1 /* 2 * Copyright (c) 1997,1998 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $ 27 * $DragonFly: src/sys/kern/subr_bus.c,v 1.43 2008/09/05 10:28:35 hasso Exp $ 28 */ 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #ifdef DEVICE_SYSCTLS 38 #include <sys/sysctl.h> 39 #endif 40 #include <sys/kobj.h> 41 #include <sys/bus_private.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/rman.h> 45 46 #include <machine/stdarg.h> /* for device_printf() */ 47 48 #include <sys/thread2.h> 49 50 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); 51 52 #ifdef BUS_DEBUG 53 #define PDEBUG(a) (kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n")) 54 #define DEVICENAME(d) ((d)? device_get_name(d): "no device") 55 #define DRIVERNAME(d) ((d)? d->name : "no driver") 56 #define DEVCLANAME(d) ((d)? d->name : "no devclass") 57 58 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to 59 * prevent syslog from deleting initial spaces 60 */ 61 #define indentprintf(p) do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf(" "); kprintf p ; } while(0) 62 63 static void print_device_short(device_t dev, int indent); 64 static void print_device(device_t dev, int indent); 65 void print_device_tree_short(device_t dev, int indent); 66 void print_device_tree(device_t dev, int indent); 67 static void print_driver_short(driver_t *driver, int indent); 68 static void print_driver(driver_t *driver, int indent); 69 static void print_driver_list(driver_list_t drivers, int indent); 70 static void print_devclass_short(devclass_t dc, int indent); 71 static void print_devclass(devclass_t dc, int indent); 72 void print_devclass_list_short(void); 73 void print_devclass_list(void); 74 75 #else 76 /* Make the compiler ignore the function calls */ 77 #define PDEBUG(a) /* nop */ 78 #define DEVICENAME(d) /* nop */ 79 #define DRIVERNAME(d) /* nop */ 80 #define DEVCLANAME(d) /* nop */ 81 82 #define print_device_short(d,i) /* nop */ 83 #define print_device(d,i) /* nop */ 84 #define print_device_tree_short(d,i) /* nop */ 85 #define print_device_tree(d,i) /* nop */ 86 #define print_driver_short(d,i) /* nop */ 87 #define print_driver(d,i) /* nop */ 88 #define print_driver_list(d,i) /* nop */ 89 #define print_devclass_short(d,i) /* nop */ 90 #define print_devclass(d,i) /* nop */ 91 #define print_devclass_list_short() /* nop */ 92 #define print_devclass_list() /* nop */ 93 #endif 94 95 #ifdef DEVICE_SYSCTLS 96 static void device_register_oids(device_t dev); 97 static void device_unregister_oids(device_t dev); 98 #endif 99 static void device_attach_async(device_t dev); 100 static void device_attach_thread(void *arg); 101 static int device_doattach(device_t dev); 102 103 static int do_async_attach = 0; 104 static int numasyncthreads; 105 TUNABLE_INT("kern.do_async_attach", &do_async_attach); 106 107 kobj_method_t null_methods[] = { 108 { 0, 0 } 109 }; 110 111 DEFINE_CLASS(null, null_methods, 0); 112 113 /* 114 * Devclass implementation 115 */ 116 117 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); 118 119 static devclass_t 120 devclass_find_internal(const char *classname, const char *parentname, 121 int create) 122 { 123 devclass_t dc; 124 125 PDEBUG(("looking for %s", classname)); 126 if (classname == NULL) 127 return(NULL); 128 129 TAILQ_FOREACH(dc, &devclasses, link) 130 if (!strcmp(dc->name, classname)) 131 break; 132 133 if (create && !dc) { 134 PDEBUG(("creating %s", classname)); 135 dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1, 136 M_BUS, M_INTWAIT | M_ZERO); 137 if (!dc) 138 return(NULL); 139 dc->parent = NULL; 140 dc->name = (char*) (dc + 1); 141 strcpy(dc->name, classname); 142 dc->devices = NULL; 143 dc->maxunit = 0; 144 TAILQ_INIT(&dc->drivers); 145 TAILQ_INSERT_TAIL(&devclasses, dc, link); 146 } 147 if (parentname && dc && !dc->parent) 148 dc->parent = devclass_find_internal(parentname, NULL, FALSE); 149 150 return(dc); 151 } 152 153 devclass_t 154 devclass_create(const char *classname) 155 { 156 return(devclass_find_internal(classname, NULL, TRUE)); 157 } 158 159 devclass_t 160 devclass_find(const char *classname) 161 { 162 return(devclass_find_internal(classname, NULL, FALSE)); 163 } 164 165 device_t 166 devclass_find_unit(const char *classname, int unit) 167 { 168 devclass_t dc; 169 170 if ((dc = devclass_find(classname)) != NULL) 171 return(devclass_get_device(dc, unit)); 172 return (NULL); 173 } 174 175 int 176 devclass_add_driver(devclass_t dc, driver_t *driver) 177 { 178 driverlink_t dl; 179 device_t dev; 180 int i; 181 182 PDEBUG(("%s", DRIVERNAME(driver))); 183 184 dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO); 185 if (!dl) 186 return(ENOMEM); 187 188 /* 189 * Compile the driver's methods. Also increase the reference count 190 * so that the class doesn't get freed when the last instance 191 * goes. This means we can safely use static methods and avoids a 192 * double-free in devclass_delete_driver. 193 */ 194 kobj_class_instantiate(driver); 195 196 /* 197 * Make sure the devclass which the driver is implementing exists. 198 */ 199 devclass_find_internal(driver->name, NULL, TRUE); 200 201 dl->driver = driver; 202 TAILQ_INSERT_TAIL(&dc->drivers, dl, link); 203 204 /* 205 * Call BUS_DRIVER_ADDED for any existing busses in this class, 206 * but only if the bus has already been attached (otherwise we 207 * might probe too early). 208 * 209 * This is what will cause a newly loaded module to be associated 210 * with hardware. bus_generic_driver_added() is typically what ends 211 * up being called. 212 */ 213 for (i = 0; i < dc->maxunit; i++) { 214 if ((dev = dc->devices[i]) != NULL) { 215 if (dev->state >= DS_ATTACHED) 216 BUS_DRIVER_ADDED(dev, driver); 217 } 218 } 219 220 return(0); 221 } 222 223 int 224 devclass_delete_driver(devclass_t busclass, driver_t *driver) 225 { 226 devclass_t dc = devclass_find(driver->name); 227 driverlink_t dl; 228 device_t dev; 229 int i; 230 int error; 231 232 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); 233 234 if (!dc) 235 return(0); 236 237 /* 238 * Find the link structure in the bus' list of drivers. 239 */ 240 TAILQ_FOREACH(dl, &busclass->drivers, link) 241 if (dl->driver == driver) 242 break; 243 244 if (!dl) { 245 PDEBUG(("%s not found in %s list", driver->name, busclass->name)); 246 return(ENOENT); 247 } 248 249 /* 250 * Disassociate from any devices. We iterate through all the 251 * devices in the devclass of the driver and detach any which are 252 * using the driver and which have a parent in the devclass which 253 * we are deleting from. 254 * 255 * Note that since a driver can be in multiple devclasses, we 256 * should not detach devices which are not children of devices in 257 * the affected devclass. 258 */ 259 for (i = 0; i < dc->maxunit; i++) 260 if (dc->devices[i]) { 261 dev = dc->devices[i]; 262 if (dev->driver == driver && dev->parent && 263 dev->parent->devclass == busclass) { 264 if ((error = device_detach(dev)) != 0) 265 return(error); 266 device_set_driver(dev, NULL); 267 } 268 } 269 270 TAILQ_REMOVE(&busclass->drivers, dl, link); 271 kfree(dl, M_BUS); 272 273 kobj_class_uninstantiate(driver); 274 275 return(0); 276 } 277 278 static driverlink_t 279 devclass_find_driver_internal(devclass_t dc, const char *classname) 280 { 281 driverlink_t dl; 282 283 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); 284 285 TAILQ_FOREACH(dl, &dc->drivers, link) 286 if (!strcmp(dl->driver->name, classname)) 287 return(dl); 288 289 PDEBUG(("not found")); 290 return(NULL); 291 } 292 293 kobj_class_t 294 devclass_find_driver(devclass_t dc, const char *classname) 295 { 296 driverlink_t dl; 297 298 dl = devclass_find_driver_internal(dc, classname); 299 if (dl) 300 return(dl->driver); 301 else 302 return(NULL); 303 } 304 305 const char * 306 devclass_get_name(devclass_t dc) 307 { 308 return(dc->name); 309 } 310 311 device_t 312 devclass_get_device(devclass_t dc, int unit) 313 { 314 if (dc == NULL || unit < 0 || unit >= dc->maxunit) 315 return(NULL); 316 return(dc->devices[unit]); 317 } 318 319 void * 320 devclass_get_softc(devclass_t dc, int unit) 321 { 322 device_t dev; 323 324 dev = devclass_get_device(dc, unit); 325 if (!dev) 326 return(NULL); 327 328 return(device_get_softc(dev)); 329 } 330 331 int 332 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) 333 { 334 int i; 335 int count; 336 device_t *list; 337 338 count = 0; 339 for (i = 0; i < dc->maxunit; i++) 340 if (dc->devices[i]) 341 count++; 342 343 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 344 if (list == NULL) 345 return(ENOMEM); 346 347 count = 0; 348 for (i = 0; i < dc->maxunit; i++) 349 if (dc->devices[i]) { 350 list[count] = dc->devices[i]; 351 count++; 352 } 353 354 *devlistp = list; 355 *devcountp = count; 356 357 return(0); 358 } 359 360 /** 361 * @brief Get a list of drivers in the devclass 362 * 363 * An array containing a list of pointers to all the drivers in the 364 * given devclass is allocated and returned in @p *listp. The number 365 * of drivers in the array is returned in @p *countp. The caller should 366 * free the array using @c free(p, M_TEMP). 367 * 368 * @param dc the devclass to examine 369 * @param listp gives location for array pointer return value 370 * @param countp gives location for number of array elements 371 * return value 372 * 373 * @retval 0 success 374 * @retval ENOMEM the array allocation failed 375 */ 376 int 377 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) 378 { 379 driverlink_t dl; 380 driver_t **list; 381 int count; 382 383 count = 0; 384 TAILQ_FOREACH(dl, &dc->drivers, link) 385 count++; 386 list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); 387 if (list == NULL) 388 return (ENOMEM); 389 390 count = 0; 391 TAILQ_FOREACH(dl, &dc->drivers, link) { 392 list[count] = dl->driver; 393 count++; 394 } 395 *listp = list; 396 *countp = count; 397 398 return (0); 399 } 400 401 int 402 devclass_get_maxunit(devclass_t dc) 403 { 404 return(dc->maxunit); 405 } 406 407 void 408 devclass_set_parent(devclass_t dc, devclass_t pdc) 409 { 410 dc->parent = pdc; 411 } 412 413 devclass_t 414 devclass_get_parent(devclass_t dc) 415 { 416 return(dc->parent); 417 } 418 419 static int 420 devclass_alloc_unit(devclass_t dc, int *unitp) 421 { 422 int unit = *unitp; 423 424 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); 425 426 /* If we have been given a wired unit number, check for existing device */ 427 if (unit != -1) { 428 if (unit >= 0 && unit < dc->maxunit && 429 dc->devices[unit] != NULL) { 430 if (bootverbose) 431 kprintf("%s-: %s%d exists, using next available unit number\n", 432 dc->name, dc->name, unit); 433 /* find the next available slot */ 434 while (++unit < dc->maxunit && dc->devices[unit] != NULL) 435 ; 436 } 437 } else { 438 /* Unwired device, find the next available slot for it */ 439 unit = 0; 440 while (unit < dc->maxunit && dc->devices[unit] != NULL) 441 unit++; 442 } 443 444 /* 445 * We've selected a unit beyond the length of the table, so let's 446 * extend the table to make room for all units up to and including 447 * this one. 448 */ 449 if (unit >= dc->maxunit) { 450 device_t *newlist; 451 int newsize; 452 453 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t)); 454 newlist = kmalloc(sizeof(device_t) * newsize, M_BUS, 455 M_INTWAIT | M_ZERO); 456 if (newlist == NULL) 457 return(ENOMEM); 458 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit); 459 if (dc->devices) 460 kfree(dc->devices, M_BUS); 461 dc->devices = newlist; 462 dc->maxunit = newsize; 463 } 464 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); 465 466 *unitp = unit; 467 return(0); 468 } 469 470 static int 471 devclass_add_device(devclass_t dc, device_t dev) 472 { 473 int buflen, error; 474 475 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 476 477 buflen = strlen(dc->name) + 5; 478 dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO); 479 if (!dev->nameunit) 480 return(ENOMEM); 481 482 if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) { 483 kfree(dev->nameunit, M_BUS); 484 dev->nameunit = NULL; 485 return(error); 486 } 487 dc->devices[dev->unit] = dev; 488 dev->devclass = dc; 489 ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); 490 491 #ifdef DEVICE_SYSCTLS 492 device_register_oids(dev); 493 #endif 494 495 return(0); 496 } 497 498 static int 499 devclass_delete_device(devclass_t dc, device_t dev) 500 { 501 if (!dc || !dev) 502 return(0); 503 504 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); 505 506 if (dev->devclass != dc || dc->devices[dev->unit] != dev) 507 panic("devclass_delete_device: inconsistent device class"); 508 dc->devices[dev->unit] = NULL; 509 if (dev->flags & DF_WILDCARD) 510 dev->unit = -1; 511 dev->devclass = NULL; 512 kfree(dev->nameunit, M_BUS); 513 dev->nameunit = NULL; 514 515 #ifdef DEVICE_SYSCTLS 516 device_unregister_oids(dev); 517 #endif 518 519 return(0); 520 } 521 522 static device_t 523 make_device(device_t parent, const char *name, int unit) 524 { 525 device_t dev; 526 devclass_t dc; 527 528 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); 529 530 if (name != NULL) { 531 dc = devclass_find_internal(name, NULL, TRUE); 532 if (!dc) { 533 kprintf("make_device: can't find device class %s\n", name); 534 return(NULL); 535 } 536 } else 537 dc = NULL; 538 539 dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO); 540 if (!dev) 541 return(0); 542 543 dev->parent = parent; 544 TAILQ_INIT(&dev->children); 545 kobj_init((kobj_t) dev, &null_class); 546 dev->driver = NULL; 547 dev->devclass = NULL; 548 dev->unit = unit; 549 dev->nameunit = NULL; 550 dev->desc = NULL; 551 dev->busy = 0; 552 dev->devflags = 0; 553 dev->flags = DF_ENABLED; 554 dev->order = 0; 555 if (unit == -1) 556 dev->flags |= DF_WILDCARD; 557 if (name) { 558 dev->flags |= DF_FIXEDCLASS; 559 if (devclass_add_device(dc, dev) != 0) { 560 kobj_delete((kobj_t)dev, M_BUS); 561 return(NULL); 562 } 563 } 564 dev->ivars = NULL; 565 dev->softc = NULL; 566 567 dev->state = DS_NOTPRESENT; 568 569 return(dev); 570 } 571 572 static int 573 device_print_child(device_t dev, device_t child) 574 { 575 int retval = 0; 576 577 if (device_is_alive(child)) 578 retval += BUS_PRINT_CHILD(dev, child); 579 else 580 retval += device_printf(child, " not found\n"); 581 582 return(retval); 583 } 584 585 device_t 586 device_add_child(device_t dev, const char *name, int unit) 587 { 588 return device_add_child_ordered(dev, 0, name, unit); 589 } 590 591 device_t 592 device_add_child_ordered(device_t dev, int order, const char *name, int unit) 593 { 594 device_t child; 595 device_t place; 596 597 PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev), 598 order, unit)); 599 600 child = make_device(dev, name, unit); 601 if (child == NULL) 602 return child; 603 child->order = order; 604 605 TAILQ_FOREACH(place, &dev->children, link) 606 if (place->order > order) 607 break; 608 609 if (place) { 610 /* 611 * The device 'place' is the first device whose order is 612 * greater than the new child. 613 */ 614 TAILQ_INSERT_BEFORE(place, child, link); 615 } else { 616 /* 617 * The new child's order is greater or equal to the order of 618 * any existing device. Add the child to the tail of the list. 619 */ 620 TAILQ_INSERT_TAIL(&dev->children, child, link); 621 } 622 623 return(child); 624 } 625 626 int 627 device_delete_child(device_t dev, device_t child) 628 { 629 int error; 630 device_t grandchild; 631 632 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); 633 634 /* remove children first */ 635 while ( (grandchild = TAILQ_FIRST(&child->children)) ) { 636 error = device_delete_child(child, grandchild); 637 if (error) 638 return(error); 639 } 640 641 if ((error = device_detach(child)) != 0) 642 return(error); 643 if (child->devclass) 644 devclass_delete_device(child->devclass, child); 645 TAILQ_REMOVE(&dev->children, child, link); 646 device_set_desc(child, NULL); 647 kobj_delete((kobj_t)child, M_BUS); 648 649 return(0); 650 } 651 652 /** 653 * @brief Find a device given a unit number 654 * 655 * This is similar to devclass_get_devices() but only searches for 656 * devices which have @p dev as a parent. 657 * 658 * @param dev the parent device to search 659 * @param unit the unit number to search for. If the unit is -1, 660 * return the first child of @p dev which has name 661 * @p classname (that is, the one with the lowest unit.) 662 * 663 * @returns the device with the given unit number or @c 664 * NULL if there is no such device 665 */ 666 device_t 667 device_find_child(device_t dev, const char *classname, int unit) 668 { 669 devclass_t dc; 670 device_t child; 671 672 dc = devclass_find(classname); 673 if (!dc) 674 return(NULL); 675 676 if (unit != -1) { 677 child = devclass_get_device(dc, unit); 678 if (child && child->parent == dev) 679 return (child); 680 } else { 681 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { 682 child = devclass_get_device(dc, unit); 683 if (child && child->parent == dev) 684 return (child); 685 } 686 } 687 return(NULL); 688 } 689 690 static driverlink_t 691 first_matching_driver(devclass_t dc, device_t dev) 692 { 693 if (dev->devclass) 694 return(devclass_find_driver_internal(dc, dev->devclass->name)); 695 else 696 return(TAILQ_FIRST(&dc->drivers)); 697 } 698 699 static driverlink_t 700 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) 701 { 702 if (dev->devclass) { 703 driverlink_t dl; 704 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) 705 if (!strcmp(dev->devclass->name, dl->driver->name)) 706 return(dl); 707 return(NULL); 708 } else 709 return(TAILQ_NEXT(last, link)); 710 } 711 712 static int 713 device_probe_child(device_t dev, device_t child) 714 { 715 devclass_t dc; 716 driverlink_t best = 0; 717 driverlink_t dl; 718 int result, pri = 0; 719 int hasclass = (child->devclass != 0); 720 721 dc = dev->devclass; 722 if (!dc) 723 panic("device_probe_child: parent device has no devclass"); 724 725 if (child->state == DS_ALIVE) 726 return(0); 727 728 for (; dc; dc = dc->parent) { 729 for (dl = first_matching_driver(dc, child); dl; 730 dl = next_matching_driver(dc, child, dl)) { 731 PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); 732 device_set_driver(child, dl->driver); 733 if (!hasclass) 734 device_set_devclass(child, dl->driver->name); 735 result = DEVICE_PROBE(child); 736 if (!hasclass) 737 device_set_devclass(child, 0); 738 739 /* 740 * If the driver returns SUCCESS, there can be 741 * no higher match for this device. 742 */ 743 if (result == 0) { 744 best = dl; 745 pri = 0; 746 break; 747 } 748 749 /* 750 * The driver returned an error so it 751 * certainly doesn't match. 752 */ 753 if (result > 0) { 754 device_set_driver(child, 0); 755 continue; 756 } 757 758 /* 759 * A priority lower than SUCCESS, remember the 760 * best matching driver. Initialise the value 761 * of pri for the first match. 762 */ 763 if (best == 0 || result > pri) { 764 best = dl; 765 pri = result; 766 continue; 767 } 768 } 769 /* 770 * If we have unambiguous match in this devclass, 771 * don't look in the parent. 772 */ 773 if (best && pri == 0) 774 break; 775 } 776 777 /* 778 * If we found a driver, change state and initialise the devclass. 779 */ 780 if (best) { 781 if (!child->devclass) 782 device_set_devclass(child, best->driver->name); 783 device_set_driver(child, best->driver); 784 if (pri < 0) { 785 /* 786 * A bit bogus. Call the probe method again to make 787 * sure that we have the right description. 788 */ 789 DEVICE_PROBE(child); 790 } 791 child->state = DS_ALIVE; 792 return(0); 793 } 794 795 return(ENXIO); 796 } 797 798 device_t 799 device_get_parent(device_t dev) 800 { 801 return dev->parent; 802 } 803 804 int 805 device_get_children(device_t dev, device_t **devlistp, int *devcountp) 806 { 807 int count; 808 device_t child; 809 device_t *list; 810 811 count = 0; 812 TAILQ_FOREACH(child, &dev->children, link) 813 count++; 814 815 list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO); 816 if (!list) 817 return(ENOMEM); 818 819 count = 0; 820 TAILQ_FOREACH(child, &dev->children, link) { 821 list[count] = child; 822 count++; 823 } 824 825 *devlistp = list; 826 *devcountp = count; 827 828 return(0); 829 } 830 831 driver_t * 832 device_get_driver(device_t dev) 833 { 834 return(dev->driver); 835 } 836 837 devclass_t 838 device_get_devclass(device_t dev) 839 { 840 return(dev->devclass); 841 } 842 843 const char * 844 device_get_name(device_t dev) 845 { 846 if (dev->devclass) 847 return devclass_get_name(dev->devclass); 848 return(NULL); 849 } 850 851 const char * 852 device_get_nameunit(device_t dev) 853 { 854 return(dev->nameunit); 855 } 856 857 int 858 device_get_unit(device_t dev) 859 { 860 return(dev->unit); 861 } 862 863 const char * 864 device_get_desc(device_t dev) 865 { 866 return(dev->desc); 867 } 868 869 uint32_t 870 device_get_flags(device_t dev) 871 { 872 return(dev->devflags); 873 } 874 875 int 876 device_print_prettyname(device_t dev) 877 { 878 const char *name = device_get_name(dev); 879 880 if (name == 0) 881 return kprintf("unknown: "); 882 else 883 return kprintf("%s%d: ", name, device_get_unit(dev)); 884 } 885 886 int 887 device_printf(device_t dev, const char * fmt, ...) 888 { 889 __va_list ap; 890 int retval; 891 892 retval = device_print_prettyname(dev); 893 __va_start(ap, fmt); 894 retval += kvprintf(fmt, ap); 895 __va_end(ap); 896 return retval; 897 } 898 899 static void 900 device_set_desc_internal(device_t dev, const char* desc, int copy) 901 { 902 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { 903 kfree(dev->desc, M_BUS); 904 dev->flags &= ~DF_DESCMALLOCED; 905 dev->desc = NULL; 906 } 907 908 if (copy && desc) { 909 dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT); 910 if (dev->desc) { 911 strcpy(dev->desc, desc); 912 dev->flags |= DF_DESCMALLOCED; 913 } 914 } else 915 /* Avoid a -Wcast-qual warning */ 916 dev->desc = (char *)(uintptr_t) desc; 917 918 #ifdef DEVICE_SYSCTLS 919 { 920 struct sysctl_oid *oid = &dev->oid[1]; 921 oid->oid_arg1 = dev->desc ? dev->desc : ""; 922 oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0; 923 } 924 #endif 925 } 926 927 void 928 device_set_desc(device_t dev, const char* desc) 929 { 930 device_set_desc_internal(dev, desc, FALSE); 931 } 932 933 void 934 device_set_desc_copy(device_t dev, const char* desc) 935 { 936 device_set_desc_internal(dev, desc, TRUE); 937 } 938 939 void 940 device_set_flags(device_t dev, uint32_t flags) 941 { 942 dev->devflags = flags; 943 } 944 945 void * 946 device_get_softc(device_t dev) 947 { 948 return dev->softc; 949 } 950 951 void 952 device_set_softc(device_t dev, void *softc) 953 { 954 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) 955 kfree(dev->softc, M_BUS); 956 dev->softc = softc; 957 if (dev->softc) 958 dev->flags |= DF_EXTERNALSOFTC; 959 else 960 dev->flags &= ~DF_EXTERNALSOFTC; 961 } 962 963 void 964 device_set_async_attach(device_t dev, int enable) 965 { 966 if (enable) 967 dev->flags |= DF_ASYNCPROBE; 968 else 969 dev->flags &= ~DF_ASYNCPROBE; 970 } 971 972 void * 973 device_get_ivars(device_t dev) 974 { 975 return dev->ivars; 976 } 977 978 void 979 device_set_ivars(device_t dev, void * ivars) 980 { 981 if (!dev) 982 return; 983 984 dev->ivars = ivars; 985 } 986 987 device_state_t 988 device_get_state(device_t dev) 989 { 990 return(dev->state); 991 } 992 993 void 994 device_enable(device_t dev) 995 { 996 dev->flags |= DF_ENABLED; 997 } 998 999 void 1000 device_disable(device_t dev) 1001 { 1002 dev->flags &= ~DF_ENABLED; 1003 } 1004 1005 /* 1006 * YYY cannot block 1007 */ 1008 void 1009 device_busy(device_t dev) 1010 { 1011 if (dev->state < DS_ATTACHED) 1012 panic("device_busy: called for unattached device"); 1013 if (dev->busy == 0 && dev->parent) 1014 device_busy(dev->parent); 1015 dev->busy++; 1016 dev->state = DS_BUSY; 1017 } 1018 1019 /* 1020 * YYY cannot block 1021 */ 1022 void 1023 device_unbusy(device_t dev) 1024 { 1025 if (dev->state != DS_BUSY) 1026 panic("device_unbusy: called for non-busy device"); 1027 dev->busy--; 1028 if (dev->busy == 0) { 1029 if (dev->parent) 1030 device_unbusy(dev->parent); 1031 dev->state = DS_ATTACHED; 1032 } 1033 } 1034 1035 void 1036 device_quiet(device_t dev) 1037 { 1038 dev->flags |= DF_QUIET; 1039 } 1040 1041 void 1042 device_verbose(device_t dev) 1043 { 1044 dev->flags &= ~DF_QUIET; 1045 } 1046 1047 int 1048 device_is_quiet(device_t dev) 1049 { 1050 return((dev->flags & DF_QUIET) != 0); 1051 } 1052 1053 int 1054 device_is_enabled(device_t dev) 1055 { 1056 return((dev->flags & DF_ENABLED) != 0); 1057 } 1058 1059 int 1060 device_is_alive(device_t dev) 1061 { 1062 return(dev->state >= DS_ALIVE); 1063 } 1064 1065 int 1066 device_is_attached(device_t dev) 1067 { 1068 return(dev->state >= DS_ATTACHED); 1069 } 1070 1071 int 1072 device_set_devclass(device_t dev, const char *classname) 1073 { 1074 devclass_t dc; 1075 1076 if (!classname) { 1077 if (dev->devclass) 1078 devclass_delete_device(dev->devclass, dev); 1079 return(0); 1080 } 1081 1082 if (dev->devclass) { 1083 kprintf("device_set_devclass: device class already set\n"); 1084 return(EINVAL); 1085 } 1086 1087 dc = devclass_find_internal(classname, NULL, TRUE); 1088 if (!dc) 1089 return(ENOMEM); 1090 1091 return(devclass_add_device(dc, dev)); 1092 } 1093 1094 int 1095 device_set_driver(device_t dev, driver_t *driver) 1096 { 1097 if (dev->state >= DS_ATTACHED) 1098 return(EBUSY); 1099 1100 if (dev->driver == driver) 1101 return(0); 1102 1103 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { 1104 kfree(dev->softc, M_BUS); 1105 dev->softc = NULL; 1106 } 1107 kobj_delete((kobj_t) dev, 0); 1108 dev->driver = driver; 1109 if (driver) { 1110 kobj_init((kobj_t) dev, (kobj_class_t) driver); 1111 if (!(dev->flags & DF_EXTERNALSOFTC)) { 1112 dev->softc = kmalloc(driver->size, M_BUS, 1113 M_INTWAIT | M_ZERO); 1114 if (!dev->softc) { 1115 kobj_delete((kobj_t)dev, 0); 1116 kobj_init((kobj_t) dev, &null_class); 1117 dev->driver = NULL; 1118 return(ENOMEM); 1119 } 1120 } 1121 } else 1122 kobj_init((kobj_t) dev, &null_class); 1123 return(0); 1124 } 1125 1126 int 1127 device_probe_and_attach(device_t dev) 1128 { 1129 device_t bus = dev->parent; 1130 int error = 0; 1131 1132 if (dev->state >= DS_ALIVE) 1133 return(0); 1134 1135 if ((dev->flags & DF_ENABLED) == 0) { 1136 if (bootverbose) { 1137 device_print_prettyname(dev); 1138 kprintf("not probed (disabled)\n"); 1139 } 1140 return(0); 1141 } 1142 1143 error = device_probe_child(bus, dev); 1144 if (error) { 1145 if (!(dev->flags & DF_DONENOMATCH)) { 1146 BUS_PROBE_NOMATCH(bus, dev); 1147 dev->flags |= DF_DONENOMATCH; 1148 } 1149 return(error); 1150 } 1151 1152 /* 1153 * Output the exact device chain prior to the attach in case the 1154 * system locks up during attach, and generate the full info after 1155 * the attach so correct irq and other information is displayed. 1156 */ 1157 if (bootverbose && !device_is_quiet(dev)) { 1158 device_t tmp; 1159 1160 kprintf("%s", device_get_nameunit(dev)); 1161 for (tmp = dev->parent; tmp; tmp = tmp->parent) 1162 kprintf(".%s", device_get_nameunit(tmp)); 1163 kprintf("\n"); 1164 } 1165 if (!device_is_quiet(dev)) 1166 device_print_child(bus, dev); 1167 if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) { 1168 kprintf("%s: probing asynchronously\n", 1169 device_get_nameunit(dev)); 1170 dev->state = DS_INPROGRESS; 1171 device_attach_async(dev); 1172 error = 0; 1173 } else { 1174 error = device_doattach(dev); 1175 } 1176 return(error); 1177 } 1178 1179 /* 1180 * Device is known to be alive, do the attach asynchronously. 1181 * 1182 * The MP lock is held by all threads. 1183 */ 1184 static void 1185 device_attach_async(device_t dev) 1186 { 1187 thread_t td; 1188 1189 atomic_add_int(&numasyncthreads, 1); 1190 lwkt_create(device_attach_thread, dev, &td, NULL, 1191 0, 0, (dev->desc ? dev->desc : "devattach")); 1192 } 1193 1194 static void 1195 device_attach_thread(void *arg) 1196 { 1197 device_t dev = arg; 1198 1199 (void)device_doattach(dev); 1200 atomic_subtract_int(&numasyncthreads, 1); 1201 wakeup(&numasyncthreads); 1202 } 1203 1204 /* 1205 * Device is known to be alive, do the attach (synchronous or asynchronous) 1206 */ 1207 static int 1208 device_doattach(device_t dev) 1209 { 1210 device_t bus = dev->parent; 1211 int hasclass = (dev->devclass != 0); 1212 int error; 1213 1214 error = DEVICE_ATTACH(dev); 1215 if (error == 0) { 1216 dev->state = DS_ATTACHED; 1217 if (bootverbose && !device_is_quiet(dev)) 1218 device_print_child(bus, dev); 1219 } else { 1220 kprintf("device_probe_and_attach: %s%d attach returned %d\n", 1221 dev->driver->name, dev->unit, error); 1222 /* Unset the class that was set in device_probe_child */ 1223 if (!hasclass) 1224 device_set_devclass(dev, 0); 1225 device_set_driver(dev, NULL); 1226 dev->state = DS_NOTPRESENT; 1227 } 1228 return(error); 1229 } 1230 1231 int 1232 device_detach(device_t dev) 1233 { 1234 int error; 1235 1236 PDEBUG(("%s", DEVICENAME(dev))); 1237 if (dev->state == DS_BUSY) 1238 return(EBUSY); 1239 if (dev->state != DS_ATTACHED) 1240 return(0); 1241 1242 if ((error = DEVICE_DETACH(dev)) != 0) 1243 return(error); 1244 device_printf(dev, "detached\n"); 1245 if (dev->parent) 1246 BUS_CHILD_DETACHED(dev->parent, dev); 1247 1248 if (!(dev->flags & DF_FIXEDCLASS)) 1249 devclass_delete_device(dev->devclass, dev); 1250 1251 dev->state = DS_NOTPRESENT; 1252 device_set_driver(dev, NULL); 1253 1254 return(0); 1255 } 1256 1257 int 1258 device_shutdown(device_t dev) 1259 { 1260 if (dev->state < DS_ATTACHED) 1261 return 0; 1262 PDEBUG(("%s", DEVICENAME(dev))); 1263 return DEVICE_SHUTDOWN(dev); 1264 } 1265 1266 int 1267 device_set_unit(device_t dev, int unit) 1268 { 1269 devclass_t dc; 1270 int err; 1271 1272 dc = device_get_devclass(dev); 1273 if (unit < dc->maxunit && dc->devices[unit]) 1274 return(EBUSY); 1275 err = devclass_delete_device(dc, dev); 1276 if (err) 1277 return(err); 1278 dev->unit = unit; 1279 err = devclass_add_device(dc, dev); 1280 return(err); 1281 } 1282 1283 #ifdef DEVICE_SYSCTLS 1284 1285 /* 1286 * Sysctl nodes for devices. 1287 */ 1288 1289 SYSCTL_NODE(_hw, OID_AUTO, devices, CTLFLAG_RW, 0, "A list of all devices"); 1290 1291 static int 1292 sysctl_handle_children(SYSCTL_HANDLER_ARGS) 1293 { 1294 device_t dev = arg1; 1295 device_t child; 1296 int first = 1, error = 0; 1297 1298 TAILQ_FOREACH(child, &dev->children, link) 1299 if (child->nameunit) { 1300 if (!first) { 1301 error = SYSCTL_OUT(req, ",", 1); 1302 if (error) 1303 return error; 1304 } else 1305 first = 0; 1306 error = SYSCTL_OUT(req, child->nameunit, 1307 strlen(child->nameunit)); 1308 if (error) 1309 return(error); 1310 } 1311 1312 error = SYSCTL_OUT(req, "", 1); 1313 1314 return(error); 1315 } 1316 1317 static int 1318 sysctl_handle_state(SYSCTL_HANDLER_ARGS) 1319 { 1320 device_t dev = arg1; 1321 1322 switch (dev->state) { 1323 case DS_NOTPRESENT: 1324 return SYSCTL_OUT(req, "notpresent", sizeof("notpresent")); 1325 case DS_ALIVE: 1326 return SYSCTL_OUT(req, "alive", sizeof("alive")); 1327 case DS_INPROGRESS: 1328 return SYSCTL_OUT(req, "in-progress", sizeof("in-progress")); 1329 case DS_ATTACHED: 1330 return SYSCTL_OUT(req, "attached", sizeof("attached")); 1331 case DS_BUSY: 1332 return SYSCTL_OUT(req, "busy", sizeof("busy")); 1333 default: 1334 return (0); 1335 } 1336 } 1337 1338 static void 1339 device_register_oids(device_t dev) 1340 { 1341 struct sysctl_oid* oid; 1342 1343 oid = &dev->oid[0]; 1344 bzero(oid, sizeof(*oid)); 1345 oid->oid_parent = &sysctl__hw_devices_children; 1346 oid->oid_number = OID_AUTO; 1347 oid->oid_kind = CTLTYPE_NODE | CTLFLAG_RW; 1348 oid->oid_arg1 = &dev->oidlist[0]; 1349 oid->oid_arg2 = 0; 1350 oid->oid_name = dev->nameunit; 1351 oid->oid_handler = 0; 1352 oid->oid_fmt = "N"; 1353 SLIST_INIT(&dev->oidlist[0]); 1354 sysctl_register_oid(oid); 1355 1356 oid = &dev->oid[1]; 1357 bzero(oid, sizeof(*oid)); 1358 oid->oid_parent = &dev->oidlist[0]; 1359 oid->oid_number = OID_AUTO; 1360 oid->oid_kind = CTLTYPE_STRING | CTLFLAG_RD; 1361 oid->oid_arg1 = dev->desc ? dev->desc : ""; 1362 oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0; 1363 oid->oid_name = "desc"; 1364 oid->oid_handler = sysctl_handle_string; 1365 oid->oid_fmt = "A"; 1366 sysctl_register_oid(oid); 1367 1368 oid = &dev->oid[2]; 1369 bzero(oid, sizeof(*oid)); 1370 oid->oid_parent = &dev->oidlist[0]; 1371 oid->oid_number = OID_AUTO; 1372 oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD; 1373 oid->oid_arg1 = dev; 1374 oid->oid_arg2 = 0; 1375 oid->oid_name = "children"; 1376 oid->oid_handler = sysctl_handle_children; 1377 oid->oid_fmt = "A"; 1378 sysctl_register_oid(oid); 1379 1380 oid = &dev->oid[3]; 1381 bzero(oid, sizeof(*oid)); 1382 oid->oid_parent = &dev->oidlist[0]; 1383 oid->oid_number = OID_AUTO; 1384 oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD; 1385 oid->oid_arg1 = dev; 1386 oid->oid_arg2 = 0; 1387 oid->oid_name = "state"; 1388 oid->oid_handler = sysctl_handle_state; 1389 oid->oid_fmt = "A"; 1390 sysctl_register_oid(oid); 1391 } 1392 1393 static void 1394 device_unregister_oids(device_t dev) 1395 { 1396 sysctl_unregister_oid(&dev->oid[0]); 1397 sysctl_unregister_oid(&dev->oid[1]); 1398 sysctl_unregister_oid(&dev->oid[2]); 1399 } 1400 1401 #endif 1402 1403 /*======================================*/ 1404 /* 1405 * Access functions for device resources. 1406 */ 1407 1408 /* Supplied by config(8) in ioconf.c */ 1409 extern struct config_device config_devtab[]; 1410 extern int devtab_count; 1411 1412 /* Runtime version */ 1413 struct config_device *devtab = config_devtab; 1414 1415 static int 1416 resource_new_name(const char *name, int unit) 1417 { 1418 struct config_device *new; 1419 1420 new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP, 1421 M_INTWAIT | M_ZERO); 1422 if (new == NULL) 1423 return(-1); 1424 if (devtab && devtab_count > 0) 1425 bcopy(devtab, new, devtab_count * sizeof(*new)); 1426 new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT); 1427 if (new[devtab_count].name == NULL) { 1428 kfree(new, M_TEMP); 1429 return(-1); 1430 } 1431 strcpy(new[devtab_count].name, name); 1432 new[devtab_count].unit = unit; 1433 new[devtab_count].resource_count = 0; 1434 new[devtab_count].resources = NULL; 1435 if (devtab && devtab != config_devtab) 1436 kfree(devtab, M_TEMP); 1437 devtab = new; 1438 return devtab_count++; 1439 } 1440 1441 static int 1442 resource_new_resname(int j, const char *resname, resource_type type) 1443 { 1444 struct config_resource *new; 1445 int i; 1446 1447 i = devtab[j].resource_count; 1448 new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO); 1449 if (new == NULL) 1450 return(-1); 1451 if (devtab[j].resources && i > 0) 1452 bcopy(devtab[j].resources, new, i * sizeof(*new)); 1453 new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT); 1454 if (new[i].name == NULL) { 1455 kfree(new, M_TEMP); 1456 return(-1); 1457 } 1458 strcpy(new[i].name, resname); 1459 new[i].type = type; 1460 if (devtab[j].resources) 1461 kfree(devtab[j].resources, M_TEMP); 1462 devtab[j].resources = new; 1463 devtab[j].resource_count = i + 1; 1464 return(i); 1465 } 1466 1467 static int 1468 resource_match_string(int i, const char *resname, const char *value) 1469 { 1470 int j; 1471 struct config_resource *res; 1472 1473 for (j = 0, res = devtab[i].resources; 1474 j < devtab[i].resource_count; j++, res++) 1475 if (!strcmp(res->name, resname) 1476 && res->type == RES_STRING 1477 && !strcmp(res->u.stringval, value)) 1478 return(j); 1479 return(-1); 1480 } 1481 1482 static int 1483 resource_find(const char *name, int unit, const char *resname, 1484 struct config_resource **result) 1485 { 1486 int i, j; 1487 struct config_resource *res; 1488 1489 /* 1490 * First check specific instances, then generic. 1491 */ 1492 for (i = 0; i < devtab_count; i++) { 1493 if (devtab[i].unit < 0) 1494 continue; 1495 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1496 res = devtab[i].resources; 1497 for (j = 0; j < devtab[i].resource_count; j++, res++) 1498 if (!strcmp(res->name, resname)) { 1499 *result = res; 1500 return(0); 1501 } 1502 } 1503 } 1504 for (i = 0; i < devtab_count; i++) { 1505 if (devtab[i].unit >= 0) 1506 continue; 1507 /* XXX should this `&& devtab[i].unit == unit' be here? */ 1508 /* XXX if so, then the generic match does nothing */ 1509 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1510 res = devtab[i].resources; 1511 for (j = 0; j < devtab[i].resource_count; j++, res++) 1512 if (!strcmp(res->name, resname)) { 1513 *result = res; 1514 return(0); 1515 } 1516 } 1517 } 1518 return(ENOENT); 1519 } 1520 1521 int 1522 resource_int_value(const char *name, int unit, const char *resname, int *result) 1523 { 1524 int error; 1525 struct config_resource *res; 1526 1527 if ((error = resource_find(name, unit, resname, &res)) != 0) 1528 return(error); 1529 if (res->type != RES_INT) 1530 return(EFTYPE); 1531 *result = res->u.intval; 1532 return(0); 1533 } 1534 1535 int 1536 resource_long_value(const char *name, int unit, const char *resname, 1537 long *result) 1538 { 1539 int error; 1540 struct config_resource *res; 1541 1542 if ((error = resource_find(name, unit, resname, &res)) != 0) 1543 return(error); 1544 if (res->type != RES_LONG) 1545 return(EFTYPE); 1546 *result = res->u.longval; 1547 return(0); 1548 } 1549 1550 int 1551 resource_string_value(const char *name, int unit, const char *resname, 1552 char **result) 1553 { 1554 int error; 1555 struct config_resource *res; 1556 1557 if ((error = resource_find(name, unit, resname, &res)) != 0) 1558 return(error); 1559 if (res->type != RES_STRING) 1560 return(EFTYPE); 1561 *result = res->u.stringval; 1562 return(0); 1563 } 1564 1565 int 1566 resource_query_string(int i, const char *resname, const char *value) 1567 { 1568 if (i < 0) 1569 i = 0; 1570 else 1571 i = i + 1; 1572 for (; i < devtab_count; i++) 1573 if (resource_match_string(i, resname, value) >= 0) 1574 return(i); 1575 return(-1); 1576 } 1577 1578 int 1579 resource_locate(int i, const char *resname) 1580 { 1581 if (i < 0) 1582 i = 0; 1583 else 1584 i = i + 1; 1585 for (; i < devtab_count; i++) 1586 if (!strcmp(devtab[i].name, resname)) 1587 return(i); 1588 return(-1); 1589 } 1590 1591 int 1592 resource_count(void) 1593 { 1594 return(devtab_count); 1595 } 1596 1597 char * 1598 resource_query_name(int i) 1599 { 1600 return(devtab[i].name); 1601 } 1602 1603 int 1604 resource_query_unit(int i) 1605 { 1606 return(devtab[i].unit); 1607 } 1608 1609 static int 1610 resource_create(const char *name, int unit, const char *resname, 1611 resource_type type, struct config_resource **result) 1612 { 1613 int i, j; 1614 struct config_resource *res = NULL; 1615 1616 for (i = 0; i < devtab_count; i++) 1617 if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) { 1618 res = devtab[i].resources; 1619 break; 1620 } 1621 if (res == NULL) { 1622 i = resource_new_name(name, unit); 1623 if (i < 0) 1624 return(ENOMEM); 1625 res = devtab[i].resources; 1626 } 1627 for (j = 0; j < devtab[i].resource_count; j++, res++) 1628 if (!strcmp(res->name, resname)) { 1629 *result = res; 1630 return(0); 1631 } 1632 j = resource_new_resname(i, resname, type); 1633 if (j < 0) 1634 return(ENOMEM); 1635 res = &devtab[i].resources[j]; 1636 *result = res; 1637 return(0); 1638 } 1639 1640 int 1641 resource_set_int(const char *name, int unit, const char *resname, int value) 1642 { 1643 int error; 1644 struct config_resource *res; 1645 1646 error = resource_create(name, unit, resname, RES_INT, &res); 1647 if (error) 1648 return(error); 1649 if (res->type != RES_INT) 1650 return(EFTYPE); 1651 res->u.intval = value; 1652 return(0); 1653 } 1654 1655 int 1656 resource_set_long(const char *name, int unit, const char *resname, long value) 1657 { 1658 int error; 1659 struct config_resource *res; 1660 1661 error = resource_create(name, unit, resname, RES_LONG, &res); 1662 if (error) 1663 return(error); 1664 if (res->type != RES_LONG) 1665 return(EFTYPE); 1666 res->u.longval = value; 1667 return(0); 1668 } 1669 1670 int 1671 resource_set_string(const char *name, int unit, const char *resname, 1672 const char *value) 1673 { 1674 int error; 1675 struct config_resource *res; 1676 1677 error = resource_create(name, unit, resname, RES_STRING, &res); 1678 if (error) 1679 return(error); 1680 if (res->type != RES_STRING) 1681 return(EFTYPE); 1682 if (res->u.stringval) 1683 kfree(res->u.stringval, M_TEMP); 1684 res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT); 1685 if (res->u.stringval == NULL) 1686 return(ENOMEM); 1687 strcpy(res->u.stringval, value); 1688 return(0); 1689 } 1690 1691 static void 1692 resource_cfgload(void *dummy __unused) 1693 { 1694 struct config_resource *res, *cfgres; 1695 int i, j; 1696 int error; 1697 char *name, *resname; 1698 int unit; 1699 resource_type type; 1700 char *stringval; 1701 int config_devtab_count; 1702 1703 config_devtab_count = devtab_count; 1704 devtab = NULL; 1705 devtab_count = 0; 1706 1707 for (i = 0; i < config_devtab_count; i++) { 1708 name = config_devtab[i].name; 1709 unit = config_devtab[i].unit; 1710 1711 for (j = 0; j < config_devtab[i].resource_count; j++) { 1712 cfgres = config_devtab[i].resources; 1713 resname = cfgres[j].name; 1714 type = cfgres[j].type; 1715 error = resource_create(name, unit, resname, type, 1716 &res); 1717 if (error) { 1718 kprintf("create resource %s%d: error %d\n", 1719 name, unit, error); 1720 continue; 1721 } 1722 if (res->type != type) { 1723 kprintf("type mismatch %s%d: %d != %d\n", 1724 name, unit, res->type, type); 1725 continue; 1726 } 1727 switch (type) { 1728 case RES_INT: 1729 res->u.intval = cfgres[j].u.intval; 1730 break; 1731 case RES_LONG: 1732 res->u.longval = cfgres[j].u.longval; 1733 break; 1734 case RES_STRING: 1735 if (res->u.stringval) 1736 kfree(res->u.stringval, M_TEMP); 1737 stringval = cfgres[j].u.stringval; 1738 res->u.stringval = kmalloc(strlen(stringval) + 1, 1739 M_TEMP, M_INTWAIT); 1740 if (res->u.stringval == NULL) 1741 break; 1742 strcpy(res->u.stringval, stringval); 1743 break; 1744 default: 1745 panic("unknown resource type %d", type); 1746 } 1747 } 1748 } 1749 } 1750 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0) 1751 1752 1753 /*======================================*/ 1754 /* 1755 * Some useful method implementations to make life easier for bus drivers. 1756 */ 1757 1758 void 1759 resource_list_init(struct resource_list *rl) 1760 { 1761 SLIST_INIT(rl); 1762 } 1763 1764 void 1765 resource_list_free(struct resource_list *rl) 1766 { 1767 struct resource_list_entry *rle; 1768 1769 while ((rle = SLIST_FIRST(rl)) != NULL) { 1770 if (rle->res) 1771 panic("resource_list_free: resource entry is busy"); 1772 SLIST_REMOVE_HEAD(rl, link); 1773 kfree(rle, M_BUS); 1774 } 1775 } 1776 1777 void 1778 resource_list_add(struct resource_list *rl, 1779 int type, int rid, 1780 u_long start, u_long end, u_long count) 1781 { 1782 struct resource_list_entry *rle; 1783 1784 rle = resource_list_find(rl, type, rid); 1785 if (rle == NULL) { 1786 rle = kmalloc(sizeof(struct resource_list_entry), M_BUS, 1787 M_INTWAIT); 1788 if (!rle) 1789 panic("resource_list_add: can't record entry"); 1790 SLIST_INSERT_HEAD(rl, rle, link); 1791 rle->type = type; 1792 rle->rid = rid; 1793 rle->res = NULL; 1794 } 1795 1796 if (rle->res) 1797 panic("resource_list_add: resource entry is busy"); 1798 1799 rle->start = start; 1800 rle->end = end; 1801 rle->count = count; 1802 } 1803 1804 struct resource_list_entry* 1805 resource_list_find(struct resource_list *rl, 1806 int type, int rid) 1807 { 1808 struct resource_list_entry *rle; 1809 1810 SLIST_FOREACH(rle, rl, link) 1811 if (rle->type == type && rle->rid == rid) 1812 return(rle); 1813 return(NULL); 1814 } 1815 1816 void 1817 resource_list_delete(struct resource_list *rl, 1818 int type, int rid) 1819 { 1820 struct resource_list_entry *rle = resource_list_find(rl, type, rid); 1821 1822 if (rle) { 1823 SLIST_REMOVE(rl, rle, resource_list_entry, link); 1824 kfree(rle, M_BUS); 1825 } 1826 } 1827 1828 struct resource * 1829 resource_list_alloc(struct resource_list *rl, 1830 device_t bus, device_t child, 1831 int type, int *rid, 1832 u_long start, u_long end, 1833 u_long count, u_int flags) 1834 { 1835 struct resource_list_entry *rle = 0; 1836 int passthrough = (device_get_parent(child) != bus); 1837 int isdefault = (start == 0UL && end == ~0UL); 1838 1839 if (passthrough) { 1840 return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 1841 type, rid, 1842 start, end, count, flags)); 1843 } 1844 1845 rle = resource_list_find(rl, type, *rid); 1846 1847 if (!rle) 1848 return(0); /* no resource of that type/rid */ 1849 if (rle->res) 1850 panic("resource_list_alloc: resource entry is busy"); 1851 1852 if (isdefault) { 1853 start = rle->start; 1854 count = max(count, rle->count); 1855 end = max(rle->end, start + count - 1); 1856 } 1857 1858 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, 1859 type, rid, start, end, count, flags); 1860 1861 /* 1862 * Record the new range. 1863 */ 1864 if (rle->res) { 1865 rle->start = rman_get_start(rle->res); 1866 rle->end = rman_get_end(rle->res); 1867 rle->count = count; 1868 } 1869 1870 return(rle->res); 1871 } 1872 1873 int 1874 resource_list_release(struct resource_list *rl, 1875 device_t bus, device_t child, 1876 int type, int rid, struct resource *res) 1877 { 1878 struct resource_list_entry *rle = 0; 1879 int passthrough = (device_get_parent(child) != bus); 1880 int error; 1881 1882 if (passthrough) { 1883 return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 1884 type, rid, res)); 1885 } 1886 1887 rle = resource_list_find(rl, type, rid); 1888 1889 if (!rle) 1890 panic("resource_list_release: can't find resource"); 1891 if (!rle->res) 1892 panic("resource_list_release: resource entry is not busy"); 1893 1894 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, 1895 type, rid, res); 1896 if (error) 1897 return(error); 1898 1899 rle->res = NULL; 1900 return(0); 1901 } 1902 1903 int 1904 resource_list_print_type(struct resource_list *rl, const char *name, int type, 1905 const char *format) 1906 { 1907 struct resource_list_entry *rle; 1908 int printed, retval; 1909 1910 printed = 0; 1911 retval = 0; 1912 /* Yes, this is kinda cheating */ 1913 SLIST_FOREACH(rle, rl, link) { 1914 if (rle->type == type) { 1915 if (printed == 0) 1916 retval += kprintf(" %s ", name); 1917 else 1918 retval += kprintf(","); 1919 printed++; 1920 retval += kprintf(format, rle->start); 1921 if (rle->count > 1) { 1922 retval += kprintf("-"); 1923 retval += kprintf(format, rle->start + 1924 rle->count - 1); 1925 } 1926 } 1927 } 1928 return(retval); 1929 } 1930 1931 /* 1932 * Generic driver/device identify functions. These will install a device 1933 * rendezvous point under the parent using the same name as the driver 1934 * name, which will at a later time be probed and attached. 1935 * 1936 * These functions are used when the parent does not 'scan' its bus for 1937 * matching devices, or for the particular devices using these functions, 1938 * or when the device is a pseudo or synthesized device (such as can be 1939 * found under firewire and ppbus). 1940 */ 1941 int 1942 bus_generic_identify(driver_t *driver, device_t parent) 1943 { 1944 if (parent->state == DS_ATTACHED) 1945 return (0); 1946 BUS_ADD_CHILD(parent, parent, 0, driver->name, -1); 1947 return (0); 1948 } 1949 1950 int 1951 bus_generic_identify_sameunit(driver_t *driver, device_t parent) 1952 { 1953 if (parent->state == DS_ATTACHED) 1954 return (0); 1955 BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent)); 1956 return (0); 1957 } 1958 1959 /* 1960 * Call DEVICE_IDENTIFY for each driver. 1961 */ 1962 int 1963 bus_generic_probe(device_t dev) 1964 { 1965 devclass_t dc = dev->devclass; 1966 driverlink_t dl; 1967 1968 TAILQ_FOREACH(dl, &dc->drivers, link) { 1969 DEVICE_IDENTIFY(dl->driver, dev); 1970 } 1971 1972 return(0); 1973 } 1974 1975 /* 1976 * This is an aweful hack due to the isa bus and autoconf code not 1977 * probing the ISA devices until after everything else has configured. 1978 * The ISA bus did a dummy attach long ago so we have to set it back 1979 * to an earlier state so the probe thinks its the initial probe and 1980 * not a bus rescan. 1981 * 1982 * XXX remove by properly defering the ISA bus scan. 1983 */ 1984 int 1985 bus_generic_probe_hack(device_t dev) 1986 { 1987 if (dev->state == DS_ATTACHED) { 1988 dev->state = DS_ALIVE; 1989 bus_generic_probe(dev); 1990 dev->state = DS_ATTACHED; 1991 } 1992 return (0); 1993 } 1994 1995 int 1996 bus_generic_attach(device_t dev) 1997 { 1998 device_t child; 1999 2000 TAILQ_FOREACH(child, &dev->children, link) { 2001 device_probe_and_attach(child); 2002 } 2003 2004 return(0); 2005 } 2006 2007 int 2008 bus_generic_detach(device_t dev) 2009 { 2010 device_t child; 2011 int error; 2012 2013 if (dev->state != DS_ATTACHED) 2014 return(EBUSY); 2015 2016 TAILQ_FOREACH(child, &dev->children, link) 2017 if ((error = device_detach(child)) != 0) 2018 return(error); 2019 2020 return 0; 2021 } 2022 2023 int 2024 bus_generic_shutdown(device_t dev) 2025 { 2026 device_t child; 2027 2028 TAILQ_FOREACH(child, &dev->children, link) 2029 device_shutdown(child); 2030 2031 return(0); 2032 } 2033 2034 int 2035 bus_generic_suspend(device_t dev) 2036 { 2037 int error; 2038 device_t child, child2; 2039 2040 TAILQ_FOREACH(child, &dev->children, link) { 2041 error = DEVICE_SUSPEND(child); 2042 if (error) { 2043 for (child2 = TAILQ_FIRST(&dev->children); 2044 child2 && child2 != child; 2045 child2 = TAILQ_NEXT(child2, link)) 2046 DEVICE_RESUME(child2); 2047 return(error); 2048 } 2049 } 2050 return(0); 2051 } 2052 2053 int 2054 bus_generic_resume(device_t dev) 2055 { 2056 device_t child; 2057 2058 TAILQ_FOREACH(child, &dev->children, link) 2059 DEVICE_RESUME(child); 2060 /* if resume fails, there's nothing we can usefully do... */ 2061 2062 return(0); 2063 } 2064 2065 int 2066 bus_print_child_header(device_t dev, device_t child) 2067 { 2068 int retval = 0; 2069 2070 if (device_get_desc(child)) 2071 retval += device_printf(child, "<%s>", device_get_desc(child)); 2072 else 2073 retval += kprintf("%s", device_get_nameunit(child)); 2074 if (bootverbose) { 2075 if (child->state != DS_ATTACHED) 2076 kprintf(" [tentative]"); 2077 else 2078 kprintf(" [attached!]"); 2079 } 2080 return(retval); 2081 } 2082 2083 int 2084 bus_print_child_footer(device_t dev, device_t child) 2085 { 2086 return(kprintf(" on %s\n", device_get_nameunit(dev))); 2087 } 2088 2089 device_t 2090 bus_generic_add_child(device_t dev, device_t child, int order, 2091 const char *name, int unit) 2092 { 2093 if (dev->parent) 2094 dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit); 2095 else 2096 dev = device_add_child_ordered(child, order, name, unit); 2097 return(dev); 2098 2099 } 2100 2101 int 2102 bus_generic_print_child(device_t dev, device_t child) 2103 { 2104 int retval = 0; 2105 2106 retval += bus_print_child_header(dev, child); 2107 retval += bus_print_child_footer(dev, child); 2108 2109 return(retval); 2110 } 2111 2112 int 2113 bus_generic_read_ivar(device_t dev, device_t child, int index, 2114 uintptr_t * result) 2115 { 2116 int error; 2117 2118 if (dev->parent) 2119 error = BUS_READ_IVAR(dev->parent, child, index, result); 2120 else 2121 error = ENOENT; 2122 return (error); 2123 } 2124 2125 int 2126 bus_generic_write_ivar(device_t dev, device_t child, int index, 2127 uintptr_t value) 2128 { 2129 int error; 2130 2131 if (dev->parent) 2132 error = BUS_WRITE_IVAR(dev->parent, child, index, value); 2133 else 2134 error = ENOENT; 2135 return (error); 2136 } 2137 2138 /* 2139 * Resource list are used for iterations, do not recurse. 2140 */ 2141 struct resource_list * 2142 bus_generic_get_resource_list(device_t dev, device_t child) 2143 { 2144 return (NULL); 2145 } 2146 2147 void 2148 bus_generic_driver_added(device_t dev, driver_t *driver) 2149 { 2150 device_t child; 2151 2152 DEVICE_IDENTIFY(driver, dev); 2153 TAILQ_FOREACH(child, &dev->children, link) { 2154 if (child->state == DS_NOTPRESENT) 2155 device_probe_and_attach(child); 2156 } 2157 } 2158 2159 int 2160 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, 2161 int flags, driver_intr_t *intr, void *arg, 2162 void **cookiep, lwkt_serialize_t serializer) 2163 { 2164 /* Propagate up the bus hierarchy until someone handles it. */ 2165 if (dev->parent) 2166 return(BUS_SETUP_INTR(dev->parent, child, irq, flags, 2167 intr, arg, cookiep, serializer)); 2168 else 2169 return(EINVAL); 2170 } 2171 2172 int 2173 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, 2174 void *cookie) 2175 { 2176 /* Propagate up the bus hierarchy until someone handles it. */ 2177 if (dev->parent) 2178 return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); 2179 else 2180 return(EINVAL); 2181 } 2182 2183 int 2184 bus_generic_disable_intr(device_t dev, device_t child, void *cookie) 2185 { 2186 if (dev->parent) 2187 return(BUS_DISABLE_INTR(dev->parent, child, cookie)); 2188 else 2189 return(0); 2190 } 2191 2192 void 2193 bus_generic_enable_intr(device_t dev, device_t child, void *cookie) 2194 { 2195 if (dev->parent) 2196 BUS_ENABLE_INTR(dev->parent, child, cookie); 2197 } 2198 2199 int 2200 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, 2201 enum intr_polarity pol) 2202 { 2203 /* Propagate up the bus hierarchy until someone handles it. */ 2204 if (dev->parent) 2205 return(BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); 2206 else 2207 return(EINVAL); 2208 } 2209 2210 struct resource * 2211 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, 2212 u_long start, u_long end, u_long count, u_int flags) 2213 { 2214 /* Propagate up the bus hierarchy until someone handles it. */ 2215 if (dev->parent) 2216 return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, 2217 start, end, count, flags)); 2218 else 2219 return(NULL); 2220 } 2221 2222 int 2223 bus_generic_release_resource(device_t dev, device_t child, int type, int rid, 2224 struct resource *r) 2225 { 2226 /* Propagate up the bus hierarchy until someone handles it. */ 2227 if (dev->parent) 2228 return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); 2229 else 2230 return(EINVAL); 2231 } 2232 2233 int 2234 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, 2235 struct resource *r) 2236 { 2237 /* Propagate up the bus hierarchy until someone handles it. */ 2238 if (dev->parent) 2239 return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); 2240 else 2241 return(EINVAL); 2242 } 2243 2244 int 2245 bus_generic_deactivate_resource(device_t dev, device_t child, int type, 2246 int rid, struct resource *r) 2247 { 2248 /* Propagate up the bus hierarchy until someone handles it. */ 2249 if (dev->parent) 2250 return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, 2251 r)); 2252 else 2253 return(EINVAL); 2254 } 2255 2256 int 2257 bus_generic_get_resource(device_t dev, device_t child, int type, int rid, 2258 u_long *startp, u_long *countp) 2259 { 2260 int error; 2261 2262 error = ENOENT; 2263 if (dev->parent) { 2264 error = BUS_GET_RESOURCE(dev->parent, child, type, rid, 2265 startp, countp); 2266 } 2267 return (error); 2268 } 2269 2270 int 2271 bus_generic_set_resource(device_t dev, device_t child, int type, int rid, 2272 u_long start, u_long count) 2273 { 2274 int error; 2275 2276 error = EINVAL; 2277 if (dev->parent) { 2278 error = BUS_SET_RESOURCE(dev->parent, child, type, rid, 2279 start, count); 2280 } 2281 return (error); 2282 } 2283 2284 void 2285 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid) 2286 { 2287 if (dev->parent) 2288 BUS_DELETE_RESOURCE(dev, child, type, rid); 2289 } 2290 2291 int 2292 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, 2293 u_long *startp, u_long *countp) 2294 { 2295 struct resource_list *rl = NULL; 2296 struct resource_list_entry *rle = NULL; 2297 2298 rl = BUS_GET_RESOURCE_LIST(dev, child); 2299 if (!rl) 2300 return(EINVAL); 2301 2302 rle = resource_list_find(rl, type, rid); 2303 if (!rle) 2304 return(ENOENT); 2305 2306 if (startp) 2307 *startp = rle->start; 2308 if (countp) 2309 *countp = rle->count; 2310 2311 return(0); 2312 } 2313 2314 int 2315 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, 2316 u_long start, u_long count) 2317 { 2318 struct resource_list *rl = NULL; 2319 2320 rl = BUS_GET_RESOURCE_LIST(dev, child); 2321 if (!rl) 2322 return(EINVAL); 2323 2324 resource_list_add(rl, type, rid, start, (start + count - 1), count); 2325 2326 return(0); 2327 } 2328 2329 void 2330 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) 2331 { 2332 struct resource_list *rl = NULL; 2333 2334 rl = BUS_GET_RESOURCE_LIST(dev, child); 2335 if (!rl) 2336 return; 2337 2338 resource_list_delete(rl, type, rid); 2339 } 2340 2341 int 2342 bus_generic_rl_release_resource(device_t dev, device_t child, int type, 2343 int rid, struct resource *r) 2344 { 2345 struct resource_list *rl = NULL; 2346 2347 rl = BUS_GET_RESOURCE_LIST(dev, child); 2348 if (!rl) 2349 return(EINVAL); 2350 2351 return(resource_list_release(rl, dev, child, type, rid, r)); 2352 } 2353 2354 struct resource * 2355 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, 2356 int *rid, u_long start, u_long end, u_long count, u_int flags) 2357 { 2358 struct resource_list *rl = NULL; 2359 2360 rl = BUS_GET_RESOURCE_LIST(dev, child); 2361 if (!rl) 2362 return(NULL); 2363 2364 return(resource_list_alloc(rl, dev, child, type, rid, 2365 start, end, count, flags)); 2366 } 2367 2368 int 2369 bus_generic_child_present(device_t bus, device_t child) 2370 { 2371 return(BUS_CHILD_PRESENT(device_get_parent(bus), bus)); 2372 } 2373 2374 2375 /* 2376 * Some convenience functions to make it easier for drivers to use the 2377 * resource-management functions. All these really do is hide the 2378 * indirection through the parent's method table, making for slightly 2379 * less-wordy code. In the future, it might make sense for this code 2380 * to maintain some sort of a list of resources allocated by each device. 2381 */ 2382 int 2383 bus_alloc_resources(device_t dev, struct resource_spec *rs, 2384 struct resource **res) 2385 { 2386 int i; 2387 2388 for (i = 0; rs[i].type != -1; i++) 2389 res[i] = NULL; 2390 for (i = 0; rs[i].type != -1; i++) { 2391 res[i] = bus_alloc_resource_any(dev, 2392 rs[i].type, &rs[i].rid, rs[i].flags); 2393 if (res[i] == NULL) { 2394 bus_release_resources(dev, rs, res); 2395 return (ENXIO); 2396 } 2397 } 2398 return (0); 2399 } 2400 2401 void 2402 bus_release_resources(device_t dev, const struct resource_spec *rs, 2403 struct resource **res) 2404 { 2405 int i; 2406 2407 for (i = 0; rs[i].type != -1; i++) 2408 if (res[i] != NULL) { 2409 bus_release_resource( 2410 dev, rs[i].type, rs[i].rid, res[i]); 2411 res[i] = NULL; 2412 } 2413 } 2414 2415 struct resource * 2416 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end, 2417 u_long count, u_int flags) 2418 { 2419 if (dev->parent == 0) 2420 return(0); 2421 return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, 2422 count, flags)); 2423 } 2424 2425 int 2426 bus_activate_resource(device_t dev, int type, int rid, struct resource *r) 2427 { 2428 if (dev->parent == 0) 2429 return(EINVAL); 2430 return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2431 } 2432 2433 int 2434 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) 2435 { 2436 if (dev->parent == 0) 2437 return(EINVAL); 2438 return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); 2439 } 2440 2441 int 2442 bus_release_resource(device_t dev, int type, int rid, struct resource *r) 2443 { 2444 if (dev->parent == 0) 2445 return(EINVAL); 2446 return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r)); 2447 } 2448 2449 int 2450 bus_setup_intr(device_t dev, struct resource *r, int flags, 2451 driver_intr_t handler, void *arg, 2452 void **cookiep, lwkt_serialize_t serializer) 2453 { 2454 if (dev->parent == 0) 2455 return(EINVAL); 2456 return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg, 2457 cookiep, serializer)); 2458 } 2459 2460 int 2461 bus_teardown_intr(device_t dev, struct resource *r, void *cookie) 2462 { 2463 if (dev->parent == 0) 2464 return(EINVAL); 2465 return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); 2466 } 2467 2468 void 2469 bus_enable_intr(device_t dev, void *cookie) 2470 { 2471 if (dev->parent) 2472 BUS_ENABLE_INTR(dev->parent, dev, cookie); 2473 } 2474 2475 int 2476 bus_disable_intr(device_t dev, void *cookie) 2477 { 2478 if (dev->parent) 2479 return(BUS_DISABLE_INTR(dev->parent, dev, cookie)); 2480 else 2481 return(0); 2482 } 2483 2484 int 2485 bus_set_resource(device_t dev, int type, int rid, 2486 u_long start, u_long count) 2487 { 2488 return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, 2489 start, count)); 2490 } 2491 2492 int 2493 bus_get_resource(device_t dev, int type, int rid, 2494 u_long *startp, u_long *countp) 2495 { 2496 return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2497 startp, countp)); 2498 } 2499 2500 u_long 2501 bus_get_resource_start(device_t dev, int type, int rid) 2502 { 2503 u_long start, count; 2504 int error; 2505 2506 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2507 &start, &count); 2508 if (error) 2509 return(0); 2510 return(start); 2511 } 2512 2513 u_long 2514 bus_get_resource_count(device_t dev, int type, int rid) 2515 { 2516 u_long start, count; 2517 int error; 2518 2519 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, 2520 &start, &count); 2521 if (error) 2522 return(0); 2523 return(count); 2524 } 2525 2526 void 2527 bus_delete_resource(device_t dev, int type, int rid) 2528 { 2529 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); 2530 } 2531 2532 int 2533 bus_child_present(device_t child) 2534 { 2535 return (BUS_CHILD_PRESENT(device_get_parent(child), child)); 2536 } 2537 2538 int 2539 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen) 2540 { 2541 device_t parent; 2542 2543 parent = device_get_parent(child); 2544 if (parent == NULL) { 2545 *buf = '\0'; 2546 return (0); 2547 } 2548 return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen)); 2549 } 2550 2551 int 2552 bus_child_location_str(device_t child, char *buf, size_t buflen) 2553 { 2554 device_t parent; 2555 2556 parent = device_get_parent(child); 2557 if (parent == NULL) { 2558 *buf = '\0'; 2559 return (0); 2560 } 2561 return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen)); 2562 } 2563 2564 static int 2565 root_print_child(device_t dev, device_t child) 2566 { 2567 return(0); 2568 } 2569 2570 static int 2571 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg, 2572 void **cookiep, lwkt_serialize_t serializer) 2573 { 2574 /* 2575 * If an interrupt mapping gets to here something bad has happened. 2576 */ 2577 panic("root_setup_intr"); 2578 } 2579 2580 /* 2581 * If we get here, assume that the device is permanant and really is 2582 * present in the system. Removable bus drivers are expected to intercept 2583 * this call long before it gets here. We return -1 so that drivers that 2584 * really care can check vs -1 or some ERRNO returned higher in the food 2585 * chain. 2586 */ 2587 static int 2588 root_child_present(device_t dev, device_t child) 2589 { 2590 return(-1); 2591 } 2592 2593 /* 2594 * XXX NOTE! other defaults may be set in bus_if.m 2595 */ 2596 static kobj_method_t root_methods[] = { 2597 /* Device interface */ 2598 KOBJMETHOD(device_shutdown, bus_generic_shutdown), 2599 KOBJMETHOD(device_suspend, bus_generic_suspend), 2600 KOBJMETHOD(device_resume, bus_generic_resume), 2601 2602 /* Bus interface */ 2603 KOBJMETHOD(bus_add_child, bus_generic_add_child), 2604 KOBJMETHOD(bus_print_child, root_print_child), 2605 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), 2606 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), 2607 KOBJMETHOD(bus_setup_intr, root_setup_intr), 2608 KOBJMETHOD(bus_child_present, root_child_present), 2609 2610 { 0, 0 } 2611 }; 2612 2613 static driver_t root_driver = { 2614 "root", 2615 root_methods, 2616 1, /* no softc */ 2617 }; 2618 2619 device_t root_bus; 2620 devclass_t root_devclass; 2621 2622 static int 2623 root_bus_module_handler(module_t mod, int what, void* arg) 2624 { 2625 switch (what) { 2626 case MOD_LOAD: 2627 root_bus = make_device(NULL, "root", 0); 2628 root_bus->desc = "System root bus"; 2629 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); 2630 root_bus->driver = &root_driver; 2631 root_bus->state = DS_ALIVE; 2632 root_devclass = devclass_find_internal("root", NULL, FALSE); 2633 return(0); 2634 2635 case MOD_SHUTDOWN: 2636 device_shutdown(root_bus); 2637 return(0); 2638 default: 2639 return(0); 2640 } 2641 } 2642 2643 static moduledata_t root_bus_mod = { 2644 "rootbus", 2645 root_bus_module_handler, 2646 0 2647 }; 2648 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 2649 2650 void 2651 root_bus_configure(void) 2652 { 2653 int warncount; 2654 device_t dev; 2655 2656 PDEBUG((".")); 2657 2658 /* 2659 * handle device_identify based device attachments to the root_bus 2660 * (typically nexus). 2661 */ 2662 bus_generic_probe(root_bus); 2663 2664 /* 2665 * Probe and attach the devices under root_bus. 2666 */ 2667 TAILQ_FOREACH(dev, &root_bus->children, link) { 2668 device_probe_and_attach(dev); 2669 } 2670 2671 /* 2672 * Wait for all asynchronous attaches to complete. If we don't 2673 * our legacy ISA bus scan could steal device unit numbers or 2674 * even I/O ports. 2675 */ 2676 warncount = 10; 2677 if (numasyncthreads) 2678 kprintf("Waiting for async drivers to attach\n"); 2679 while (numasyncthreads > 0) { 2680 if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK) 2681 --warncount; 2682 if (warncount == 0) { 2683 kprintf("Warning: Still waiting for %d " 2684 "drivers to attach\n", numasyncthreads); 2685 } else if (warncount == -30) { 2686 kprintf("Giving up on %d drivers\n", numasyncthreads); 2687 break; 2688 } 2689 } 2690 root_bus->state = DS_ATTACHED; 2691 } 2692 2693 int 2694 driver_module_handler(module_t mod, int what, void *arg) 2695 { 2696 int error; 2697 struct driver_module_data *dmd; 2698 devclass_t bus_devclass; 2699 kobj_class_t driver; 2700 const char *parentname; 2701 2702 dmd = (struct driver_module_data *)arg; 2703 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); 2704 error = 0; 2705 2706 switch (what) { 2707 case MOD_LOAD: 2708 if (dmd->dmd_chainevh) 2709 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 2710 2711 driver = dmd->dmd_driver; 2712 PDEBUG(("Loading module: driver %s on bus %s", 2713 DRIVERNAME(driver), dmd->dmd_busname)); 2714 2715 /* 2716 * If the driver has any base classes, make the 2717 * devclass inherit from the devclass of the driver's 2718 * first base class. This will allow the system to 2719 * search for drivers in both devclasses for children 2720 * of a device using this driver. 2721 */ 2722 if (driver->baseclasses) 2723 parentname = driver->baseclasses[0]->name; 2724 else 2725 parentname = NULL; 2726 *dmd->dmd_devclass = devclass_find_internal(driver->name, 2727 parentname, TRUE); 2728 2729 error = devclass_add_driver(bus_devclass, driver); 2730 if (error) 2731 break; 2732 break; 2733 2734 case MOD_UNLOAD: 2735 PDEBUG(("Unloading module: driver %s from bus %s", 2736 DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); 2737 error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); 2738 2739 if (!error && dmd->dmd_chainevh) 2740 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); 2741 break; 2742 } 2743 2744 return (error); 2745 } 2746 2747 #ifdef BUS_DEBUG 2748 2749 /* 2750 * The _short versions avoid iteration by not calling anything that prints 2751 * more than oneliners. I love oneliners. 2752 */ 2753 2754 static void 2755 print_device_short(device_t dev, int indent) 2756 { 2757 if (!dev) 2758 return; 2759 2760 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n", 2761 dev->unit, dev->desc, 2762 (dev->parent? "":"no "), 2763 (TAILQ_EMPTY(&dev->children)? "no ":""), 2764 (dev->flags&DF_ENABLED? "enabled,":"disabled,"), 2765 (dev->flags&DF_FIXEDCLASS? "fixed,":""), 2766 (dev->flags&DF_WILDCARD? "wildcard,":""), 2767 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), 2768 (dev->ivars? "":"no "), 2769 (dev->softc? "":"no "), 2770 dev->busy)); 2771 } 2772 2773 static void 2774 print_device(device_t dev, int indent) 2775 { 2776 if (!dev) 2777 return; 2778 2779 print_device_short(dev, indent); 2780 2781 indentprintf(("Parent:\n")); 2782 print_device_short(dev->parent, indent+1); 2783 indentprintf(("Driver:\n")); 2784 print_driver_short(dev->driver, indent+1); 2785 indentprintf(("Devclass:\n")); 2786 print_devclass_short(dev->devclass, indent+1); 2787 } 2788 2789 /* 2790 * Print the device and all its children (indented). 2791 */ 2792 void 2793 print_device_tree_short(device_t dev, int indent) 2794 { 2795 device_t child; 2796 2797 if (!dev) 2798 return; 2799 2800 print_device_short(dev, indent); 2801 2802 TAILQ_FOREACH(child, &dev->children, link) 2803 print_device_tree_short(child, indent+1); 2804 } 2805 2806 /* 2807 * Print the device and all its children (indented). 2808 */ 2809 void 2810 print_device_tree(device_t dev, int indent) 2811 { 2812 device_t child; 2813 2814 if (!dev) 2815 return; 2816 2817 print_device(dev, indent); 2818 2819 TAILQ_FOREACH(child, &dev->children, link) 2820 print_device_tree(child, indent+1); 2821 } 2822 2823 static void 2824 print_driver_short(driver_t *driver, int indent) 2825 { 2826 if (!driver) 2827 return; 2828 2829 indentprintf(("driver %s: softc size = %d\n", 2830 driver->name, driver->size)); 2831 } 2832 2833 static void 2834 print_driver(driver_t *driver, int indent) 2835 { 2836 if (!driver) 2837 return; 2838 2839 print_driver_short(driver, indent); 2840 } 2841 2842 2843 static void 2844 print_driver_list(driver_list_t drivers, int indent) 2845 { 2846 driverlink_t driver; 2847 2848 TAILQ_FOREACH(driver, &drivers, link) 2849 print_driver(driver->driver, indent); 2850 } 2851 2852 static void 2853 print_devclass_short(devclass_t dc, int indent) 2854 { 2855 if (!dc) 2856 return; 2857 2858 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); 2859 } 2860 2861 static void 2862 print_devclass(devclass_t dc, int indent) 2863 { 2864 int i; 2865 2866 if (!dc) 2867 return; 2868 2869 print_devclass_short(dc, indent); 2870 indentprintf(("Drivers:\n")); 2871 print_driver_list(dc->drivers, indent+1); 2872 2873 indentprintf(("Devices:\n")); 2874 for (i = 0; i < dc->maxunit; i++) 2875 if (dc->devices[i]) 2876 print_device(dc->devices[i], indent+1); 2877 } 2878 2879 void 2880 print_devclass_list_short(void) 2881 { 2882 devclass_t dc; 2883 2884 kprintf("Short listing of devclasses, drivers & devices:\n"); 2885 TAILQ_FOREACH(dc, &devclasses, link) { 2886 print_devclass_short(dc, 0); 2887 } 2888 } 2889 2890 void 2891 print_devclass_list(void) 2892 { 2893 devclass_t dc; 2894 2895 kprintf("Full listing of devclasses, drivers & devices:\n"); 2896 TAILQ_FOREACH(dc, &devclasses, link) { 2897 print_devclass(dc, 0); 2898 } 2899 } 2900 2901 #endif 2902 2903 /* 2904 * Check to see if a device is disabled via a disabled hint. 2905 */ 2906 int 2907 resource_disabled(const char *name, int unit) 2908 { 2909 int error, value; 2910 2911 error = resource_int_value(name, unit, "disabled", &value); 2912 if (error) 2913 return(0); 2914 return(value); 2915 } 2916