xref: /dflybsd-src/sys/kern/subr_bus.c (revision 56f51086aa3f6f77915d41cf7d311585f0086a49)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 #include <sys/vnode.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 #include <sys/thread2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
58 
59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
60 
61 #ifdef BUS_DEBUG
62 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
63 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
64 #define DRIVERNAME(d)	((d)? d->name : "no driver")
65 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
66 
67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
68  * prevent syslog from deleting initial spaces
69  */
70 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
71 
72 static void	print_device_short(device_t dev, int indent);
73 static void	print_device(device_t dev, int indent);
74 void		print_device_tree_short(device_t dev, int indent);
75 void		print_device_tree(device_t dev, int indent);
76 static void	print_driver_short(driver_t *driver, int indent);
77 static void	print_driver(driver_t *driver, int indent);
78 static void	print_driver_list(driver_list_t drivers, int indent);
79 static void	print_devclass_short(devclass_t dc, int indent);
80 static void	print_devclass(devclass_t dc, int indent);
81 void		print_devclass_list_short(void);
82 void		print_devclass_list(void);
83 
84 #else
85 /* Make the compiler ignore the function calls */
86 #define PDEBUG(a)			/* nop */
87 #define DEVICENAME(d)			/* nop */
88 #define DRIVERNAME(d)			/* nop */
89 #define DEVCLANAME(d)			/* nop */
90 
91 #define print_device_short(d,i)		/* nop */
92 #define print_device(d,i)		/* nop */
93 #define print_device_tree_short(d,i)	/* nop */
94 #define print_device_tree(d,i)		/* nop */
95 #define print_driver_short(d,i)		/* nop */
96 #define print_driver(d,i)		/* nop */
97 #define print_driver_list(d,i)		/* nop */
98 #define print_devclass_short(d,i)	/* nop */
99 #define print_devclass(d,i)		/* nop */
100 #define print_devclass_list_short()	/* nop */
101 #define print_devclass_list()		/* nop */
102 #endif
103 
104 /*
105  * dev sysctl tree
106  */
107 
108 enum {
109 	DEVCLASS_SYSCTL_PARENT,
110 };
111 
112 static int
113 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
114 {
115 	devclass_t dc = (devclass_t)arg1;
116 	const char *value;
117 
118 	switch (arg2) {
119 	case DEVCLASS_SYSCTL_PARENT:
120 		value = dc->parent ? dc->parent->name : "";
121 		break;
122 	default:
123 		return (EINVAL);
124 	}
125 	return (SYSCTL_OUT(req, value, strlen(value)));
126 }
127 
128 static void
129 devclass_sysctl_init(devclass_t dc)
130 {
131 
132 	if (dc->sysctl_tree != NULL)
133 		return;
134 	sysctl_ctx_init(&dc->sysctl_ctx);
135 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
136 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
137 	    CTLFLAG_RD, NULL, "");
138 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
139 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
140 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
141 	    "parent class");
142 }
143 
144 enum {
145 	DEVICE_SYSCTL_DESC,
146 	DEVICE_SYSCTL_DRIVER,
147 	DEVICE_SYSCTL_LOCATION,
148 	DEVICE_SYSCTL_PNPINFO,
149 	DEVICE_SYSCTL_PARENT,
150 };
151 
152 static int
153 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
154 {
155 	device_t dev = (device_t)arg1;
156 	const char *value;
157 	char *buf;
158 	int error;
159 
160 	buf = NULL;
161 	switch (arg2) {
162 	case DEVICE_SYSCTL_DESC:
163 		value = dev->desc ? dev->desc : "";
164 		break;
165 	case DEVICE_SYSCTL_DRIVER:
166 		value = dev->driver ? dev->driver->name : "";
167 		break;
168 	case DEVICE_SYSCTL_LOCATION:
169 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
170 		bus_child_location_str(dev, buf, 1024);
171 		break;
172 	case DEVICE_SYSCTL_PNPINFO:
173 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
174 		bus_child_pnpinfo_str(dev, buf, 1024);
175 		break;
176 	case DEVICE_SYSCTL_PARENT:
177 		value = dev->parent ? dev->parent->nameunit : "";
178 		break;
179 	default:
180 		return (EINVAL);
181 	}
182 	error = SYSCTL_OUT(req, value, strlen(value));
183 	if (buf != NULL)
184 		kfree(buf, M_BUS);
185 	return (error);
186 }
187 
188 static void
189 device_sysctl_init(device_t dev)
190 {
191 	devclass_t dc = dev->devclass;
192 
193 	if (dev->sysctl_tree != NULL)
194 		return;
195 	devclass_sysctl_init(dc);
196 	sysctl_ctx_init(&dev->sysctl_ctx);
197 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
198 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
199 	    dev->nameunit + strlen(dc->name),
200 	    CTLFLAG_RD, NULL, "");
201 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
202 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
203 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
204 	    "device description");
205 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
206 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
207 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
208 	    "device driver name");
209 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
210 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
211 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
212 	    "device location relative to parent");
213 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
214 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
215 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
216 	    "device identification");
217 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
218 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
219 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
220 	    "parent device");
221 }
222 
223 static void
224 device_sysctl_update(device_t dev)
225 {
226 	devclass_t dc = dev->devclass;
227 
228 	if (dev->sysctl_tree == NULL)
229 		return;
230 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
231 }
232 
233 static void
234 device_sysctl_fini(device_t dev)
235 {
236 	if (dev->sysctl_tree == NULL)
237 		return;
238 	sysctl_ctx_free(&dev->sysctl_ctx);
239 	dev->sysctl_tree = NULL;
240 }
241 
242 static void	device_attach_async(device_t dev);
243 static void	device_attach_thread(void *arg);
244 static int	device_doattach(device_t dev);
245 
246 static int do_async_attach = 0;
247 static int numasyncthreads;
248 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
249 
250 /*
251  * /dev/devctl implementation
252  */
253 
254 /*
255  * This design allows only one reader for /dev/devctl.  This is not desirable
256  * in the long run, but will get a lot of hair out of this implementation.
257  * Maybe we should make this device a clonable device.
258  *
259  * Also note: we specifically do not attach a device to the device_t tree
260  * to avoid potential chicken and egg problems.  One could argue that all
261  * of this belongs to the root node.  One could also further argue that the
262  * sysctl interface that we have not might more properly be an ioctl
263  * interface, but at this stage of the game, I'm not inclined to rock that
264  * boat.
265  *
266  * I'm also not sure that the SIGIO support is done correctly or not, as
267  * I copied it from a driver that had SIGIO support that likely hasn't been
268  * tested since 3.4 or 2.2.8!
269  */
270 
271 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
272 static int devctl_disable = 0;
273 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
274 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
275     sysctl_devctl_disable, "I", "devctl disable");
276 
277 static d_open_t		devopen;
278 static d_close_t	devclose;
279 static d_read_t		devread;
280 static d_ioctl_t	devioctl;
281 static d_kqfilter_t	devkqfilter;
282 
283 static struct dev_ops devctl_ops = {
284 	{ "devctl", 0, D_MPSAFE },
285 	.d_open =	devopen,
286 	.d_close =	devclose,
287 	.d_read =	devread,
288 	.d_ioctl =	devioctl,
289 	.d_kqfilter =	devkqfilter
290 };
291 
292 struct dev_event_info
293 {
294 	char *dei_data;
295 	TAILQ_ENTRY(dev_event_info) dei_link;
296 };
297 
298 TAILQ_HEAD(devq, dev_event_info);
299 
300 static struct dev_softc
301 {
302 	int	inuse;
303 	struct lock lock;
304 	struct kqinfo kq;
305 	struct devq devq;
306 	struct proc *async_proc;
307 } devsoftc;
308 
309 /*
310  * Chicken-and-egg problem with devfs, get the queue operational early.
311  */
312 static void
313 predevinit(void)
314 {
315 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
316 	TAILQ_INIT(&devsoftc.devq);
317 }
318 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
319 
320 static void
321 devinit(void)
322 {
323 	/*
324 	 * WARNING! make_dev() can call back into devctl_queue_data()
325 	 *	    immediately.
326 	 */
327 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
328 }
329 
330 static int
331 devopen(struct dev_open_args *ap)
332 {
333 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
334 	if (devsoftc.inuse) {
335 		lockmgr(&devsoftc.lock, LK_RELEASE);
336 		return (EBUSY);
337 	}
338 	/* move to init */
339 	devsoftc.inuse = 1;
340 	devsoftc.async_proc = NULL;
341 	lockmgr(&devsoftc.lock, LK_RELEASE);
342 
343 	return (0);
344 }
345 
346 static int
347 devclose(struct dev_close_args *ap)
348 {
349 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
350 	devsoftc.inuse = 0;
351 	wakeup(&devsoftc);
352 	lockmgr(&devsoftc.lock, LK_RELEASE);
353 
354 	return (0);
355 }
356 
357 /*
358  * The read channel for this device is used to report changes to
359  * userland in realtime.  We are required to free the data as well as
360  * the n1 object because we allocate them separately.  Also note that
361  * we return one record at a time.  If you try to read this device a
362  * character at a time, you will lose the rest of the data.  Listening
363  * programs are expected to cope.
364  */
365 static int
366 devread(struct dev_read_args *ap)
367 {
368 	struct uio *uio = ap->a_uio;
369 	struct dev_event_info *n1;
370 	int rv;
371 
372 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
373 	while (TAILQ_EMPTY(&devsoftc.devq)) {
374 		if (ap->a_ioflag & IO_NDELAY) {
375 			lockmgr(&devsoftc.lock, LK_RELEASE);
376 			return (EAGAIN);
377 		}
378 		tsleep_interlock(&devsoftc, PCATCH);
379 		lockmgr(&devsoftc.lock, LK_RELEASE);
380 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
381 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
382 		if (rv) {
383 			/*
384 			 * Need to translate ERESTART to EINTR here? -- jake
385 			 */
386 			lockmgr(&devsoftc.lock, LK_RELEASE);
387 			return (rv);
388 		}
389 	}
390 	n1 = TAILQ_FIRST(&devsoftc.devq);
391 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
392 	lockmgr(&devsoftc.lock, LK_RELEASE);
393 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
394 	kfree(n1->dei_data, M_BUS);
395 	kfree(n1, M_BUS);
396 	return (rv);
397 }
398 
399 static	int
400 devioctl(struct dev_ioctl_args *ap)
401 {
402 	switch (ap->a_cmd) {
403 
404 	case FIONBIO:
405 		return (0);
406 	case FIOASYNC:
407 		if (*(int*)ap->a_data)
408 			devsoftc.async_proc = curproc;
409 		else
410 			devsoftc.async_proc = NULL;
411 		return (0);
412 
413 		/* (un)Support for other fcntl() calls. */
414 	case FIOCLEX:
415 	case FIONCLEX:
416 	case FIONREAD:
417 	case FIOSETOWN:
418 	case FIOGETOWN:
419 	default:
420 		break;
421 	}
422 	return (ENOTTY);
423 }
424 
425 static void dev_filter_detach(struct knote *);
426 static int dev_filter_read(struct knote *, long);
427 
428 static struct filterops dev_filtops =
429 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
430 	  dev_filter_detach, dev_filter_read };
431 
432 static int
433 devkqfilter(struct dev_kqfilter_args *ap)
434 {
435 	struct knote *kn = ap->a_kn;
436 	struct klist *klist;
437 
438 	ap->a_result = 0;
439 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
440 
441 	switch (kn->kn_filter) {
442 	case EVFILT_READ:
443 		kn->kn_fop = &dev_filtops;
444 		break;
445 	default:
446 		ap->a_result = EOPNOTSUPP;
447 		lockmgr(&devsoftc.lock, LK_RELEASE);
448 		return (0);
449 	}
450 
451 	klist = &devsoftc.kq.ki_note;
452 	knote_insert(klist, kn);
453 
454 	lockmgr(&devsoftc.lock, LK_RELEASE);
455 
456 	return (0);
457 }
458 
459 static void
460 dev_filter_detach(struct knote *kn)
461 {
462 	struct klist *klist;
463 
464 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
465 	klist = &devsoftc.kq.ki_note;
466 	knote_remove(klist, kn);
467 	lockmgr(&devsoftc.lock, LK_RELEASE);
468 }
469 
470 static int
471 dev_filter_read(struct knote *kn, long hint)
472 {
473 	int ready = 0;
474 
475 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
476 	if (!TAILQ_EMPTY(&devsoftc.devq))
477 		ready = 1;
478 	lockmgr(&devsoftc.lock, LK_RELEASE);
479 
480 	return (ready);
481 }
482 
483 
484 /**
485  * @brief Return whether the userland process is running
486  */
487 boolean_t
488 devctl_process_running(void)
489 {
490 	return (devsoftc.inuse == 1);
491 }
492 
493 /**
494  * @brief Queue data to be read from the devctl device
495  *
496  * Generic interface to queue data to the devctl device.  It is
497  * assumed that @p data is properly formatted.  It is further assumed
498  * that @p data is allocated using the M_BUS malloc type.
499  */
500 void
501 devctl_queue_data(char *data)
502 {
503 	struct dev_event_info *n1 = NULL;
504 	struct proc *p;
505 
506 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
507 	if (n1 == NULL)
508 		return;
509 	n1->dei_data = data;
510 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
511 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
512 	wakeup(&devsoftc);
513 	lockmgr(&devsoftc.lock, LK_RELEASE);
514 	KNOTE(&devsoftc.kq.ki_note, 0);
515 	p = devsoftc.async_proc;
516 	if (p != NULL)
517 		ksignal(p, SIGIO);
518 }
519 
520 /**
521  * @brief Send a 'notification' to userland, using standard ways
522  */
523 void
524 devctl_notify(const char *system, const char *subsystem, const char *type,
525     const char *data)
526 {
527 	int len = 0;
528 	char *msg;
529 
530 	if (system == NULL)
531 		return;		/* BOGUS!  Must specify system. */
532 	if (subsystem == NULL)
533 		return;		/* BOGUS!  Must specify subsystem. */
534 	if (type == NULL)
535 		return;		/* BOGUS!  Must specify type. */
536 	len += strlen(" system=") + strlen(system);
537 	len += strlen(" subsystem=") + strlen(subsystem);
538 	len += strlen(" type=") + strlen(type);
539 	/* add in the data message plus newline. */
540 	if (data != NULL)
541 		len += strlen(data);
542 	len += 3;	/* '!', '\n', and NUL */
543 	msg = kmalloc(len, M_BUS, M_NOWAIT);
544 	if (msg == NULL)
545 		return;		/* Drop it on the floor */
546 	if (data != NULL)
547 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
548 		    system, subsystem, type, data);
549 	else
550 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
551 		    system, subsystem, type);
552 	devctl_queue_data(msg);
553 }
554 
555 /*
556  * Common routine that tries to make sending messages as easy as possible.
557  * We allocate memory for the data, copy strings into that, but do not
558  * free it unless there's an error.  The dequeue part of the driver should
559  * free the data.  We don't send data when the device is disabled.  We do
560  * send data, even when we have no listeners, because we wish to avoid
561  * races relating to startup and restart of listening applications.
562  *
563  * devaddq is designed to string together the type of event, with the
564  * object of that event, plus the plug and play info and location info
565  * for that event.  This is likely most useful for devices, but less
566  * useful for other consumers of this interface.  Those should use
567  * the devctl_queue_data() interface instead.
568  */
569 static void
570 devaddq(const char *type, const char *what, device_t dev)
571 {
572 	char *data = NULL;
573 	char *loc = NULL;
574 	char *pnp = NULL;
575 	const char *parstr;
576 
577 	if (devctl_disable)
578 		return;
579 	data = kmalloc(1024, M_BUS, M_NOWAIT);
580 	if (data == NULL)
581 		goto bad;
582 
583 	/* get the bus specific location of this device */
584 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
585 	if (loc == NULL)
586 		goto bad;
587 	*loc = '\0';
588 	bus_child_location_str(dev, loc, 1024);
589 
590 	/* Get the bus specific pnp info of this device */
591 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
592 	if (pnp == NULL)
593 		goto bad;
594 	*pnp = '\0';
595 	bus_child_pnpinfo_str(dev, pnp, 1024);
596 
597 	/* Get the parent of this device, or / if high enough in the tree. */
598 	if (device_get_parent(dev) == NULL)
599 		parstr = ".";	/* Or '/' ? */
600 	else
601 		parstr = device_get_nameunit(device_get_parent(dev));
602 	/* String it all together. */
603 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
604 	  parstr);
605 	kfree(loc, M_BUS);
606 	kfree(pnp, M_BUS);
607 	devctl_queue_data(data);
608 	return;
609 bad:
610 	kfree(pnp, M_BUS);
611 	kfree(loc, M_BUS);
612 	kfree(data, M_BUS);
613 	return;
614 }
615 
616 /*
617  * A device was added to the tree.  We are called just after it successfully
618  * attaches (that is, probe and attach success for this device).  No call
619  * is made if a device is merely parented into the tree.  See devnomatch
620  * if probe fails.  If attach fails, no notification is sent (but maybe
621  * we should have a different message for this).
622  */
623 static void
624 devadded(device_t dev)
625 {
626 	char *pnp = NULL;
627 	char *tmp = NULL;
628 
629 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
630 	if (pnp == NULL)
631 		goto fail;
632 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
633 	if (tmp == NULL)
634 		goto fail;
635 	*pnp = '\0';
636 	bus_child_pnpinfo_str(dev, pnp, 1024);
637 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
638 	devaddq("+", tmp, dev);
639 fail:
640 	if (pnp != NULL)
641 		kfree(pnp, M_BUS);
642 	if (tmp != NULL)
643 		kfree(tmp, M_BUS);
644 	return;
645 }
646 
647 /*
648  * A device was removed from the tree.  We are called just before this
649  * happens.
650  */
651 static void
652 devremoved(device_t dev)
653 {
654 	char *pnp = NULL;
655 	char *tmp = NULL;
656 
657 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
658 	if (pnp == NULL)
659 		goto fail;
660 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
661 	if (tmp == NULL)
662 		goto fail;
663 	*pnp = '\0';
664 	bus_child_pnpinfo_str(dev, pnp, 1024);
665 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
666 	devaddq("-", tmp, dev);
667 fail:
668 	if (pnp != NULL)
669 		kfree(pnp, M_BUS);
670 	if (tmp != NULL)
671 		kfree(tmp, M_BUS);
672 	return;
673 }
674 
675 /*
676  * Called when there's no match for this device.  This is only called
677  * the first time that no match happens, so we don't keep getitng this
678  * message.  Should that prove to be undesirable, we can change it.
679  * This is called when all drivers that can attach to a given bus
680  * decline to accept this device.  Other errrors may not be detected.
681  */
682 static void
683 devnomatch(device_t dev)
684 {
685 	devaddq("?", "", dev);
686 }
687 
688 static int
689 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
690 {
691 	struct dev_event_info *n1;
692 	int dis, error;
693 
694 	dis = devctl_disable;
695 	error = sysctl_handle_int(oidp, &dis, 0, req);
696 	if (error || !req->newptr)
697 		return (error);
698 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
699 	devctl_disable = dis;
700 	if (dis) {
701 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
702 			n1 = TAILQ_FIRST(&devsoftc.devq);
703 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
704 			kfree(n1->dei_data, M_BUS);
705 			kfree(n1, M_BUS);
706 		}
707 	}
708 	lockmgr(&devsoftc.lock, LK_RELEASE);
709 	return (0);
710 }
711 
712 /* End of /dev/devctl code */
713 
714 TAILQ_HEAD(,bsd_device)	bus_data_devices;
715 static int bus_data_generation = 1;
716 
717 kobj_method_t null_methods[] = {
718 	{ 0, 0 }
719 };
720 
721 DEFINE_CLASS(null, null_methods, 0);
722 
723 /*
724  * Devclass implementation
725  */
726 
727 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
728 
729 static devclass_t
730 devclass_find_internal(const char *classname, const char *parentname,
731 		       int create)
732 {
733 	devclass_t dc;
734 
735 	PDEBUG(("looking for %s", classname));
736 	if (classname == NULL)
737 		return(NULL);
738 
739 	TAILQ_FOREACH(dc, &devclasses, link)
740 		if (!strcmp(dc->name, classname))
741 			break;
742 
743 	if (create && !dc) {
744 		PDEBUG(("creating %s", classname));
745 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
746 			    M_BUS, M_INTWAIT | M_ZERO);
747 		dc->parent = NULL;
748 		dc->name = (char*) (dc + 1);
749 		strcpy(dc->name, classname);
750 		dc->devices = NULL;
751 		dc->maxunit = 0;
752 		TAILQ_INIT(&dc->drivers);
753 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
754 
755 		bus_data_generation_update();
756 
757 	}
758 
759 	/*
760 	 * If a parent class is specified, then set that as our parent so
761 	 * that this devclass will support drivers for the parent class as
762 	 * well.  If the parent class has the same name don't do this though
763 	 * as it creates a cycle that can trigger an infinite loop in
764 	 * device_probe_child() if a device exists for which there is no
765 	 * suitable driver.
766 	 */
767 	if (parentname && dc && !dc->parent &&
768 	    strcmp(classname, parentname) != 0)
769 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
770 
771 	return(dc);
772 }
773 
774 devclass_t
775 devclass_create(const char *classname)
776 {
777 	return(devclass_find_internal(classname, NULL, TRUE));
778 }
779 
780 devclass_t
781 devclass_find(const char *classname)
782 {
783 	return(devclass_find_internal(classname, NULL, FALSE));
784 }
785 
786 device_t
787 devclass_find_unit(const char *classname, int unit)
788 {
789 	devclass_t dc;
790 
791 	if ((dc = devclass_find(classname)) != NULL)
792 	    return(devclass_get_device(dc, unit));
793 	return (NULL);
794 }
795 
796 int
797 devclass_add_driver(devclass_t dc, driver_t *driver)
798 {
799 	driverlink_t dl;
800 	device_t dev;
801 	int i;
802 
803 	PDEBUG(("%s", DRIVERNAME(driver)));
804 
805 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
806 
807 	/*
808 	 * Compile the driver's methods. Also increase the reference count
809 	 * so that the class doesn't get freed when the last instance
810 	 * goes. This means we can safely use static methods and avoids a
811 	 * double-free in devclass_delete_driver.
812 	 */
813 	kobj_class_instantiate(driver);
814 
815 	/*
816 	 * Make sure the devclass which the driver is implementing exists.
817 	 */
818 	devclass_find_internal(driver->name, NULL, TRUE);
819 
820 	dl->driver = driver;
821 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
822 
823 	/*
824 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
825 	 * but only if the bus has already been attached (otherwise we
826 	 * might probe too early).
827 	 *
828 	 * This is what will cause a newly loaded module to be associated
829 	 * with hardware.  bus_generic_driver_added() is typically what ends
830 	 * up being called.
831 	 */
832 	for (i = 0; i < dc->maxunit; i++) {
833 		if ((dev = dc->devices[i]) != NULL) {
834 			if (dev->state >= DS_ATTACHED)
835 				BUS_DRIVER_ADDED(dev, driver);
836 		}
837 	}
838 
839 	bus_data_generation_update();
840 	return(0);
841 }
842 
843 int
844 devclass_delete_driver(devclass_t busclass, driver_t *driver)
845 {
846 	devclass_t dc = devclass_find(driver->name);
847 	driverlink_t dl;
848 	device_t dev;
849 	int i;
850 	int error;
851 
852 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
853 
854 	if (!dc)
855 		return(0);
856 
857 	/*
858 	 * Find the link structure in the bus' list of drivers.
859 	 */
860 	TAILQ_FOREACH(dl, &busclass->drivers, link)
861 		if (dl->driver == driver)
862 			break;
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
866 		return(ENOENT);
867 	}
868 
869 	/*
870 	 * Disassociate from any devices.  We iterate through all the
871 	 * devices in the devclass of the driver and detach any which are
872 	 * using the driver and which have a parent in the devclass which
873 	 * we are deleting from.
874 	 *
875 	 * Note that since a driver can be in multiple devclasses, we
876 	 * should not detach devices which are not children of devices in
877 	 * the affected devclass.
878 	 */
879 	for (i = 0; i < dc->maxunit; i++)
880 		if (dc->devices[i]) {
881 			dev = dc->devices[i];
882 			if (dev->driver == driver && dev->parent &&
883 			    dev->parent->devclass == busclass) {
884 				if ((error = device_detach(dev)) != 0)
885 					return(error);
886 				device_set_driver(dev, NULL);
887 		    	}
888 		}
889 
890 	TAILQ_REMOVE(&busclass->drivers, dl, link);
891 	kfree(dl, M_BUS);
892 
893 	kobj_class_uninstantiate(driver);
894 
895 	bus_data_generation_update();
896 	return(0);
897 }
898 
899 static driverlink_t
900 devclass_find_driver_internal(devclass_t dc, const char *classname)
901 {
902 	driverlink_t dl;
903 
904 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
905 
906 	TAILQ_FOREACH(dl, &dc->drivers, link)
907 		if (!strcmp(dl->driver->name, classname))
908 			return(dl);
909 
910 	PDEBUG(("not found"));
911 	return(NULL);
912 }
913 
914 kobj_class_t
915 devclass_find_driver(devclass_t dc, const char *classname)
916 {
917 	driverlink_t dl;
918 
919 	dl = devclass_find_driver_internal(dc, classname);
920 	if (dl)
921 		return(dl->driver);
922 	else
923 		return(NULL);
924 }
925 
926 const char *
927 devclass_get_name(devclass_t dc)
928 {
929 	return(dc->name);
930 }
931 
932 device_t
933 devclass_get_device(devclass_t dc, int unit)
934 {
935 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
936 		return(NULL);
937 	return(dc->devices[unit]);
938 }
939 
940 void *
941 devclass_get_softc(devclass_t dc, int unit)
942 {
943 	device_t dev;
944 
945 	dev = devclass_get_device(dc, unit);
946 	if (!dev)
947 		return(NULL);
948 
949 	return(device_get_softc(dev));
950 }
951 
952 int
953 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
954 {
955 	int i;
956 	int count;
957 	device_t *list;
958 
959 	count = 0;
960 	for (i = 0; i < dc->maxunit; i++)
961 		if (dc->devices[i])
962 			count++;
963 
964 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
965 
966 	count = 0;
967 	for (i = 0; i < dc->maxunit; i++)
968 		if (dc->devices[i]) {
969 			list[count] = dc->devices[i];
970 			count++;
971 		}
972 
973 	*devlistp = list;
974 	*devcountp = count;
975 
976 	return(0);
977 }
978 
979 /**
980  * @brief Get a list of drivers in the devclass
981  *
982  * An array containing a list of pointers to all the drivers in the
983  * given devclass is allocated and returned in @p *listp.  The number
984  * of drivers in the array is returned in @p *countp. The caller should
985  * free the array using @c free(p, M_TEMP).
986  *
987  * @param dc            the devclass to examine
988  * @param listp         gives location for array pointer return value
989  * @param countp        gives location for number of array elements
990  *                      return value
991  *
992  * @retval 0            success
993  * @retval ENOMEM       the array allocation failed
994  */
995 int
996 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
997 {
998         driverlink_t dl;
999         driver_t **list;
1000         int count;
1001 
1002         count = 0;
1003         TAILQ_FOREACH(dl, &dc->drivers, link)
1004                 count++;
1005         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1006         if (list == NULL)
1007                 return (ENOMEM);
1008 
1009         count = 0;
1010         TAILQ_FOREACH(dl, &dc->drivers, link) {
1011                 list[count] = dl->driver;
1012                 count++;
1013         }
1014         *listp = list;
1015         *countp = count;
1016 
1017         return (0);
1018 }
1019 
1020 /**
1021  * @brief Get the number of devices in a devclass
1022  *
1023  * @param dc		the devclass to examine
1024  */
1025 int
1026 devclass_get_count(devclass_t dc)
1027 {
1028 	int count, i;
1029 
1030 	count = 0;
1031 	for (i = 0; i < dc->maxunit; i++)
1032 		if (dc->devices[i])
1033 			count++;
1034 	return (count);
1035 }
1036 
1037 int
1038 devclass_get_maxunit(devclass_t dc)
1039 {
1040 	return(dc->maxunit);
1041 }
1042 
1043 void
1044 devclass_set_parent(devclass_t dc, devclass_t pdc)
1045 {
1046         dc->parent = pdc;
1047 }
1048 
1049 devclass_t
1050 devclass_get_parent(devclass_t dc)
1051 {
1052 	return(dc->parent);
1053 }
1054 
1055 static int
1056 devclass_alloc_unit(devclass_t dc, int *unitp)
1057 {
1058 	int unit = *unitp;
1059 
1060 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1061 
1062 	/* If we have been given a wired unit number, check for existing device */
1063 	if (unit != -1) {
1064 		if (unit >= 0 && unit < dc->maxunit &&
1065 		    dc->devices[unit] != NULL) {
1066 			if (bootverbose)
1067 				kprintf("%s-: %s%d exists, using next available unit number\n",
1068 				       dc->name, dc->name, unit);
1069 			/* find the next available slot */
1070 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1071 				;
1072 		}
1073 	} else {
1074 		/* Unwired device, find the next available slot for it */
1075 		unit = 0;
1076 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1077 			unit++;
1078 	}
1079 
1080 	/*
1081 	 * We've selected a unit beyond the length of the table, so let's
1082 	 * extend the table to make room for all units up to and including
1083 	 * this one.
1084 	 */
1085 	if (unit >= dc->maxunit) {
1086 		device_t *newlist;
1087 		int newsize;
1088 
1089 		newsize = (unit + 1);
1090 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1091 				 M_INTWAIT | M_ZERO);
1092 		if (newlist == NULL)
1093 			return(ENOMEM);
1094 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1095 		if (dc->devices)
1096 			kfree(dc->devices, M_BUS);
1097 		dc->devices = newlist;
1098 		dc->maxunit = newsize;
1099 	}
1100 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1101 
1102 	*unitp = unit;
1103 	return(0);
1104 }
1105 
1106 static int
1107 devclass_add_device(devclass_t dc, device_t dev)
1108 {
1109 	int buflen, error;
1110 
1111 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1112 
1113 	buflen = strlen(dc->name) + 5;
1114 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1115 	if (dev->nameunit == NULL)
1116 		return(ENOMEM);
1117 
1118 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1119 		kfree(dev->nameunit, M_BUS);
1120 		dev->nameunit = NULL;
1121 		return(error);
1122 	}
1123 	dc->devices[dev->unit] = dev;
1124 	dev->devclass = dc;
1125 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1126 
1127 	return(0);
1128 }
1129 
1130 static int
1131 devclass_delete_device(devclass_t dc, device_t dev)
1132 {
1133 	if (!dc || !dev)
1134 		return(0);
1135 
1136 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1137 
1138 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1139 		panic("devclass_delete_device: inconsistent device class");
1140 	dc->devices[dev->unit] = NULL;
1141 	if (dev->flags & DF_WILDCARD)
1142 		dev->unit = -1;
1143 	dev->devclass = NULL;
1144 	kfree(dev->nameunit, M_BUS);
1145 	dev->nameunit = NULL;
1146 
1147 	return(0);
1148 }
1149 
1150 static device_t
1151 make_device(device_t parent, const char *name, int unit)
1152 {
1153 	device_t dev;
1154 	devclass_t dc;
1155 
1156 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1157 
1158 	if (name != NULL) {
1159 		dc = devclass_find_internal(name, NULL, TRUE);
1160 		if (!dc) {
1161 			kprintf("make_device: can't find device class %s\n", name);
1162 			return(NULL);
1163 		}
1164 	} else
1165 		dc = NULL;
1166 
1167 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1168 	if (!dev)
1169 		return(0);
1170 
1171 	dev->parent = parent;
1172 	TAILQ_INIT(&dev->children);
1173 	kobj_init((kobj_t) dev, &null_class);
1174 	dev->driver = NULL;
1175 	dev->devclass = NULL;
1176 	dev->unit = unit;
1177 	dev->nameunit = NULL;
1178 	dev->desc = NULL;
1179 	dev->busy = 0;
1180 	dev->devflags = 0;
1181 	dev->flags = DF_ENABLED;
1182 	dev->order = 0;
1183 	if (unit == -1)
1184 		dev->flags |= DF_WILDCARD;
1185 	if (name) {
1186 		dev->flags |= DF_FIXEDCLASS;
1187 		if (devclass_add_device(dc, dev) != 0) {
1188 			kobj_delete((kobj_t)dev, M_BUS);
1189 			return(NULL);
1190 		}
1191     	}
1192 	dev->ivars = NULL;
1193 	dev->softc = NULL;
1194 
1195 	dev->state = DS_NOTPRESENT;
1196 
1197 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1198 	bus_data_generation_update();
1199 
1200 	return(dev);
1201 }
1202 
1203 static int
1204 device_print_child(device_t dev, device_t child)
1205 {
1206 	int retval = 0;
1207 
1208 	if (device_is_alive(child))
1209 		retval += BUS_PRINT_CHILD(dev, child);
1210 	else
1211 		retval += device_printf(child, " not found\n");
1212 
1213 	return(retval);
1214 }
1215 
1216 device_t
1217 device_add_child(device_t dev, const char *name, int unit)
1218 {
1219 	return device_add_child_ordered(dev, 0, name, unit);
1220 }
1221 
1222 device_t
1223 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1224 {
1225 	device_t child;
1226 	device_t place;
1227 
1228 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1229 		order, unit));
1230 
1231 	child = make_device(dev, name, unit);
1232 	if (child == NULL)
1233 		return child;
1234 	child->order = order;
1235 
1236 	TAILQ_FOREACH(place, &dev->children, link)
1237 		if (place->order > order)
1238 			break;
1239 
1240 	if (place) {
1241 		/*
1242 		 * The device 'place' is the first device whose order is
1243 		 * greater than the new child.
1244 		 */
1245 		TAILQ_INSERT_BEFORE(place, child, link);
1246 	} else {
1247 		/*
1248 		 * The new child's order is greater or equal to the order of
1249 		 * any existing device. Add the child to the tail of the list.
1250 		 */
1251 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1252     	}
1253 
1254 	bus_data_generation_update();
1255 	return(child);
1256 }
1257 
1258 int
1259 device_delete_child(device_t dev, device_t child)
1260 {
1261 	int error;
1262 	device_t grandchild;
1263 
1264 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1265 
1266 	/* remove children first */
1267 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1268         	error = device_delete_child(child, grandchild);
1269 		if (error)
1270 			return(error);
1271 	}
1272 
1273 	if ((error = device_detach(child)) != 0)
1274 		return(error);
1275 	if (child->devclass)
1276 		devclass_delete_device(child->devclass, child);
1277 	TAILQ_REMOVE(&dev->children, child, link);
1278 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1279 	kobj_delete((kobj_t)child, M_BUS);
1280 
1281 	bus_data_generation_update();
1282 	return(0);
1283 }
1284 
1285 /**
1286  * @brief Delete all children devices of the given device, if any.
1287  *
1288  * This function deletes all children devices of the given device, if
1289  * any, using the device_delete_child() function for each device it
1290  * finds. If a child device cannot be deleted, this function will
1291  * return an error code.
1292  *
1293  * @param dev		the parent device
1294  *
1295  * @retval 0		success
1296  * @retval non-zero	a device would not detach
1297  */
1298 int
1299 device_delete_children(device_t dev)
1300 {
1301 	device_t child;
1302 	int error;
1303 
1304 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1305 
1306 	error = 0;
1307 
1308 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1309 		error = device_delete_child(dev, child);
1310 		if (error) {
1311 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1312 			break;
1313 		}
1314 	}
1315 	return (error);
1316 }
1317 
1318 /**
1319  * @brief Find a device given a unit number
1320  *
1321  * This is similar to devclass_get_devices() but only searches for
1322  * devices which have @p dev as a parent.
1323  *
1324  * @param dev		the parent device to search
1325  * @param unit		the unit number to search for.  If the unit is -1,
1326  *			return the first child of @p dev which has name
1327  *			@p classname (that is, the one with the lowest unit.)
1328  *
1329  * @returns		the device with the given unit number or @c
1330  *			NULL if there is no such device
1331  */
1332 device_t
1333 device_find_child(device_t dev, const char *classname, int unit)
1334 {
1335 	devclass_t dc;
1336 	device_t child;
1337 
1338 	dc = devclass_find(classname);
1339 	if (!dc)
1340 		return(NULL);
1341 
1342 	if (unit != -1) {
1343 		child = devclass_get_device(dc, unit);
1344 		if (child && child->parent == dev)
1345 			return (child);
1346 	} else {
1347 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1348 			child = devclass_get_device(dc, unit);
1349 			if (child && child->parent == dev)
1350 				return (child);
1351 		}
1352 	}
1353 	return(NULL);
1354 }
1355 
1356 static driverlink_t
1357 first_matching_driver(devclass_t dc, device_t dev)
1358 {
1359 	if (dev->devclass)
1360 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1361 	else
1362 		return(TAILQ_FIRST(&dc->drivers));
1363 }
1364 
1365 static driverlink_t
1366 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1367 {
1368 	if (dev->devclass) {
1369 		driverlink_t dl;
1370 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1371 			if (!strcmp(dev->devclass->name, dl->driver->name))
1372 				return(dl);
1373 		return(NULL);
1374 	} else
1375 		return(TAILQ_NEXT(last, link));
1376 }
1377 
1378 int
1379 device_probe_child(device_t dev, device_t child)
1380 {
1381 	devclass_t dc;
1382 	driverlink_t best = NULL;
1383 	driverlink_t dl;
1384 	int result, pri = 0;
1385 	int hasclass = (child->devclass != NULL);
1386 
1387 	dc = dev->devclass;
1388 	if (!dc)
1389 		panic("device_probe_child: parent device has no devclass");
1390 
1391 	if (child->state == DS_ALIVE)
1392 		return(0);
1393 
1394 	for (; dc; dc = dc->parent) {
1395     		for (dl = first_matching_driver(dc, child); dl;
1396 		     dl = next_matching_driver(dc, child, dl)) {
1397 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1398 			device_set_driver(child, dl->driver);
1399 			if (!hasclass)
1400 				device_set_devclass(child, dl->driver->name);
1401 			result = DEVICE_PROBE(child);
1402 			if (!hasclass)
1403 				device_set_devclass(child, 0);
1404 
1405 			/*
1406 			 * If the driver returns SUCCESS, there can be
1407 			 * no higher match for this device.
1408 			 */
1409 			if (result == 0) {
1410 				best = dl;
1411 				pri = 0;
1412 				break;
1413 			}
1414 
1415 			/*
1416 			 * The driver returned an error so it
1417 			 * certainly doesn't match.
1418 			 */
1419 			if (result > 0) {
1420 				device_set_driver(child, NULL);
1421 				continue;
1422 			}
1423 
1424 			/*
1425 			 * A priority lower than SUCCESS, remember the
1426 			 * best matching driver. Initialise the value
1427 			 * of pri for the first match.
1428 			 */
1429 			if (best == NULL || result > pri) {
1430 				best = dl;
1431 				pri = result;
1432 				continue;
1433 			}
1434 	        }
1435 		/*
1436 	         * If we have unambiguous match in this devclass,
1437 	         * don't look in the parent.
1438 	         */
1439 	        if (best && pri == 0)
1440 	    	        break;
1441 	}
1442 
1443 	/*
1444 	 * If we found a driver, change state and initialise the devclass.
1445 	 */
1446 	if (best) {
1447 		if (!child->devclass)
1448 			device_set_devclass(child, best->driver->name);
1449 		device_set_driver(child, best->driver);
1450 		if (pri < 0) {
1451 			/*
1452 			 * A bit bogus. Call the probe method again to make
1453 			 * sure that we have the right description.
1454 			 */
1455 			DEVICE_PROBE(child);
1456 		}
1457 
1458 		bus_data_generation_update();
1459 		child->state = DS_ALIVE;
1460 		return(0);
1461 	}
1462 
1463 	return(ENXIO);
1464 }
1465 
1466 device_t
1467 device_get_parent(device_t dev)
1468 {
1469 	return dev->parent;
1470 }
1471 
1472 int
1473 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1474 {
1475 	int count;
1476 	device_t child;
1477 	device_t *list;
1478 
1479 	count = 0;
1480 	TAILQ_FOREACH(child, &dev->children, link)
1481 		count++;
1482 
1483 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1484 
1485 	count = 0;
1486 	TAILQ_FOREACH(child, &dev->children, link) {
1487 		list[count] = child;
1488 		count++;
1489 	}
1490 
1491 	*devlistp = list;
1492 	*devcountp = count;
1493 
1494 	return(0);
1495 }
1496 
1497 driver_t *
1498 device_get_driver(device_t dev)
1499 {
1500 	return(dev->driver);
1501 }
1502 
1503 devclass_t
1504 device_get_devclass(device_t dev)
1505 {
1506 	return(dev->devclass);
1507 }
1508 
1509 const char *
1510 device_get_name(device_t dev)
1511 {
1512 	if (dev->devclass)
1513 		return devclass_get_name(dev->devclass);
1514 	return(NULL);
1515 }
1516 
1517 const char *
1518 device_get_nameunit(device_t dev)
1519 {
1520 	return(dev->nameunit);
1521 }
1522 
1523 int
1524 device_get_unit(device_t dev)
1525 {
1526 	return(dev->unit);
1527 }
1528 
1529 const char *
1530 device_get_desc(device_t dev)
1531 {
1532 	return(dev->desc);
1533 }
1534 
1535 uint32_t
1536 device_get_flags(device_t dev)
1537 {
1538 	return(dev->devflags);
1539 }
1540 
1541 struct sysctl_ctx_list *
1542 device_get_sysctl_ctx(device_t dev)
1543 {
1544 	return (&dev->sysctl_ctx);
1545 }
1546 
1547 struct sysctl_oid *
1548 device_get_sysctl_tree(device_t dev)
1549 {
1550 	return (dev->sysctl_tree);
1551 }
1552 
1553 int
1554 device_print_prettyname(device_t dev)
1555 {
1556 	const char *name = device_get_name(dev);
1557 
1558 	if (name == NULL)
1559 		return kprintf("unknown: ");
1560 	else
1561 		return kprintf("%s%d: ", name, device_get_unit(dev));
1562 }
1563 
1564 int
1565 device_printf(device_t dev, const char * fmt, ...)
1566 {
1567 	__va_list ap;
1568 	int retval;
1569 
1570 	retval = device_print_prettyname(dev);
1571 	__va_start(ap, fmt);
1572 	retval += kvprintf(fmt, ap);
1573 	__va_end(ap);
1574 	return retval;
1575 }
1576 
1577 static void
1578 device_set_desc_internal(device_t dev, const char* desc, int copy)
1579 {
1580 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1581 		kfree(dev->desc, M_BUS);
1582 		dev->flags &= ~DF_DESCMALLOCED;
1583 		dev->desc = NULL;
1584 	}
1585 
1586 	if (copy && desc) {
1587 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1588 		if (dev->desc) {
1589 			strcpy(dev->desc, desc);
1590 			dev->flags |= DF_DESCMALLOCED;
1591 		}
1592 	} else {
1593 		/* Avoid a -Wcast-qual warning */
1594 		dev->desc = (char *)(uintptr_t) desc;
1595 	}
1596 
1597 	bus_data_generation_update();
1598 }
1599 
1600 void
1601 device_set_desc(device_t dev, const char* desc)
1602 {
1603 	device_set_desc_internal(dev, desc, FALSE);
1604 }
1605 
1606 void
1607 device_set_desc_copy(device_t dev, const char* desc)
1608 {
1609 	device_set_desc_internal(dev, desc, TRUE);
1610 }
1611 
1612 void
1613 device_set_flags(device_t dev, uint32_t flags)
1614 {
1615 	dev->devflags = flags;
1616 }
1617 
1618 void *
1619 device_get_softc(device_t dev)
1620 {
1621 	return dev->softc;
1622 }
1623 
1624 void
1625 device_set_softc(device_t dev, void *softc)
1626 {
1627 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1628 		kfree(dev->softc, M_BUS);
1629 	dev->softc = softc;
1630 	if (dev->softc)
1631 		dev->flags |= DF_EXTERNALSOFTC;
1632 	else
1633 		dev->flags &= ~DF_EXTERNALSOFTC;
1634 }
1635 
1636 void
1637 device_set_async_attach(device_t dev, int enable)
1638 {
1639 	if (enable)
1640 		dev->flags |= DF_ASYNCPROBE;
1641 	else
1642 		dev->flags &= ~DF_ASYNCPROBE;
1643 }
1644 
1645 void *
1646 device_get_ivars(device_t dev)
1647 {
1648 	return dev->ivars;
1649 }
1650 
1651 void
1652 device_set_ivars(device_t dev, void * ivars)
1653 {
1654 	if (!dev)
1655 		return;
1656 
1657 	dev->ivars = ivars;
1658 }
1659 
1660 device_state_t
1661 device_get_state(device_t dev)
1662 {
1663 	return(dev->state);
1664 }
1665 
1666 void
1667 device_enable(device_t dev)
1668 {
1669 	dev->flags |= DF_ENABLED;
1670 }
1671 
1672 void
1673 device_disable(device_t dev)
1674 {
1675 	dev->flags &= ~DF_ENABLED;
1676 }
1677 
1678 /*
1679  * YYY cannot block
1680  */
1681 void
1682 device_busy(device_t dev)
1683 {
1684 	if (dev->state < DS_ATTACHED)
1685 		panic("device_busy: called for unattached device");
1686 	if (dev->busy == 0 && dev->parent)
1687 		device_busy(dev->parent);
1688 	dev->busy++;
1689 	dev->state = DS_BUSY;
1690 }
1691 
1692 /*
1693  * YYY cannot block
1694  */
1695 void
1696 device_unbusy(device_t dev)
1697 {
1698 	if (dev->state != DS_BUSY)
1699 		panic("device_unbusy: called for non-busy device");
1700 	dev->busy--;
1701 	if (dev->busy == 0) {
1702 		if (dev->parent)
1703 			device_unbusy(dev->parent);
1704 		dev->state = DS_ATTACHED;
1705 	}
1706 }
1707 
1708 void
1709 device_quiet(device_t dev)
1710 {
1711 	dev->flags |= DF_QUIET;
1712 }
1713 
1714 void
1715 device_verbose(device_t dev)
1716 {
1717 	dev->flags &= ~DF_QUIET;
1718 }
1719 
1720 int
1721 device_is_quiet(device_t dev)
1722 {
1723 	return((dev->flags & DF_QUIET) != 0);
1724 }
1725 
1726 int
1727 device_is_enabled(device_t dev)
1728 {
1729 	return((dev->flags & DF_ENABLED) != 0);
1730 }
1731 
1732 int
1733 device_is_alive(device_t dev)
1734 {
1735 	return(dev->state >= DS_ALIVE);
1736 }
1737 
1738 int
1739 device_is_attached(device_t dev)
1740 {
1741 	return(dev->state >= DS_ATTACHED);
1742 }
1743 
1744 int
1745 device_set_devclass(device_t dev, const char *classname)
1746 {
1747 	devclass_t dc;
1748 	int error;
1749 
1750 	if (!classname) {
1751 		if (dev->devclass)
1752 			devclass_delete_device(dev->devclass, dev);
1753 		return(0);
1754 	}
1755 
1756 	if (dev->devclass) {
1757 		kprintf("device_set_devclass: device class already set\n");
1758 		return(EINVAL);
1759 	}
1760 
1761 	dc = devclass_find_internal(classname, NULL, TRUE);
1762 	if (!dc)
1763 		return(ENOMEM);
1764 
1765 	error = devclass_add_device(dc, dev);
1766 
1767 	bus_data_generation_update();
1768 	return(error);
1769 }
1770 
1771 int
1772 device_set_driver(device_t dev, driver_t *driver)
1773 {
1774 	if (dev->state >= DS_ATTACHED)
1775 		return(EBUSY);
1776 
1777 	if (dev->driver == driver)
1778 		return(0);
1779 
1780 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1781 		kfree(dev->softc, M_BUS);
1782 		dev->softc = NULL;
1783 	}
1784 	device_set_desc(dev, NULL);
1785 	kobj_delete((kobj_t) dev, 0);
1786 	dev->driver = driver;
1787 	if (driver) {
1788 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1789 		if (!(dev->flags & DF_EXTERNALSOFTC))
1790 			dev->softc = kmalloc(driver->size, M_BUS,
1791 					    M_INTWAIT | M_ZERO);
1792 	} else {
1793 		kobj_init((kobj_t) dev, &null_class);
1794 	}
1795 
1796 	bus_data_generation_update();
1797 	return(0);
1798 }
1799 
1800 int
1801 device_probe_and_attach(device_t dev)
1802 {
1803 	device_t bus = dev->parent;
1804 	int error = 0;
1805 
1806 	if (dev->state >= DS_ALIVE)
1807 		return(0);
1808 
1809 	if ((dev->flags & DF_ENABLED) == 0) {
1810 		if (bootverbose) {
1811 			device_print_prettyname(dev);
1812 			kprintf("not probed (disabled)\n");
1813 		}
1814 		return(0);
1815 	}
1816 
1817 	error = device_probe_child(bus, dev);
1818 	if (error) {
1819 		if (!(dev->flags & DF_DONENOMATCH)) {
1820 			BUS_PROBE_NOMATCH(bus, dev);
1821 			devnomatch(dev);
1822 			dev->flags |= DF_DONENOMATCH;
1823 		}
1824 		return(error);
1825 	}
1826 
1827 	/*
1828 	 * Output the exact device chain prior to the attach in case the
1829 	 * system locks up during attach, and generate the full info after
1830 	 * the attach so correct irq and other information is displayed.
1831 	 */
1832 	if (bootverbose && !device_is_quiet(dev)) {
1833 		device_t tmp;
1834 
1835 		kprintf("%s", device_get_nameunit(dev));
1836 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1837 			kprintf(".%s", device_get_nameunit(tmp));
1838 		kprintf("\n");
1839 	}
1840 	if (!device_is_quiet(dev))
1841 		device_print_child(bus, dev);
1842 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1843 		kprintf("%s: probing asynchronously\n",
1844 			device_get_nameunit(dev));
1845 		dev->state = DS_INPROGRESS;
1846 		device_attach_async(dev);
1847 		error = 0;
1848 	} else {
1849 		error = device_doattach(dev);
1850 	}
1851 	return(error);
1852 }
1853 
1854 /*
1855  * Device is known to be alive, do the attach asynchronously.
1856  * However, serialize the attaches with the mp lock.
1857  */
1858 static void
1859 device_attach_async(device_t dev)
1860 {
1861 	thread_t td;
1862 
1863 	atomic_add_int(&numasyncthreads, 1);
1864 	lwkt_create(device_attach_thread, dev, &td, NULL,
1865 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
1866 }
1867 
1868 static void
1869 device_attach_thread(void *arg)
1870 {
1871 	device_t dev = arg;
1872 
1873 	(void)device_doattach(dev);
1874 	atomic_subtract_int(&numasyncthreads, 1);
1875 	wakeup(&numasyncthreads);
1876 }
1877 
1878 /*
1879  * Device is known to be alive, do the attach (synchronous or asynchronous)
1880  */
1881 static int
1882 device_doattach(device_t dev)
1883 {
1884 	device_t bus = dev->parent;
1885 	int hasclass = (dev->devclass != NULL);
1886 	int error;
1887 
1888 	device_sysctl_init(dev);
1889 	error = DEVICE_ATTACH(dev);
1890 	if (error == 0) {
1891 		dev->state = DS_ATTACHED;
1892 		if (bootverbose && !device_is_quiet(dev))
1893 			device_print_child(bus, dev);
1894 		device_sysctl_update(dev);
1895 		devadded(dev);
1896 	} else {
1897 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1898 		       dev->driver->name, dev->unit, error);
1899 		/* Unset the class that was set in device_probe_child */
1900 		if (!hasclass)
1901 			device_set_devclass(dev, 0);
1902 		device_set_driver(dev, NULL);
1903 		dev->state = DS_NOTPRESENT;
1904 		device_sysctl_fini(dev);
1905 	}
1906 	return(error);
1907 }
1908 
1909 int
1910 device_detach(device_t dev)
1911 {
1912 	int error;
1913 
1914 	PDEBUG(("%s", DEVICENAME(dev)));
1915 	if (dev->state == DS_BUSY)
1916 		return(EBUSY);
1917 	if (dev->state != DS_ATTACHED)
1918 		return(0);
1919 
1920 	if ((error = DEVICE_DETACH(dev)) != 0)
1921 		return(error);
1922 	devremoved(dev);
1923 	device_printf(dev, "detached\n");
1924 	if (dev->parent)
1925 		BUS_CHILD_DETACHED(dev->parent, dev);
1926 
1927 	if (!(dev->flags & DF_FIXEDCLASS))
1928 		devclass_delete_device(dev->devclass, dev);
1929 
1930 	dev->state = DS_NOTPRESENT;
1931 	device_set_driver(dev, NULL);
1932 	device_sysctl_fini(dev);
1933 
1934 	return(0);
1935 }
1936 
1937 int
1938 device_shutdown(device_t dev)
1939 {
1940 	if (dev->state < DS_ATTACHED)
1941 		return 0;
1942 	PDEBUG(("%s", DEVICENAME(dev)));
1943 	return DEVICE_SHUTDOWN(dev);
1944 }
1945 
1946 int
1947 device_set_unit(device_t dev, int unit)
1948 {
1949 	devclass_t dc;
1950 	int err;
1951 
1952 	dc = device_get_devclass(dev);
1953 	if (unit < dc->maxunit && dc->devices[unit])
1954 		return(EBUSY);
1955 	err = devclass_delete_device(dc, dev);
1956 	if (err)
1957 		return(err);
1958 	dev->unit = unit;
1959 	err = devclass_add_device(dc, dev);
1960 	if (err)
1961 		return(err);
1962 
1963 	bus_data_generation_update();
1964 	return(0);
1965 }
1966 
1967 /*======================================*/
1968 /*
1969  * Access functions for device resources.
1970  */
1971 
1972 /* Supplied by config(8) in ioconf.c */
1973 extern struct config_device config_devtab[];
1974 extern int devtab_count;
1975 
1976 /* Runtime version */
1977 struct config_device *devtab = config_devtab;
1978 
1979 static int
1980 resource_new_name(const char *name, int unit)
1981 {
1982 	struct config_device *new;
1983 
1984 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1985 		     M_INTWAIT | M_ZERO);
1986 	if (devtab && devtab_count > 0)
1987 		bcopy(devtab, new, devtab_count * sizeof(*new));
1988 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1989 	if (new[devtab_count].name == NULL) {
1990 		kfree(new, M_TEMP);
1991 		return(-1);
1992 	}
1993 	strcpy(new[devtab_count].name, name);
1994 	new[devtab_count].unit = unit;
1995 	new[devtab_count].resource_count = 0;
1996 	new[devtab_count].resources = NULL;
1997 	if (devtab && devtab != config_devtab)
1998 		kfree(devtab, M_TEMP);
1999 	devtab = new;
2000 	return devtab_count++;
2001 }
2002 
2003 static int
2004 resource_new_resname(int j, const char *resname, resource_type type)
2005 {
2006 	struct config_resource *new;
2007 	int i;
2008 
2009 	i = devtab[j].resource_count;
2010 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2011 	if (devtab[j].resources && i > 0)
2012 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2013 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2014 	if (new[i].name == NULL) {
2015 		kfree(new, M_TEMP);
2016 		return(-1);
2017 	}
2018 	strcpy(new[i].name, resname);
2019 	new[i].type = type;
2020 	if (devtab[j].resources)
2021 		kfree(devtab[j].resources, M_TEMP);
2022 	devtab[j].resources = new;
2023 	devtab[j].resource_count = i + 1;
2024 	return(i);
2025 }
2026 
2027 static int
2028 resource_match_string(int i, const char *resname, const char *value)
2029 {
2030 	int j;
2031 	struct config_resource *res;
2032 
2033 	for (j = 0, res = devtab[i].resources;
2034 	     j < devtab[i].resource_count; j++, res++)
2035 		if (!strcmp(res->name, resname)
2036 		    && res->type == RES_STRING
2037 		    && !strcmp(res->u.stringval, value))
2038 			return(j);
2039 	return(-1);
2040 }
2041 
2042 static int
2043 resource_find(const char *name, int unit, const char *resname,
2044 	      struct config_resource **result)
2045 {
2046 	int i, j;
2047 	struct config_resource *res;
2048 
2049 	/*
2050 	 * First check specific instances, then generic.
2051 	 */
2052 	for (i = 0; i < devtab_count; i++) {
2053 		if (devtab[i].unit < 0)
2054 			continue;
2055 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2056 			res = devtab[i].resources;
2057 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2058 				if (!strcmp(res->name, resname)) {
2059 					*result = res;
2060 					return(0);
2061 				}
2062 		}
2063 	}
2064 	for (i = 0; i < devtab_count; i++) {
2065 		if (devtab[i].unit >= 0)
2066 			continue;
2067 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2068 		/* XXX if so, then the generic match does nothing */
2069 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2070 			res = devtab[i].resources;
2071 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2072 				if (!strcmp(res->name, resname)) {
2073 					*result = res;
2074 					return(0);
2075 				}
2076 		}
2077 	}
2078 	return(ENOENT);
2079 }
2080 
2081 static int
2082 resource_kenv(const char *name, int unit, const char *resname, long *result)
2083 {
2084 	const char *env;
2085 	char buf[64];
2086 
2087 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2088 	if ((env = kgetenv(buf)) != NULL) {
2089 		*result = strtol(env, NULL, 0);
2090 		return(0);
2091 	}
2092 	return (ENOENT);
2093 }
2094 
2095 int
2096 resource_int_value(const char *name, int unit, const char *resname, int *result)
2097 {
2098 	struct config_resource *res;
2099 	long kvalue = 0;
2100 	int error;
2101 
2102 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2103 		*result = (int)kvalue;
2104 		return 0;
2105 	}
2106 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2107 		return(error);
2108 	if (res->type != RES_INT)
2109 		return(EFTYPE);
2110 	*result = res->u.intval;
2111 	return(0);
2112 }
2113 
2114 int
2115 resource_long_value(const char *name, int unit, const char *resname,
2116 		    long *result)
2117 {
2118 	struct config_resource *res;
2119 	long kvalue;
2120 	int error;
2121 
2122 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2123 		*result = kvalue;
2124 		return 0;
2125 	}
2126 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2127 		return(error);
2128 	if (res->type != RES_LONG)
2129 		return(EFTYPE);
2130 	*result = res->u.longval;
2131 	return(0);
2132 }
2133 
2134 int
2135 resource_string_value(const char *name, int unit, const char *resname,
2136     const char **result)
2137 {
2138 	int error;
2139 	struct config_resource *res;
2140 	char buf[64];
2141 	const char *env;
2142 
2143 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2144 	if ((env = kgetenv(buf)) != NULL) {
2145 		*result = env;
2146 		return 0;
2147 	}
2148 
2149 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2150 		return(error);
2151 	if (res->type != RES_STRING)
2152 		return(EFTYPE);
2153 	*result = res->u.stringval;
2154 	return(0);
2155 }
2156 
2157 int
2158 resource_query_string(int i, const char *resname, const char *value)
2159 {
2160 	if (i < 0)
2161 		i = 0;
2162 	else
2163 		i = i + 1;
2164 	for (; i < devtab_count; i++)
2165 		if (resource_match_string(i, resname, value) >= 0)
2166 			return(i);
2167 	return(-1);
2168 }
2169 
2170 int
2171 resource_locate(int i, const char *resname)
2172 {
2173 	if (i < 0)
2174 		i = 0;
2175 	else
2176 		i = i + 1;
2177 	for (; i < devtab_count; i++)
2178 		if (!strcmp(devtab[i].name, resname))
2179 			return(i);
2180 	return(-1);
2181 }
2182 
2183 int
2184 resource_count(void)
2185 {
2186 	return(devtab_count);
2187 }
2188 
2189 char *
2190 resource_query_name(int i)
2191 {
2192 	return(devtab[i].name);
2193 }
2194 
2195 int
2196 resource_query_unit(int i)
2197 {
2198 	return(devtab[i].unit);
2199 }
2200 
2201 static int
2202 resource_create(const char *name, int unit, const char *resname,
2203 		resource_type type, struct config_resource **result)
2204 {
2205 	int i, j;
2206 	struct config_resource *res = NULL;
2207 
2208 	for (i = 0; i < devtab_count; i++)
2209 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2210 			res = devtab[i].resources;
2211 			break;
2212 		}
2213 	if (res == NULL) {
2214 		i = resource_new_name(name, unit);
2215 		if (i < 0)
2216 			return(ENOMEM);
2217 		res = devtab[i].resources;
2218 	}
2219 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2220 		if (!strcmp(res->name, resname)) {
2221 			*result = res;
2222 			return(0);
2223 		}
2224 	j = resource_new_resname(i, resname, type);
2225 	if (j < 0)
2226 		return(ENOMEM);
2227 	res = &devtab[i].resources[j];
2228 	*result = res;
2229 	return(0);
2230 }
2231 
2232 int
2233 resource_set_int(const char *name, int unit, const char *resname, int value)
2234 {
2235 	int error;
2236 	struct config_resource *res;
2237 
2238 	error = resource_create(name, unit, resname, RES_INT, &res);
2239 	if (error)
2240 		return(error);
2241 	if (res->type != RES_INT)
2242 		return(EFTYPE);
2243 	res->u.intval = value;
2244 	return(0);
2245 }
2246 
2247 int
2248 resource_set_long(const char *name, int unit, const char *resname, long value)
2249 {
2250 	int error;
2251 	struct config_resource *res;
2252 
2253 	error = resource_create(name, unit, resname, RES_LONG, &res);
2254 	if (error)
2255 		return(error);
2256 	if (res->type != RES_LONG)
2257 		return(EFTYPE);
2258 	res->u.longval = value;
2259 	return(0);
2260 }
2261 
2262 int
2263 resource_set_string(const char *name, int unit, const char *resname,
2264 		    const char *value)
2265 {
2266 	int error;
2267 	struct config_resource *res;
2268 
2269 	error = resource_create(name, unit, resname, RES_STRING, &res);
2270 	if (error)
2271 		return(error);
2272 	if (res->type != RES_STRING)
2273 		return(EFTYPE);
2274 	if (res->u.stringval)
2275 		kfree(res->u.stringval, M_TEMP);
2276 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2277 	if (res->u.stringval == NULL)
2278 		return(ENOMEM);
2279 	strcpy(res->u.stringval, value);
2280 	return(0);
2281 }
2282 
2283 static void
2284 resource_cfgload(void *dummy __unused)
2285 {
2286 	struct config_resource *res, *cfgres;
2287 	int i, j;
2288 	int error;
2289 	char *name, *resname;
2290 	int unit;
2291 	resource_type type;
2292 	char *stringval;
2293 	int config_devtab_count;
2294 
2295 	config_devtab_count = devtab_count;
2296 	devtab = NULL;
2297 	devtab_count = 0;
2298 
2299 	for (i = 0; i < config_devtab_count; i++) {
2300 		name = config_devtab[i].name;
2301 		unit = config_devtab[i].unit;
2302 
2303 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2304 			cfgres = config_devtab[i].resources;
2305 			resname = cfgres[j].name;
2306 			type = cfgres[j].type;
2307 			error = resource_create(name, unit, resname, type,
2308 						&res);
2309 			if (error) {
2310 				kprintf("create resource %s%d: error %d\n",
2311 					name, unit, error);
2312 				continue;
2313 			}
2314 			if (res->type != type) {
2315 				kprintf("type mismatch %s%d: %d != %d\n",
2316 					name, unit, res->type, type);
2317 				continue;
2318 			}
2319 			switch (type) {
2320 			case RES_INT:
2321 				res->u.intval = cfgres[j].u.intval;
2322 				break;
2323 			case RES_LONG:
2324 				res->u.longval = cfgres[j].u.longval;
2325 				break;
2326 			case RES_STRING:
2327 				if (res->u.stringval)
2328 					kfree(res->u.stringval, M_TEMP);
2329 				stringval = cfgres[j].u.stringval;
2330 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2331 							  M_TEMP, M_INTWAIT);
2332 				if (res->u.stringval == NULL)
2333 					break;
2334 				strcpy(res->u.stringval, stringval);
2335 				break;
2336 			default:
2337 				panic("unknown resource type %d", type);
2338 			}
2339 		}
2340 	}
2341 }
2342 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2343 
2344 
2345 /*======================================*/
2346 /*
2347  * Some useful method implementations to make life easier for bus drivers.
2348  */
2349 
2350 void
2351 resource_list_init(struct resource_list *rl)
2352 {
2353 	SLIST_INIT(rl);
2354 }
2355 
2356 void
2357 resource_list_free(struct resource_list *rl)
2358 {
2359 	struct resource_list_entry *rle;
2360 
2361 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2362 		if (rle->res)
2363 			panic("resource_list_free: resource entry is busy");
2364 		SLIST_REMOVE_HEAD(rl, link);
2365 		kfree(rle, M_BUS);
2366 	}
2367 }
2368 
2369 void
2370 resource_list_add(struct resource_list *rl, int type, int rid,
2371     u_long start, u_long end, u_long count, int cpuid)
2372 {
2373 	struct resource_list_entry *rle;
2374 
2375 	rle = resource_list_find(rl, type, rid);
2376 	if (rle == NULL) {
2377 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2378 			     M_INTWAIT);
2379 		SLIST_INSERT_HEAD(rl, rle, link);
2380 		rle->type = type;
2381 		rle->rid = rid;
2382 		rle->res = NULL;
2383 		rle->cpuid = -1;
2384 	}
2385 
2386 	if (rle->res)
2387 		panic("resource_list_add: resource entry is busy");
2388 
2389 	rle->start = start;
2390 	rle->end = end;
2391 	rle->count = count;
2392 
2393 	if (cpuid != -1) {
2394 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2395 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2396 			    rle->cpuid, cpuid);
2397 		}
2398 		rle->cpuid = cpuid;
2399 	}
2400 }
2401 
2402 struct resource_list_entry*
2403 resource_list_find(struct resource_list *rl,
2404 		   int type, int rid)
2405 {
2406 	struct resource_list_entry *rle;
2407 
2408 	SLIST_FOREACH(rle, rl, link)
2409 		if (rle->type == type && rle->rid == rid)
2410 			return(rle);
2411 	return(NULL);
2412 }
2413 
2414 void
2415 resource_list_delete(struct resource_list *rl,
2416 		     int type, int rid)
2417 {
2418 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2419 
2420 	if (rle) {
2421 		if (rle->res != NULL)
2422 			panic("resource_list_delete: resource has not been released");
2423 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2424 		kfree(rle, M_BUS);
2425 	}
2426 }
2427 
2428 struct resource *
2429 resource_list_alloc(struct resource_list *rl,
2430 		    device_t bus, device_t child,
2431 		    int type, int *rid,
2432 		    u_long start, u_long end,
2433 		    u_long count, u_int flags, int cpuid)
2434 {
2435 	struct resource_list_entry *rle = NULL;
2436 	int passthrough = (device_get_parent(child) != bus);
2437 	int isdefault = (start == 0UL && end == ~0UL);
2438 
2439 	if (passthrough) {
2440 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2441 					  type, rid,
2442 					  start, end, count, flags, cpuid));
2443 	}
2444 
2445 	rle = resource_list_find(rl, type, *rid);
2446 
2447 	if (!rle)
2448 		return(0);		/* no resource of that type/rid */
2449 
2450 	if (rle->res)
2451 		panic("resource_list_alloc: resource entry is busy");
2452 
2453 	if (isdefault) {
2454 		start = rle->start;
2455 		count = max(count, rle->count);
2456 		end = max(rle->end, start + count - 1);
2457 	}
2458 	cpuid = rle->cpuid;
2459 
2460 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2461 				      type, rid, start, end, count,
2462 				      flags, cpuid);
2463 
2464 	/*
2465 	 * Record the new range.
2466 	 */
2467 	if (rle->res) {
2468 		rle->start = rman_get_start(rle->res);
2469 		rle->end = rman_get_end(rle->res);
2470 		rle->count = count;
2471 	}
2472 
2473 	return(rle->res);
2474 }
2475 
2476 int
2477 resource_list_release(struct resource_list *rl,
2478 		      device_t bus, device_t child,
2479 		      int type, int rid, struct resource *res)
2480 {
2481 	struct resource_list_entry *rle = NULL;
2482 	int passthrough = (device_get_parent(child) != bus);
2483 	int error;
2484 
2485 	if (passthrough) {
2486 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2487 					    type, rid, res));
2488 	}
2489 
2490 	rle = resource_list_find(rl, type, rid);
2491 
2492 	if (!rle)
2493 		panic("resource_list_release: can't find resource");
2494 	if (!rle->res)
2495 		panic("resource_list_release: resource entry is not busy");
2496 
2497 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2498 				     type, rid, res);
2499 	if (error)
2500 		return(error);
2501 
2502 	rle->res = NULL;
2503 	return(0);
2504 }
2505 
2506 int
2507 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2508 			 const char *format)
2509 {
2510 	struct resource_list_entry *rle;
2511 	int printed, retval;
2512 
2513 	printed = 0;
2514 	retval = 0;
2515 	/* Yes, this is kinda cheating */
2516 	SLIST_FOREACH(rle, rl, link) {
2517 		if (rle->type == type) {
2518 			if (printed == 0)
2519 				retval += kprintf(" %s ", name);
2520 			else
2521 				retval += kprintf(",");
2522 			printed++;
2523 			retval += kprintf(format, rle->start);
2524 			if (rle->count > 1) {
2525 				retval += kprintf("-");
2526 				retval += kprintf(format, rle->start +
2527 						 rle->count - 1);
2528 			}
2529 		}
2530 	}
2531 	return(retval);
2532 }
2533 
2534 /*
2535  * Generic driver/device identify functions.  These will install a device
2536  * rendezvous point under the parent using the same name as the driver
2537  * name, which will at a later time be probed and attached.
2538  *
2539  * These functions are used when the parent does not 'scan' its bus for
2540  * matching devices, or for the particular devices using these functions,
2541  * or when the device is a pseudo or synthesized device (such as can be
2542  * found under firewire and ppbus).
2543  */
2544 int
2545 bus_generic_identify(driver_t *driver, device_t parent)
2546 {
2547 	if (parent->state == DS_ATTACHED)
2548 		return (0);
2549 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2550 	return (0);
2551 }
2552 
2553 int
2554 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2555 {
2556 	if (parent->state == DS_ATTACHED)
2557 		return (0);
2558 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2559 	return (0);
2560 }
2561 
2562 /*
2563  * Call DEVICE_IDENTIFY for each driver.
2564  */
2565 int
2566 bus_generic_probe(device_t dev)
2567 {
2568 	devclass_t dc = dev->devclass;
2569 	driverlink_t dl;
2570 
2571 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2572 		DEVICE_IDENTIFY(dl->driver, dev);
2573 	}
2574 
2575 	return(0);
2576 }
2577 
2578 /*
2579  * This is an aweful hack due to the isa bus and autoconf code not
2580  * probing the ISA devices until after everything else has configured.
2581  * The ISA bus did a dummy attach long ago so we have to set it back
2582  * to an earlier state so the probe thinks its the initial probe and
2583  * not a bus rescan.
2584  *
2585  * XXX remove by properly defering the ISA bus scan.
2586  */
2587 int
2588 bus_generic_probe_hack(device_t dev)
2589 {
2590 	if (dev->state == DS_ATTACHED) {
2591 		dev->state = DS_ALIVE;
2592 		bus_generic_probe(dev);
2593 		dev->state = DS_ATTACHED;
2594 	}
2595 	return (0);
2596 }
2597 
2598 int
2599 bus_generic_attach(device_t dev)
2600 {
2601 	device_t child;
2602 
2603 	TAILQ_FOREACH(child, &dev->children, link) {
2604 		device_probe_and_attach(child);
2605 	}
2606 
2607 	return(0);
2608 }
2609 
2610 int
2611 bus_generic_detach(device_t dev)
2612 {
2613 	device_t child;
2614 	int error;
2615 
2616 	if (dev->state != DS_ATTACHED)
2617 		return(EBUSY);
2618 
2619 	TAILQ_FOREACH(child, &dev->children, link)
2620 		if ((error = device_detach(child)) != 0)
2621 			return(error);
2622 
2623 	return 0;
2624 }
2625 
2626 int
2627 bus_generic_shutdown(device_t dev)
2628 {
2629 	device_t child;
2630 
2631 	TAILQ_FOREACH(child, &dev->children, link)
2632 		device_shutdown(child);
2633 
2634 	return(0);
2635 }
2636 
2637 int
2638 bus_generic_suspend(device_t dev)
2639 {
2640 	int error;
2641 	device_t child, child2;
2642 
2643 	TAILQ_FOREACH(child, &dev->children, link) {
2644 		error = DEVICE_SUSPEND(child);
2645 		if (error) {
2646 			for (child2 = TAILQ_FIRST(&dev->children);
2647 			     child2 && child2 != child;
2648 			     child2 = TAILQ_NEXT(child2, link))
2649 				DEVICE_RESUME(child2);
2650 			return(error);
2651 		}
2652 	}
2653 	return(0);
2654 }
2655 
2656 int
2657 bus_generic_resume(device_t dev)
2658 {
2659 	device_t child;
2660 
2661 	TAILQ_FOREACH(child, &dev->children, link)
2662 		DEVICE_RESUME(child);
2663 		/* if resume fails, there's nothing we can usefully do... */
2664 
2665 	return(0);
2666 }
2667 
2668 int
2669 bus_print_child_header(device_t dev, device_t child)
2670 {
2671 	int retval = 0;
2672 
2673 	if (device_get_desc(child))
2674 		retval += device_printf(child, "<%s>", device_get_desc(child));
2675 	else
2676 		retval += kprintf("%s", device_get_nameunit(child));
2677 	if (bootverbose) {
2678 		if (child->state != DS_ATTACHED)
2679 			kprintf(" [tentative]");
2680 		else
2681 			kprintf(" [attached!]");
2682 	}
2683 	return(retval);
2684 }
2685 
2686 int
2687 bus_print_child_footer(device_t dev, device_t child)
2688 {
2689 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2690 }
2691 
2692 device_t
2693 bus_generic_add_child(device_t dev, device_t child, int order,
2694 		      const char *name, int unit)
2695 {
2696 	if (dev->parent)
2697 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2698 	else
2699 		dev = device_add_child_ordered(child, order, name, unit);
2700 	return(dev);
2701 
2702 }
2703 
2704 int
2705 bus_generic_print_child(device_t dev, device_t child)
2706 {
2707 	int retval = 0;
2708 
2709 	retval += bus_print_child_header(dev, child);
2710 	retval += bus_print_child_footer(dev, child);
2711 
2712 	return(retval);
2713 }
2714 
2715 int
2716 bus_generic_read_ivar(device_t dev, device_t child, int index,
2717 		      uintptr_t * result)
2718 {
2719 	int error;
2720 
2721 	if (dev->parent)
2722 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2723 	else
2724 		error = ENOENT;
2725 	return (error);
2726 }
2727 
2728 int
2729 bus_generic_write_ivar(device_t dev, device_t child, int index,
2730 		       uintptr_t value)
2731 {
2732 	int error;
2733 
2734 	if (dev->parent)
2735 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2736 	else
2737 		error = ENOENT;
2738 	return (error);
2739 }
2740 
2741 /*
2742  * Resource list are used for iterations, do not recurse.
2743  */
2744 struct resource_list *
2745 bus_generic_get_resource_list(device_t dev, device_t child)
2746 {
2747 	return (NULL);
2748 }
2749 
2750 void
2751 bus_generic_driver_added(device_t dev, driver_t *driver)
2752 {
2753 	device_t child;
2754 
2755 	DEVICE_IDENTIFY(driver, dev);
2756 	TAILQ_FOREACH(child, &dev->children, link) {
2757 		if (child->state == DS_NOTPRESENT)
2758 			device_probe_and_attach(child);
2759 	}
2760 }
2761 
2762 int
2763 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2764     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2765     lwkt_serialize_t serializer, const char *desc)
2766 {
2767 	/* Propagate up the bus hierarchy until someone handles it. */
2768 	if (dev->parent) {
2769 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2770 		    intr, arg, cookiep, serializer, desc);
2771 	} else {
2772 		return EINVAL;
2773 	}
2774 }
2775 
2776 int
2777 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2778 			  void *cookie)
2779 {
2780 	/* Propagate up the bus hierarchy until someone handles it. */
2781 	if (dev->parent)
2782 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2783 	else
2784 		return(EINVAL);
2785 }
2786 
2787 int
2788 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2789 {
2790 	if (dev->parent)
2791 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2792 	else
2793 		return(0);
2794 }
2795 
2796 void
2797 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2798 {
2799 	if (dev->parent)
2800 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2801 }
2802 
2803 int
2804 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2805     enum intr_polarity pol)
2806 {
2807 	/* Propagate up the bus hierarchy until someone handles it. */
2808 	if (dev->parent)
2809 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2810 	else
2811 		return(EINVAL);
2812 }
2813 
2814 struct resource *
2815 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2816     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2817 {
2818 	/* Propagate up the bus hierarchy until someone handles it. */
2819 	if (dev->parent)
2820 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2821 					   start, end, count, flags, cpuid));
2822 	else
2823 		return(NULL);
2824 }
2825 
2826 int
2827 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2828 			     struct resource *r)
2829 {
2830 	/* Propagate up the bus hierarchy until someone handles it. */
2831 	if (dev->parent)
2832 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2833 	else
2834 		return(EINVAL);
2835 }
2836 
2837 int
2838 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2839 			      struct resource *r)
2840 {
2841 	/* Propagate up the bus hierarchy until someone handles it. */
2842 	if (dev->parent)
2843 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2844 	else
2845 		return(EINVAL);
2846 }
2847 
2848 int
2849 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2850 				int rid, struct resource *r)
2851 {
2852 	/* Propagate up the bus hierarchy until someone handles it. */
2853 	if (dev->parent)
2854 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2855 					       r));
2856 	else
2857 		return(EINVAL);
2858 }
2859 
2860 int
2861 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2862 			 u_long *startp, u_long *countp)
2863 {
2864 	int error;
2865 
2866 	error = ENOENT;
2867 	if (dev->parent) {
2868 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2869 					 startp, countp);
2870 	}
2871 	return (error);
2872 }
2873 
2874 int
2875 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2876 			u_long start, u_long count, int cpuid)
2877 {
2878 	int error;
2879 
2880 	error = EINVAL;
2881 	if (dev->parent) {
2882 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2883 					 start, count, cpuid);
2884 	}
2885 	return (error);
2886 }
2887 
2888 void
2889 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2890 {
2891 	if (dev->parent)
2892 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2893 }
2894 
2895 /**
2896  * @brief Helper function for implementing BUS_GET_DMA_TAG().
2897  *
2898  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
2899  * BUS_GET_DMA_TAG() method of the parent of @p dev.
2900  */
2901 bus_dma_tag_t
2902 bus_generic_get_dma_tag(device_t dev, device_t child)
2903 {
2904 
2905 	/* Propagate up the bus hierarchy until someone handles it. */
2906 	if (dev->parent != NULL)
2907 		return (BUS_GET_DMA_TAG(dev->parent, child));
2908 	return (NULL);
2909 }
2910 
2911 int
2912 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2913     u_long *startp, u_long *countp)
2914 {
2915 	struct resource_list *rl = NULL;
2916 	struct resource_list_entry *rle = NULL;
2917 
2918 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2919 	if (!rl)
2920 		return(EINVAL);
2921 
2922 	rle = resource_list_find(rl, type, rid);
2923 	if (!rle)
2924 		return(ENOENT);
2925 
2926 	if (startp)
2927 		*startp = rle->start;
2928 	if (countp)
2929 		*countp = rle->count;
2930 
2931 	return(0);
2932 }
2933 
2934 int
2935 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2936     u_long start, u_long count, int cpuid)
2937 {
2938 	struct resource_list *rl = NULL;
2939 
2940 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2941 	if (!rl)
2942 		return(EINVAL);
2943 
2944 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2945 	    cpuid);
2946 
2947 	return(0);
2948 }
2949 
2950 void
2951 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2952 {
2953 	struct resource_list *rl = NULL;
2954 
2955 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2956 	if (!rl)
2957 		return;
2958 
2959 	resource_list_delete(rl, type, rid);
2960 }
2961 
2962 int
2963 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2964     int rid, struct resource *r)
2965 {
2966 	struct resource_list *rl = NULL;
2967 
2968 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2969 	if (!rl)
2970 		return(EINVAL);
2971 
2972 	return(resource_list_release(rl, dev, child, type, rid, r));
2973 }
2974 
2975 struct resource *
2976 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2977     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2978 {
2979 	struct resource_list *rl = NULL;
2980 
2981 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2982 	if (!rl)
2983 		return(NULL);
2984 
2985 	return(resource_list_alloc(rl, dev, child, type, rid,
2986 	    start, end, count, flags, cpuid));
2987 }
2988 
2989 int
2990 bus_generic_child_present(device_t bus, device_t child)
2991 {
2992 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2993 }
2994 
2995 
2996 /*
2997  * Some convenience functions to make it easier for drivers to use the
2998  * resource-management functions.  All these really do is hide the
2999  * indirection through the parent's method table, making for slightly
3000  * less-wordy code.  In the future, it might make sense for this code
3001  * to maintain some sort of a list of resources allocated by each device.
3002  */
3003 int
3004 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3005     struct resource **res)
3006 {
3007 	int i;
3008 
3009 	for (i = 0; rs[i].type != -1; i++)
3010 	        res[i] = NULL;
3011 	for (i = 0; rs[i].type != -1; i++) {
3012 		res[i] = bus_alloc_resource_any(dev,
3013 		    rs[i].type, &rs[i].rid, rs[i].flags);
3014 		if (res[i] == NULL) {
3015 			bus_release_resources(dev, rs, res);
3016 			return (ENXIO);
3017 		}
3018 	}
3019 	return (0);
3020 }
3021 
3022 void
3023 bus_release_resources(device_t dev, const struct resource_spec *rs,
3024     struct resource **res)
3025 {
3026 	int i;
3027 
3028 	for (i = 0; rs[i].type != -1; i++)
3029 		if (res[i] != NULL) {
3030 			bus_release_resource(
3031 			    dev, rs[i].type, rs[i].rid, res[i]);
3032 			res[i] = NULL;
3033 		}
3034 }
3035 
3036 struct resource *
3037 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3038 		   u_long count, u_int flags)
3039 {
3040 	if (dev->parent == NULL)
3041 		return(0);
3042 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3043 				  count, flags, -1));
3044 }
3045 
3046 struct resource *
3047 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3048 {
3049 	if (dev->parent == NULL)
3050 		return(0);
3051 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3052 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3053 }
3054 
3055 int
3056 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3057 {
3058 	if (dev->parent == NULL)
3059 		return(EINVAL);
3060 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3061 }
3062 
3063 int
3064 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3065 {
3066 	if (dev->parent == NULL)
3067 		return(EINVAL);
3068 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3069 }
3070 
3071 int
3072 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3073 {
3074 	if (dev->parent == NULL)
3075 		return(EINVAL);
3076 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3077 }
3078 
3079 int
3080 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3081     driver_intr_t handler, void *arg, void **cookiep,
3082     lwkt_serialize_t serializer, const char *desc)
3083 {
3084 	if (dev->parent == NULL)
3085 		return EINVAL;
3086 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3087 	    cookiep, serializer, desc);
3088 }
3089 
3090 int
3091 bus_setup_intr(device_t dev, struct resource *r, int flags,
3092     driver_intr_t handler, void *arg, void **cookiep,
3093     lwkt_serialize_t serializer)
3094 {
3095 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3096 	    serializer, NULL);
3097 }
3098 
3099 int
3100 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3101 {
3102 	if (dev->parent == NULL)
3103 		return(EINVAL);
3104 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3105 }
3106 
3107 void
3108 bus_enable_intr(device_t dev, void *cookie)
3109 {
3110 	if (dev->parent)
3111 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3112 }
3113 
3114 int
3115 bus_disable_intr(device_t dev, void *cookie)
3116 {
3117 	if (dev->parent)
3118 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3119 	else
3120 		return(0);
3121 }
3122 
3123 int
3124 bus_set_resource(device_t dev, int type, int rid,
3125 		 u_long start, u_long count, int cpuid)
3126 {
3127 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3128 				start, count, cpuid));
3129 }
3130 
3131 int
3132 bus_get_resource(device_t dev, int type, int rid,
3133 		 u_long *startp, u_long *countp)
3134 {
3135 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3136 				startp, countp));
3137 }
3138 
3139 u_long
3140 bus_get_resource_start(device_t dev, int type, int rid)
3141 {
3142 	u_long start, count;
3143 	int error;
3144 
3145 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3146 				 &start, &count);
3147 	if (error)
3148 		return(0);
3149 	return(start);
3150 }
3151 
3152 u_long
3153 bus_get_resource_count(device_t dev, int type, int rid)
3154 {
3155 	u_long start, count;
3156 	int error;
3157 
3158 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3159 				 &start, &count);
3160 	if (error)
3161 		return(0);
3162 	return(count);
3163 }
3164 
3165 void
3166 bus_delete_resource(device_t dev, int type, int rid)
3167 {
3168 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3169 }
3170 
3171 int
3172 bus_child_present(device_t child)
3173 {
3174 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3175 }
3176 
3177 int
3178 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3179 {
3180 	device_t parent;
3181 
3182 	parent = device_get_parent(child);
3183 	if (parent == NULL) {
3184 		*buf = '\0';
3185 		return (0);
3186 	}
3187 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3188 }
3189 
3190 int
3191 bus_child_location_str(device_t child, char *buf, size_t buflen)
3192 {
3193 	device_t parent;
3194 
3195 	parent = device_get_parent(child);
3196 	if (parent == NULL) {
3197 		*buf = '\0';
3198 		return (0);
3199 	}
3200 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3201 }
3202 
3203 /**
3204  * @brief Wrapper function for BUS_GET_DMA_TAG().
3205  *
3206  * This function simply calls the BUS_GET_DMA_TAG() method of the
3207  * parent of @p dev.
3208  */
3209 bus_dma_tag_t
3210 bus_get_dma_tag(device_t dev)
3211 {
3212 	device_t parent;
3213 
3214 	parent = device_get_parent(dev);
3215 	if (parent == NULL)
3216 		return (NULL);
3217 	return (BUS_GET_DMA_TAG(parent, dev));
3218 }
3219 
3220 static int
3221 root_print_child(device_t dev, device_t child)
3222 {
3223 	return(0);
3224 }
3225 
3226 static int
3227 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3228 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3229 {
3230 	/*
3231 	 * If an interrupt mapping gets to here something bad has happened.
3232 	 */
3233 	panic("root_setup_intr");
3234 }
3235 
3236 /*
3237  * If we get here, assume that the device is permanant and really is
3238  * present in the system.  Removable bus drivers are expected to intercept
3239  * this call long before it gets here.  We return -1 so that drivers that
3240  * really care can check vs -1 or some ERRNO returned higher in the food
3241  * chain.
3242  */
3243 static int
3244 root_child_present(device_t dev, device_t child)
3245 {
3246 	return(-1);
3247 }
3248 
3249 /*
3250  * XXX NOTE! other defaults may be set in bus_if.m
3251  */
3252 static kobj_method_t root_methods[] = {
3253 	/* Device interface */
3254 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3255 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3256 	KOBJMETHOD(device_resume,	bus_generic_resume),
3257 
3258 	/* Bus interface */
3259 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3260 	KOBJMETHOD(bus_print_child,	root_print_child),
3261 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3262 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3263 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3264 	KOBJMETHOD(bus_child_present,   root_child_present),
3265 
3266 	KOBJMETHOD_END
3267 };
3268 
3269 static driver_t root_driver = {
3270 	"root",
3271 	root_methods,
3272 	1,			/* no softc */
3273 };
3274 
3275 device_t	root_bus;
3276 devclass_t	root_devclass;
3277 
3278 static int
3279 root_bus_module_handler(module_t mod, int what, void* arg)
3280 {
3281 	switch (what) {
3282 	case MOD_LOAD:
3283 		TAILQ_INIT(&bus_data_devices);
3284 		root_bus = make_device(NULL, "root", 0);
3285 		root_bus->desc = "System root bus";
3286 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3287 		root_bus->driver = &root_driver;
3288 		root_bus->state = DS_ALIVE;
3289 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3290 		devinit();
3291 		return(0);
3292 
3293 	case MOD_SHUTDOWN:
3294 		device_shutdown(root_bus);
3295 		return(0);
3296 	default:
3297 		return(0);
3298 	}
3299 }
3300 
3301 static moduledata_t root_bus_mod = {
3302 	"rootbus",
3303 	root_bus_module_handler,
3304 	0
3305 };
3306 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3307 
3308 void
3309 root_bus_configure(void)
3310 {
3311 	int warncount;
3312 	device_t dev;
3313 
3314 	PDEBUG(("."));
3315 
3316 	/*
3317 	 * handle device_identify based device attachments to the root_bus
3318 	 * (typically nexus).
3319 	 */
3320 	bus_generic_probe(root_bus);
3321 
3322 	/*
3323 	 * Probe and attach the devices under root_bus.
3324 	 */
3325 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3326 		device_probe_and_attach(dev);
3327 	}
3328 
3329 	/*
3330 	 * Wait for all asynchronous attaches to complete.  If we don't
3331 	 * our legacy ISA bus scan could steal device unit numbers or
3332 	 * even I/O ports.
3333 	 */
3334 	warncount = 10;
3335 	if (numasyncthreads)
3336 		kprintf("Waiting for async drivers to attach\n");
3337 	while (numasyncthreads > 0) {
3338 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3339 			--warncount;
3340 		if (warncount == 0) {
3341 			kprintf("Warning: Still waiting for %d "
3342 				"drivers to attach\n", numasyncthreads);
3343 		} else if (warncount == -30) {
3344 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3345 			break;
3346 		}
3347 	}
3348 	root_bus->state = DS_ATTACHED;
3349 }
3350 
3351 int
3352 driver_module_handler(module_t mod, int what, void *arg)
3353 {
3354 	int error;
3355 	struct driver_module_data *dmd;
3356 	devclass_t bus_devclass;
3357 	kobj_class_t driver;
3358         const char *parentname;
3359 
3360 	dmd = (struct driver_module_data *)arg;
3361 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3362 	error = 0;
3363 
3364 	switch (what) {
3365 	case MOD_LOAD:
3366 		if (dmd->dmd_chainevh)
3367 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3368 
3369 		driver = dmd->dmd_driver;
3370 		PDEBUG(("Loading module: driver %s on bus %s",
3371 		        DRIVERNAME(driver), dmd->dmd_busname));
3372 
3373 		/*
3374 		 * If the driver has any base classes, make the
3375 		 * devclass inherit from the devclass of the driver's
3376 		 * first base class. This will allow the system to
3377 		 * search for drivers in both devclasses for children
3378 		 * of a device using this driver.
3379 		 */
3380 		if (driver->baseclasses)
3381 			parentname = driver->baseclasses[0]->name;
3382 		else
3383 			parentname = NULL;
3384 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3385 							    parentname, TRUE);
3386 
3387 		error = devclass_add_driver(bus_devclass, driver);
3388 		if (error)
3389 			break;
3390 		break;
3391 
3392 	case MOD_UNLOAD:
3393 		PDEBUG(("Unloading module: driver %s from bus %s",
3394 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3395 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3396 
3397 		if (!error && dmd->dmd_chainevh)
3398 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3399 		break;
3400 	}
3401 
3402 	return (error);
3403 }
3404 
3405 #ifdef BUS_DEBUG
3406 
3407 /*
3408  * The _short versions avoid iteration by not calling anything that prints
3409  * more than oneliners. I love oneliners.
3410  */
3411 
3412 static void
3413 print_device_short(device_t dev, int indent)
3414 {
3415 	if (!dev)
3416 		return;
3417 
3418 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3419 		      dev->unit, dev->desc,
3420 		      (dev->parent? "":"no "),
3421 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3422 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3423 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3424 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3425 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3426 		      (dev->ivars? "":"no "),
3427 		      (dev->softc? "":"no "),
3428 		      dev->busy));
3429 }
3430 
3431 static void
3432 print_device(device_t dev, int indent)
3433 {
3434 	if (!dev)
3435 		return;
3436 
3437 	print_device_short(dev, indent);
3438 
3439 	indentprintf(("Parent:\n"));
3440 	print_device_short(dev->parent, indent+1);
3441 	indentprintf(("Driver:\n"));
3442 	print_driver_short(dev->driver, indent+1);
3443 	indentprintf(("Devclass:\n"));
3444 	print_devclass_short(dev->devclass, indent+1);
3445 }
3446 
3447 /*
3448  * Print the device and all its children (indented).
3449  */
3450 void
3451 print_device_tree_short(device_t dev, int indent)
3452 {
3453 	device_t child;
3454 
3455 	if (!dev)
3456 		return;
3457 
3458 	print_device_short(dev, indent);
3459 
3460 	TAILQ_FOREACH(child, &dev->children, link)
3461 		print_device_tree_short(child, indent+1);
3462 }
3463 
3464 /*
3465  * Print the device and all its children (indented).
3466  */
3467 void
3468 print_device_tree(device_t dev, int indent)
3469 {
3470 	device_t child;
3471 
3472 	if (!dev)
3473 		return;
3474 
3475 	print_device(dev, indent);
3476 
3477 	TAILQ_FOREACH(child, &dev->children, link)
3478 		print_device_tree(child, indent+1);
3479 }
3480 
3481 static void
3482 print_driver_short(driver_t *driver, int indent)
3483 {
3484 	if (!driver)
3485 		return;
3486 
3487 	indentprintf(("driver %s: softc size = %zu\n",
3488 		      driver->name, driver->size));
3489 }
3490 
3491 static void
3492 print_driver(driver_t *driver, int indent)
3493 {
3494 	if (!driver)
3495 		return;
3496 
3497 	print_driver_short(driver, indent);
3498 }
3499 
3500 
3501 static void
3502 print_driver_list(driver_list_t drivers, int indent)
3503 {
3504 	driverlink_t driver;
3505 
3506 	TAILQ_FOREACH(driver, &drivers, link)
3507 		print_driver(driver->driver, indent);
3508 }
3509 
3510 static void
3511 print_devclass_short(devclass_t dc, int indent)
3512 {
3513 	if (!dc)
3514 		return;
3515 
3516 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3517 }
3518 
3519 static void
3520 print_devclass(devclass_t dc, int indent)
3521 {
3522 	int i;
3523 
3524 	if (!dc)
3525 		return;
3526 
3527 	print_devclass_short(dc, indent);
3528 	indentprintf(("Drivers:\n"));
3529 	print_driver_list(dc->drivers, indent+1);
3530 
3531 	indentprintf(("Devices:\n"));
3532 	for (i = 0; i < dc->maxunit; i++)
3533 		if (dc->devices[i])
3534 			print_device(dc->devices[i], indent+1);
3535 }
3536 
3537 void
3538 print_devclass_list_short(void)
3539 {
3540 	devclass_t dc;
3541 
3542 	kprintf("Short listing of devclasses, drivers & devices:\n");
3543 	TAILQ_FOREACH(dc, &devclasses, link) {
3544 		print_devclass_short(dc, 0);
3545 	}
3546 }
3547 
3548 void
3549 print_devclass_list(void)
3550 {
3551 	devclass_t dc;
3552 
3553 	kprintf("Full listing of devclasses, drivers & devices:\n");
3554 	TAILQ_FOREACH(dc, &devclasses, link) {
3555 		print_devclass(dc, 0);
3556 	}
3557 }
3558 
3559 #endif
3560 
3561 /*
3562  * Check to see if a device is disabled via a disabled hint.
3563  */
3564 int
3565 resource_disabled(const char *name, int unit)
3566 {
3567 	int error, value;
3568 
3569 	error = resource_int_value(name, unit, "disabled", &value);
3570 	if (error)
3571 	       return(0);
3572 	return(value);
3573 }
3574 
3575 /*
3576  * User-space access to the device tree.
3577  *
3578  * We implement a small set of nodes:
3579  *
3580  * hw.bus			Single integer read method to obtain the
3581  *				current generation count.
3582  * hw.bus.devices		Reads the entire device tree in flat space.
3583  * hw.bus.rman			Resource manager interface
3584  *
3585  * We might like to add the ability to scan devclasses and/or drivers to
3586  * determine what else is currently loaded/available.
3587  */
3588 
3589 static int
3590 sysctl_bus(SYSCTL_HANDLER_ARGS)
3591 {
3592 	struct u_businfo	ubus;
3593 
3594 	ubus.ub_version = BUS_USER_VERSION;
3595 	ubus.ub_generation = bus_data_generation;
3596 
3597 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3598 }
3599 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3600     "bus-related data");
3601 
3602 static int
3603 sysctl_devices(SYSCTL_HANDLER_ARGS)
3604 {
3605 	int			*name = (int *)arg1;
3606 	u_int			namelen = arg2;
3607 	int			index;
3608 	device_t		dev;
3609 	struct u_device		udev;	/* XXX this is a bit big */
3610 	int			error;
3611 
3612 	if (namelen != 2)
3613 		return (EINVAL);
3614 
3615 	if (bus_data_generation_check(name[0]))
3616 		return (EINVAL);
3617 
3618 	index = name[1];
3619 
3620 	/*
3621 	 * Scan the list of devices, looking for the requested index.
3622 	 */
3623 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3624 		if (index-- == 0)
3625 			break;
3626 	}
3627 	if (dev == NULL)
3628 		return (ENOENT);
3629 
3630 	/*
3631 	 * Populate the return array.
3632 	 */
3633 	bzero(&udev, sizeof(udev));
3634 	udev.dv_handle = (uintptr_t)dev;
3635 	udev.dv_parent = (uintptr_t)dev->parent;
3636 	if (dev->nameunit != NULL)
3637 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3638 	if (dev->desc != NULL)
3639 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3640 	if (dev->driver != NULL && dev->driver->name != NULL)
3641 		strlcpy(udev.dv_drivername, dev->driver->name,
3642 		    sizeof(udev.dv_drivername));
3643 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3644 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3645 	udev.dv_devflags = dev->devflags;
3646 	udev.dv_flags = dev->flags;
3647 	udev.dv_state = dev->state;
3648 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3649 	return (error);
3650 }
3651 
3652 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3653     "system device tree");
3654 
3655 int
3656 bus_data_generation_check(int generation)
3657 {
3658 	if (generation != bus_data_generation)
3659 		return (1);
3660 
3661 	/* XXX generate optimised lists here? */
3662 	return (0);
3663 }
3664 
3665 void
3666 bus_data_generation_update(void)
3667 {
3668 	bus_data_generation++;
3669 }
3670 
3671 const char *
3672 intr_str_polarity(enum intr_polarity pola)
3673 {
3674 	switch (pola) {
3675 	case INTR_POLARITY_LOW:
3676 		return "low";
3677 
3678 	case INTR_POLARITY_HIGH:
3679 		return "high";
3680 
3681 	case INTR_POLARITY_CONFORM:
3682 		return "conform";
3683 	}
3684 	return "unknown";
3685 }
3686 
3687 const char *
3688 intr_str_trigger(enum intr_trigger trig)
3689 {
3690 	switch (trig) {
3691 	case INTR_TRIGGER_EDGE:
3692 		return "edge";
3693 
3694 	case INTR_TRIGGER_LEVEL:
3695 		return "level";
3696 
3697 	case INTR_TRIGGER_CONFORM:
3698 		return "conform";
3699 	}
3700 	return "unknown";
3701 }
3702 
3703 int
3704 device_getenv_int(device_t dev, const char *knob, int def)
3705 {
3706 	char env[128];
3707 
3708 	/* Deprecated; for compat */
3709 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3710 	kgetenv_int(env, &def);
3711 
3712 	/* Prefer dev.driver.unit.knob */
3713 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3714 	    device_get_name(dev), device_get_unit(dev), knob);
3715 	kgetenv_int(env, &def);
3716 
3717 	return def;
3718 }
3719 
3720 void
3721 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3722     int dlen, const char * __restrict def)
3723 {
3724 	char env[128];
3725 
3726 	strlcpy(data, def, dlen);
3727 
3728 	/* Deprecated; for compat */
3729 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3730 	kgetenv_string(env, data, dlen);
3731 
3732 	/* Prefer dev.driver.unit.knob */
3733 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3734 	    device_get_name(dev), device_get_unit(dev), knob);
3735 	kgetenv_string(env, data, dlen);
3736 }
3737