xref: /dflybsd-src/sys/kern/subr_bus.c (revision 635ed9ba8ad51007f4196e5625a17e8f2e1a8d0f)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kobj.h>
38 #include <sys/bus_private.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/device.h>
44 #include <sys/lock.h>
45 #include <sys/conf.h>
46 #include <sys/uio.h>
47 #include <sys/filio.h>
48 #include <sys/event.h>
49 #include <sys/signalvar.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 #define	CDEV_MAJOR	188
139 
140 static d_open_t		devopen;
141 static d_close_t	devclose;
142 static d_read_t		devread;
143 static d_ioctl_t	devioctl;
144 static d_kqfilter_t	devkqfilter;
145 
146 static struct dev_ops devctl_ops = {
147 	{ "devctl", CDEV_MAJOR, 0 },
148 	.d_open =	devopen,
149 	.d_close =	devclose,
150 	.d_read =	devread,
151 	.d_ioctl =	devioctl,
152 	.d_kqfilter =	devkqfilter
153 };
154 
155 struct dev_event_info
156 {
157 	char *dei_data;
158 	TAILQ_ENTRY(dev_event_info) dei_link;
159 };
160 
161 TAILQ_HEAD(devq, dev_event_info);
162 
163 static struct dev_softc
164 {
165 	int	inuse;
166 	int	nonblock;
167 	struct lock lock;
168 	struct kqinfo kq;
169 	struct devq devq;
170 	struct proc *async_proc;
171 } devsoftc;
172 
173 static void
174 devinit(void)
175 {
176 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
177 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
178 	TAILQ_INIT(&devsoftc.devq);
179 }
180 
181 static int
182 devopen(struct dev_open_args *ap)
183 {
184 	if (devsoftc.inuse)
185 		return (EBUSY);
186 	/* move to init */
187 	devsoftc.inuse = 1;
188 	devsoftc.nonblock = 0;
189 	devsoftc.async_proc = NULL;
190 	return (0);
191 }
192 
193 static int
194 devclose(struct dev_close_args *ap)
195 {
196 	devsoftc.inuse = 0;
197 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
198 	wakeup(&devsoftc);
199 	lockmgr(&devsoftc.lock, LK_RELEASE);
200 
201 	return (0);
202 }
203 
204 /*
205  * The read channel for this device is used to report changes to
206  * userland in realtime.  We are required to free the data as well as
207  * the n1 object because we allocate them separately.  Also note that
208  * we return one record at a time.  If you try to read this device a
209  * character at a time, you will lose the rest of the data.  Listening
210  * programs are expected to cope.
211  */
212 static int
213 devread(struct dev_read_args *ap)
214 {
215 	struct uio *uio = ap->a_uio;
216 	struct dev_event_info *n1;
217 	int rv;
218 
219 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
220 	while (TAILQ_EMPTY(&devsoftc.devq)) {
221 		if (devsoftc.nonblock) {
222 			lockmgr(&devsoftc.lock, LK_RELEASE);
223 			return (EAGAIN);
224 		}
225 		tsleep_interlock(&devsoftc, PCATCH);
226 		lockmgr(&devsoftc.lock, LK_RELEASE);
227 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
228 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
229 		if (rv) {
230 			/*
231 			 * Need to translate ERESTART to EINTR here? -- jake
232 			 */
233 			lockmgr(&devsoftc.lock, LK_RELEASE);
234 			return (rv);
235 		}
236 	}
237 	n1 = TAILQ_FIRST(&devsoftc.devq);
238 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
239 	lockmgr(&devsoftc.lock, LK_RELEASE);
240 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
241 	kfree(n1->dei_data, M_BUS);
242 	kfree(n1, M_BUS);
243 	return (rv);
244 }
245 
246 static	int
247 devioctl(struct dev_ioctl_args *ap)
248 {
249 	switch (ap->a_cmd) {
250 
251 	case FIONBIO:
252 		if (*(int*)ap->a_data)
253 			devsoftc.nonblock = 1;
254 		else
255 			devsoftc.nonblock = 0;
256 		return (0);
257 	case FIOASYNC:
258 		if (*(int*)ap->a_data)
259 			devsoftc.async_proc = curproc;
260 		else
261 			devsoftc.async_proc = NULL;
262 		return (0);
263 
264 		/* (un)Support for other fcntl() calls. */
265 	case FIOCLEX:
266 	case FIONCLEX:
267 	case FIONREAD:
268 	case FIOSETOWN:
269 	case FIOGETOWN:
270 	default:
271 		break;
272 	}
273 	return (ENOTTY);
274 }
275 
276 static void dev_filter_detach(struct knote *);
277 static int dev_filter_read(struct knote *, long);
278 
279 static struct filterops dev_filtops =
280 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
281 
282 static int
283 devkqfilter(struct dev_kqfilter_args *ap)
284 {
285 	struct knote *kn = ap->a_kn;
286 	struct klist *klist;
287 
288 	ap->a_result = 0;
289 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
290 
291 	switch (kn->kn_filter) {
292 	case EVFILT_READ:
293 		kn->kn_fop = &dev_filtops;
294 		break;
295 	default:
296 		ap->a_result = EOPNOTSUPP;
297 		lockmgr(&devsoftc.lock, LK_RELEASE);
298 		return (0);
299 	}
300 
301 	klist = &devsoftc.kq.ki_note;
302 	knote_insert(klist, kn);
303 
304 	lockmgr(&devsoftc.lock, LK_RELEASE);
305 
306 	return (0);
307 }
308 
309 static void
310 dev_filter_detach(struct knote *kn)
311 {
312 	struct klist *klist;
313 
314 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
315 	klist = &devsoftc.kq.ki_note;
316 	knote_remove(klist, kn);
317 	lockmgr(&devsoftc.lock, LK_RELEASE);
318 }
319 
320 static int
321 dev_filter_read(struct knote *kn, long hint)
322 {
323 	int ready = 0;
324 
325 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
326 	if (!TAILQ_EMPTY(&devsoftc.devq))
327 		ready = 1;
328 	lockmgr(&devsoftc.lock, LK_RELEASE);
329 
330 	return (ready);
331 }
332 
333 
334 /**
335  * @brief Return whether the userland process is running
336  */
337 boolean_t
338 devctl_process_running(void)
339 {
340 	return (devsoftc.inuse == 1);
341 }
342 
343 /**
344  * @brief Queue data to be read from the devctl device
345  *
346  * Generic interface to queue data to the devctl device.  It is
347  * assumed that @p data is properly formatted.  It is further assumed
348  * that @p data is allocated using the M_BUS malloc type.
349  */
350 void
351 devctl_queue_data(char *data)
352 {
353 	struct dev_event_info *n1 = NULL;
354 	struct proc *p;
355 
356 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
357 	if (n1 == NULL)
358 		return;
359 	n1->dei_data = data;
360 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
361 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
362 	wakeup(&devsoftc);
363 	lockmgr(&devsoftc.lock, LK_RELEASE);
364 	get_mplock();	/* XXX */
365 	KNOTE(&devsoftc.kq.ki_note, 0);
366 	rel_mplock();	/* XXX */
367 	p = devsoftc.async_proc;
368 	if (p != NULL)
369 		ksignal(p, SIGIO);
370 }
371 
372 /**
373  * @brief Send a 'notification' to userland, using standard ways
374  */
375 void
376 devctl_notify(const char *system, const char *subsystem, const char *type,
377     const char *data)
378 {
379 	int len = 0;
380 	char *msg;
381 
382 	if (system == NULL)
383 		return;		/* BOGUS!  Must specify system. */
384 	if (subsystem == NULL)
385 		return;		/* BOGUS!  Must specify subsystem. */
386 	if (type == NULL)
387 		return;		/* BOGUS!  Must specify type. */
388 	len += strlen(" system=") + strlen(system);
389 	len += strlen(" subsystem=") + strlen(subsystem);
390 	len += strlen(" type=") + strlen(type);
391 	/* add in the data message plus newline. */
392 	if (data != NULL)
393 		len += strlen(data);
394 	len += 3;	/* '!', '\n', and NUL */
395 	msg = kmalloc(len, M_BUS, M_NOWAIT);
396 	if (msg == NULL)
397 		return;		/* Drop it on the floor */
398 	if (data != NULL)
399 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
400 		    system, subsystem, type, data);
401 	else
402 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
403 		    system, subsystem, type);
404 	devctl_queue_data(msg);
405 }
406 
407 /*
408  * Common routine that tries to make sending messages as easy as possible.
409  * We allocate memory for the data, copy strings into that, but do not
410  * free it unless there's an error.  The dequeue part of the driver should
411  * free the data.  We don't send data when the device is disabled.  We do
412  * send data, even when we have no listeners, because we wish to avoid
413  * races relating to startup and restart of listening applications.
414  *
415  * devaddq is designed to string together the type of event, with the
416  * object of that event, plus the plug and play info and location info
417  * for that event.  This is likely most useful for devices, but less
418  * useful for other consumers of this interface.  Those should use
419  * the devctl_queue_data() interface instead.
420  */
421 static void
422 devaddq(const char *type, const char *what, device_t dev)
423 {
424 	char *data = NULL;
425 	char *loc = NULL;
426 	char *pnp = NULL;
427 	const char *parstr;
428 
429 	if (devctl_disable)
430 		return;
431 	data = kmalloc(1024, M_BUS, M_NOWAIT);
432 	if (data == NULL)
433 		goto bad;
434 
435 	/* get the bus specific location of this device */
436 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
437 	if (loc == NULL)
438 		goto bad;
439 	*loc = '\0';
440 	bus_child_location_str(dev, loc, 1024);
441 
442 	/* Get the bus specific pnp info of this device */
443 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
444 	if (pnp == NULL)
445 		goto bad;
446 	*pnp = '\0';
447 	bus_child_pnpinfo_str(dev, pnp, 1024);
448 
449 	/* Get the parent of this device, or / if high enough in the tree. */
450 	if (device_get_parent(dev) == NULL)
451 		parstr = ".";	/* Or '/' ? */
452 	else
453 		parstr = device_get_nameunit(device_get_parent(dev));
454 	/* String it all together. */
455 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
456 	  parstr);
457 	kfree(loc, M_BUS);
458 	kfree(pnp, M_BUS);
459 	devctl_queue_data(data);
460 	return;
461 bad:
462 	kfree(pnp, M_BUS);
463 	kfree(loc, M_BUS);
464 	kfree(data, M_BUS);
465 	return;
466 }
467 
468 /*
469  * A device was added to the tree.  We are called just after it successfully
470  * attaches (that is, probe and attach success for this device).  No call
471  * is made if a device is merely parented into the tree.  See devnomatch
472  * if probe fails.  If attach fails, no notification is sent (but maybe
473  * we should have a different message for this).
474  */
475 static void
476 devadded(device_t dev)
477 {
478 	char *pnp = NULL;
479 	char *tmp = NULL;
480 
481 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
482 	if (pnp == NULL)
483 		goto fail;
484 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
485 	if (tmp == NULL)
486 		goto fail;
487 	*pnp = '\0';
488 	bus_child_pnpinfo_str(dev, pnp, 1024);
489 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
490 	devaddq("+", tmp, dev);
491 fail:
492 	if (pnp != NULL)
493 		kfree(pnp, M_BUS);
494 	if (tmp != NULL)
495 		kfree(tmp, M_BUS);
496 	return;
497 }
498 
499 /*
500  * A device was removed from the tree.  We are called just before this
501  * happens.
502  */
503 static void
504 devremoved(device_t dev)
505 {
506 	char *pnp = NULL;
507 	char *tmp = NULL;
508 
509 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
510 	if (pnp == NULL)
511 		goto fail;
512 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
513 	if (tmp == NULL)
514 		goto fail;
515 	*pnp = '\0';
516 	bus_child_pnpinfo_str(dev, pnp, 1024);
517 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
518 	devaddq("-", tmp, dev);
519 fail:
520 	if (pnp != NULL)
521 		kfree(pnp, M_BUS);
522 	if (tmp != NULL)
523 		kfree(tmp, M_BUS);
524 	return;
525 }
526 
527 /*
528  * Called when there's no match for this device.  This is only called
529  * the first time that no match happens, so we don't keep getitng this
530  * message.  Should that prove to be undesirable, we can change it.
531  * This is called when all drivers that can attach to a given bus
532  * decline to accept this device.  Other errrors may not be detected.
533  */
534 static void
535 devnomatch(device_t dev)
536 {
537 	devaddq("?", "", dev);
538 }
539 
540 static int
541 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
542 {
543 	struct dev_event_info *n1;
544 	int dis, error;
545 
546 	dis = devctl_disable;
547 	error = sysctl_handle_int(oidp, &dis, 0, req);
548 	if (error || !req->newptr)
549 		return (error);
550 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
551 	devctl_disable = dis;
552 	if (dis) {
553 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
554 			n1 = TAILQ_FIRST(&devsoftc.devq);
555 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
556 			kfree(n1->dei_data, M_BUS);
557 			kfree(n1, M_BUS);
558 		}
559 	}
560 	lockmgr(&devsoftc.lock, LK_RELEASE);
561 	return (0);
562 }
563 
564 /* End of /dev/devctl code */
565 
566 TAILQ_HEAD(,device)	bus_data_devices;
567 static int bus_data_generation = 1;
568 
569 kobj_method_t null_methods[] = {
570 	{ 0, 0 }
571 };
572 
573 DEFINE_CLASS(null, null_methods, 0);
574 
575 /*
576  * Devclass implementation
577  */
578 
579 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
580 
581 static devclass_t
582 devclass_find_internal(const char *classname, const char *parentname,
583 		       int create)
584 {
585 	devclass_t dc;
586 
587 	PDEBUG(("looking for %s", classname));
588 	if (classname == NULL)
589 		return(NULL);
590 
591 	TAILQ_FOREACH(dc, &devclasses, link)
592 		if (!strcmp(dc->name, classname))
593 			break;
594 
595 	if (create && !dc) {
596 		PDEBUG(("creating %s", classname));
597 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
598 			    M_BUS, M_INTWAIT | M_ZERO);
599 		if (!dc)
600 			return(NULL);
601 		dc->parent = NULL;
602 		dc->name = (char*) (dc + 1);
603 		strcpy(dc->name, classname);
604 		dc->devices = NULL;
605 		dc->maxunit = 0;
606 		TAILQ_INIT(&dc->drivers);
607 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
608 
609 		bus_data_generation_update();
610 
611 	}
612 	if (parentname && dc && !dc->parent)
613 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
614 
615 	return(dc);
616 }
617 
618 devclass_t
619 devclass_create(const char *classname)
620 {
621 	return(devclass_find_internal(classname, NULL, TRUE));
622 }
623 
624 devclass_t
625 devclass_find(const char *classname)
626 {
627 	return(devclass_find_internal(classname, NULL, FALSE));
628 }
629 
630 device_t
631 devclass_find_unit(const char *classname, int unit)
632 {
633 	devclass_t dc;
634 
635 	if ((dc = devclass_find(classname)) != NULL)
636 	    return(devclass_get_device(dc, unit));
637 	return (NULL);
638 }
639 
640 int
641 devclass_add_driver(devclass_t dc, driver_t *driver)
642 {
643 	driverlink_t dl;
644 	device_t dev;
645 	int i;
646 
647 	PDEBUG(("%s", DRIVERNAME(driver)));
648 
649 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
650 	if (!dl)
651 		return(ENOMEM);
652 
653 	/*
654 	 * Compile the driver's methods. Also increase the reference count
655 	 * so that the class doesn't get freed when the last instance
656 	 * goes. This means we can safely use static methods and avoids a
657 	 * double-free in devclass_delete_driver.
658 	 */
659 	kobj_class_instantiate(driver);
660 
661 	/*
662 	 * Make sure the devclass which the driver is implementing exists.
663 	 */
664 	devclass_find_internal(driver->name, NULL, TRUE);
665 
666 	dl->driver = driver;
667 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
668 
669 	/*
670 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
671 	 * but only if the bus has already been attached (otherwise we
672 	 * might probe too early).
673 	 *
674 	 * This is what will cause a newly loaded module to be associated
675 	 * with hardware.  bus_generic_driver_added() is typically what ends
676 	 * up being called.
677 	 */
678 	for (i = 0; i < dc->maxunit; i++) {
679 		if ((dev = dc->devices[i]) != NULL) {
680 			if (dev->state >= DS_ATTACHED)
681 				BUS_DRIVER_ADDED(dev, driver);
682 		}
683 	}
684 
685 	bus_data_generation_update();
686 	return(0);
687 }
688 
689 int
690 devclass_delete_driver(devclass_t busclass, driver_t *driver)
691 {
692 	devclass_t dc = devclass_find(driver->name);
693 	driverlink_t dl;
694 	device_t dev;
695 	int i;
696 	int error;
697 
698 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
699 
700 	if (!dc)
701 		return(0);
702 
703 	/*
704 	 * Find the link structure in the bus' list of drivers.
705 	 */
706 	TAILQ_FOREACH(dl, &busclass->drivers, link)
707 		if (dl->driver == driver)
708 			break;
709 
710 	if (!dl) {
711 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
712 		return(ENOENT);
713 	}
714 
715 	/*
716 	 * Disassociate from any devices.  We iterate through all the
717 	 * devices in the devclass of the driver and detach any which are
718 	 * using the driver and which have a parent in the devclass which
719 	 * we are deleting from.
720 	 *
721 	 * Note that since a driver can be in multiple devclasses, we
722 	 * should not detach devices which are not children of devices in
723 	 * the affected devclass.
724 	 */
725 	for (i = 0; i < dc->maxunit; i++)
726 		if (dc->devices[i]) {
727 			dev = dc->devices[i];
728 			if (dev->driver == driver && dev->parent &&
729 			    dev->parent->devclass == busclass) {
730 				if ((error = device_detach(dev)) != 0)
731 					return(error);
732 				device_set_driver(dev, NULL);
733 		    	}
734 		}
735 
736 	TAILQ_REMOVE(&busclass->drivers, dl, link);
737 	kfree(dl, M_BUS);
738 
739 	kobj_class_uninstantiate(driver);
740 
741 	bus_data_generation_update();
742 	return(0);
743 }
744 
745 static driverlink_t
746 devclass_find_driver_internal(devclass_t dc, const char *classname)
747 {
748 	driverlink_t dl;
749 
750 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
751 
752 	TAILQ_FOREACH(dl, &dc->drivers, link)
753 		if (!strcmp(dl->driver->name, classname))
754 			return(dl);
755 
756 	PDEBUG(("not found"));
757 	return(NULL);
758 }
759 
760 kobj_class_t
761 devclass_find_driver(devclass_t dc, const char *classname)
762 {
763 	driverlink_t dl;
764 
765 	dl = devclass_find_driver_internal(dc, classname);
766 	if (dl)
767 		return(dl->driver);
768 	else
769 		return(NULL);
770 }
771 
772 const char *
773 devclass_get_name(devclass_t dc)
774 {
775 	return(dc->name);
776 }
777 
778 device_t
779 devclass_get_device(devclass_t dc, int unit)
780 {
781 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
782 		return(NULL);
783 	return(dc->devices[unit]);
784 }
785 
786 void *
787 devclass_get_softc(devclass_t dc, int unit)
788 {
789 	device_t dev;
790 
791 	dev = devclass_get_device(dc, unit);
792 	if (!dev)
793 		return(NULL);
794 
795 	return(device_get_softc(dev));
796 }
797 
798 int
799 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
800 {
801 	int i;
802 	int count;
803 	device_t *list;
804 
805 	count = 0;
806 	for (i = 0; i < dc->maxunit; i++)
807 		if (dc->devices[i])
808 			count++;
809 
810 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
811 	if (list == NULL)
812 		return(ENOMEM);
813 
814 	count = 0;
815 	for (i = 0; i < dc->maxunit; i++)
816 		if (dc->devices[i]) {
817 			list[count] = dc->devices[i];
818 			count++;
819 		}
820 
821 	*devlistp = list;
822 	*devcountp = count;
823 
824 	return(0);
825 }
826 
827 /**
828  * @brief Get a list of drivers in the devclass
829  *
830  * An array containing a list of pointers to all the drivers in the
831  * given devclass is allocated and returned in @p *listp.  The number
832  * of drivers in the array is returned in @p *countp. The caller should
833  * free the array using @c free(p, M_TEMP).
834  *
835  * @param dc            the devclass to examine
836  * @param listp         gives location for array pointer return value
837  * @param countp        gives location for number of array elements
838  *                      return value
839  *
840  * @retval 0            success
841  * @retval ENOMEM       the array allocation failed
842  */
843 int
844 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
845 {
846         driverlink_t dl;
847         driver_t **list;
848         int count;
849 
850         count = 0;
851         TAILQ_FOREACH(dl, &dc->drivers, link)
852                 count++;
853         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
854         if (list == NULL)
855                 return (ENOMEM);
856 
857         count = 0;
858         TAILQ_FOREACH(dl, &dc->drivers, link) {
859                 list[count] = dl->driver;
860                 count++;
861         }
862         *listp = list;
863         *countp = count;
864 
865         return (0);
866 }
867 
868 /**
869  * @brief Get the number of devices in a devclass
870  *
871  * @param dc		the devclass to examine
872  */
873 int
874 devclass_get_count(devclass_t dc)
875 {
876 	int count, i;
877 
878 	count = 0;
879 	for (i = 0; i < dc->maxunit; i++)
880 		if (dc->devices[i])
881 			count++;
882 	return (count);
883 }
884 
885 int
886 devclass_get_maxunit(devclass_t dc)
887 {
888 	return(dc->maxunit);
889 }
890 
891 void
892 devclass_set_parent(devclass_t dc, devclass_t pdc)
893 {
894         dc->parent = pdc;
895 }
896 
897 devclass_t
898 devclass_get_parent(devclass_t dc)
899 {
900 	return(dc->parent);
901 }
902 
903 static int
904 devclass_alloc_unit(devclass_t dc, int *unitp)
905 {
906 	int unit = *unitp;
907 
908 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
909 
910 	/* If we have been given a wired unit number, check for existing device */
911 	if (unit != -1) {
912 		if (unit >= 0 && unit < dc->maxunit &&
913 		    dc->devices[unit] != NULL) {
914 			if (bootverbose)
915 				kprintf("%s-: %s%d exists, using next available unit number\n",
916 				       dc->name, dc->name, unit);
917 			/* find the next available slot */
918 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
919 				;
920 		}
921 	} else {
922 		/* Unwired device, find the next available slot for it */
923 		unit = 0;
924 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
925 			unit++;
926 	}
927 
928 	/*
929 	 * We've selected a unit beyond the length of the table, so let's
930 	 * extend the table to make room for all units up to and including
931 	 * this one.
932 	 */
933 	if (unit >= dc->maxunit) {
934 		device_t *newlist;
935 		int newsize;
936 
937 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
938 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
939 				 M_INTWAIT | M_ZERO);
940 		if (newlist == NULL)
941 			return(ENOMEM);
942 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
943 		if (dc->devices)
944 			kfree(dc->devices, M_BUS);
945 		dc->devices = newlist;
946 		dc->maxunit = newsize;
947 	}
948 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
949 
950 	*unitp = unit;
951 	return(0);
952 }
953 
954 static int
955 devclass_add_device(devclass_t dc, device_t dev)
956 {
957 	int buflen, error;
958 
959 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
960 
961 	buflen = strlen(dc->name) + 5;
962 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
963 	if (!dev->nameunit)
964 		return(ENOMEM);
965 
966 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
967 		kfree(dev->nameunit, M_BUS);
968 		dev->nameunit = NULL;
969 		return(error);
970 	}
971 	dc->devices[dev->unit] = dev;
972 	dev->devclass = dc;
973 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
974 
975 	return(0);
976 }
977 
978 static int
979 devclass_delete_device(devclass_t dc, device_t dev)
980 {
981 	if (!dc || !dev)
982 		return(0);
983 
984 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
985 
986 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
987 		panic("devclass_delete_device: inconsistent device class");
988 	dc->devices[dev->unit] = NULL;
989 	if (dev->flags & DF_WILDCARD)
990 		dev->unit = -1;
991 	dev->devclass = NULL;
992 	kfree(dev->nameunit, M_BUS);
993 	dev->nameunit = NULL;
994 
995 	return(0);
996 }
997 
998 static device_t
999 make_device(device_t parent, const char *name, int unit)
1000 {
1001 	device_t dev;
1002 	devclass_t dc;
1003 
1004 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1005 
1006 	if (name != NULL) {
1007 		dc = devclass_find_internal(name, NULL, TRUE);
1008 		if (!dc) {
1009 			kprintf("make_device: can't find device class %s\n", name);
1010 			return(NULL);
1011 		}
1012 	} else
1013 		dc = NULL;
1014 
1015 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1016 	if (!dev)
1017 		return(0);
1018 
1019 	dev->parent = parent;
1020 	TAILQ_INIT(&dev->children);
1021 	kobj_init((kobj_t) dev, &null_class);
1022 	dev->driver = NULL;
1023 	dev->devclass = NULL;
1024 	dev->unit = unit;
1025 	dev->nameunit = NULL;
1026 	dev->desc = NULL;
1027 	dev->busy = 0;
1028 	dev->devflags = 0;
1029 	dev->flags = DF_ENABLED;
1030 	dev->order = 0;
1031 	if (unit == -1)
1032 		dev->flags |= DF_WILDCARD;
1033 	if (name) {
1034 		dev->flags |= DF_FIXEDCLASS;
1035 		if (devclass_add_device(dc, dev) != 0) {
1036 			kobj_delete((kobj_t)dev, M_BUS);
1037 			return(NULL);
1038 		}
1039     	}
1040 	dev->ivars = NULL;
1041 	dev->softc = NULL;
1042 
1043 	dev->state = DS_NOTPRESENT;
1044 
1045 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1046 	bus_data_generation_update();
1047 
1048 	return(dev);
1049 }
1050 
1051 static int
1052 device_print_child(device_t dev, device_t child)
1053 {
1054 	int retval = 0;
1055 
1056 	if (device_is_alive(child))
1057 		retval += BUS_PRINT_CHILD(dev, child);
1058 	else
1059 		retval += device_printf(child, " not found\n");
1060 
1061 	return(retval);
1062 }
1063 
1064 device_t
1065 device_add_child(device_t dev, const char *name, int unit)
1066 {
1067 	return device_add_child_ordered(dev, 0, name, unit);
1068 }
1069 
1070 device_t
1071 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1072 {
1073 	device_t child;
1074 	device_t place;
1075 
1076 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1077 		order, unit));
1078 
1079 	child = make_device(dev, name, unit);
1080 	if (child == NULL)
1081 		return child;
1082 	child->order = order;
1083 
1084 	TAILQ_FOREACH(place, &dev->children, link)
1085 		if (place->order > order)
1086 			break;
1087 
1088 	if (place) {
1089 		/*
1090 		 * The device 'place' is the first device whose order is
1091 		 * greater than the new child.
1092 		 */
1093 		TAILQ_INSERT_BEFORE(place, child, link);
1094 	} else {
1095 		/*
1096 		 * The new child's order is greater or equal to the order of
1097 		 * any existing device. Add the child to the tail of the list.
1098 		 */
1099 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1100     	}
1101 
1102 	bus_data_generation_update();
1103 	return(child);
1104 }
1105 
1106 int
1107 device_delete_child(device_t dev, device_t child)
1108 {
1109 	int error;
1110 	device_t grandchild;
1111 
1112 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1113 
1114 	/* remove children first */
1115 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1116         	error = device_delete_child(child, grandchild);
1117 		if (error)
1118 			return(error);
1119 	}
1120 
1121 	if ((error = device_detach(child)) != 0)
1122 		return(error);
1123 	if (child->devclass)
1124 		devclass_delete_device(child->devclass, child);
1125 	TAILQ_REMOVE(&dev->children, child, link);
1126 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1127 	device_set_desc(child, NULL);
1128 	kobj_delete((kobj_t)child, M_BUS);
1129 
1130 	bus_data_generation_update();
1131 	return(0);
1132 }
1133 
1134 /**
1135  * @brief Find a device given a unit number
1136  *
1137  * This is similar to devclass_get_devices() but only searches for
1138  * devices which have @p dev as a parent.
1139  *
1140  * @param dev		the parent device to search
1141  * @param unit		the unit number to search for.  If the unit is -1,
1142  *			return the first child of @p dev which has name
1143  *			@p classname (that is, the one with the lowest unit.)
1144  *
1145  * @returns		the device with the given unit number or @c
1146  *			NULL if there is no such device
1147  */
1148 device_t
1149 device_find_child(device_t dev, const char *classname, int unit)
1150 {
1151 	devclass_t dc;
1152 	device_t child;
1153 
1154 	dc = devclass_find(classname);
1155 	if (!dc)
1156 		return(NULL);
1157 
1158 	if (unit != -1) {
1159 		child = devclass_get_device(dc, unit);
1160 		if (child && child->parent == dev)
1161 			return (child);
1162 	} else {
1163 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1164 			child = devclass_get_device(dc, unit);
1165 			if (child && child->parent == dev)
1166 				return (child);
1167 		}
1168 	}
1169 	return(NULL);
1170 }
1171 
1172 static driverlink_t
1173 first_matching_driver(devclass_t dc, device_t dev)
1174 {
1175 	if (dev->devclass)
1176 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1177 	else
1178 		return(TAILQ_FIRST(&dc->drivers));
1179 }
1180 
1181 static driverlink_t
1182 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1183 {
1184 	if (dev->devclass) {
1185 		driverlink_t dl;
1186 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1187 			if (!strcmp(dev->devclass->name, dl->driver->name))
1188 				return(dl);
1189 		return(NULL);
1190 	} else
1191 		return(TAILQ_NEXT(last, link));
1192 }
1193 
1194 static int
1195 device_probe_child(device_t dev, device_t child)
1196 {
1197 	devclass_t dc;
1198 	driverlink_t best = 0;
1199 	driverlink_t dl;
1200 	int result, pri = 0;
1201 	int hasclass = (child->devclass != 0);
1202 
1203 	dc = dev->devclass;
1204 	if (!dc)
1205 		panic("device_probe_child: parent device has no devclass");
1206 
1207 	if (child->state == DS_ALIVE)
1208 		return(0);
1209 
1210 	for (; dc; dc = dc->parent) {
1211     		for (dl = first_matching_driver(dc, child); dl;
1212 		     dl = next_matching_driver(dc, child, dl)) {
1213 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1214 			device_set_driver(child, dl->driver);
1215 			if (!hasclass)
1216 				device_set_devclass(child, dl->driver->name);
1217 			result = DEVICE_PROBE(child);
1218 			if (!hasclass)
1219 				device_set_devclass(child, 0);
1220 
1221 			/*
1222 			 * If the driver returns SUCCESS, there can be
1223 			 * no higher match for this device.
1224 			 */
1225 			if (result == 0) {
1226 				best = dl;
1227 				pri = 0;
1228 				break;
1229 			}
1230 
1231 			/*
1232 			 * The driver returned an error so it
1233 			 * certainly doesn't match.
1234 			 */
1235 			if (result > 0) {
1236 				device_set_driver(child, 0);
1237 				continue;
1238 			}
1239 
1240 			/*
1241 			 * A priority lower than SUCCESS, remember the
1242 			 * best matching driver. Initialise the value
1243 			 * of pri for the first match.
1244 			 */
1245 			if (best == 0 || result > pri) {
1246 				best = dl;
1247 				pri = result;
1248 				continue;
1249 			}
1250 	        }
1251 		/*
1252 	         * If we have unambiguous match in this devclass,
1253 	         * don't look in the parent.
1254 	         */
1255 	        if (best && pri == 0)
1256 	    	        break;
1257 	}
1258 
1259 	/*
1260 	 * If we found a driver, change state and initialise the devclass.
1261 	 */
1262 	if (best) {
1263 		if (!child->devclass)
1264 			device_set_devclass(child, best->driver->name);
1265 		device_set_driver(child, best->driver);
1266 		if (pri < 0) {
1267 			/*
1268 			 * A bit bogus. Call the probe method again to make
1269 			 * sure that we have the right description.
1270 			 */
1271 			DEVICE_PROBE(child);
1272 		}
1273 
1274 		bus_data_generation_update();
1275 		child->state = DS_ALIVE;
1276 		return(0);
1277 	}
1278 
1279 	return(ENXIO);
1280 }
1281 
1282 device_t
1283 device_get_parent(device_t dev)
1284 {
1285 	return dev->parent;
1286 }
1287 
1288 int
1289 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1290 {
1291 	int count;
1292 	device_t child;
1293 	device_t *list;
1294 
1295 	count = 0;
1296 	TAILQ_FOREACH(child, &dev->children, link)
1297 		count++;
1298 
1299 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1300 	if (!list)
1301 		return(ENOMEM);
1302 
1303 	count = 0;
1304 	TAILQ_FOREACH(child, &dev->children, link) {
1305 		list[count] = child;
1306 		count++;
1307 	}
1308 
1309 	*devlistp = list;
1310 	*devcountp = count;
1311 
1312 	return(0);
1313 }
1314 
1315 driver_t *
1316 device_get_driver(device_t dev)
1317 {
1318 	return(dev->driver);
1319 }
1320 
1321 devclass_t
1322 device_get_devclass(device_t dev)
1323 {
1324 	return(dev->devclass);
1325 }
1326 
1327 const char *
1328 device_get_name(device_t dev)
1329 {
1330 	if (dev->devclass)
1331 		return devclass_get_name(dev->devclass);
1332 	return(NULL);
1333 }
1334 
1335 const char *
1336 device_get_nameunit(device_t dev)
1337 {
1338 	return(dev->nameunit);
1339 }
1340 
1341 int
1342 device_get_unit(device_t dev)
1343 {
1344 	return(dev->unit);
1345 }
1346 
1347 const char *
1348 device_get_desc(device_t dev)
1349 {
1350 	return(dev->desc);
1351 }
1352 
1353 uint32_t
1354 device_get_flags(device_t dev)
1355 {
1356 	return(dev->devflags);
1357 }
1358 
1359 int
1360 device_print_prettyname(device_t dev)
1361 {
1362 	const char *name = device_get_name(dev);
1363 
1364 	if (name == 0)
1365 		return kprintf("unknown: ");
1366 	else
1367 		return kprintf("%s%d: ", name, device_get_unit(dev));
1368 }
1369 
1370 int
1371 device_printf(device_t dev, const char * fmt, ...)
1372 {
1373 	__va_list ap;
1374 	int retval;
1375 
1376 	retval = device_print_prettyname(dev);
1377 	__va_start(ap, fmt);
1378 	retval += kvprintf(fmt, ap);
1379 	__va_end(ap);
1380 	return retval;
1381 }
1382 
1383 static void
1384 device_set_desc_internal(device_t dev, const char* desc, int copy)
1385 {
1386 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1387 		kfree(dev->desc, M_BUS);
1388 		dev->flags &= ~DF_DESCMALLOCED;
1389 		dev->desc = NULL;
1390 	}
1391 
1392 	if (copy && desc) {
1393 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1394 		if (dev->desc) {
1395 			strcpy(dev->desc, desc);
1396 			dev->flags |= DF_DESCMALLOCED;
1397 		}
1398 	} else {
1399 		/* Avoid a -Wcast-qual warning */
1400 		dev->desc = (char *)(uintptr_t) desc;
1401 	}
1402 
1403 	bus_data_generation_update();
1404 }
1405 
1406 void
1407 device_set_desc(device_t dev, const char* desc)
1408 {
1409 	device_set_desc_internal(dev, desc, FALSE);
1410 }
1411 
1412 void
1413 device_set_desc_copy(device_t dev, const char* desc)
1414 {
1415 	device_set_desc_internal(dev, desc, TRUE);
1416 }
1417 
1418 void
1419 device_set_flags(device_t dev, uint32_t flags)
1420 {
1421 	dev->devflags = flags;
1422 }
1423 
1424 void *
1425 device_get_softc(device_t dev)
1426 {
1427 	return dev->softc;
1428 }
1429 
1430 void
1431 device_set_softc(device_t dev, void *softc)
1432 {
1433 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1434 		kfree(dev->softc, M_BUS);
1435 	dev->softc = softc;
1436 	if (dev->softc)
1437 		dev->flags |= DF_EXTERNALSOFTC;
1438 	else
1439 		dev->flags &= ~DF_EXTERNALSOFTC;
1440 }
1441 
1442 void
1443 device_set_async_attach(device_t dev, int enable)
1444 {
1445 	if (enable)
1446 		dev->flags |= DF_ASYNCPROBE;
1447 	else
1448 		dev->flags &= ~DF_ASYNCPROBE;
1449 }
1450 
1451 void *
1452 device_get_ivars(device_t dev)
1453 {
1454 	return dev->ivars;
1455 }
1456 
1457 void
1458 device_set_ivars(device_t dev, void * ivars)
1459 {
1460 	if (!dev)
1461 		return;
1462 
1463 	dev->ivars = ivars;
1464 }
1465 
1466 device_state_t
1467 device_get_state(device_t dev)
1468 {
1469 	return(dev->state);
1470 }
1471 
1472 void
1473 device_enable(device_t dev)
1474 {
1475 	dev->flags |= DF_ENABLED;
1476 }
1477 
1478 void
1479 device_disable(device_t dev)
1480 {
1481 	dev->flags &= ~DF_ENABLED;
1482 }
1483 
1484 /*
1485  * YYY cannot block
1486  */
1487 void
1488 device_busy(device_t dev)
1489 {
1490 	if (dev->state < DS_ATTACHED)
1491 		panic("device_busy: called for unattached device");
1492 	if (dev->busy == 0 && dev->parent)
1493 		device_busy(dev->parent);
1494 	dev->busy++;
1495 	dev->state = DS_BUSY;
1496 }
1497 
1498 /*
1499  * YYY cannot block
1500  */
1501 void
1502 device_unbusy(device_t dev)
1503 {
1504 	if (dev->state != DS_BUSY)
1505 		panic("device_unbusy: called for non-busy device");
1506 	dev->busy--;
1507 	if (dev->busy == 0) {
1508 		if (dev->parent)
1509 			device_unbusy(dev->parent);
1510 		dev->state = DS_ATTACHED;
1511 	}
1512 }
1513 
1514 void
1515 device_quiet(device_t dev)
1516 {
1517 	dev->flags |= DF_QUIET;
1518 }
1519 
1520 void
1521 device_verbose(device_t dev)
1522 {
1523 	dev->flags &= ~DF_QUIET;
1524 }
1525 
1526 int
1527 device_is_quiet(device_t dev)
1528 {
1529 	return((dev->flags & DF_QUIET) != 0);
1530 }
1531 
1532 int
1533 device_is_enabled(device_t dev)
1534 {
1535 	return((dev->flags & DF_ENABLED) != 0);
1536 }
1537 
1538 int
1539 device_is_alive(device_t dev)
1540 {
1541 	return(dev->state >= DS_ALIVE);
1542 }
1543 
1544 int
1545 device_is_attached(device_t dev)
1546 {
1547 	return(dev->state >= DS_ATTACHED);
1548 }
1549 
1550 int
1551 device_set_devclass(device_t dev, const char *classname)
1552 {
1553 	devclass_t dc;
1554 	int error;
1555 
1556 	if (!classname) {
1557 		if (dev->devclass)
1558 			devclass_delete_device(dev->devclass, dev);
1559 		return(0);
1560 	}
1561 
1562 	if (dev->devclass) {
1563 		kprintf("device_set_devclass: device class already set\n");
1564 		return(EINVAL);
1565 	}
1566 
1567 	dc = devclass_find_internal(classname, NULL, TRUE);
1568 	if (!dc)
1569 		return(ENOMEM);
1570 
1571 	error = devclass_add_device(dc, dev);
1572 
1573 	bus_data_generation_update();
1574 	return(error);
1575 }
1576 
1577 int
1578 device_set_driver(device_t dev, driver_t *driver)
1579 {
1580 	if (dev->state >= DS_ATTACHED)
1581 		return(EBUSY);
1582 
1583 	if (dev->driver == driver)
1584 		return(0);
1585 
1586 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1587 		kfree(dev->softc, M_BUS);
1588 		dev->softc = NULL;
1589 	}
1590 	kobj_delete((kobj_t) dev, 0);
1591 	dev->driver = driver;
1592 	if (driver) {
1593 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1594 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1595 			dev->softc = kmalloc(driver->size, M_BUS,
1596 					    M_INTWAIT | M_ZERO);
1597 			if (!dev->softc) {
1598 				kobj_delete((kobj_t)dev, 0);
1599 				kobj_init((kobj_t) dev, &null_class);
1600 				dev->driver = NULL;
1601 				return(ENOMEM);
1602 	    		}
1603 		}
1604 	} else {
1605 		kobj_init((kobj_t) dev, &null_class);
1606 	}
1607 
1608 	bus_data_generation_update();
1609 	return(0);
1610 }
1611 
1612 int
1613 device_probe_and_attach(device_t dev)
1614 {
1615 	device_t bus = dev->parent;
1616 	int error = 0;
1617 
1618 	if (dev->state >= DS_ALIVE)
1619 		return(0);
1620 
1621 	if ((dev->flags & DF_ENABLED) == 0) {
1622 		if (bootverbose) {
1623 			device_print_prettyname(dev);
1624 			kprintf("not probed (disabled)\n");
1625 		}
1626 		return(0);
1627 	}
1628 
1629 	error = device_probe_child(bus, dev);
1630 	if (error) {
1631 		if (!(dev->flags & DF_DONENOMATCH)) {
1632 			BUS_PROBE_NOMATCH(bus, dev);
1633 			devnomatch(dev);
1634 			dev->flags |= DF_DONENOMATCH;
1635 		}
1636 		return(error);
1637 	}
1638 
1639 	/*
1640 	 * Output the exact device chain prior to the attach in case the
1641 	 * system locks up during attach, and generate the full info after
1642 	 * the attach so correct irq and other information is displayed.
1643 	 */
1644 	if (bootverbose && !device_is_quiet(dev)) {
1645 		device_t tmp;
1646 
1647 		kprintf("%s", device_get_nameunit(dev));
1648 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1649 			kprintf(".%s", device_get_nameunit(tmp));
1650 		kprintf("\n");
1651 	}
1652 	if (!device_is_quiet(dev))
1653 		device_print_child(bus, dev);
1654 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1655 		kprintf("%s: probing asynchronously\n",
1656 			device_get_nameunit(dev));
1657 		dev->state = DS_INPROGRESS;
1658 		device_attach_async(dev);
1659 		error = 0;
1660 	} else {
1661 		error = device_doattach(dev);
1662 	}
1663 	return(error);
1664 }
1665 
1666 /*
1667  * Device is known to be alive, do the attach asynchronously.
1668  *
1669  * The MP lock is held by all threads.
1670  */
1671 static void
1672 device_attach_async(device_t dev)
1673 {
1674 	thread_t td;
1675 
1676 	atomic_add_int(&numasyncthreads, 1);
1677 	lwkt_create(device_attach_thread, dev, &td, NULL,
1678 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1679 }
1680 
1681 static void
1682 device_attach_thread(void *arg)
1683 {
1684 	device_t dev = arg;
1685 
1686 	(void)device_doattach(dev);
1687 	atomic_subtract_int(&numasyncthreads, 1);
1688 	wakeup(&numasyncthreads);
1689 }
1690 
1691 /*
1692  * Device is known to be alive, do the attach (synchronous or asynchronous)
1693  */
1694 static int
1695 device_doattach(device_t dev)
1696 {
1697 	device_t bus = dev->parent;
1698 	int hasclass = (dev->devclass != 0);
1699 	int error;
1700 
1701 	error = DEVICE_ATTACH(dev);
1702 	if (error == 0) {
1703 		dev->state = DS_ATTACHED;
1704 		if (bootverbose && !device_is_quiet(dev))
1705 			device_print_child(bus, dev);
1706 		devadded(dev);
1707 	} else {
1708 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1709 		       dev->driver->name, dev->unit, error);
1710 		/* Unset the class that was set in device_probe_child */
1711 		if (!hasclass)
1712 			device_set_devclass(dev, 0);
1713 		device_set_driver(dev, NULL);
1714 		dev->state = DS_NOTPRESENT;
1715 	}
1716 	return(error);
1717 }
1718 
1719 int
1720 device_detach(device_t dev)
1721 {
1722 	int error;
1723 
1724 	PDEBUG(("%s", DEVICENAME(dev)));
1725 	if (dev->state == DS_BUSY)
1726 		return(EBUSY);
1727 	if (dev->state != DS_ATTACHED)
1728 		return(0);
1729 
1730 	if ((error = DEVICE_DETACH(dev)) != 0)
1731 		return(error);
1732 	devremoved(dev);
1733 	device_printf(dev, "detached\n");
1734 	if (dev->parent)
1735 		BUS_CHILD_DETACHED(dev->parent, dev);
1736 
1737 	if (!(dev->flags & DF_FIXEDCLASS))
1738 		devclass_delete_device(dev->devclass, dev);
1739 
1740 	dev->state = DS_NOTPRESENT;
1741 	device_set_driver(dev, NULL);
1742 
1743 	return(0);
1744 }
1745 
1746 int
1747 device_shutdown(device_t dev)
1748 {
1749 	if (dev->state < DS_ATTACHED)
1750 		return 0;
1751 	PDEBUG(("%s", DEVICENAME(dev)));
1752 	return DEVICE_SHUTDOWN(dev);
1753 }
1754 
1755 int
1756 device_set_unit(device_t dev, int unit)
1757 {
1758 	devclass_t dc;
1759 	int err;
1760 
1761 	dc = device_get_devclass(dev);
1762 	if (unit < dc->maxunit && dc->devices[unit])
1763 		return(EBUSY);
1764 	err = devclass_delete_device(dc, dev);
1765 	if (err)
1766 		return(err);
1767 	dev->unit = unit;
1768 	err = devclass_add_device(dc, dev);
1769 	if (err)
1770 		return(err);
1771 
1772 	bus_data_generation_update();
1773 	return(0);
1774 }
1775 
1776 /*======================================*/
1777 /*
1778  * Access functions for device resources.
1779  */
1780 
1781 /* Supplied by config(8) in ioconf.c */
1782 extern struct config_device config_devtab[];
1783 extern int devtab_count;
1784 
1785 /* Runtime version */
1786 struct config_device *devtab = config_devtab;
1787 
1788 static int
1789 resource_new_name(const char *name, int unit)
1790 {
1791 	struct config_device *new;
1792 
1793 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1794 		     M_INTWAIT | M_ZERO);
1795 	if (new == NULL)
1796 		return(-1);
1797 	if (devtab && devtab_count > 0)
1798 		bcopy(devtab, new, devtab_count * sizeof(*new));
1799 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1800 	if (new[devtab_count].name == NULL) {
1801 		kfree(new, M_TEMP);
1802 		return(-1);
1803 	}
1804 	strcpy(new[devtab_count].name, name);
1805 	new[devtab_count].unit = unit;
1806 	new[devtab_count].resource_count = 0;
1807 	new[devtab_count].resources = NULL;
1808 	if (devtab && devtab != config_devtab)
1809 		kfree(devtab, M_TEMP);
1810 	devtab = new;
1811 	return devtab_count++;
1812 }
1813 
1814 static int
1815 resource_new_resname(int j, const char *resname, resource_type type)
1816 {
1817 	struct config_resource *new;
1818 	int i;
1819 
1820 	i = devtab[j].resource_count;
1821 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1822 	if (new == NULL)
1823 		return(-1);
1824 	if (devtab[j].resources && i > 0)
1825 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1826 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1827 	if (new[i].name == NULL) {
1828 		kfree(new, M_TEMP);
1829 		return(-1);
1830 	}
1831 	strcpy(new[i].name, resname);
1832 	new[i].type = type;
1833 	if (devtab[j].resources)
1834 		kfree(devtab[j].resources, M_TEMP);
1835 	devtab[j].resources = new;
1836 	devtab[j].resource_count = i + 1;
1837 	return(i);
1838 }
1839 
1840 static int
1841 resource_match_string(int i, const char *resname, const char *value)
1842 {
1843 	int j;
1844 	struct config_resource *res;
1845 
1846 	for (j = 0, res = devtab[i].resources;
1847 	     j < devtab[i].resource_count; j++, res++)
1848 		if (!strcmp(res->name, resname)
1849 		    && res->type == RES_STRING
1850 		    && !strcmp(res->u.stringval, value))
1851 			return(j);
1852 	return(-1);
1853 }
1854 
1855 static int
1856 resource_find(const char *name, int unit, const char *resname,
1857 	      struct config_resource **result)
1858 {
1859 	int i, j;
1860 	struct config_resource *res;
1861 
1862 	/*
1863 	 * First check specific instances, then generic.
1864 	 */
1865 	for (i = 0; i < devtab_count; i++) {
1866 		if (devtab[i].unit < 0)
1867 			continue;
1868 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1869 			res = devtab[i].resources;
1870 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1871 				if (!strcmp(res->name, resname)) {
1872 					*result = res;
1873 					return(0);
1874 				}
1875 		}
1876 	}
1877 	for (i = 0; i < devtab_count; i++) {
1878 		if (devtab[i].unit >= 0)
1879 			continue;
1880 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1881 		/* XXX if so, then the generic match does nothing */
1882 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1883 			res = devtab[i].resources;
1884 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1885 				if (!strcmp(res->name, resname)) {
1886 					*result = res;
1887 					return(0);
1888 				}
1889 		}
1890 	}
1891 	return(ENOENT);
1892 }
1893 
1894 int
1895 resource_int_value(const char *name, int unit, const char *resname, int *result)
1896 {
1897 	int error;
1898 	struct config_resource *res;
1899 
1900 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1901 		return(error);
1902 	if (res->type != RES_INT)
1903 		return(EFTYPE);
1904 	*result = res->u.intval;
1905 	return(0);
1906 }
1907 
1908 int
1909 resource_long_value(const char *name, int unit, const char *resname,
1910 		    long *result)
1911 {
1912 	int error;
1913 	struct config_resource *res;
1914 
1915 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1916 		return(error);
1917 	if (res->type != RES_LONG)
1918 		return(EFTYPE);
1919 	*result = res->u.longval;
1920 	return(0);
1921 }
1922 
1923 int
1924 resource_string_value(const char *name, int unit, const char *resname,
1925 		      char **result)
1926 {
1927 	int error;
1928 	struct config_resource *res;
1929 
1930 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1931 		return(error);
1932 	if (res->type != RES_STRING)
1933 		return(EFTYPE);
1934 	*result = res->u.stringval;
1935 	return(0);
1936 }
1937 
1938 int
1939 resource_query_string(int i, const char *resname, const char *value)
1940 {
1941 	if (i < 0)
1942 		i = 0;
1943 	else
1944 		i = i + 1;
1945 	for (; i < devtab_count; i++)
1946 		if (resource_match_string(i, resname, value) >= 0)
1947 			return(i);
1948 	return(-1);
1949 }
1950 
1951 int
1952 resource_locate(int i, const char *resname)
1953 {
1954 	if (i < 0)
1955 		i = 0;
1956 	else
1957 		i = i + 1;
1958 	for (; i < devtab_count; i++)
1959 		if (!strcmp(devtab[i].name, resname))
1960 			return(i);
1961 	return(-1);
1962 }
1963 
1964 int
1965 resource_count(void)
1966 {
1967 	return(devtab_count);
1968 }
1969 
1970 char *
1971 resource_query_name(int i)
1972 {
1973 	return(devtab[i].name);
1974 }
1975 
1976 int
1977 resource_query_unit(int i)
1978 {
1979 	return(devtab[i].unit);
1980 }
1981 
1982 static int
1983 resource_create(const char *name, int unit, const char *resname,
1984 		resource_type type, struct config_resource **result)
1985 {
1986 	int i, j;
1987 	struct config_resource *res = NULL;
1988 
1989 	for (i = 0; i < devtab_count; i++)
1990 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1991 			res = devtab[i].resources;
1992 			break;
1993 		}
1994 	if (res == NULL) {
1995 		i = resource_new_name(name, unit);
1996 		if (i < 0)
1997 			return(ENOMEM);
1998 		res = devtab[i].resources;
1999 	}
2000 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2001 		if (!strcmp(res->name, resname)) {
2002 			*result = res;
2003 			return(0);
2004 		}
2005 	j = resource_new_resname(i, resname, type);
2006 	if (j < 0)
2007 		return(ENOMEM);
2008 	res = &devtab[i].resources[j];
2009 	*result = res;
2010 	return(0);
2011 }
2012 
2013 int
2014 resource_set_int(const char *name, int unit, const char *resname, int value)
2015 {
2016 	int error;
2017 	struct config_resource *res;
2018 
2019 	error = resource_create(name, unit, resname, RES_INT, &res);
2020 	if (error)
2021 		return(error);
2022 	if (res->type != RES_INT)
2023 		return(EFTYPE);
2024 	res->u.intval = value;
2025 	return(0);
2026 }
2027 
2028 int
2029 resource_set_long(const char *name, int unit, const char *resname, long value)
2030 {
2031 	int error;
2032 	struct config_resource *res;
2033 
2034 	error = resource_create(name, unit, resname, RES_LONG, &res);
2035 	if (error)
2036 		return(error);
2037 	if (res->type != RES_LONG)
2038 		return(EFTYPE);
2039 	res->u.longval = value;
2040 	return(0);
2041 }
2042 
2043 int
2044 resource_set_string(const char *name, int unit, const char *resname,
2045 		    const char *value)
2046 {
2047 	int error;
2048 	struct config_resource *res;
2049 
2050 	error = resource_create(name, unit, resname, RES_STRING, &res);
2051 	if (error)
2052 		return(error);
2053 	if (res->type != RES_STRING)
2054 		return(EFTYPE);
2055 	if (res->u.stringval)
2056 		kfree(res->u.stringval, M_TEMP);
2057 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2058 	if (res->u.stringval == NULL)
2059 		return(ENOMEM);
2060 	strcpy(res->u.stringval, value);
2061 	return(0);
2062 }
2063 
2064 static void
2065 resource_cfgload(void *dummy __unused)
2066 {
2067 	struct config_resource *res, *cfgres;
2068 	int i, j;
2069 	int error;
2070 	char *name, *resname;
2071 	int unit;
2072 	resource_type type;
2073 	char *stringval;
2074 	int config_devtab_count;
2075 
2076 	config_devtab_count = devtab_count;
2077 	devtab = NULL;
2078 	devtab_count = 0;
2079 
2080 	for (i = 0; i < config_devtab_count; i++) {
2081 		name = config_devtab[i].name;
2082 		unit = config_devtab[i].unit;
2083 
2084 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2085 			cfgres = config_devtab[i].resources;
2086 			resname = cfgres[j].name;
2087 			type = cfgres[j].type;
2088 			error = resource_create(name, unit, resname, type,
2089 						&res);
2090 			if (error) {
2091 				kprintf("create resource %s%d: error %d\n",
2092 					name, unit, error);
2093 				continue;
2094 			}
2095 			if (res->type != type) {
2096 				kprintf("type mismatch %s%d: %d != %d\n",
2097 					name, unit, res->type, type);
2098 				continue;
2099 			}
2100 			switch (type) {
2101 			case RES_INT:
2102 				res->u.intval = cfgres[j].u.intval;
2103 				break;
2104 			case RES_LONG:
2105 				res->u.longval = cfgres[j].u.longval;
2106 				break;
2107 			case RES_STRING:
2108 				if (res->u.stringval)
2109 					kfree(res->u.stringval, M_TEMP);
2110 				stringval = cfgres[j].u.stringval;
2111 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2112 							  M_TEMP, M_INTWAIT);
2113 				if (res->u.stringval == NULL)
2114 					break;
2115 				strcpy(res->u.stringval, stringval);
2116 				break;
2117 			default:
2118 				panic("unknown resource type %d", type);
2119 			}
2120 		}
2121 	}
2122 }
2123 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2124 
2125 
2126 /*======================================*/
2127 /*
2128  * Some useful method implementations to make life easier for bus drivers.
2129  */
2130 
2131 void
2132 resource_list_init(struct resource_list *rl)
2133 {
2134 	SLIST_INIT(rl);
2135 }
2136 
2137 void
2138 resource_list_free(struct resource_list *rl)
2139 {
2140 	struct resource_list_entry *rle;
2141 
2142 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2143 		if (rle->res)
2144 			panic("resource_list_free: resource entry is busy");
2145 		SLIST_REMOVE_HEAD(rl, link);
2146 		kfree(rle, M_BUS);
2147 	}
2148 }
2149 
2150 void
2151 resource_list_add(struct resource_list *rl,
2152 		  int type, int rid,
2153 		  u_long start, u_long end, u_long count)
2154 {
2155 	struct resource_list_entry *rle;
2156 
2157 	rle = resource_list_find(rl, type, rid);
2158 	if (rle == NULL) {
2159 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2160 			     M_INTWAIT);
2161 		if (!rle)
2162 			panic("resource_list_add: can't record entry");
2163 		SLIST_INSERT_HEAD(rl, rle, link);
2164 		rle->type = type;
2165 		rle->rid = rid;
2166 		rle->res = NULL;
2167 	}
2168 
2169 	if (rle->res)
2170 		panic("resource_list_add: resource entry is busy");
2171 
2172 	rle->start = start;
2173 	rle->end = end;
2174 	rle->count = count;
2175 }
2176 
2177 struct resource_list_entry*
2178 resource_list_find(struct resource_list *rl,
2179 		   int type, int rid)
2180 {
2181 	struct resource_list_entry *rle;
2182 
2183 	SLIST_FOREACH(rle, rl, link)
2184 		if (rle->type == type && rle->rid == rid)
2185 			return(rle);
2186 	return(NULL);
2187 }
2188 
2189 void
2190 resource_list_delete(struct resource_list *rl,
2191 		     int type, int rid)
2192 {
2193 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2194 
2195 	if (rle) {
2196 		if (rle->res != NULL)
2197 			panic("resource_list_delete: resource has not been released");
2198 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2199 		kfree(rle, M_BUS);
2200 	}
2201 }
2202 
2203 struct resource *
2204 resource_list_alloc(struct resource_list *rl,
2205 		    device_t bus, device_t child,
2206 		    int type, int *rid,
2207 		    u_long start, u_long end,
2208 		    u_long count, u_int flags)
2209 {
2210 	struct resource_list_entry *rle = 0;
2211 	int passthrough = (device_get_parent(child) != bus);
2212 	int isdefault = (start == 0UL && end == ~0UL);
2213 
2214 	if (passthrough) {
2215 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2216 					  type, rid,
2217 					  start, end, count, flags));
2218 	}
2219 
2220 	rle = resource_list_find(rl, type, *rid);
2221 
2222 	if (!rle)
2223 		return(0);		/* no resource of that type/rid */
2224 
2225 	if (rle->res)
2226 		panic("resource_list_alloc: resource entry is busy");
2227 
2228 	if (isdefault) {
2229 		start = rle->start;
2230 		count = max(count, rle->count);
2231 		end = max(rle->end, start + count - 1);
2232 	}
2233 
2234 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2235 				      type, rid, start, end, count, flags);
2236 
2237 	/*
2238 	 * Record the new range.
2239 	 */
2240 	if (rle->res) {
2241 		rle->start = rman_get_start(rle->res);
2242 		rle->end = rman_get_end(rle->res);
2243 		rle->count = count;
2244 	}
2245 
2246 	return(rle->res);
2247 }
2248 
2249 int
2250 resource_list_release(struct resource_list *rl,
2251 		      device_t bus, device_t child,
2252 		      int type, int rid, struct resource *res)
2253 {
2254 	struct resource_list_entry *rle = 0;
2255 	int passthrough = (device_get_parent(child) != bus);
2256 	int error;
2257 
2258 	if (passthrough) {
2259 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2260 					    type, rid, res));
2261 	}
2262 
2263 	rle = resource_list_find(rl, type, rid);
2264 
2265 	if (!rle)
2266 		panic("resource_list_release: can't find resource");
2267 	if (!rle->res)
2268 		panic("resource_list_release: resource entry is not busy");
2269 
2270 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2271 				     type, rid, res);
2272 	if (error)
2273 		return(error);
2274 
2275 	rle->res = NULL;
2276 	return(0);
2277 }
2278 
2279 int
2280 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2281 			 const char *format)
2282 {
2283 	struct resource_list_entry *rle;
2284 	int printed, retval;
2285 
2286 	printed = 0;
2287 	retval = 0;
2288 	/* Yes, this is kinda cheating */
2289 	SLIST_FOREACH(rle, rl, link) {
2290 		if (rle->type == type) {
2291 			if (printed == 0)
2292 				retval += kprintf(" %s ", name);
2293 			else
2294 				retval += kprintf(",");
2295 			printed++;
2296 			retval += kprintf(format, rle->start);
2297 			if (rle->count > 1) {
2298 				retval += kprintf("-");
2299 				retval += kprintf(format, rle->start +
2300 						 rle->count - 1);
2301 			}
2302 		}
2303 	}
2304 	return(retval);
2305 }
2306 
2307 /*
2308  * Generic driver/device identify functions.  These will install a device
2309  * rendezvous point under the parent using the same name as the driver
2310  * name, which will at a later time be probed and attached.
2311  *
2312  * These functions are used when the parent does not 'scan' its bus for
2313  * matching devices, or for the particular devices using these functions,
2314  * or when the device is a pseudo or synthesized device (such as can be
2315  * found under firewire and ppbus).
2316  */
2317 int
2318 bus_generic_identify(driver_t *driver, device_t parent)
2319 {
2320 	if (parent->state == DS_ATTACHED)
2321 		return (0);
2322 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2323 	return (0);
2324 }
2325 
2326 int
2327 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2328 {
2329 	if (parent->state == DS_ATTACHED)
2330 		return (0);
2331 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2332 	return (0);
2333 }
2334 
2335 /*
2336  * Call DEVICE_IDENTIFY for each driver.
2337  */
2338 int
2339 bus_generic_probe(device_t dev)
2340 {
2341 	devclass_t dc = dev->devclass;
2342 	driverlink_t dl;
2343 
2344 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2345 		DEVICE_IDENTIFY(dl->driver, dev);
2346 	}
2347 
2348 	return(0);
2349 }
2350 
2351 /*
2352  * This is an aweful hack due to the isa bus and autoconf code not
2353  * probing the ISA devices until after everything else has configured.
2354  * The ISA bus did a dummy attach long ago so we have to set it back
2355  * to an earlier state so the probe thinks its the initial probe and
2356  * not a bus rescan.
2357  *
2358  * XXX remove by properly defering the ISA bus scan.
2359  */
2360 int
2361 bus_generic_probe_hack(device_t dev)
2362 {
2363 	if (dev->state == DS_ATTACHED) {
2364 		dev->state = DS_ALIVE;
2365 		bus_generic_probe(dev);
2366 		dev->state = DS_ATTACHED;
2367 	}
2368 	return (0);
2369 }
2370 
2371 int
2372 bus_generic_attach(device_t dev)
2373 {
2374 	device_t child;
2375 
2376 	TAILQ_FOREACH(child, &dev->children, link) {
2377 		device_probe_and_attach(child);
2378 	}
2379 
2380 	return(0);
2381 }
2382 
2383 int
2384 bus_generic_detach(device_t dev)
2385 {
2386 	device_t child;
2387 	int error;
2388 
2389 	if (dev->state != DS_ATTACHED)
2390 		return(EBUSY);
2391 
2392 	TAILQ_FOREACH(child, &dev->children, link)
2393 		if ((error = device_detach(child)) != 0)
2394 			return(error);
2395 
2396 	return 0;
2397 }
2398 
2399 int
2400 bus_generic_shutdown(device_t dev)
2401 {
2402 	device_t child;
2403 
2404 	TAILQ_FOREACH(child, &dev->children, link)
2405 		device_shutdown(child);
2406 
2407 	return(0);
2408 }
2409 
2410 int
2411 bus_generic_suspend(device_t dev)
2412 {
2413 	int error;
2414 	device_t child, child2;
2415 
2416 	TAILQ_FOREACH(child, &dev->children, link) {
2417 		error = DEVICE_SUSPEND(child);
2418 		if (error) {
2419 			for (child2 = TAILQ_FIRST(&dev->children);
2420 			     child2 && child2 != child;
2421 			     child2 = TAILQ_NEXT(child2, link))
2422 				DEVICE_RESUME(child2);
2423 			return(error);
2424 		}
2425 	}
2426 	return(0);
2427 }
2428 
2429 int
2430 bus_generic_resume(device_t dev)
2431 {
2432 	device_t child;
2433 
2434 	TAILQ_FOREACH(child, &dev->children, link)
2435 		DEVICE_RESUME(child);
2436 		/* if resume fails, there's nothing we can usefully do... */
2437 
2438 	return(0);
2439 }
2440 
2441 int
2442 bus_print_child_header(device_t dev, device_t child)
2443 {
2444 	int retval = 0;
2445 
2446 	if (device_get_desc(child))
2447 		retval += device_printf(child, "<%s>", device_get_desc(child));
2448 	else
2449 		retval += kprintf("%s", device_get_nameunit(child));
2450 	if (bootverbose) {
2451 		if (child->state != DS_ATTACHED)
2452 			kprintf(" [tentative]");
2453 		else
2454 			kprintf(" [attached!]");
2455 	}
2456 	return(retval);
2457 }
2458 
2459 int
2460 bus_print_child_footer(device_t dev, device_t child)
2461 {
2462 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2463 }
2464 
2465 device_t
2466 bus_generic_add_child(device_t dev, device_t child, int order,
2467 		      const char *name, int unit)
2468 {
2469 	if (dev->parent)
2470 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2471 	else
2472 		dev = device_add_child_ordered(child, order, name, unit);
2473 	return(dev);
2474 
2475 }
2476 
2477 int
2478 bus_generic_print_child(device_t dev, device_t child)
2479 {
2480 	int retval = 0;
2481 
2482 	retval += bus_print_child_header(dev, child);
2483 	retval += bus_print_child_footer(dev, child);
2484 
2485 	return(retval);
2486 }
2487 
2488 int
2489 bus_generic_read_ivar(device_t dev, device_t child, int index,
2490 		      uintptr_t * result)
2491 {
2492 	int error;
2493 
2494 	if (dev->parent)
2495 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2496 	else
2497 		error = ENOENT;
2498 	return (error);
2499 }
2500 
2501 int
2502 bus_generic_write_ivar(device_t dev, device_t child, int index,
2503 		       uintptr_t value)
2504 {
2505 	int error;
2506 
2507 	if (dev->parent)
2508 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2509 	else
2510 		error = ENOENT;
2511 	return (error);
2512 }
2513 
2514 /*
2515  * Resource list are used for iterations, do not recurse.
2516  */
2517 struct resource_list *
2518 bus_generic_get_resource_list(device_t dev, device_t child)
2519 {
2520 	return (NULL);
2521 }
2522 
2523 void
2524 bus_generic_driver_added(device_t dev, driver_t *driver)
2525 {
2526 	device_t child;
2527 
2528 	DEVICE_IDENTIFY(driver, dev);
2529 	TAILQ_FOREACH(child, &dev->children, link) {
2530 		if (child->state == DS_NOTPRESENT)
2531 			device_probe_and_attach(child);
2532 	}
2533 }
2534 
2535 int
2536 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2537 		       int flags, driver_intr_t *intr, void *arg,
2538 		       void **cookiep, lwkt_serialize_t serializer)
2539 {
2540 	/* Propagate up the bus hierarchy until someone handles it. */
2541 	if (dev->parent)
2542 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2543 				      intr, arg, cookiep, serializer));
2544 	else
2545 		return(EINVAL);
2546 }
2547 
2548 int
2549 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2550 			  void *cookie)
2551 {
2552 	/* Propagate up the bus hierarchy until someone handles it. */
2553 	if (dev->parent)
2554 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2555 	else
2556 		return(EINVAL);
2557 }
2558 
2559 int
2560 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2561 {
2562 	if (dev->parent)
2563 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2564 	else
2565 		return(0);
2566 }
2567 
2568 void
2569 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2570 {
2571 	if (dev->parent)
2572 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2573 }
2574 
2575 int
2576 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2577     enum intr_polarity pol)
2578 {
2579 	/* Propagate up the bus hierarchy until someone handles it. */
2580 	if (dev->parent)
2581 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2582 	else
2583 		return(EINVAL);
2584 }
2585 
2586 struct resource *
2587 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2588 			   u_long start, u_long end, u_long count, u_int flags)
2589 {
2590 	/* Propagate up the bus hierarchy until someone handles it. */
2591 	if (dev->parent)
2592 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2593 					   start, end, count, flags));
2594 	else
2595 		return(NULL);
2596 }
2597 
2598 int
2599 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2600 			     struct resource *r)
2601 {
2602 	/* Propagate up the bus hierarchy until someone handles it. */
2603 	if (dev->parent)
2604 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2605 	else
2606 		return(EINVAL);
2607 }
2608 
2609 int
2610 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2611 			      struct resource *r)
2612 {
2613 	/* Propagate up the bus hierarchy until someone handles it. */
2614 	if (dev->parent)
2615 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2616 	else
2617 		return(EINVAL);
2618 }
2619 
2620 int
2621 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2622 				int rid, struct resource *r)
2623 {
2624 	/* Propagate up the bus hierarchy until someone handles it. */
2625 	if (dev->parent)
2626 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2627 					       r));
2628 	else
2629 		return(EINVAL);
2630 }
2631 
2632 int
2633 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2634 			 u_long *startp, u_long *countp)
2635 {
2636 	int error;
2637 
2638 	error = ENOENT;
2639 	if (dev->parent) {
2640 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2641 					 startp, countp);
2642 	}
2643 	return (error);
2644 }
2645 
2646 int
2647 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2648 			u_long start, u_long count)
2649 {
2650 	int error;
2651 
2652 	error = EINVAL;
2653 	if (dev->parent) {
2654 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2655 					 start, count);
2656 	}
2657 	return (error);
2658 }
2659 
2660 void
2661 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2662 {
2663 	if (dev->parent)
2664 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2665 }
2666 
2667 int
2668 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2669     u_long *startp, u_long *countp)
2670 {
2671 	struct resource_list *rl = NULL;
2672 	struct resource_list_entry *rle = NULL;
2673 
2674 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2675 	if (!rl)
2676 		return(EINVAL);
2677 
2678 	rle = resource_list_find(rl, type, rid);
2679 	if (!rle)
2680 		return(ENOENT);
2681 
2682 	if (startp)
2683 		*startp = rle->start;
2684 	if (countp)
2685 		*countp = rle->count;
2686 
2687 	return(0);
2688 }
2689 
2690 int
2691 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2692     u_long start, u_long count)
2693 {
2694 	struct resource_list *rl = NULL;
2695 
2696 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2697 	if (!rl)
2698 		return(EINVAL);
2699 
2700 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2701 
2702 	return(0);
2703 }
2704 
2705 void
2706 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2707 {
2708 	struct resource_list *rl = NULL;
2709 
2710 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2711 	if (!rl)
2712 		return;
2713 
2714 	resource_list_delete(rl, type, rid);
2715 }
2716 
2717 int
2718 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2719     int rid, struct resource *r)
2720 {
2721 	struct resource_list *rl = NULL;
2722 
2723 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2724 	if (!rl)
2725 		return(EINVAL);
2726 
2727 	return(resource_list_release(rl, dev, child, type, rid, r));
2728 }
2729 
2730 struct resource *
2731 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2732     int *rid, u_long start, u_long end, u_long count, u_int flags)
2733 {
2734 	struct resource_list *rl = NULL;
2735 
2736 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2737 	if (!rl)
2738 		return(NULL);
2739 
2740 	return(resource_list_alloc(rl, dev, child, type, rid,
2741 	    start, end, count, flags));
2742 }
2743 
2744 int
2745 bus_generic_child_present(device_t bus, device_t child)
2746 {
2747 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2748 }
2749 
2750 
2751 /*
2752  * Some convenience functions to make it easier for drivers to use the
2753  * resource-management functions.  All these really do is hide the
2754  * indirection through the parent's method table, making for slightly
2755  * less-wordy code.  In the future, it might make sense for this code
2756  * to maintain some sort of a list of resources allocated by each device.
2757  */
2758 int
2759 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2760     struct resource **res)
2761 {
2762 	int i;
2763 
2764 	for (i = 0; rs[i].type != -1; i++)
2765 	        res[i] = NULL;
2766 	for (i = 0; rs[i].type != -1; i++) {
2767 		res[i] = bus_alloc_resource_any(dev,
2768 		    rs[i].type, &rs[i].rid, rs[i].flags);
2769 		if (res[i] == NULL) {
2770 			bus_release_resources(dev, rs, res);
2771 			return (ENXIO);
2772 		}
2773 	}
2774 	return (0);
2775 }
2776 
2777 void
2778 bus_release_resources(device_t dev, const struct resource_spec *rs,
2779     struct resource **res)
2780 {
2781 	int i;
2782 
2783 	for (i = 0; rs[i].type != -1; i++)
2784 		if (res[i] != NULL) {
2785 			bus_release_resource(
2786 			    dev, rs[i].type, rs[i].rid, res[i]);
2787 			res[i] = NULL;
2788 		}
2789 }
2790 
2791 struct resource *
2792 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2793 		   u_long count, u_int flags)
2794 {
2795 	if (dev->parent == 0)
2796 		return(0);
2797 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2798 				  count, flags));
2799 }
2800 
2801 int
2802 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2803 {
2804 	if (dev->parent == 0)
2805 		return(EINVAL);
2806 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2807 }
2808 
2809 int
2810 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2811 {
2812 	if (dev->parent == 0)
2813 		return(EINVAL);
2814 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2815 }
2816 
2817 int
2818 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2819 {
2820 	if (dev->parent == 0)
2821 		return(EINVAL);
2822 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2823 }
2824 
2825 int
2826 bus_setup_intr(device_t dev, struct resource *r, int flags,
2827 	       driver_intr_t handler, void *arg,
2828 	       void **cookiep, lwkt_serialize_t serializer)
2829 {
2830 	if (dev->parent == 0)
2831 		return(EINVAL);
2832 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2833 			      cookiep, serializer));
2834 }
2835 
2836 int
2837 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2838 {
2839 	if (dev->parent == 0)
2840 		return(EINVAL);
2841 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2842 }
2843 
2844 void
2845 bus_enable_intr(device_t dev, void *cookie)
2846 {
2847 	if (dev->parent)
2848 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2849 }
2850 
2851 int
2852 bus_disable_intr(device_t dev, void *cookie)
2853 {
2854 	if (dev->parent)
2855 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2856 	else
2857 		return(0);
2858 }
2859 
2860 int
2861 bus_set_resource(device_t dev, int type, int rid,
2862 		 u_long start, u_long count)
2863 {
2864 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2865 				start, count));
2866 }
2867 
2868 int
2869 bus_get_resource(device_t dev, int type, int rid,
2870 		 u_long *startp, u_long *countp)
2871 {
2872 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2873 				startp, countp));
2874 }
2875 
2876 u_long
2877 bus_get_resource_start(device_t dev, int type, int rid)
2878 {
2879 	u_long start, count;
2880 	int error;
2881 
2882 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2883 				 &start, &count);
2884 	if (error)
2885 		return(0);
2886 	return(start);
2887 }
2888 
2889 u_long
2890 bus_get_resource_count(device_t dev, int type, int rid)
2891 {
2892 	u_long start, count;
2893 	int error;
2894 
2895 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2896 				 &start, &count);
2897 	if (error)
2898 		return(0);
2899 	return(count);
2900 }
2901 
2902 void
2903 bus_delete_resource(device_t dev, int type, int rid)
2904 {
2905 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2906 }
2907 
2908 int
2909 bus_child_present(device_t child)
2910 {
2911 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2912 }
2913 
2914 int
2915 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2916 {
2917 	device_t parent;
2918 
2919 	parent = device_get_parent(child);
2920 	if (parent == NULL) {
2921 		*buf = '\0';
2922 		return (0);
2923 	}
2924 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2925 }
2926 
2927 int
2928 bus_child_location_str(device_t child, char *buf, size_t buflen)
2929 {
2930 	device_t parent;
2931 
2932 	parent = device_get_parent(child);
2933 	if (parent == NULL) {
2934 		*buf = '\0';
2935 		return (0);
2936 	}
2937 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2938 }
2939 
2940 static int
2941 root_print_child(device_t dev, device_t child)
2942 {
2943 	return(0);
2944 }
2945 
2946 static int
2947 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2948 		void **cookiep, lwkt_serialize_t serializer)
2949 {
2950 	/*
2951 	 * If an interrupt mapping gets to here something bad has happened.
2952 	 */
2953 	panic("root_setup_intr");
2954 }
2955 
2956 /*
2957  * If we get here, assume that the device is permanant and really is
2958  * present in the system.  Removable bus drivers are expected to intercept
2959  * this call long before it gets here.  We return -1 so that drivers that
2960  * really care can check vs -1 or some ERRNO returned higher in the food
2961  * chain.
2962  */
2963 static int
2964 root_child_present(device_t dev, device_t child)
2965 {
2966 	return(-1);
2967 }
2968 
2969 /*
2970  * XXX NOTE! other defaults may be set in bus_if.m
2971  */
2972 static kobj_method_t root_methods[] = {
2973 	/* Device interface */
2974 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2975 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2976 	KOBJMETHOD(device_resume,	bus_generic_resume),
2977 
2978 	/* Bus interface */
2979 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2980 	KOBJMETHOD(bus_print_child,	root_print_child),
2981 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2982 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2983 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2984 	KOBJMETHOD(bus_child_present,   root_child_present),
2985 
2986 	{ 0, 0 }
2987 };
2988 
2989 static driver_t root_driver = {
2990 	"root",
2991 	root_methods,
2992 	1,			/* no softc */
2993 };
2994 
2995 device_t	root_bus;
2996 devclass_t	root_devclass;
2997 
2998 static int
2999 root_bus_module_handler(module_t mod, int what, void* arg)
3000 {
3001 	switch (what) {
3002 	case MOD_LOAD:
3003 		TAILQ_INIT(&bus_data_devices);
3004 		root_bus = make_device(NULL, "root", 0);
3005 		root_bus->desc = "System root bus";
3006 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3007 		root_bus->driver = &root_driver;
3008 		root_bus->state = DS_ALIVE;
3009 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3010 		devinit();
3011 		return(0);
3012 
3013 	case MOD_SHUTDOWN:
3014 		device_shutdown(root_bus);
3015 		return(0);
3016 	default:
3017 		return(0);
3018 	}
3019 }
3020 
3021 static moduledata_t root_bus_mod = {
3022 	"rootbus",
3023 	root_bus_module_handler,
3024 	0
3025 };
3026 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3027 
3028 void
3029 root_bus_configure(void)
3030 {
3031 	int warncount;
3032 	device_t dev;
3033 
3034 	PDEBUG(("."));
3035 
3036 	/*
3037 	 * handle device_identify based device attachments to the root_bus
3038 	 * (typically nexus).
3039 	 */
3040 	bus_generic_probe(root_bus);
3041 
3042 	/*
3043 	 * Probe and attach the devices under root_bus.
3044 	 */
3045 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3046 		device_probe_and_attach(dev);
3047 	}
3048 
3049 	/*
3050 	 * Wait for all asynchronous attaches to complete.  If we don't
3051 	 * our legacy ISA bus scan could steal device unit numbers or
3052 	 * even I/O ports.
3053 	 */
3054 	warncount = 10;
3055 	if (numasyncthreads)
3056 		kprintf("Waiting for async drivers to attach\n");
3057 	while (numasyncthreads > 0) {
3058 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3059 			--warncount;
3060 		if (warncount == 0) {
3061 			kprintf("Warning: Still waiting for %d "
3062 				"drivers to attach\n", numasyncthreads);
3063 		} else if (warncount == -30) {
3064 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3065 			break;
3066 		}
3067 	}
3068 	root_bus->state = DS_ATTACHED;
3069 }
3070 
3071 int
3072 driver_module_handler(module_t mod, int what, void *arg)
3073 {
3074 	int error;
3075 	struct driver_module_data *dmd;
3076 	devclass_t bus_devclass;
3077 	kobj_class_t driver;
3078         const char *parentname;
3079 
3080 	dmd = (struct driver_module_data *)arg;
3081 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3082 	error = 0;
3083 
3084 	switch (what) {
3085 	case MOD_LOAD:
3086 		if (dmd->dmd_chainevh)
3087 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3088 
3089 		driver = dmd->dmd_driver;
3090 		PDEBUG(("Loading module: driver %s on bus %s",
3091 		        DRIVERNAME(driver), dmd->dmd_busname));
3092 
3093 		/*
3094 		 * If the driver has any base classes, make the
3095 		 * devclass inherit from the devclass of the driver's
3096 		 * first base class. This will allow the system to
3097 		 * search for drivers in both devclasses for children
3098 		 * of a device using this driver.
3099 		 */
3100 		if (driver->baseclasses)
3101 			parentname = driver->baseclasses[0]->name;
3102 		else
3103 			parentname = NULL;
3104 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3105 							    parentname, TRUE);
3106 
3107 		error = devclass_add_driver(bus_devclass, driver);
3108 		if (error)
3109 			break;
3110 		break;
3111 
3112 	case MOD_UNLOAD:
3113 		PDEBUG(("Unloading module: driver %s from bus %s",
3114 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3115 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3116 
3117 		if (!error && dmd->dmd_chainevh)
3118 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3119 		break;
3120 	}
3121 
3122 	return (error);
3123 }
3124 
3125 #ifdef BUS_DEBUG
3126 
3127 /*
3128  * The _short versions avoid iteration by not calling anything that prints
3129  * more than oneliners. I love oneliners.
3130  */
3131 
3132 static void
3133 print_device_short(device_t dev, int indent)
3134 {
3135 	if (!dev)
3136 		return;
3137 
3138 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3139 		      dev->unit, dev->desc,
3140 		      (dev->parent? "":"no "),
3141 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3142 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3143 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3144 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3145 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3146 		      (dev->ivars? "":"no "),
3147 		      (dev->softc? "":"no "),
3148 		      dev->busy));
3149 }
3150 
3151 static void
3152 print_device(device_t dev, int indent)
3153 {
3154 	if (!dev)
3155 		return;
3156 
3157 	print_device_short(dev, indent);
3158 
3159 	indentprintf(("Parent:\n"));
3160 	print_device_short(dev->parent, indent+1);
3161 	indentprintf(("Driver:\n"));
3162 	print_driver_short(dev->driver, indent+1);
3163 	indentprintf(("Devclass:\n"));
3164 	print_devclass_short(dev->devclass, indent+1);
3165 }
3166 
3167 /*
3168  * Print the device and all its children (indented).
3169  */
3170 void
3171 print_device_tree_short(device_t dev, int indent)
3172 {
3173 	device_t child;
3174 
3175 	if (!dev)
3176 		return;
3177 
3178 	print_device_short(dev, indent);
3179 
3180 	TAILQ_FOREACH(child, &dev->children, link)
3181 		print_device_tree_short(child, indent+1);
3182 }
3183 
3184 /*
3185  * Print the device and all its children (indented).
3186  */
3187 void
3188 print_device_tree(device_t dev, int indent)
3189 {
3190 	device_t child;
3191 
3192 	if (!dev)
3193 		return;
3194 
3195 	print_device(dev, indent);
3196 
3197 	TAILQ_FOREACH(child, &dev->children, link)
3198 		print_device_tree(child, indent+1);
3199 }
3200 
3201 static void
3202 print_driver_short(driver_t *driver, int indent)
3203 {
3204 	if (!driver)
3205 		return;
3206 
3207 	indentprintf(("driver %s: softc size = %zu\n",
3208 		      driver->name, driver->size));
3209 }
3210 
3211 static void
3212 print_driver(driver_t *driver, int indent)
3213 {
3214 	if (!driver)
3215 		return;
3216 
3217 	print_driver_short(driver, indent);
3218 }
3219 
3220 
3221 static void
3222 print_driver_list(driver_list_t drivers, int indent)
3223 {
3224 	driverlink_t driver;
3225 
3226 	TAILQ_FOREACH(driver, &drivers, link)
3227 		print_driver(driver->driver, indent);
3228 }
3229 
3230 static void
3231 print_devclass_short(devclass_t dc, int indent)
3232 {
3233 	if (!dc)
3234 		return;
3235 
3236 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3237 }
3238 
3239 static void
3240 print_devclass(devclass_t dc, int indent)
3241 {
3242 	int i;
3243 
3244 	if (!dc)
3245 		return;
3246 
3247 	print_devclass_short(dc, indent);
3248 	indentprintf(("Drivers:\n"));
3249 	print_driver_list(dc->drivers, indent+1);
3250 
3251 	indentprintf(("Devices:\n"));
3252 	for (i = 0; i < dc->maxunit; i++)
3253 		if (dc->devices[i])
3254 			print_device(dc->devices[i], indent+1);
3255 }
3256 
3257 void
3258 print_devclass_list_short(void)
3259 {
3260 	devclass_t dc;
3261 
3262 	kprintf("Short listing of devclasses, drivers & devices:\n");
3263 	TAILQ_FOREACH(dc, &devclasses, link) {
3264 		print_devclass_short(dc, 0);
3265 	}
3266 }
3267 
3268 void
3269 print_devclass_list(void)
3270 {
3271 	devclass_t dc;
3272 
3273 	kprintf("Full listing of devclasses, drivers & devices:\n");
3274 	TAILQ_FOREACH(dc, &devclasses, link) {
3275 		print_devclass(dc, 0);
3276 	}
3277 }
3278 
3279 #endif
3280 
3281 /*
3282  * Check to see if a device is disabled via a disabled hint.
3283  */
3284 int
3285 resource_disabled(const char *name, int unit)
3286 {
3287 	int error, value;
3288 
3289 	error = resource_int_value(name, unit, "disabled", &value);
3290 	if (error)
3291 	       return(0);
3292 	return(value);
3293 }
3294 
3295 /*
3296  * User-space access to the device tree.
3297  *
3298  * We implement a small set of nodes:
3299  *
3300  * hw.bus			Single integer read method to obtain the
3301  *				current generation count.
3302  * hw.bus.devices		Reads the entire device tree in flat space.
3303  * hw.bus.rman			Resource manager interface
3304  *
3305  * We might like to add the ability to scan devclasses and/or drivers to
3306  * determine what else is currently loaded/available.
3307  */
3308 
3309 static int
3310 sysctl_bus(SYSCTL_HANDLER_ARGS)
3311 {
3312 	struct u_businfo	ubus;
3313 
3314 	ubus.ub_version = BUS_USER_VERSION;
3315 	ubus.ub_generation = bus_data_generation;
3316 
3317 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3318 }
3319 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3320     "bus-related data");
3321 
3322 static int
3323 sysctl_devices(SYSCTL_HANDLER_ARGS)
3324 {
3325 	int			*name = (int *)arg1;
3326 	u_int			namelen = arg2;
3327 	int			index;
3328 	struct device		*dev;
3329 	struct u_device		udev;	/* XXX this is a bit big */
3330 	int			error;
3331 
3332 	if (namelen != 2)
3333 		return (EINVAL);
3334 
3335 	if (bus_data_generation_check(name[0]))
3336 		return (EINVAL);
3337 
3338 	index = name[1];
3339 
3340 	/*
3341 	 * Scan the list of devices, looking for the requested index.
3342 	 */
3343 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3344 		if (index-- == 0)
3345 			break;
3346 	}
3347 	if (dev == NULL)
3348 		return (ENOENT);
3349 
3350 	/*
3351 	 * Populate the return array.
3352 	 */
3353 	bzero(&udev, sizeof(udev));
3354 	udev.dv_handle = (uintptr_t)dev;
3355 	udev.dv_parent = (uintptr_t)dev->parent;
3356 	if (dev->nameunit != NULL)
3357 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3358 	if (dev->desc != NULL)
3359 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3360 	if (dev->driver != NULL && dev->driver->name != NULL)
3361 		strlcpy(udev.dv_drivername, dev->driver->name,
3362 		    sizeof(udev.dv_drivername));
3363 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3364 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3365 	udev.dv_devflags = dev->devflags;
3366 	udev.dv_flags = dev->flags;
3367 	udev.dv_state = dev->state;
3368 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3369 	return (error);
3370 }
3371 
3372 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3373     "system device tree");
3374 
3375 int
3376 bus_data_generation_check(int generation)
3377 {
3378 	if (generation != bus_data_generation)
3379 		return (1);
3380 
3381 	/* XXX generate optimised lists here? */
3382 	return (0);
3383 }
3384 
3385 void
3386 bus_data_generation_update(void)
3387 {
3388 	bus_data_generation++;
3389 }
3390