xref: /dflybsd-src/sys/kern/subr_bus.c (revision 6b7bde44184a7a4502ef3ec6f061b4268b50ea82)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.43 2008/09/05 10:28:35 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #ifdef DEVICE_SYSCTLS
38 #include <sys/sysctl.h>
39 #endif
40 #include <sys/kobj.h>
41 #include <sys/bus_private.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/rman.h>
45 
46 #include <machine/stdarg.h>	/* for device_printf() */
47 
48 #include <sys/thread2.h>
49 
50 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
51 
52 #ifdef BUS_DEBUG
53 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
54 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
55 #define DRIVERNAME(d)	((d)? d->name : "no driver")
56 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
57 
58 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
59  * prevent syslog from deleting initial spaces
60  */
61 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
62 
63 static void	print_device_short(device_t dev, int indent);
64 static void	print_device(device_t dev, int indent);
65 void		print_device_tree_short(device_t dev, int indent);
66 void		print_device_tree(device_t dev, int indent);
67 static void	print_driver_short(driver_t *driver, int indent);
68 static void	print_driver(driver_t *driver, int indent);
69 static void	print_driver_list(driver_list_t drivers, int indent);
70 static void	print_devclass_short(devclass_t dc, int indent);
71 static void	print_devclass(devclass_t dc, int indent);
72 void		print_devclass_list_short(void);
73 void		print_devclass_list(void);
74 
75 #else
76 /* Make the compiler ignore the function calls */
77 #define PDEBUG(a)			/* nop */
78 #define DEVICENAME(d)			/* nop */
79 #define DRIVERNAME(d)			/* nop */
80 #define DEVCLANAME(d)			/* nop */
81 
82 #define print_device_short(d,i)		/* nop */
83 #define print_device(d,i)		/* nop */
84 #define print_device_tree_short(d,i)	/* nop */
85 #define print_device_tree(d,i)		/* nop */
86 #define print_driver_short(d,i)		/* nop */
87 #define print_driver(d,i)		/* nop */
88 #define print_driver_list(d,i)		/* nop */
89 #define print_devclass_short(d,i)	/* nop */
90 #define print_devclass(d,i)		/* nop */
91 #define print_devclass_list_short()	/* nop */
92 #define print_devclass_list()		/* nop */
93 #endif
94 
95 #ifdef DEVICE_SYSCTLS
96 static void	device_register_oids(device_t dev);
97 static void	device_unregister_oids(device_t dev);
98 #endif
99 static void	device_attach_async(device_t dev);
100 static void	device_attach_thread(void *arg);
101 static int	device_doattach(device_t dev);
102 
103 static int do_async_attach = 0;
104 static int numasyncthreads;
105 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
106 
107 kobj_method_t null_methods[] = {
108 	{ 0, 0 }
109 };
110 
111 DEFINE_CLASS(null, null_methods, 0);
112 
113 /*
114  * Devclass implementation
115  */
116 
117 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
118 
119 static devclass_t
120 devclass_find_internal(const char *classname, const char *parentname,
121 		       int create)
122 {
123 	devclass_t dc;
124 
125 	PDEBUG(("looking for %s", classname));
126 	if (classname == NULL)
127 		return(NULL);
128 
129 	TAILQ_FOREACH(dc, &devclasses, link)
130 		if (!strcmp(dc->name, classname))
131 			break;
132 
133 	if (create && !dc) {
134 		PDEBUG(("creating %s", classname));
135 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
136 			    M_BUS, M_INTWAIT | M_ZERO);
137 		if (!dc)
138 			return(NULL);
139 		dc->parent = NULL;
140 		dc->name = (char*) (dc + 1);
141 		strcpy(dc->name, classname);
142 		dc->devices = NULL;
143 		dc->maxunit = 0;
144 		TAILQ_INIT(&dc->drivers);
145 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
146 	}
147 	if (parentname && dc && !dc->parent)
148 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
149 
150 	return(dc);
151 }
152 
153 devclass_t
154 devclass_create(const char *classname)
155 {
156 	return(devclass_find_internal(classname, NULL, TRUE));
157 }
158 
159 devclass_t
160 devclass_find(const char *classname)
161 {
162 	return(devclass_find_internal(classname, NULL, FALSE));
163 }
164 
165 device_t
166 devclass_find_unit(const char *classname, int unit)
167 {
168 	devclass_t dc;
169 
170 	if ((dc = devclass_find(classname)) != NULL)
171 	    return(devclass_get_device(dc, unit));
172 	return (NULL);
173 }
174 
175 int
176 devclass_add_driver(devclass_t dc, driver_t *driver)
177 {
178 	driverlink_t dl;
179 	device_t dev;
180 	int i;
181 
182 	PDEBUG(("%s", DRIVERNAME(driver)));
183 
184 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
185 	if (!dl)
186 		return(ENOMEM);
187 
188 	/*
189 	 * Compile the driver's methods. Also increase the reference count
190 	 * so that the class doesn't get freed when the last instance
191 	 * goes. This means we can safely use static methods and avoids a
192 	 * double-free in devclass_delete_driver.
193 	 */
194 	kobj_class_instantiate(driver);
195 
196 	/*
197 	 * Make sure the devclass which the driver is implementing exists.
198 	 */
199 	devclass_find_internal(driver->name, NULL, TRUE);
200 
201 	dl->driver = driver;
202 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
203 
204 	/*
205 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
206 	 * but only if the bus has already been attached (otherwise we
207 	 * might probe too early).
208 	 *
209 	 * This is what will cause a newly loaded module to be associated
210 	 * with hardware.  bus_generic_driver_added() is typically what ends
211 	 * up being called.
212 	 */
213 	for (i = 0; i < dc->maxunit; i++) {
214 		if ((dev = dc->devices[i]) != NULL) {
215 			if (dev->state >= DS_ATTACHED)
216 				BUS_DRIVER_ADDED(dev, driver);
217 		}
218 	}
219 
220 	return(0);
221 }
222 
223 int
224 devclass_delete_driver(devclass_t busclass, driver_t *driver)
225 {
226 	devclass_t dc = devclass_find(driver->name);
227 	driverlink_t dl;
228 	device_t dev;
229 	int i;
230 	int error;
231 
232 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
233 
234 	if (!dc)
235 		return(0);
236 
237 	/*
238 	 * Find the link structure in the bus' list of drivers.
239 	 */
240 	TAILQ_FOREACH(dl, &busclass->drivers, link)
241 		if (dl->driver == driver)
242 			break;
243 
244 	if (!dl) {
245 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
246 		return(ENOENT);
247 	}
248 
249 	/*
250 	 * Disassociate from any devices.  We iterate through all the
251 	 * devices in the devclass of the driver and detach any which are
252 	 * using the driver and which have a parent in the devclass which
253 	 * we are deleting from.
254 	 *
255 	 * Note that since a driver can be in multiple devclasses, we
256 	 * should not detach devices which are not children of devices in
257 	 * the affected devclass.
258 	 */
259 	for (i = 0; i < dc->maxunit; i++)
260 		if (dc->devices[i]) {
261 			dev = dc->devices[i];
262 			if (dev->driver == driver && dev->parent &&
263 			    dev->parent->devclass == busclass) {
264 				if ((error = device_detach(dev)) != 0)
265 					return(error);
266 				device_set_driver(dev, NULL);
267 		    	}
268 		}
269 
270 	TAILQ_REMOVE(&busclass->drivers, dl, link);
271 	kfree(dl, M_BUS);
272 
273 	kobj_class_uninstantiate(driver);
274 
275 	return(0);
276 }
277 
278 static driverlink_t
279 devclass_find_driver_internal(devclass_t dc, const char *classname)
280 {
281 	driverlink_t dl;
282 
283 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
284 
285 	TAILQ_FOREACH(dl, &dc->drivers, link)
286 		if (!strcmp(dl->driver->name, classname))
287 			return(dl);
288 
289 	PDEBUG(("not found"));
290 	return(NULL);
291 }
292 
293 kobj_class_t
294 devclass_find_driver(devclass_t dc, const char *classname)
295 {
296 	driverlink_t dl;
297 
298 	dl = devclass_find_driver_internal(dc, classname);
299 	if (dl)
300 		return(dl->driver);
301 	else
302 		return(NULL);
303 }
304 
305 const char *
306 devclass_get_name(devclass_t dc)
307 {
308 	return(dc->name);
309 }
310 
311 device_t
312 devclass_get_device(devclass_t dc, int unit)
313 {
314 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
315 		return(NULL);
316 	return(dc->devices[unit]);
317 }
318 
319 void *
320 devclass_get_softc(devclass_t dc, int unit)
321 {
322 	device_t dev;
323 
324 	dev = devclass_get_device(dc, unit);
325 	if (!dev)
326 		return(NULL);
327 
328 	return(device_get_softc(dev));
329 }
330 
331 int
332 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
333 {
334 	int i;
335 	int count;
336 	device_t *list;
337 
338 	count = 0;
339 	for (i = 0; i < dc->maxunit; i++)
340 		if (dc->devices[i])
341 			count++;
342 
343 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
344 	if (list == NULL)
345 		return(ENOMEM);
346 
347 	count = 0;
348 	for (i = 0; i < dc->maxunit; i++)
349 		if (dc->devices[i]) {
350 			list[count] = dc->devices[i];
351 			count++;
352 		}
353 
354 	*devlistp = list;
355 	*devcountp = count;
356 
357 	return(0);
358 }
359 
360 /**
361  * @brief Get a list of drivers in the devclass
362  *
363  * An array containing a list of pointers to all the drivers in the
364  * given devclass is allocated and returned in @p *listp.  The number
365  * of drivers in the array is returned in @p *countp. The caller should
366  * free the array using @c free(p, M_TEMP).
367  *
368  * @param dc            the devclass to examine
369  * @param listp         gives location for array pointer return value
370  * @param countp        gives location for number of array elements
371  *                      return value
372  *
373  * @retval 0            success
374  * @retval ENOMEM       the array allocation failed
375  */
376 int
377 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
378 {
379         driverlink_t dl;
380         driver_t **list;
381         int count;
382 
383         count = 0;
384         TAILQ_FOREACH(dl, &dc->drivers, link)
385                 count++;
386         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
387         if (list == NULL)
388                 return (ENOMEM);
389 
390         count = 0;
391         TAILQ_FOREACH(dl, &dc->drivers, link) {
392                 list[count] = dl->driver;
393                 count++;
394         }
395         *listp = list;
396         *countp = count;
397 
398         return (0);
399 }
400 
401 int
402 devclass_get_maxunit(devclass_t dc)
403 {
404 	return(dc->maxunit);
405 }
406 
407 void
408 devclass_set_parent(devclass_t dc, devclass_t pdc)
409 {
410         dc->parent = pdc;
411 }
412 
413 devclass_t
414 devclass_get_parent(devclass_t dc)
415 {
416 	return(dc->parent);
417 }
418 
419 static int
420 devclass_alloc_unit(devclass_t dc, int *unitp)
421 {
422 	int unit = *unitp;
423 
424 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
425 
426 	/* If we have been given a wired unit number, check for existing device */
427 	if (unit != -1) {
428 		if (unit >= 0 && unit < dc->maxunit &&
429 		    dc->devices[unit] != NULL) {
430 			if (bootverbose)
431 				kprintf("%s-: %s%d exists, using next available unit number\n",
432 				       dc->name, dc->name, unit);
433 			/* find the next available slot */
434 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
435 				;
436 		}
437 	} else {
438 		/* Unwired device, find the next available slot for it */
439 		unit = 0;
440 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
441 			unit++;
442 	}
443 
444 	/*
445 	 * We've selected a unit beyond the length of the table, so let's
446 	 * extend the table to make room for all units up to and including
447 	 * this one.
448 	 */
449 	if (unit >= dc->maxunit) {
450 		device_t *newlist;
451 		int newsize;
452 
453 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
454 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
455 				 M_INTWAIT | M_ZERO);
456 		if (newlist == NULL)
457 			return(ENOMEM);
458 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
459 		if (dc->devices)
460 			kfree(dc->devices, M_BUS);
461 		dc->devices = newlist;
462 		dc->maxunit = newsize;
463 	}
464 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
465 
466 	*unitp = unit;
467 	return(0);
468 }
469 
470 static int
471 devclass_add_device(devclass_t dc, device_t dev)
472 {
473 	int buflen, error;
474 
475 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
476 
477 	buflen = strlen(dc->name) + 5;
478 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
479 	if (!dev->nameunit)
480 		return(ENOMEM);
481 
482 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
483 		kfree(dev->nameunit, M_BUS);
484 		dev->nameunit = NULL;
485 		return(error);
486 	}
487 	dc->devices[dev->unit] = dev;
488 	dev->devclass = dc;
489 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
490 
491 #ifdef DEVICE_SYSCTLS
492 	device_register_oids(dev);
493 #endif
494 
495 	return(0);
496 }
497 
498 static int
499 devclass_delete_device(devclass_t dc, device_t dev)
500 {
501 	if (!dc || !dev)
502 		return(0);
503 
504 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
505 
506 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
507 		panic("devclass_delete_device: inconsistent device class");
508 	dc->devices[dev->unit] = NULL;
509 	if (dev->flags & DF_WILDCARD)
510 		dev->unit = -1;
511 	dev->devclass = NULL;
512 	kfree(dev->nameunit, M_BUS);
513 	dev->nameunit = NULL;
514 
515 #ifdef DEVICE_SYSCTLS
516 	device_unregister_oids(dev);
517 #endif
518 
519 	return(0);
520 }
521 
522 static device_t
523 make_device(device_t parent, const char *name, int unit)
524 {
525 	device_t dev;
526 	devclass_t dc;
527 
528 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
529 
530 	if (name != NULL) {
531 		dc = devclass_find_internal(name, NULL, TRUE);
532 		if (!dc) {
533 			kprintf("make_device: can't find device class %s\n", name);
534 			return(NULL);
535 		}
536 	} else
537 		dc = NULL;
538 
539 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
540 	if (!dev)
541 		return(0);
542 
543 	dev->parent = parent;
544 	TAILQ_INIT(&dev->children);
545 	kobj_init((kobj_t) dev, &null_class);
546 	dev->driver = NULL;
547 	dev->devclass = NULL;
548 	dev->unit = unit;
549 	dev->nameunit = NULL;
550 	dev->desc = NULL;
551 	dev->busy = 0;
552 	dev->devflags = 0;
553 	dev->flags = DF_ENABLED;
554 	dev->order = 0;
555 	if (unit == -1)
556 		dev->flags |= DF_WILDCARD;
557 	if (name) {
558 		dev->flags |= DF_FIXEDCLASS;
559 		if (devclass_add_device(dc, dev) != 0) {
560 			kobj_delete((kobj_t)dev, M_BUS);
561 			return(NULL);
562 		}
563     	}
564 	dev->ivars = NULL;
565 	dev->softc = NULL;
566 
567 	dev->state = DS_NOTPRESENT;
568 
569 	return(dev);
570 }
571 
572 static int
573 device_print_child(device_t dev, device_t child)
574 {
575 	int retval = 0;
576 
577 	if (device_is_alive(child))
578 		retval += BUS_PRINT_CHILD(dev, child);
579 	else
580 		retval += device_printf(child, " not found\n");
581 
582 	return(retval);
583 }
584 
585 device_t
586 device_add_child(device_t dev, const char *name, int unit)
587 {
588 	return device_add_child_ordered(dev, 0, name, unit);
589 }
590 
591 device_t
592 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
593 {
594 	device_t child;
595 	device_t place;
596 
597 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
598 		order, unit));
599 
600 	child = make_device(dev, name, unit);
601 	if (child == NULL)
602 		return child;
603 	child->order = order;
604 
605 	TAILQ_FOREACH(place, &dev->children, link)
606 		if (place->order > order)
607 			break;
608 
609 	if (place) {
610 		/*
611 		 * The device 'place' is the first device whose order is
612 		 * greater than the new child.
613 		 */
614 		TAILQ_INSERT_BEFORE(place, child, link);
615 	} else {
616 		/*
617 		 * The new child's order is greater or equal to the order of
618 		 * any existing device. Add the child to the tail of the list.
619 		 */
620 		TAILQ_INSERT_TAIL(&dev->children, child, link);
621     	}
622 
623 	return(child);
624 }
625 
626 int
627 device_delete_child(device_t dev, device_t child)
628 {
629 	int error;
630 	device_t grandchild;
631 
632 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
633 
634 	/* remove children first */
635 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
636         	error = device_delete_child(child, grandchild);
637 		if (error)
638 			return(error);
639 	}
640 
641 	if ((error = device_detach(child)) != 0)
642 		return(error);
643 	if (child->devclass)
644 		devclass_delete_device(child->devclass, child);
645 	TAILQ_REMOVE(&dev->children, child, link);
646 	device_set_desc(child, NULL);
647 	kobj_delete((kobj_t)child, M_BUS);
648 
649 	return(0);
650 }
651 
652 /**
653  * @brief Find a device given a unit number
654  *
655  * This is similar to devclass_get_devices() but only searches for
656  * devices which have @p dev as a parent.
657  *
658  * @param dev		the parent device to search
659  * @param unit		the unit number to search for.  If the unit is -1,
660  *			return the first child of @p dev which has name
661  *			@p classname (that is, the one with the lowest unit.)
662  *
663  * @returns		the device with the given unit number or @c
664  *			NULL if there is no such device
665  */
666 device_t
667 device_find_child(device_t dev, const char *classname, int unit)
668 {
669 	devclass_t dc;
670 	device_t child;
671 
672 	dc = devclass_find(classname);
673 	if (!dc)
674 		return(NULL);
675 
676 	if (unit != -1) {
677 		child = devclass_get_device(dc, unit);
678 		if (child && child->parent == dev)
679 			return (child);
680 	} else {
681 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
682 			child = devclass_get_device(dc, unit);
683 			if (child && child->parent == dev)
684 				return (child);
685 		}
686 	}
687 	return(NULL);
688 }
689 
690 static driverlink_t
691 first_matching_driver(devclass_t dc, device_t dev)
692 {
693 	if (dev->devclass)
694 		return(devclass_find_driver_internal(dc, dev->devclass->name));
695 	else
696 		return(TAILQ_FIRST(&dc->drivers));
697 }
698 
699 static driverlink_t
700 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
701 {
702 	if (dev->devclass) {
703 		driverlink_t dl;
704 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
705 			if (!strcmp(dev->devclass->name, dl->driver->name))
706 				return(dl);
707 		return(NULL);
708 	} else
709 		return(TAILQ_NEXT(last, link));
710 }
711 
712 static int
713 device_probe_child(device_t dev, device_t child)
714 {
715 	devclass_t dc;
716 	driverlink_t best = 0;
717 	driverlink_t dl;
718 	int result, pri = 0;
719 	int hasclass = (child->devclass != 0);
720 
721 	dc = dev->devclass;
722 	if (!dc)
723 		panic("device_probe_child: parent device has no devclass");
724 
725 	if (child->state == DS_ALIVE)
726 		return(0);
727 
728 	for (; dc; dc = dc->parent) {
729     		for (dl = first_matching_driver(dc, child); dl;
730 		     dl = next_matching_driver(dc, child, dl)) {
731 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
732 			device_set_driver(child, dl->driver);
733 			if (!hasclass)
734 				device_set_devclass(child, dl->driver->name);
735 			result = DEVICE_PROBE(child);
736 			if (!hasclass)
737 				device_set_devclass(child, 0);
738 
739 			/*
740 			 * If the driver returns SUCCESS, there can be
741 			 * no higher match for this device.
742 			 */
743 			if (result == 0) {
744 				best = dl;
745 				pri = 0;
746 				break;
747 			}
748 
749 			/*
750 			 * The driver returned an error so it
751 			 * certainly doesn't match.
752 			 */
753 			if (result > 0) {
754 				device_set_driver(child, 0);
755 				continue;
756 			}
757 
758 			/*
759 			 * A priority lower than SUCCESS, remember the
760 			 * best matching driver. Initialise the value
761 			 * of pri for the first match.
762 			 */
763 			if (best == 0 || result > pri) {
764 				best = dl;
765 				pri = result;
766 				continue;
767 			}
768 	        }
769 		/*
770 	         * If we have unambiguous match in this devclass,
771 	         * don't look in the parent.
772 	         */
773 	        if (best && pri == 0)
774 	    	        break;
775 	}
776 
777 	/*
778 	 * If we found a driver, change state and initialise the devclass.
779 	 */
780 	if (best) {
781 		if (!child->devclass)
782 			device_set_devclass(child, best->driver->name);
783 		device_set_driver(child, best->driver);
784 		if (pri < 0) {
785 			/*
786 			 * A bit bogus. Call the probe method again to make
787 			 * sure that we have the right description.
788 			 */
789 			DEVICE_PROBE(child);
790 		}
791 		child->state = DS_ALIVE;
792 		return(0);
793 	}
794 
795 	return(ENXIO);
796 }
797 
798 device_t
799 device_get_parent(device_t dev)
800 {
801 	return dev->parent;
802 }
803 
804 int
805 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
806 {
807 	int count;
808 	device_t child;
809 	device_t *list;
810 
811 	count = 0;
812 	TAILQ_FOREACH(child, &dev->children, link)
813 		count++;
814 
815 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
816 	if (!list)
817 		return(ENOMEM);
818 
819 	count = 0;
820 	TAILQ_FOREACH(child, &dev->children, link) {
821 		list[count] = child;
822 		count++;
823 	}
824 
825 	*devlistp = list;
826 	*devcountp = count;
827 
828 	return(0);
829 }
830 
831 driver_t *
832 device_get_driver(device_t dev)
833 {
834 	return(dev->driver);
835 }
836 
837 devclass_t
838 device_get_devclass(device_t dev)
839 {
840 	return(dev->devclass);
841 }
842 
843 const char *
844 device_get_name(device_t dev)
845 {
846 	if (dev->devclass)
847 		return devclass_get_name(dev->devclass);
848 	return(NULL);
849 }
850 
851 const char *
852 device_get_nameunit(device_t dev)
853 {
854 	return(dev->nameunit);
855 }
856 
857 int
858 device_get_unit(device_t dev)
859 {
860 	return(dev->unit);
861 }
862 
863 const char *
864 device_get_desc(device_t dev)
865 {
866 	return(dev->desc);
867 }
868 
869 uint32_t
870 device_get_flags(device_t dev)
871 {
872 	return(dev->devflags);
873 }
874 
875 int
876 device_print_prettyname(device_t dev)
877 {
878 	const char *name = device_get_name(dev);
879 
880 	if (name == 0)
881 		return kprintf("unknown: ");
882 	else
883 		return kprintf("%s%d: ", name, device_get_unit(dev));
884 }
885 
886 int
887 device_printf(device_t dev, const char * fmt, ...)
888 {
889 	__va_list ap;
890 	int retval;
891 
892 	retval = device_print_prettyname(dev);
893 	__va_start(ap, fmt);
894 	retval += kvprintf(fmt, ap);
895 	__va_end(ap);
896 	return retval;
897 }
898 
899 static void
900 device_set_desc_internal(device_t dev, const char* desc, int copy)
901 {
902 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
903 		kfree(dev->desc, M_BUS);
904 		dev->flags &= ~DF_DESCMALLOCED;
905 		dev->desc = NULL;
906 	}
907 
908 	if (copy && desc) {
909 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
910 		if (dev->desc) {
911 			strcpy(dev->desc, desc);
912 			dev->flags |= DF_DESCMALLOCED;
913 		}
914 	} else
915 		/* Avoid a -Wcast-qual warning */
916 		dev->desc = (char *)(uintptr_t) desc;
917 
918 #ifdef DEVICE_SYSCTLS
919 	{
920 		struct sysctl_oid *oid = &dev->oid[1];
921 		oid->oid_arg1 = dev->desc ? dev->desc : "";
922 		oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0;
923 	}
924 #endif
925 }
926 
927 void
928 device_set_desc(device_t dev, const char* desc)
929 {
930 	device_set_desc_internal(dev, desc, FALSE);
931 }
932 
933 void
934 device_set_desc_copy(device_t dev, const char* desc)
935 {
936 	device_set_desc_internal(dev, desc, TRUE);
937 }
938 
939 void
940 device_set_flags(device_t dev, uint32_t flags)
941 {
942 	dev->devflags = flags;
943 }
944 
945 void *
946 device_get_softc(device_t dev)
947 {
948 	return dev->softc;
949 }
950 
951 void
952 device_set_softc(device_t dev, void *softc)
953 {
954 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
955 		kfree(dev->softc, M_BUS);
956 	dev->softc = softc;
957 	if (dev->softc)
958 		dev->flags |= DF_EXTERNALSOFTC;
959 	else
960 		dev->flags &= ~DF_EXTERNALSOFTC;
961 }
962 
963 void
964 device_set_async_attach(device_t dev, int enable)
965 {
966 	if (enable)
967 		dev->flags |= DF_ASYNCPROBE;
968 	else
969 		dev->flags &= ~DF_ASYNCPROBE;
970 }
971 
972 void *
973 device_get_ivars(device_t dev)
974 {
975 	return dev->ivars;
976 }
977 
978 void
979 device_set_ivars(device_t dev, void * ivars)
980 {
981 	if (!dev)
982 		return;
983 
984 	dev->ivars = ivars;
985 }
986 
987 device_state_t
988 device_get_state(device_t dev)
989 {
990 	return(dev->state);
991 }
992 
993 void
994 device_enable(device_t dev)
995 {
996 	dev->flags |= DF_ENABLED;
997 }
998 
999 void
1000 device_disable(device_t dev)
1001 {
1002 	dev->flags &= ~DF_ENABLED;
1003 }
1004 
1005 /*
1006  * YYY cannot block
1007  */
1008 void
1009 device_busy(device_t dev)
1010 {
1011 	if (dev->state < DS_ATTACHED)
1012 		panic("device_busy: called for unattached device");
1013 	if (dev->busy == 0 && dev->parent)
1014 		device_busy(dev->parent);
1015 	dev->busy++;
1016 	dev->state = DS_BUSY;
1017 }
1018 
1019 /*
1020  * YYY cannot block
1021  */
1022 void
1023 device_unbusy(device_t dev)
1024 {
1025 	if (dev->state != DS_BUSY)
1026 		panic("device_unbusy: called for non-busy device");
1027 	dev->busy--;
1028 	if (dev->busy == 0) {
1029 		if (dev->parent)
1030 			device_unbusy(dev->parent);
1031 		dev->state = DS_ATTACHED;
1032 	}
1033 }
1034 
1035 void
1036 device_quiet(device_t dev)
1037 {
1038 	dev->flags |= DF_QUIET;
1039 }
1040 
1041 void
1042 device_verbose(device_t dev)
1043 {
1044 	dev->flags &= ~DF_QUIET;
1045 }
1046 
1047 int
1048 device_is_quiet(device_t dev)
1049 {
1050 	return((dev->flags & DF_QUIET) != 0);
1051 }
1052 
1053 int
1054 device_is_enabled(device_t dev)
1055 {
1056 	return((dev->flags & DF_ENABLED) != 0);
1057 }
1058 
1059 int
1060 device_is_alive(device_t dev)
1061 {
1062 	return(dev->state >= DS_ALIVE);
1063 }
1064 
1065 int
1066 device_is_attached(device_t dev)
1067 {
1068 	return(dev->state >= DS_ATTACHED);
1069 }
1070 
1071 int
1072 device_set_devclass(device_t dev, const char *classname)
1073 {
1074 	devclass_t dc;
1075 
1076 	if (!classname) {
1077 		if (dev->devclass)
1078 			devclass_delete_device(dev->devclass, dev);
1079 		return(0);
1080 	}
1081 
1082 	if (dev->devclass) {
1083 		kprintf("device_set_devclass: device class already set\n");
1084 		return(EINVAL);
1085 	}
1086 
1087 	dc = devclass_find_internal(classname, NULL, TRUE);
1088 	if (!dc)
1089 		return(ENOMEM);
1090 
1091 	return(devclass_add_device(dc, dev));
1092 }
1093 
1094 int
1095 device_set_driver(device_t dev, driver_t *driver)
1096 {
1097 	if (dev->state >= DS_ATTACHED)
1098 		return(EBUSY);
1099 
1100 	if (dev->driver == driver)
1101 		return(0);
1102 
1103 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1104 		kfree(dev->softc, M_BUS);
1105 		dev->softc = NULL;
1106 	}
1107 	kobj_delete((kobj_t) dev, 0);
1108 	dev->driver = driver;
1109 	if (driver) {
1110 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1111 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1112 			dev->softc = kmalloc(driver->size, M_BUS,
1113 					    M_INTWAIT | M_ZERO);
1114 			if (!dev->softc) {
1115 				kobj_delete((kobj_t)dev, 0);
1116 				kobj_init((kobj_t) dev, &null_class);
1117 				dev->driver = NULL;
1118 				return(ENOMEM);
1119 	    		}
1120 		}
1121 	} else
1122 		kobj_init((kobj_t) dev, &null_class);
1123 	return(0);
1124 }
1125 
1126 int
1127 device_probe_and_attach(device_t dev)
1128 {
1129 	device_t bus = dev->parent;
1130 	int error = 0;
1131 
1132 	if (dev->state >= DS_ALIVE)
1133 		return(0);
1134 
1135 	if ((dev->flags & DF_ENABLED) == 0) {
1136 		if (bootverbose) {
1137 			device_print_prettyname(dev);
1138 			kprintf("not probed (disabled)\n");
1139 		}
1140 		return(0);
1141 	}
1142 
1143 	error = device_probe_child(bus, dev);
1144 	if (error) {
1145 		if (!(dev->flags & DF_DONENOMATCH)) {
1146 			BUS_PROBE_NOMATCH(bus, dev);
1147 			dev->flags |= DF_DONENOMATCH;
1148 		}
1149 		return(error);
1150 	}
1151 
1152 	/*
1153 	 * Output the exact device chain prior to the attach in case the
1154 	 * system locks up during attach, and generate the full info after
1155 	 * the attach so correct irq and other information is displayed.
1156 	 */
1157 	if (bootverbose && !device_is_quiet(dev)) {
1158 		device_t tmp;
1159 
1160 		kprintf("%s", device_get_nameunit(dev));
1161 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1162 			kprintf(".%s", device_get_nameunit(tmp));
1163 		kprintf("\n");
1164 	}
1165 	if (!device_is_quiet(dev))
1166 		device_print_child(bus, dev);
1167 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1168 		kprintf("%s: probing asynchronously\n",
1169 			device_get_nameunit(dev));
1170 		dev->state = DS_INPROGRESS;
1171 		device_attach_async(dev);
1172 		error = 0;
1173 	} else {
1174 		error = device_doattach(dev);
1175 	}
1176 	return(error);
1177 }
1178 
1179 /*
1180  * Device is known to be alive, do the attach asynchronously.
1181  *
1182  * The MP lock is held by all threads.
1183  */
1184 static void
1185 device_attach_async(device_t dev)
1186 {
1187 	thread_t td;
1188 
1189 	atomic_add_int(&numasyncthreads, 1);
1190 	lwkt_create(device_attach_thread, dev, &td, NULL,
1191 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1192 }
1193 
1194 static void
1195 device_attach_thread(void *arg)
1196 {
1197 	device_t dev = arg;
1198 
1199 	(void)device_doattach(dev);
1200 	atomic_subtract_int(&numasyncthreads, 1);
1201 	wakeup(&numasyncthreads);
1202 }
1203 
1204 /*
1205  * Device is known to be alive, do the attach (synchronous or asynchronous)
1206  */
1207 static int
1208 device_doattach(device_t dev)
1209 {
1210 	device_t bus = dev->parent;
1211 	int hasclass = (dev->devclass != 0);
1212 	int error;
1213 
1214 	error = DEVICE_ATTACH(dev);
1215 	if (error == 0) {
1216 		dev->state = DS_ATTACHED;
1217 		if (bootverbose && !device_is_quiet(dev))
1218 			device_print_child(bus, dev);
1219 	} else {
1220 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1221 		       dev->driver->name, dev->unit, error);
1222 		/* Unset the class that was set in device_probe_child */
1223 		if (!hasclass)
1224 			device_set_devclass(dev, 0);
1225 		device_set_driver(dev, NULL);
1226 		dev->state = DS_NOTPRESENT;
1227 	}
1228 	return(error);
1229 }
1230 
1231 int
1232 device_detach(device_t dev)
1233 {
1234 	int error;
1235 
1236 	PDEBUG(("%s", DEVICENAME(dev)));
1237 	if (dev->state == DS_BUSY)
1238 		return(EBUSY);
1239 	if (dev->state != DS_ATTACHED)
1240 		return(0);
1241 
1242 	if ((error = DEVICE_DETACH(dev)) != 0)
1243 		return(error);
1244 	device_printf(dev, "detached\n");
1245 	if (dev->parent)
1246 		BUS_CHILD_DETACHED(dev->parent, dev);
1247 
1248 	if (!(dev->flags & DF_FIXEDCLASS))
1249 		devclass_delete_device(dev->devclass, dev);
1250 
1251 	dev->state = DS_NOTPRESENT;
1252 	device_set_driver(dev, NULL);
1253 
1254 	return(0);
1255 }
1256 
1257 int
1258 device_shutdown(device_t dev)
1259 {
1260 	if (dev->state < DS_ATTACHED)
1261 		return 0;
1262 	PDEBUG(("%s", DEVICENAME(dev)));
1263 	return DEVICE_SHUTDOWN(dev);
1264 }
1265 
1266 int
1267 device_set_unit(device_t dev, int unit)
1268 {
1269 	devclass_t dc;
1270 	int err;
1271 
1272 	dc = device_get_devclass(dev);
1273 	if (unit < dc->maxunit && dc->devices[unit])
1274 		return(EBUSY);
1275 	err = devclass_delete_device(dc, dev);
1276 	if (err)
1277 		return(err);
1278 	dev->unit = unit;
1279 	err = devclass_add_device(dc, dev);
1280 	return(err);
1281 }
1282 
1283 #ifdef DEVICE_SYSCTLS
1284 
1285 /*
1286  * Sysctl nodes for devices.
1287  */
1288 
1289 SYSCTL_NODE(_hw, OID_AUTO, devices, CTLFLAG_RW, 0, "A list of all devices");
1290 
1291 static int
1292 sysctl_handle_children(SYSCTL_HANDLER_ARGS)
1293 {
1294 	device_t dev = arg1;
1295 	device_t child;
1296 	int first = 1, error = 0;
1297 
1298 	TAILQ_FOREACH(child, &dev->children, link)
1299 		if (child->nameunit) {
1300 			if (!first) {
1301 				error = SYSCTL_OUT(req, ",", 1);
1302 				if (error)
1303 					return error;
1304 			} else
1305 				first = 0;
1306 			error = SYSCTL_OUT(req, child->nameunit,
1307 					   strlen(child->nameunit));
1308 			if (error)
1309 				return(error);
1310 		}
1311 
1312 	error = SYSCTL_OUT(req, "", 1);
1313 
1314 	return(error);
1315 }
1316 
1317 static int
1318 sysctl_handle_state(SYSCTL_HANDLER_ARGS)
1319 {
1320 	device_t dev = arg1;
1321 
1322 	switch (dev->state) {
1323 	case DS_NOTPRESENT:
1324 		return SYSCTL_OUT(req, "notpresent", sizeof("notpresent"));
1325 	case DS_ALIVE:
1326 		return SYSCTL_OUT(req, "alive", sizeof("alive"));
1327 	case DS_INPROGRESS:
1328 		return SYSCTL_OUT(req, "in-progress", sizeof("in-progress"));
1329 	case DS_ATTACHED:
1330 		return SYSCTL_OUT(req, "attached", sizeof("attached"));
1331 	case DS_BUSY:
1332 		return SYSCTL_OUT(req, "busy", sizeof("busy"));
1333 	default:
1334 		return (0);
1335 	}
1336 }
1337 
1338 static void
1339 device_register_oids(device_t dev)
1340 {
1341 	struct sysctl_oid* oid;
1342 
1343 	oid = &dev->oid[0];
1344 	bzero(oid, sizeof(*oid));
1345 	oid->oid_parent = &sysctl__hw_devices_children;
1346 	oid->oid_number = OID_AUTO;
1347 	oid->oid_kind = CTLTYPE_NODE | CTLFLAG_RW;
1348 	oid->oid_arg1 = &dev->oidlist[0];
1349 	oid->oid_arg2 = 0;
1350 	oid->oid_name = dev->nameunit;
1351 	oid->oid_handler = 0;
1352 	oid->oid_fmt = "N";
1353 	SLIST_INIT(&dev->oidlist[0]);
1354 	sysctl_register_oid(oid);
1355 
1356 	oid = &dev->oid[1];
1357 	bzero(oid, sizeof(*oid));
1358 	oid->oid_parent = &dev->oidlist[0];
1359 	oid->oid_number = OID_AUTO;
1360 	oid->oid_kind = CTLTYPE_STRING | CTLFLAG_RD;
1361 	oid->oid_arg1 = dev->desc ? dev->desc : "";
1362 	oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0;
1363 	oid->oid_name = "desc";
1364 	oid->oid_handler = sysctl_handle_string;
1365 	oid->oid_fmt = "A";
1366 	sysctl_register_oid(oid);
1367 
1368 	oid = &dev->oid[2];
1369 	bzero(oid, sizeof(*oid));
1370 	oid->oid_parent = &dev->oidlist[0];
1371 	oid->oid_number = OID_AUTO;
1372 	oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD;
1373 	oid->oid_arg1 = dev;
1374 	oid->oid_arg2 = 0;
1375 	oid->oid_name = "children";
1376 	oid->oid_handler = sysctl_handle_children;
1377 	oid->oid_fmt = "A";
1378 	sysctl_register_oid(oid);
1379 
1380 	oid = &dev->oid[3];
1381 	bzero(oid, sizeof(*oid));
1382 	oid->oid_parent = &dev->oidlist[0];
1383 	oid->oid_number = OID_AUTO;
1384 	oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD;
1385 	oid->oid_arg1 = dev;
1386 	oid->oid_arg2 = 0;
1387 	oid->oid_name = "state";
1388 	oid->oid_handler = sysctl_handle_state;
1389 	oid->oid_fmt = "A";
1390 	sysctl_register_oid(oid);
1391 }
1392 
1393 static void
1394 device_unregister_oids(device_t dev)
1395 {
1396 	sysctl_unregister_oid(&dev->oid[0]);
1397 	sysctl_unregister_oid(&dev->oid[1]);
1398 	sysctl_unregister_oid(&dev->oid[2]);
1399 }
1400 
1401 #endif
1402 
1403 /*======================================*/
1404 /*
1405  * Access functions for device resources.
1406  */
1407 
1408 /* Supplied by config(8) in ioconf.c */
1409 extern struct config_device config_devtab[];
1410 extern int devtab_count;
1411 
1412 /* Runtime version */
1413 struct config_device *devtab = config_devtab;
1414 
1415 static int
1416 resource_new_name(const char *name, int unit)
1417 {
1418 	struct config_device *new;
1419 
1420 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1421 		     M_INTWAIT | M_ZERO);
1422 	if (new == NULL)
1423 		return(-1);
1424 	if (devtab && devtab_count > 0)
1425 		bcopy(devtab, new, devtab_count * sizeof(*new));
1426 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1427 	if (new[devtab_count].name == NULL) {
1428 		kfree(new, M_TEMP);
1429 		return(-1);
1430 	}
1431 	strcpy(new[devtab_count].name, name);
1432 	new[devtab_count].unit = unit;
1433 	new[devtab_count].resource_count = 0;
1434 	new[devtab_count].resources = NULL;
1435 	if (devtab && devtab != config_devtab)
1436 		kfree(devtab, M_TEMP);
1437 	devtab = new;
1438 	return devtab_count++;
1439 }
1440 
1441 static int
1442 resource_new_resname(int j, const char *resname, resource_type type)
1443 {
1444 	struct config_resource *new;
1445 	int i;
1446 
1447 	i = devtab[j].resource_count;
1448 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1449 	if (new == NULL)
1450 		return(-1);
1451 	if (devtab[j].resources && i > 0)
1452 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1453 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1454 	if (new[i].name == NULL) {
1455 		kfree(new, M_TEMP);
1456 		return(-1);
1457 	}
1458 	strcpy(new[i].name, resname);
1459 	new[i].type = type;
1460 	if (devtab[j].resources)
1461 		kfree(devtab[j].resources, M_TEMP);
1462 	devtab[j].resources = new;
1463 	devtab[j].resource_count = i + 1;
1464 	return(i);
1465 }
1466 
1467 static int
1468 resource_match_string(int i, const char *resname, const char *value)
1469 {
1470 	int j;
1471 	struct config_resource *res;
1472 
1473 	for (j = 0, res = devtab[i].resources;
1474 	     j < devtab[i].resource_count; j++, res++)
1475 		if (!strcmp(res->name, resname)
1476 		    && res->type == RES_STRING
1477 		    && !strcmp(res->u.stringval, value))
1478 			return(j);
1479 	return(-1);
1480 }
1481 
1482 static int
1483 resource_find(const char *name, int unit, const char *resname,
1484 	      struct config_resource **result)
1485 {
1486 	int i, j;
1487 	struct config_resource *res;
1488 
1489 	/*
1490 	 * First check specific instances, then generic.
1491 	 */
1492 	for (i = 0; i < devtab_count; i++) {
1493 		if (devtab[i].unit < 0)
1494 			continue;
1495 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1496 			res = devtab[i].resources;
1497 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1498 				if (!strcmp(res->name, resname)) {
1499 					*result = res;
1500 					return(0);
1501 				}
1502 		}
1503 	}
1504 	for (i = 0; i < devtab_count; i++) {
1505 		if (devtab[i].unit >= 0)
1506 			continue;
1507 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1508 		/* XXX if so, then the generic match does nothing */
1509 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1510 			res = devtab[i].resources;
1511 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1512 				if (!strcmp(res->name, resname)) {
1513 					*result = res;
1514 					return(0);
1515 				}
1516 		}
1517 	}
1518 	return(ENOENT);
1519 }
1520 
1521 int
1522 resource_int_value(const char *name, int unit, const char *resname, int *result)
1523 {
1524 	int error;
1525 	struct config_resource *res;
1526 
1527 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1528 		return(error);
1529 	if (res->type != RES_INT)
1530 		return(EFTYPE);
1531 	*result = res->u.intval;
1532 	return(0);
1533 }
1534 
1535 int
1536 resource_long_value(const char *name, int unit, const char *resname,
1537 		    long *result)
1538 {
1539 	int error;
1540 	struct config_resource *res;
1541 
1542 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1543 		return(error);
1544 	if (res->type != RES_LONG)
1545 		return(EFTYPE);
1546 	*result = res->u.longval;
1547 	return(0);
1548 }
1549 
1550 int
1551 resource_string_value(const char *name, int unit, const char *resname,
1552 		      char **result)
1553 {
1554 	int error;
1555 	struct config_resource *res;
1556 
1557 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1558 		return(error);
1559 	if (res->type != RES_STRING)
1560 		return(EFTYPE);
1561 	*result = res->u.stringval;
1562 	return(0);
1563 }
1564 
1565 int
1566 resource_query_string(int i, const char *resname, const char *value)
1567 {
1568 	if (i < 0)
1569 		i = 0;
1570 	else
1571 		i = i + 1;
1572 	for (; i < devtab_count; i++)
1573 		if (resource_match_string(i, resname, value) >= 0)
1574 			return(i);
1575 	return(-1);
1576 }
1577 
1578 int
1579 resource_locate(int i, const char *resname)
1580 {
1581 	if (i < 0)
1582 		i = 0;
1583 	else
1584 		i = i + 1;
1585 	for (; i < devtab_count; i++)
1586 		if (!strcmp(devtab[i].name, resname))
1587 			return(i);
1588 	return(-1);
1589 }
1590 
1591 int
1592 resource_count(void)
1593 {
1594 	return(devtab_count);
1595 }
1596 
1597 char *
1598 resource_query_name(int i)
1599 {
1600 	return(devtab[i].name);
1601 }
1602 
1603 int
1604 resource_query_unit(int i)
1605 {
1606 	return(devtab[i].unit);
1607 }
1608 
1609 static int
1610 resource_create(const char *name, int unit, const char *resname,
1611 		resource_type type, struct config_resource **result)
1612 {
1613 	int i, j;
1614 	struct config_resource *res = NULL;
1615 
1616 	for (i = 0; i < devtab_count; i++)
1617 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1618 			res = devtab[i].resources;
1619 			break;
1620 		}
1621 	if (res == NULL) {
1622 		i = resource_new_name(name, unit);
1623 		if (i < 0)
1624 			return(ENOMEM);
1625 		res = devtab[i].resources;
1626 	}
1627 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1628 		if (!strcmp(res->name, resname)) {
1629 			*result = res;
1630 			return(0);
1631 		}
1632 	j = resource_new_resname(i, resname, type);
1633 	if (j < 0)
1634 		return(ENOMEM);
1635 	res = &devtab[i].resources[j];
1636 	*result = res;
1637 	return(0);
1638 }
1639 
1640 int
1641 resource_set_int(const char *name, int unit, const char *resname, int value)
1642 {
1643 	int error;
1644 	struct config_resource *res;
1645 
1646 	error = resource_create(name, unit, resname, RES_INT, &res);
1647 	if (error)
1648 		return(error);
1649 	if (res->type != RES_INT)
1650 		return(EFTYPE);
1651 	res->u.intval = value;
1652 	return(0);
1653 }
1654 
1655 int
1656 resource_set_long(const char *name, int unit, const char *resname, long value)
1657 {
1658 	int error;
1659 	struct config_resource *res;
1660 
1661 	error = resource_create(name, unit, resname, RES_LONG, &res);
1662 	if (error)
1663 		return(error);
1664 	if (res->type != RES_LONG)
1665 		return(EFTYPE);
1666 	res->u.longval = value;
1667 	return(0);
1668 }
1669 
1670 int
1671 resource_set_string(const char *name, int unit, const char *resname,
1672 		    const char *value)
1673 {
1674 	int error;
1675 	struct config_resource *res;
1676 
1677 	error = resource_create(name, unit, resname, RES_STRING, &res);
1678 	if (error)
1679 		return(error);
1680 	if (res->type != RES_STRING)
1681 		return(EFTYPE);
1682 	if (res->u.stringval)
1683 		kfree(res->u.stringval, M_TEMP);
1684 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
1685 	if (res->u.stringval == NULL)
1686 		return(ENOMEM);
1687 	strcpy(res->u.stringval, value);
1688 	return(0);
1689 }
1690 
1691 static void
1692 resource_cfgload(void *dummy __unused)
1693 {
1694 	struct config_resource *res, *cfgres;
1695 	int i, j;
1696 	int error;
1697 	char *name, *resname;
1698 	int unit;
1699 	resource_type type;
1700 	char *stringval;
1701 	int config_devtab_count;
1702 
1703 	config_devtab_count = devtab_count;
1704 	devtab = NULL;
1705 	devtab_count = 0;
1706 
1707 	for (i = 0; i < config_devtab_count; i++) {
1708 		name = config_devtab[i].name;
1709 		unit = config_devtab[i].unit;
1710 
1711 		for (j = 0; j < config_devtab[i].resource_count; j++) {
1712 			cfgres = config_devtab[i].resources;
1713 			resname = cfgres[j].name;
1714 			type = cfgres[j].type;
1715 			error = resource_create(name, unit, resname, type,
1716 						&res);
1717 			if (error) {
1718 				kprintf("create resource %s%d: error %d\n",
1719 					name, unit, error);
1720 				continue;
1721 			}
1722 			if (res->type != type) {
1723 				kprintf("type mismatch %s%d: %d != %d\n",
1724 					name, unit, res->type, type);
1725 				continue;
1726 			}
1727 			switch (type) {
1728 			case RES_INT:
1729 				res->u.intval = cfgres[j].u.intval;
1730 				break;
1731 			case RES_LONG:
1732 				res->u.longval = cfgres[j].u.longval;
1733 				break;
1734 			case RES_STRING:
1735 				if (res->u.stringval)
1736 					kfree(res->u.stringval, M_TEMP);
1737 				stringval = cfgres[j].u.stringval;
1738 				res->u.stringval = kmalloc(strlen(stringval) + 1,
1739 							  M_TEMP, M_INTWAIT);
1740 				if (res->u.stringval == NULL)
1741 					break;
1742 				strcpy(res->u.stringval, stringval);
1743 				break;
1744 			default:
1745 				panic("unknown resource type %d", type);
1746 			}
1747 		}
1748 	}
1749 }
1750 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
1751 
1752 
1753 /*======================================*/
1754 /*
1755  * Some useful method implementations to make life easier for bus drivers.
1756  */
1757 
1758 void
1759 resource_list_init(struct resource_list *rl)
1760 {
1761 	SLIST_INIT(rl);
1762 }
1763 
1764 void
1765 resource_list_free(struct resource_list *rl)
1766 {
1767 	struct resource_list_entry *rle;
1768 
1769 	while ((rle = SLIST_FIRST(rl)) != NULL) {
1770 		if (rle->res)
1771 			panic("resource_list_free: resource entry is busy");
1772 		SLIST_REMOVE_HEAD(rl, link);
1773 		kfree(rle, M_BUS);
1774 	}
1775 }
1776 
1777 void
1778 resource_list_add(struct resource_list *rl,
1779 		  int type, int rid,
1780 		  u_long start, u_long end, u_long count)
1781 {
1782 	struct resource_list_entry *rle;
1783 
1784 	rle = resource_list_find(rl, type, rid);
1785 	if (rle == NULL) {
1786 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
1787 			     M_INTWAIT);
1788 		if (!rle)
1789 			panic("resource_list_add: can't record entry");
1790 		SLIST_INSERT_HEAD(rl, rle, link);
1791 		rle->type = type;
1792 		rle->rid = rid;
1793 		rle->res = NULL;
1794 	}
1795 
1796 	if (rle->res)
1797 		panic("resource_list_add: resource entry is busy");
1798 
1799 	rle->start = start;
1800 	rle->end = end;
1801 	rle->count = count;
1802 }
1803 
1804 struct resource_list_entry*
1805 resource_list_find(struct resource_list *rl,
1806 		   int type, int rid)
1807 {
1808 	struct resource_list_entry *rle;
1809 
1810 	SLIST_FOREACH(rle, rl, link)
1811 		if (rle->type == type && rle->rid == rid)
1812 			return(rle);
1813 	return(NULL);
1814 }
1815 
1816 void
1817 resource_list_delete(struct resource_list *rl,
1818 		     int type, int rid)
1819 {
1820 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
1821 
1822 	if (rle) {
1823 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
1824 		kfree(rle, M_BUS);
1825 	}
1826 }
1827 
1828 struct resource *
1829 resource_list_alloc(struct resource_list *rl,
1830 		    device_t bus, device_t child,
1831 		    int type, int *rid,
1832 		    u_long start, u_long end,
1833 		    u_long count, u_int flags)
1834 {
1835 	struct resource_list_entry *rle = 0;
1836 	int passthrough = (device_get_parent(child) != bus);
1837 	int isdefault = (start == 0UL && end == ~0UL);
1838 
1839 	if (passthrough) {
1840 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
1841 					  type, rid,
1842 					  start, end, count, flags));
1843 	}
1844 
1845 	rle = resource_list_find(rl, type, *rid);
1846 
1847 	if (!rle)
1848 		return(0);		/* no resource of that type/rid */
1849 	if (rle->res)
1850 		panic("resource_list_alloc: resource entry is busy");
1851 
1852 	if (isdefault) {
1853 		start = rle->start;
1854 		count = max(count, rle->count);
1855 		end = max(rle->end, start + count - 1);
1856 	}
1857 
1858 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
1859 				      type, rid, start, end, count, flags);
1860 
1861 	/*
1862 	 * Record the new range.
1863 	 */
1864 	if (rle->res) {
1865 		rle->start = rman_get_start(rle->res);
1866 		rle->end = rman_get_end(rle->res);
1867 		rle->count = count;
1868 	}
1869 
1870 	return(rle->res);
1871 }
1872 
1873 int
1874 resource_list_release(struct resource_list *rl,
1875 		      device_t bus, device_t child,
1876 		      int type, int rid, struct resource *res)
1877 {
1878 	struct resource_list_entry *rle = 0;
1879 	int passthrough = (device_get_parent(child) != bus);
1880 	int error;
1881 
1882 	if (passthrough) {
1883 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
1884 					    type, rid, res));
1885 	}
1886 
1887 	rle = resource_list_find(rl, type, rid);
1888 
1889 	if (!rle)
1890 		panic("resource_list_release: can't find resource");
1891 	if (!rle->res)
1892 		panic("resource_list_release: resource entry is not busy");
1893 
1894 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
1895 				     type, rid, res);
1896 	if (error)
1897 		return(error);
1898 
1899 	rle->res = NULL;
1900 	return(0);
1901 }
1902 
1903 int
1904 resource_list_print_type(struct resource_list *rl, const char *name, int type,
1905 			 const char *format)
1906 {
1907 	struct resource_list_entry *rle;
1908 	int printed, retval;
1909 
1910 	printed = 0;
1911 	retval = 0;
1912 	/* Yes, this is kinda cheating */
1913 	SLIST_FOREACH(rle, rl, link) {
1914 		if (rle->type == type) {
1915 			if (printed == 0)
1916 				retval += kprintf(" %s ", name);
1917 			else
1918 				retval += kprintf(",");
1919 			printed++;
1920 			retval += kprintf(format, rle->start);
1921 			if (rle->count > 1) {
1922 				retval += kprintf("-");
1923 				retval += kprintf(format, rle->start +
1924 						 rle->count - 1);
1925 			}
1926 		}
1927 	}
1928 	return(retval);
1929 }
1930 
1931 /*
1932  * Generic driver/device identify functions.  These will install a device
1933  * rendezvous point under the parent using the same name as the driver
1934  * name, which will at a later time be probed and attached.
1935  *
1936  * These functions are used when the parent does not 'scan' its bus for
1937  * matching devices, or for the particular devices using these functions,
1938  * or when the device is a pseudo or synthesized device (such as can be
1939  * found under firewire and ppbus).
1940  */
1941 int
1942 bus_generic_identify(driver_t *driver, device_t parent)
1943 {
1944 	if (parent->state == DS_ATTACHED)
1945 		return (0);
1946 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
1947 	return (0);
1948 }
1949 
1950 int
1951 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
1952 {
1953 	if (parent->state == DS_ATTACHED)
1954 		return (0);
1955 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
1956 	return (0);
1957 }
1958 
1959 /*
1960  * Call DEVICE_IDENTIFY for each driver.
1961  */
1962 int
1963 bus_generic_probe(device_t dev)
1964 {
1965 	devclass_t dc = dev->devclass;
1966 	driverlink_t dl;
1967 
1968 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1969 		DEVICE_IDENTIFY(dl->driver, dev);
1970 	}
1971 
1972 	return(0);
1973 }
1974 
1975 /*
1976  * This is an aweful hack due to the isa bus and autoconf code not
1977  * probing the ISA devices until after everything else has configured.
1978  * The ISA bus did a dummy attach long ago so we have to set it back
1979  * to an earlier state so the probe thinks its the initial probe and
1980  * not a bus rescan.
1981  *
1982  * XXX remove by properly defering the ISA bus scan.
1983  */
1984 int
1985 bus_generic_probe_hack(device_t dev)
1986 {
1987 	if (dev->state == DS_ATTACHED) {
1988 		dev->state = DS_ALIVE;
1989 		bus_generic_probe(dev);
1990 		dev->state = DS_ATTACHED;
1991 	}
1992 	return (0);
1993 }
1994 
1995 int
1996 bus_generic_attach(device_t dev)
1997 {
1998 	device_t child;
1999 
2000 	TAILQ_FOREACH(child, &dev->children, link) {
2001 		device_probe_and_attach(child);
2002 	}
2003 
2004 	return(0);
2005 }
2006 
2007 int
2008 bus_generic_detach(device_t dev)
2009 {
2010 	device_t child;
2011 	int error;
2012 
2013 	if (dev->state != DS_ATTACHED)
2014 		return(EBUSY);
2015 
2016 	TAILQ_FOREACH(child, &dev->children, link)
2017 		if ((error = device_detach(child)) != 0)
2018 			return(error);
2019 
2020 	return 0;
2021 }
2022 
2023 int
2024 bus_generic_shutdown(device_t dev)
2025 {
2026 	device_t child;
2027 
2028 	TAILQ_FOREACH(child, &dev->children, link)
2029 		device_shutdown(child);
2030 
2031 	return(0);
2032 }
2033 
2034 int
2035 bus_generic_suspend(device_t dev)
2036 {
2037 	int error;
2038 	device_t child, child2;
2039 
2040 	TAILQ_FOREACH(child, &dev->children, link) {
2041 		error = DEVICE_SUSPEND(child);
2042 		if (error) {
2043 			for (child2 = TAILQ_FIRST(&dev->children);
2044 			     child2 && child2 != child;
2045 			     child2 = TAILQ_NEXT(child2, link))
2046 				DEVICE_RESUME(child2);
2047 			return(error);
2048 		}
2049 	}
2050 	return(0);
2051 }
2052 
2053 int
2054 bus_generic_resume(device_t dev)
2055 {
2056 	device_t child;
2057 
2058 	TAILQ_FOREACH(child, &dev->children, link)
2059 		DEVICE_RESUME(child);
2060 		/* if resume fails, there's nothing we can usefully do... */
2061 
2062 	return(0);
2063 }
2064 
2065 int
2066 bus_print_child_header(device_t dev, device_t child)
2067 {
2068 	int retval = 0;
2069 
2070 	if (device_get_desc(child))
2071 		retval += device_printf(child, "<%s>", device_get_desc(child));
2072 	else
2073 		retval += kprintf("%s", device_get_nameunit(child));
2074 	if (bootverbose) {
2075 		if (child->state != DS_ATTACHED)
2076 			kprintf(" [tentative]");
2077 		else
2078 			kprintf(" [attached!]");
2079 	}
2080 	return(retval);
2081 }
2082 
2083 int
2084 bus_print_child_footer(device_t dev, device_t child)
2085 {
2086 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2087 }
2088 
2089 device_t
2090 bus_generic_add_child(device_t dev, device_t child, int order,
2091 		      const char *name, int unit)
2092 {
2093 	if (dev->parent)
2094 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2095 	else
2096 		dev = device_add_child_ordered(child, order, name, unit);
2097 	return(dev);
2098 
2099 }
2100 
2101 int
2102 bus_generic_print_child(device_t dev, device_t child)
2103 {
2104 	int retval = 0;
2105 
2106 	retval += bus_print_child_header(dev, child);
2107 	retval += bus_print_child_footer(dev, child);
2108 
2109 	return(retval);
2110 }
2111 
2112 int
2113 bus_generic_read_ivar(device_t dev, device_t child, int index,
2114 		      uintptr_t * result)
2115 {
2116 	int error;
2117 
2118 	if (dev->parent)
2119 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2120 	else
2121 		error = ENOENT;
2122 	return (error);
2123 }
2124 
2125 int
2126 bus_generic_write_ivar(device_t dev, device_t child, int index,
2127 		       uintptr_t value)
2128 {
2129 	int error;
2130 
2131 	if (dev->parent)
2132 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2133 	else
2134 		error = ENOENT;
2135 	return (error);
2136 }
2137 
2138 /*
2139  * Resource list are used for iterations, do not recurse.
2140  */
2141 struct resource_list *
2142 bus_generic_get_resource_list(device_t dev, device_t child)
2143 {
2144 	return (NULL);
2145 }
2146 
2147 void
2148 bus_generic_driver_added(device_t dev, driver_t *driver)
2149 {
2150 	device_t child;
2151 
2152 	DEVICE_IDENTIFY(driver, dev);
2153 	TAILQ_FOREACH(child, &dev->children, link) {
2154 		if (child->state == DS_NOTPRESENT)
2155 			device_probe_and_attach(child);
2156 	}
2157 }
2158 
2159 int
2160 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2161 		       int flags, driver_intr_t *intr, void *arg,
2162 		       void **cookiep, lwkt_serialize_t serializer)
2163 {
2164 	/* Propagate up the bus hierarchy until someone handles it. */
2165 	if (dev->parent)
2166 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2167 				      intr, arg, cookiep, serializer));
2168 	else
2169 		return(EINVAL);
2170 }
2171 
2172 int
2173 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2174 			  void *cookie)
2175 {
2176 	/* Propagate up the bus hierarchy until someone handles it. */
2177 	if (dev->parent)
2178 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2179 	else
2180 		return(EINVAL);
2181 }
2182 
2183 int
2184 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2185 {
2186 	if (dev->parent)
2187 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2188 	else
2189 		return(0);
2190 }
2191 
2192 void
2193 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2194 {
2195 	if (dev->parent)
2196 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2197 }
2198 
2199 int
2200 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
2201     enum intr_polarity pol)
2202 {
2203 	/* Propagate up the bus hierarchy until someone handles it. */
2204 	if (dev->parent)
2205 		return(BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
2206 	else
2207 		return(EINVAL);
2208 }
2209 
2210 struct resource *
2211 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2212 			   u_long start, u_long end, u_long count, u_int flags)
2213 {
2214 	/* Propagate up the bus hierarchy until someone handles it. */
2215 	if (dev->parent)
2216 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2217 					   start, end, count, flags));
2218 	else
2219 		return(NULL);
2220 }
2221 
2222 int
2223 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2224 			     struct resource *r)
2225 {
2226 	/* Propagate up the bus hierarchy until someone handles it. */
2227 	if (dev->parent)
2228 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2229 	else
2230 		return(EINVAL);
2231 }
2232 
2233 int
2234 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2235 			      struct resource *r)
2236 {
2237 	/* Propagate up the bus hierarchy until someone handles it. */
2238 	if (dev->parent)
2239 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2240 	else
2241 		return(EINVAL);
2242 }
2243 
2244 int
2245 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2246 				int rid, struct resource *r)
2247 {
2248 	/* Propagate up the bus hierarchy until someone handles it. */
2249 	if (dev->parent)
2250 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2251 					       r));
2252 	else
2253 		return(EINVAL);
2254 }
2255 
2256 int
2257 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2258 			 u_long *startp, u_long *countp)
2259 {
2260 	int error;
2261 
2262 	error = ENOENT;
2263 	if (dev->parent) {
2264 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2265 					 startp, countp);
2266 	}
2267 	return (error);
2268 }
2269 
2270 int
2271 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2272 			u_long start, u_long count)
2273 {
2274 	int error;
2275 
2276 	error = EINVAL;
2277 	if (dev->parent) {
2278 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2279 					 start, count);
2280 	}
2281 	return (error);
2282 }
2283 
2284 void
2285 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2286 {
2287 	if (dev->parent)
2288 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2289 }
2290 
2291 int
2292 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2293     u_long *startp, u_long *countp)
2294 {
2295 	struct resource_list *rl = NULL;
2296 	struct resource_list_entry *rle = NULL;
2297 
2298 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2299 	if (!rl)
2300 		return(EINVAL);
2301 
2302 	rle = resource_list_find(rl, type, rid);
2303 	if (!rle)
2304 		return(ENOENT);
2305 
2306 	if (startp)
2307 		*startp = rle->start;
2308 	if (countp)
2309 		*countp = rle->count;
2310 
2311 	return(0);
2312 }
2313 
2314 int
2315 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2316     u_long start, u_long count)
2317 {
2318 	struct resource_list *rl = NULL;
2319 
2320 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2321 	if (!rl)
2322 		return(EINVAL);
2323 
2324 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2325 
2326 	return(0);
2327 }
2328 
2329 void
2330 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2331 {
2332 	struct resource_list *rl = NULL;
2333 
2334 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2335 	if (!rl)
2336 		return;
2337 
2338 	resource_list_delete(rl, type, rid);
2339 }
2340 
2341 int
2342 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2343     int rid, struct resource *r)
2344 {
2345 	struct resource_list *rl = NULL;
2346 
2347 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2348 	if (!rl)
2349 		return(EINVAL);
2350 
2351 	return(resource_list_release(rl, dev, child, type, rid, r));
2352 }
2353 
2354 struct resource *
2355 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2356     int *rid, u_long start, u_long end, u_long count, u_int flags)
2357 {
2358 	struct resource_list *rl = NULL;
2359 
2360 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2361 	if (!rl)
2362 		return(NULL);
2363 
2364 	return(resource_list_alloc(rl, dev, child, type, rid,
2365 	    start, end, count, flags));
2366 }
2367 
2368 int
2369 bus_generic_child_present(device_t bus, device_t child)
2370 {
2371 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2372 }
2373 
2374 
2375 /*
2376  * Some convenience functions to make it easier for drivers to use the
2377  * resource-management functions.  All these really do is hide the
2378  * indirection through the parent's method table, making for slightly
2379  * less-wordy code.  In the future, it might make sense for this code
2380  * to maintain some sort of a list of resources allocated by each device.
2381  */
2382 int
2383 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2384     struct resource **res)
2385 {
2386 	int i;
2387 
2388 	for (i = 0; rs[i].type != -1; i++)
2389 	        res[i] = NULL;
2390 	for (i = 0; rs[i].type != -1; i++) {
2391 		res[i] = bus_alloc_resource_any(dev,
2392 		    rs[i].type, &rs[i].rid, rs[i].flags);
2393 		if (res[i] == NULL) {
2394 			bus_release_resources(dev, rs, res);
2395 			return (ENXIO);
2396 		}
2397 	}
2398 	return (0);
2399 }
2400 
2401 void
2402 bus_release_resources(device_t dev, const struct resource_spec *rs,
2403     struct resource **res)
2404 {
2405 	int i;
2406 
2407 	for (i = 0; rs[i].type != -1; i++)
2408 		if (res[i] != NULL) {
2409 			bus_release_resource(
2410 			    dev, rs[i].type, rs[i].rid, res[i]);
2411 			res[i] = NULL;
2412 		}
2413 }
2414 
2415 struct resource *
2416 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2417 		   u_long count, u_int flags)
2418 {
2419 	if (dev->parent == 0)
2420 		return(0);
2421 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2422 				  count, flags));
2423 }
2424 
2425 int
2426 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2427 {
2428 	if (dev->parent == 0)
2429 		return(EINVAL);
2430 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2431 }
2432 
2433 int
2434 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2435 {
2436 	if (dev->parent == 0)
2437 		return(EINVAL);
2438 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2439 }
2440 
2441 int
2442 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2443 {
2444 	if (dev->parent == 0)
2445 		return(EINVAL);
2446 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2447 }
2448 
2449 int
2450 bus_setup_intr(device_t dev, struct resource *r, int flags,
2451 	       driver_intr_t handler, void *arg,
2452 	       void **cookiep, lwkt_serialize_t serializer)
2453 {
2454 	if (dev->parent == 0)
2455 		return(EINVAL);
2456 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2457 			      cookiep, serializer));
2458 }
2459 
2460 int
2461 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2462 {
2463 	if (dev->parent == 0)
2464 		return(EINVAL);
2465 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2466 }
2467 
2468 void
2469 bus_enable_intr(device_t dev, void *cookie)
2470 {
2471 	if (dev->parent)
2472 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2473 }
2474 
2475 int
2476 bus_disable_intr(device_t dev, void *cookie)
2477 {
2478 	if (dev->parent)
2479 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2480 	else
2481 		return(0);
2482 }
2483 
2484 int
2485 bus_set_resource(device_t dev, int type, int rid,
2486 		 u_long start, u_long count)
2487 {
2488 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2489 				start, count));
2490 }
2491 
2492 int
2493 bus_get_resource(device_t dev, int type, int rid,
2494 		 u_long *startp, u_long *countp)
2495 {
2496 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2497 				startp, countp));
2498 }
2499 
2500 u_long
2501 bus_get_resource_start(device_t dev, int type, int rid)
2502 {
2503 	u_long start, count;
2504 	int error;
2505 
2506 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2507 				 &start, &count);
2508 	if (error)
2509 		return(0);
2510 	return(start);
2511 }
2512 
2513 u_long
2514 bus_get_resource_count(device_t dev, int type, int rid)
2515 {
2516 	u_long start, count;
2517 	int error;
2518 
2519 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2520 				 &start, &count);
2521 	if (error)
2522 		return(0);
2523 	return(count);
2524 }
2525 
2526 void
2527 bus_delete_resource(device_t dev, int type, int rid)
2528 {
2529 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2530 }
2531 
2532 int
2533 bus_child_present(device_t child)
2534 {
2535 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2536 }
2537 
2538 int
2539 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2540 {
2541 	device_t parent;
2542 
2543 	parent = device_get_parent(child);
2544 	if (parent == NULL) {
2545 		*buf = '\0';
2546 		return (0);
2547 	}
2548 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2549 }
2550 
2551 int
2552 bus_child_location_str(device_t child, char *buf, size_t buflen)
2553 {
2554 	device_t parent;
2555 
2556 	parent = device_get_parent(child);
2557 	if (parent == NULL) {
2558 		*buf = '\0';
2559 		return (0);
2560 	}
2561 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2562 }
2563 
2564 static int
2565 root_print_child(device_t dev, device_t child)
2566 {
2567 	return(0);
2568 }
2569 
2570 static int
2571 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2572 		void **cookiep, lwkt_serialize_t serializer)
2573 {
2574 	/*
2575 	 * If an interrupt mapping gets to here something bad has happened.
2576 	 */
2577 	panic("root_setup_intr");
2578 }
2579 
2580 /*
2581  * If we get here, assume that the device is permanant and really is
2582  * present in the system.  Removable bus drivers are expected to intercept
2583  * this call long before it gets here.  We return -1 so that drivers that
2584  * really care can check vs -1 or some ERRNO returned higher in the food
2585  * chain.
2586  */
2587 static int
2588 root_child_present(device_t dev, device_t child)
2589 {
2590 	return(-1);
2591 }
2592 
2593 /*
2594  * XXX NOTE! other defaults may be set in bus_if.m
2595  */
2596 static kobj_method_t root_methods[] = {
2597 	/* Device interface */
2598 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2599 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2600 	KOBJMETHOD(device_resume,	bus_generic_resume),
2601 
2602 	/* Bus interface */
2603 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2604 	KOBJMETHOD(bus_print_child,	root_print_child),
2605 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2606 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2607 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2608 	KOBJMETHOD(bus_child_present,   root_child_present),
2609 
2610 	{ 0, 0 }
2611 };
2612 
2613 static driver_t root_driver = {
2614 	"root",
2615 	root_methods,
2616 	1,			/* no softc */
2617 };
2618 
2619 device_t	root_bus;
2620 devclass_t	root_devclass;
2621 
2622 static int
2623 root_bus_module_handler(module_t mod, int what, void* arg)
2624 {
2625 	switch (what) {
2626 	case MOD_LOAD:
2627 		root_bus = make_device(NULL, "root", 0);
2628 		root_bus->desc = "System root bus";
2629 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2630 		root_bus->driver = &root_driver;
2631 		root_bus->state = DS_ALIVE;
2632 		root_devclass = devclass_find_internal("root", NULL, FALSE);
2633 		return(0);
2634 
2635 	case MOD_SHUTDOWN:
2636 		device_shutdown(root_bus);
2637 		return(0);
2638 	default:
2639 		return(0);
2640 	}
2641 }
2642 
2643 static moduledata_t root_bus_mod = {
2644 	"rootbus",
2645 	root_bus_module_handler,
2646 	0
2647 };
2648 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
2649 
2650 void
2651 root_bus_configure(void)
2652 {
2653 	int warncount;
2654 	device_t dev;
2655 
2656 	PDEBUG(("."));
2657 
2658 	/*
2659 	 * handle device_identify based device attachments to the root_bus
2660 	 * (typically nexus).
2661 	 */
2662 	bus_generic_probe(root_bus);
2663 
2664 	/*
2665 	 * Probe and attach the devices under root_bus.
2666 	 */
2667 	TAILQ_FOREACH(dev, &root_bus->children, link) {
2668 		device_probe_and_attach(dev);
2669 	}
2670 
2671 	/*
2672 	 * Wait for all asynchronous attaches to complete.  If we don't
2673 	 * our legacy ISA bus scan could steal device unit numbers or
2674 	 * even I/O ports.
2675 	 */
2676 	warncount = 10;
2677 	if (numasyncthreads)
2678 		kprintf("Waiting for async drivers to attach\n");
2679 	while (numasyncthreads > 0) {
2680 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
2681 			--warncount;
2682 		if (warncount == 0) {
2683 			kprintf("Warning: Still waiting for %d "
2684 				"drivers to attach\n", numasyncthreads);
2685 		} else if (warncount == -30) {
2686 			kprintf("Giving up on %d drivers\n", numasyncthreads);
2687 			break;
2688 		}
2689 	}
2690 	root_bus->state = DS_ATTACHED;
2691 }
2692 
2693 int
2694 driver_module_handler(module_t mod, int what, void *arg)
2695 {
2696 	int error;
2697 	struct driver_module_data *dmd;
2698 	devclass_t bus_devclass;
2699 	kobj_class_t driver;
2700         const char *parentname;
2701 
2702 	dmd = (struct driver_module_data *)arg;
2703 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
2704 	error = 0;
2705 
2706 	switch (what) {
2707 	case MOD_LOAD:
2708 		if (dmd->dmd_chainevh)
2709 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2710 
2711 		driver = dmd->dmd_driver;
2712 		PDEBUG(("Loading module: driver %s on bus %s",
2713 		        DRIVERNAME(driver), dmd->dmd_busname));
2714 
2715 		/*
2716 		 * If the driver has any base classes, make the
2717 		 * devclass inherit from the devclass of the driver's
2718 		 * first base class. This will allow the system to
2719 		 * search for drivers in both devclasses for children
2720 		 * of a device using this driver.
2721 		 */
2722 		if (driver->baseclasses)
2723 			parentname = driver->baseclasses[0]->name;
2724 		else
2725 			parentname = NULL;
2726 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
2727 							    parentname, TRUE);
2728 
2729 		error = devclass_add_driver(bus_devclass, driver);
2730 		if (error)
2731 			break;
2732 		break;
2733 
2734 	case MOD_UNLOAD:
2735 		PDEBUG(("Unloading module: driver %s from bus %s",
2736 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
2737 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
2738 
2739 		if (!error && dmd->dmd_chainevh)
2740 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2741 		break;
2742 	}
2743 
2744 	return (error);
2745 }
2746 
2747 #ifdef BUS_DEBUG
2748 
2749 /*
2750  * The _short versions avoid iteration by not calling anything that prints
2751  * more than oneliners. I love oneliners.
2752  */
2753 
2754 static void
2755 print_device_short(device_t dev, int indent)
2756 {
2757 	if (!dev)
2758 		return;
2759 
2760 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
2761 		      dev->unit, dev->desc,
2762 		      (dev->parent? "":"no "),
2763 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
2764 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
2765 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
2766 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
2767 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
2768 		      (dev->ivars? "":"no "),
2769 		      (dev->softc? "":"no "),
2770 		      dev->busy));
2771 }
2772 
2773 static void
2774 print_device(device_t dev, int indent)
2775 {
2776 	if (!dev)
2777 		return;
2778 
2779 	print_device_short(dev, indent);
2780 
2781 	indentprintf(("Parent:\n"));
2782 	print_device_short(dev->parent, indent+1);
2783 	indentprintf(("Driver:\n"));
2784 	print_driver_short(dev->driver, indent+1);
2785 	indentprintf(("Devclass:\n"));
2786 	print_devclass_short(dev->devclass, indent+1);
2787 }
2788 
2789 /*
2790  * Print the device and all its children (indented).
2791  */
2792 void
2793 print_device_tree_short(device_t dev, int indent)
2794 {
2795 	device_t child;
2796 
2797 	if (!dev)
2798 		return;
2799 
2800 	print_device_short(dev, indent);
2801 
2802 	TAILQ_FOREACH(child, &dev->children, link)
2803 		print_device_tree_short(child, indent+1);
2804 }
2805 
2806 /*
2807  * Print the device and all its children (indented).
2808  */
2809 void
2810 print_device_tree(device_t dev, int indent)
2811 {
2812 	device_t child;
2813 
2814 	if (!dev)
2815 		return;
2816 
2817 	print_device(dev, indent);
2818 
2819 	TAILQ_FOREACH(child, &dev->children, link)
2820 		print_device_tree(child, indent+1);
2821 }
2822 
2823 static void
2824 print_driver_short(driver_t *driver, int indent)
2825 {
2826 	if (!driver)
2827 		return;
2828 
2829 	indentprintf(("driver %s: softc size = %d\n",
2830 		      driver->name, driver->size));
2831 }
2832 
2833 static void
2834 print_driver(driver_t *driver, int indent)
2835 {
2836 	if (!driver)
2837 		return;
2838 
2839 	print_driver_short(driver, indent);
2840 }
2841 
2842 
2843 static void
2844 print_driver_list(driver_list_t drivers, int indent)
2845 {
2846 	driverlink_t driver;
2847 
2848 	TAILQ_FOREACH(driver, &drivers, link)
2849 		print_driver(driver->driver, indent);
2850 }
2851 
2852 static void
2853 print_devclass_short(devclass_t dc, int indent)
2854 {
2855 	if (!dc)
2856 		return;
2857 
2858 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
2859 }
2860 
2861 static void
2862 print_devclass(devclass_t dc, int indent)
2863 {
2864 	int i;
2865 
2866 	if (!dc)
2867 		return;
2868 
2869 	print_devclass_short(dc, indent);
2870 	indentprintf(("Drivers:\n"));
2871 	print_driver_list(dc->drivers, indent+1);
2872 
2873 	indentprintf(("Devices:\n"));
2874 	for (i = 0; i < dc->maxunit; i++)
2875 		if (dc->devices[i])
2876 			print_device(dc->devices[i], indent+1);
2877 }
2878 
2879 void
2880 print_devclass_list_short(void)
2881 {
2882 	devclass_t dc;
2883 
2884 	kprintf("Short listing of devclasses, drivers & devices:\n");
2885 	TAILQ_FOREACH(dc, &devclasses, link) {
2886 		print_devclass_short(dc, 0);
2887 	}
2888 }
2889 
2890 void
2891 print_devclass_list(void)
2892 {
2893 	devclass_t dc;
2894 
2895 	kprintf("Full listing of devclasses, drivers & devices:\n");
2896 	TAILQ_FOREACH(dc, &devclasses, link) {
2897 		print_devclass(dc, 0);
2898 	}
2899 }
2900 
2901 #endif
2902 
2903 /*
2904  * Check to see if a device is disabled via a disabled hint.
2905  */
2906 int
2907 resource_disabled(const char *name, int unit)
2908 {
2909 	int error, value;
2910 
2911 	error = resource_int_value(name, unit, "disabled", &value);
2912 	if (error)
2913 	       return(0);
2914 	return(value);
2915 }
2916