 3306 3307 /* 3308 * Check to see if a device is disabled via a disabled hint. 3309 */ 3310 int 3311 resource_disabled(const char *name, int unit) 3312 { 3313 int error, value; 3314 3315 error = resource_int_value(name, unit, "disabled", &value); 3316 if (error) 3317 return(0); 3318 return(value); 3319 } 3320 3321 /* 3322 * User-space access to the device tree. 3323 * 3324 * We implement a small set of nodes: 3325 * 3326 * hw.bus Single integer read method to obtain the 3327 * current generation count. 3328 * hw.bus.devices Reads the entire device tree in flat space. 3329 * hw.bus.rman Resource manager interface 3330 * 3331 * We might like to add the ability to scan devclasses and/or drivers to 3332 * determine what else is currently loaded/available. 3333 */ 3334 3335 static int 3336 sysctl_bus(SYSCTL_HANDLER_ARGS) 3337 { 3338 struct u_businfo ubus; 3339 3340 ubus.ub_version = BUS_USER_VERSION; 3341 ubus.ub_generation = bus_data_generation; 3342 3343 return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); 3344 } 3345 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus, 3346 "bus-related data"); 3347 3348 static int 3349 sysctl_devices(SYSCTL_HANDLER_ARGS) 3350 { 3351 int *name = (int *)arg1; 3352 u_int namelen = arg2; 3353 int index; 3354 struct device *dev; 3355 struct u_device udev; /* XXX this is a bit big */ 3356 int error; 3357 3358 if (namelen != 2) 3359 return (EINVAL); 3360 3361 if (bus_data_generation_check(name[0])) 3362 return (EINVAL); 3363 3364 index = name[1]; 3365 3366 /* 3367 * Scan the list of devices, looking for the requested index. 3368 */ 3369 TAILQ_FOREACH(dev, &bus_data_devices, devlink) { 3370 if (index-- == 0) 3371 break; 3372 } 3373 if (dev == NULL) 3374 return (ENOENT); 3375 3376 /* 3377 * Populate the return array. 3378 */ 3379 bzero(&udev, sizeof(udev)); 3380 udev.dv_handle = (uintptr_t)dev; 3381 udev.dv_parent = (uintptr_t)dev->parent; 3382 if (dev->nameunit != NULL) 3383 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name)); 3384 if (dev->desc != NULL) 3385 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc)); 3386 if (dev->driver != NULL && dev->driver->name != NULL) 3387 strlcpy(udev.dv_drivername, dev->driver->name, 3388 sizeof(udev.dv_drivername)); 3389 bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo)); 3390 bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location)); 3391 udev.dv_devflags = dev->devflags; 3392 udev.dv_flags = dev->flags; 3393 udev.dv_state = dev->state; 3394 error = SYSCTL_OUT(req, &udev, sizeof(udev)); 3395 return (error); 3396 } 3397 3398 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices, 3399 "system device tree"); 3400 3401 int 3402 bus_data_generation_check(int generation) 3403 { 3404 if (generation != bus_data_generation) 3405 return (1); 3406 3407 /* XXX generate optimised lists here? */ 3408 return (0); 3409 } 3410 3411 void 3412 bus_data_generation_update(void) 3413 { 3414 bus_data_generation++; 3415 } 3416