xref: /dflybsd-src/sys/kern/subr_bus.c (revision 4431ffa199ce2b6f7eb8ec59559d0f5c61e28262)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 #include <sys/vnode.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 #include <sys/thread2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
58 
59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
60 
61 #ifdef BUS_DEBUG
62 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
63 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
64 #define DRIVERNAME(d)	((d)? d->name : "no driver")
65 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
66 
67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
68  * prevent syslog from deleting initial spaces
69  */
70 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
71 
72 static void	print_device_short(device_t dev, int indent);
73 static void	print_device(device_t dev, int indent);
74 void		print_device_tree_short(device_t dev, int indent);
75 void		print_device_tree(device_t dev, int indent);
76 static void	print_driver_short(driver_t *driver, int indent);
77 static void	print_driver(driver_t *driver, int indent);
78 static void	print_driver_list(driver_list_t drivers, int indent);
79 static void	print_devclass_short(devclass_t dc, int indent);
80 static void	print_devclass(devclass_t dc, int indent);
81 void		print_devclass_list_short(void);
82 void		print_devclass_list(void);
83 
84 #else
85 /* Make the compiler ignore the function calls */
86 #define PDEBUG(a)			/* nop */
87 #define DEVICENAME(d)			/* nop */
88 #define DRIVERNAME(d)			/* nop */
89 #define DEVCLANAME(d)			/* nop */
90 
91 #define print_device_short(d,i)		/* nop */
92 #define print_device(d,i)		/* nop */
93 #define print_device_tree_short(d,i)	/* nop */
94 #define print_device_tree(d,i)		/* nop */
95 #define print_driver_short(d,i)		/* nop */
96 #define print_driver(d,i)		/* nop */
97 #define print_driver_list(d,i)		/* nop */
98 #define print_devclass_short(d,i)	/* nop */
99 #define print_devclass(d,i)		/* nop */
100 #define print_devclass_list_short()	/* nop */
101 #define print_devclass_list()		/* nop */
102 #endif
103 
104 /*
105  * dev sysctl tree
106  */
107 
108 enum {
109 	DEVCLASS_SYSCTL_PARENT,
110 };
111 
112 static int
113 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
114 {
115 	devclass_t dc = (devclass_t)arg1;
116 	const char *value;
117 
118 	switch (arg2) {
119 	case DEVCLASS_SYSCTL_PARENT:
120 		value = dc->parent ? dc->parent->name : "";
121 		break;
122 	default:
123 		return (EINVAL);
124 	}
125 	return (SYSCTL_OUT(req, value, strlen(value)));
126 }
127 
128 static void
129 devclass_sysctl_init(devclass_t dc)
130 {
131 
132 	if (dc->sysctl_tree != NULL)
133 		return;
134 	sysctl_ctx_init(&dc->sysctl_ctx);
135 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
136 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
137 	    CTLFLAG_RD, NULL, "");
138 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
139 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
140 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
141 	    "parent class");
142 }
143 
144 enum {
145 	DEVICE_SYSCTL_DESC,
146 	DEVICE_SYSCTL_DRIVER,
147 	DEVICE_SYSCTL_LOCATION,
148 	DEVICE_SYSCTL_PNPINFO,
149 	DEVICE_SYSCTL_PARENT,
150 };
151 
152 static int
153 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
154 {
155 	device_t dev = (device_t)arg1;
156 	const char *value;
157 	char *buf;
158 	int error;
159 
160 	buf = NULL;
161 	switch (arg2) {
162 	case DEVICE_SYSCTL_DESC:
163 		value = dev->desc ? dev->desc : "";
164 		break;
165 	case DEVICE_SYSCTL_DRIVER:
166 		value = dev->driver ? dev->driver->name : "";
167 		break;
168 	case DEVICE_SYSCTL_LOCATION:
169 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
170 		bus_child_location_str(dev, buf, 1024);
171 		break;
172 	case DEVICE_SYSCTL_PNPINFO:
173 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
174 		bus_child_pnpinfo_str(dev, buf, 1024);
175 		break;
176 	case DEVICE_SYSCTL_PARENT:
177 		value = dev->parent ? dev->parent->nameunit : "";
178 		break;
179 	default:
180 		return (EINVAL);
181 	}
182 	error = SYSCTL_OUT(req, value, strlen(value));
183 	if (buf != NULL)
184 		kfree(buf, M_BUS);
185 	return (error);
186 }
187 
188 static void
189 device_sysctl_init(device_t dev)
190 {
191 	devclass_t dc = dev->devclass;
192 
193 	if (dev->sysctl_tree != NULL)
194 		return;
195 	devclass_sysctl_init(dc);
196 	sysctl_ctx_init(&dev->sysctl_ctx);
197 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
198 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
199 	    dev->nameunit + strlen(dc->name),
200 	    CTLFLAG_RD, NULL, "");
201 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
202 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
203 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
204 	    "device description");
205 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
206 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
207 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
208 	    "device driver name");
209 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
210 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
211 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
212 	    "device location relative to parent");
213 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
214 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
215 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
216 	    "device identification");
217 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
218 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
219 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
220 	    "parent device");
221 }
222 
223 static void
224 device_sysctl_update(device_t dev)
225 {
226 	devclass_t dc = dev->devclass;
227 
228 	if (dev->sysctl_tree == NULL)
229 		return;
230 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
231 }
232 
233 static void
234 device_sysctl_fini(device_t dev)
235 {
236 	if (dev->sysctl_tree == NULL)
237 		return;
238 	sysctl_ctx_free(&dev->sysctl_ctx);
239 	dev->sysctl_tree = NULL;
240 }
241 
242 static void	device_attach_async(device_t dev);
243 static void	device_attach_thread(void *arg);
244 static int	device_doattach(device_t dev);
245 
246 static int do_async_attach = 0;
247 static int numasyncthreads;
248 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
249 
250 /*
251  * /dev/devctl implementation
252  */
253 
254 /*
255  * This design allows only one reader for /dev/devctl.  This is not desirable
256  * in the long run, but will get a lot of hair out of this implementation.
257  * Maybe we should make this device a clonable device.
258  *
259  * Also note: we specifically do not attach a device to the device_t tree
260  * to avoid potential chicken and egg problems.  One could argue that all
261  * of this belongs to the root node.  One could also further argue that the
262  * sysctl interface that we have not might more properly be an ioctl
263  * interface, but at this stage of the game, I'm not inclined to rock that
264  * boat.
265  *
266  * I'm also not sure that the SIGIO support is done correctly or not, as
267  * I copied it from a driver that had SIGIO support that likely hasn't been
268  * tested since 3.4 or 2.2.8!
269  */
270 
271 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
272 static int devctl_disable = 0;
273 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
274 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
275     sysctl_devctl_disable, "I", "devctl disable");
276 
277 static d_open_t		devopen;
278 static d_close_t	devclose;
279 static d_read_t		devread;
280 static d_ioctl_t	devioctl;
281 static d_kqfilter_t	devkqfilter;
282 
283 static struct dev_ops devctl_ops = {
284 	{ "devctl", 0, D_MPSAFE },
285 	.d_open =	devopen,
286 	.d_close =	devclose,
287 	.d_read =	devread,
288 	.d_ioctl =	devioctl,
289 	.d_kqfilter =	devkqfilter
290 };
291 
292 struct dev_event_info
293 {
294 	char *dei_data;
295 	TAILQ_ENTRY(dev_event_info) dei_link;
296 };
297 
298 TAILQ_HEAD(devq, dev_event_info);
299 
300 static struct dev_softc
301 {
302 	int	inuse;
303 	struct lock lock;
304 	struct kqinfo kq;
305 	struct devq devq;
306 	struct proc *async_proc;
307 } devsoftc;
308 
309 /*
310  * Chicken-and-egg problem with devfs, get the queue operational early.
311  */
312 static void
313 predevinit(void)
314 {
315 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
316 	TAILQ_INIT(&devsoftc.devq);
317 }
318 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
319 
320 static void
321 devinit(void)
322 {
323 	/*
324 	 * WARNING! make_dev() can call back into devctl_queue_data()
325 	 *	    immediately.
326 	 */
327 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
328 }
329 
330 static int
331 devopen(struct dev_open_args *ap)
332 {
333 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
334 	if (devsoftc.inuse) {
335 		lockmgr(&devsoftc.lock, LK_RELEASE);
336 		return (EBUSY);
337 	}
338 	/* move to init */
339 	devsoftc.inuse = 1;
340 	devsoftc.async_proc = NULL;
341 	lockmgr(&devsoftc.lock, LK_RELEASE);
342 
343 	return (0);
344 }
345 
346 static int
347 devclose(struct dev_close_args *ap)
348 {
349 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
350 	devsoftc.inuse = 0;
351 	wakeup(&devsoftc);
352 	lockmgr(&devsoftc.lock, LK_RELEASE);
353 
354 	return (0);
355 }
356 
357 /*
358  * The read channel for this device is used to report changes to
359  * userland in realtime.  We are required to free the data as well as
360  * the n1 object because we allocate them separately.  Also note that
361  * we return one record at a time.  If you try to read this device a
362  * character at a time, you will lose the rest of the data.  Listening
363  * programs are expected to cope.
364  */
365 static int
366 devread(struct dev_read_args *ap)
367 {
368 	struct uio *uio = ap->a_uio;
369 	struct dev_event_info *n1;
370 	int rv;
371 
372 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
373 	while (TAILQ_EMPTY(&devsoftc.devq)) {
374 		if (ap->a_ioflag & IO_NDELAY) {
375 			lockmgr(&devsoftc.lock, LK_RELEASE);
376 			return (EAGAIN);
377 		}
378 		tsleep_interlock(&devsoftc, PCATCH);
379 		lockmgr(&devsoftc.lock, LK_RELEASE);
380 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
381 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
382 		if (rv) {
383 			/*
384 			 * Need to translate ERESTART to EINTR here? -- jake
385 			 */
386 			lockmgr(&devsoftc.lock, LK_RELEASE);
387 			return (rv);
388 		}
389 	}
390 	n1 = TAILQ_FIRST(&devsoftc.devq);
391 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
392 	lockmgr(&devsoftc.lock, LK_RELEASE);
393 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
394 	kfree(n1->dei_data, M_BUS);
395 	kfree(n1, M_BUS);
396 	return (rv);
397 }
398 
399 static	int
400 devioctl(struct dev_ioctl_args *ap)
401 {
402 	switch (ap->a_cmd) {
403 
404 	case FIONBIO:
405 		return (0);
406 	case FIOASYNC:
407 		if (*(int*)ap->a_data)
408 			devsoftc.async_proc = curproc;
409 		else
410 			devsoftc.async_proc = NULL;
411 		return (0);
412 
413 		/* (un)Support for other fcntl() calls. */
414 	case FIOCLEX:
415 	case FIONCLEX:
416 	case FIONREAD:
417 	case FIOSETOWN:
418 	case FIOGETOWN:
419 	default:
420 		break;
421 	}
422 	return (ENOTTY);
423 }
424 
425 static void dev_filter_detach(struct knote *);
426 static int dev_filter_read(struct knote *, long);
427 
428 static struct filterops dev_filtops =
429 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
430 	  dev_filter_detach, dev_filter_read };
431 
432 static int
433 devkqfilter(struct dev_kqfilter_args *ap)
434 {
435 	struct knote *kn = ap->a_kn;
436 	struct klist *klist;
437 
438 	ap->a_result = 0;
439 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
440 
441 	switch (kn->kn_filter) {
442 	case EVFILT_READ:
443 		kn->kn_fop = &dev_filtops;
444 		break;
445 	default:
446 		ap->a_result = EOPNOTSUPP;
447 		lockmgr(&devsoftc.lock, LK_RELEASE);
448 		return (0);
449 	}
450 
451 	klist = &devsoftc.kq.ki_note;
452 	knote_insert(klist, kn);
453 
454 	lockmgr(&devsoftc.lock, LK_RELEASE);
455 
456 	return (0);
457 }
458 
459 static void
460 dev_filter_detach(struct knote *kn)
461 {
462 	struct klist *klist;
463 
464 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
465 	klist = &devsoftc.kq.ki_note;
466 	knote_remove(klist, kn);
467 	lockmgr(&devsoftc.lock, LK_RELEASE);
468 }
469 
470 static int
471 dev_filter_read(struct knote *kn, long hint)
472 {
473 	int ready = 0;
474 
475 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
476 	if (!TAILQ_EMPTY(&devsoftc.devq))
477 		ready = 1;
478 	lockmgr(&devsoftc.lock, LK_RELEASE);
479 
480 	return (ready);
481 }
482 
483 
484 /**
485  * @brief Return whether the userland process is running
486  */
487 boolean_t
488 devctl_process_running(void)
489 {
490 	return (devsoftc.inuse == 1);
491 }
492 
493 /**
494  * @brief Queue data to be read from the devctl device
495  *
496  * Generic interface to queue data to the devctl device.  It is
497  * assumed that @p data is properly formatted.  It is further assumed
498  * that @p data is allocated using the M_BUS malloc type.
499  */
500 void
501 devctl_queue_data(char *data)
502 {
503 	struct dev_event_info *n1 = NULL;
504 	struct proc *p;
505 
506 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
507 	if (n1 == NULL)
508 		return;
509 	n1->dei_data = data;
510 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
511 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
512 	wakeup(&devsoftc);
513 	lockmgr(&devsoftc.lock, LK_RELEASE);
514 	KNOTE(&devsoftc.kq.ki_note, 0);
515 	p = devsoftc.async_proc;
516 	if (p != NULL)
517 		ksignal(p, SIGIO);
518 }
519 
520 /**
521  * @brief Send a 'notification' to userland, using standard ways
522  */
523 void
524 devctl_notify(const char *system, const char *subsystem, const char *type,
525     const char *data)
526 {
527 	int len = 0;
528 	char *msg;
529 
530 	if (system == NULL)
531 		return;		/* BOGUS!  Must specify system. */
532 	if (subsystem == NULL)
533 		return;		/* BOGUS!  Must specify subsystem. */
534 	if (type == NULL)
535 		return;		/* BOGUS!  Must specify type. */
536 	len += strlen(" system=") + strlen(system);
537 	len += strlen(" subsystem=") + strlen(subsystem);
538 	len += strlen(" type=") + strlen(type);
539 	/* add in the data message plus newline. */
540 	if (data != NULL)
541 		len += strlen(data);
542 	len += 3;	/* '!', '\n', and NUL */
543 	msg = kmalloc(len, M_BUS, M_NOWAIT);
544 	if (msg == NULL)
545 		return;		/* Drop it on the floor */
546 	if (data != NULL)
547 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
548 		    system, subsystem, type, data);
549 	else
550 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
551 		    system, subsystem, type);
552 	devctl_queue_data(msg);
553 }
554 
555 /*
556  * Common routine that tries to make sending messages as easy as possible.
557  * We allocate memory for the data, copy strings into that, but do not
558  * free it unless there's an error.  The dequeue part of the driver should
559  * free the data.  We don't send data when the device is disabled.  We do
560  * send data, even when we have no listeners, because we wish to avoid
561  * races relating to startup and restart of listening applications.
562  *
563  * devaddq is designed to string together the type of event, with the
564  * object of that event, plus the plug and play info and location info
565  * for that event.  This is likely most useful for devices, but less
566  * useful for other consumers of this interface.  Those should use
567  * the devctl_queue_data() interface instead.
568  */
569 static void
570 devaddq(const char *type, const char *what, device_t dev)
571 {
572 	char *data = NULL;
573 	char *loc = NULL;
574 	char *pnp = NULL;
575 	const char *parstr;
576 
577 	if (devctl_disable)
578 		return;
579 	data = kmalloc(1024, M_BUS, M_NOWAIT);
580 	if (data == NULL)
581 		goto bad;
582 
583 	/* get the bus specific location of this device */
584 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
585 	if (loc == NULL)
586 		goto bad;
587 	*loc = '\0';
588 	bus_child_location_str(dev, loc, 1024);
589 
590 	/* Get the bus specific pnp info of this device */
591 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
592 	if (pnp == NULL)
593 		goto bad;
594 	*pnp = '\0';
595 	bus_child_pnpinfo_str(dev, pnp, 1024);
596 
597 	/* Get the parent of this device, or / if high enough in the tree. */
598 	if (device_get_parent(dev) == NULL)
599 		parstr = ".";	/* Or '/' ? */
600 	else
601 		parstr = device_get_nameunit(device_get_parent(dev));
602 	/* String it all together. */
603 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
604 	  parstr);
605 	kfree(loc, M_BUS);
606 	kfree(pnp, M_BUS);
607 	devctl_queue_data(data);
608 	return;
609 bad:
610 	kfree(pnp, M_BUS);
611 	kfree(loc, M_BUS);
612 	kfree(data, M_BUS);
613 	return;
614 }
615 
616 /*
617  * A device was added to the tree.  We are called just after it successfully
618  * attaches (that is, probe and attach success for this device).  No call
619  * is made if a device is merely parented into the tree.  See devnomatch
620  * if probe fails.  If attach fails, no notification is sent (but maybe
621  * we should have a different message for this).
622  */
623 static void
624 devadded(device_t dev)
625 {
626 	char *pnp = NULL;
627 	char *tmp = NULL;
628 
629 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
630 	if (pnp == NULL)
631 		goto fail;
632 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
633 	if (tmp == NULL)
634 		goto fail;
635 	*pnp = '\0';
636 	bus_child_pnpinfo_str(dev, pnp, 1024);
637 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
638 	devaddq("+", tmp, dev);
639 fail:
640 	if (pnp != NULL)
641 		kfree(pnp, M_BUS);
642 	if (tmp != NULL)
643 		kfree(tmp, M_BUS);
644 	return;
645 }
646 
647 /*
648  * A device was removed from the tree.  We are called just before this
649  * happens.
650  */
651 static void
652 devremoved(device_t dev)
653 {
654 	char *pnp = NULL;
655 	char *tmp = NULL;
656 
657 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
658 	if (pnp == NULL)
659 		goto fail;
660 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
661 	if (tmp == NULL)
662 		goto fail;
663 	*pnp = '\0';
664 	bus_child_pnpinfo_str(dev, pnp, 1024);
665 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
666 	devaddq("-", tmp, dev);
667 fail:
668 	if (pnp != NULL)
669 		kfree(pnp, M_BUS);
670 	if (tmp != NULL)
671 		kfree(tmp, M_BUS);
672 	return;
673 }
674 
675 /*
676  * Called when there's no match for this device.  This is only called
677  * the first time that no match happens, so we don't keep getitng this
678  * message.  Should that prove to be undesirable, we can change it.
679  * This is called when all drivers that can attach to a given bus
680  * decline to accept this device.  Other errrors may not be detected.
681  */
682 static void
683 devnomatch(device_t dev)
684 {
685 	devaddq("?", "", dev);
686 }
687 
688 static int
689 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
690 {
691 	struct dev_event_info *n1;
692 	int dis, error;
693 
694 	dis = devctl_disable;
695 	error = sysctl_handle_int(oidp, &dis, 0, req);
696 	if (error || !req->newptr)
697 		return (error);
698 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
699 	devctl_disable = dis;
700 	if (dis) {
701 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
702 			n1 = TAILQ_FIRST(&devsoftc.devq);
703 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
704 			kfree(n1->dei_data, M_BUS);
705 			kfree(n1, M_BUS);
706 		}
707 	}
708 	lockmgr(&devsoftc.lock, LK_RELEASE);
709 	return (0);
710 }
711 
712 /* End of /dev/devctl code */
713 
714 TAILQ_HEAD(,bsd_device)	bus_data_devices;
715 static int bus_data_generation = 1;
716 
717 kobj_method_t null_methods[] = {
718 	{ 0, 0 }
719 };
720 
721 DEFINE_CLASS(null, null_methods, 0);
722 
723 /*
724  * Devclass implementation
725  */
726 
727 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
728 
729 static devclass_t
730 devclass_find_internal(const char *classname, const char *parentname,
731 		       int create)
732 {
733 	devclass_t dc;
734 
735 	PDEBUG(("looking for %s", classname));
736 	if (classname == NULL)
737 		return(NULL);
738 
739 	TAILQ_FOREACH(dc, &devclasses, link)
740 		if (!strcmp(dc->name, classname))
741 			break;
742 
743 	if (create && !dc) {
744 		PDEBUG(("creating %s", classname));
745 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
746 			    M_BUS, M_INTWAIT | M_ZERO);
747 		dc->parent = NULL;
748 		dc->name = (char*) (dc + 1);
749 		strcpy(dc->name, classname);
750 		dc->devices = NULL;
751 		dc->maxunit = 0;
752 		TAILQ_INIT(&dc->drivers);
753 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
754 
755 		bus_data_generation_update();
756 
757 	}
758 
759 	/*
760 	 * If a parent class is specified, then set that as our parent so
761 	 * that this devclass will support drivers for the parent class as
762 	 * well.  If the parent class has the same name don't do this though
763 	 * as it creates a cycle that can trigger an infinite loop in
764 	 * device_probe_child() if a device exists for which there is no
765 	 * suitable driver.
766 	 */
767 	if (parentname && dc && !dc->parent &&
768 	    strcmp(classname, parentname) != 0)
769 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
770 
771 	return(dc);
772 }
773 
774 devclass_t
775 devclass_create(const char *classname)
776 {
777 	return(devclass_find_internal(classname, NULL, TRUE));
778 }
779 
780 devclass_t
781 devclass_find(const char *classname)
782 {
783 	return(devclass_find_internal(classname, NULL, FALSE));
784 }
785 
786 device_t
787 devclass_find_unit(const char *classname, int unit)
788 {
789 	devclass_t dc;
790 
791 	if ((dc = devclass_find(classname)) != NULL)
792 	    return(devclass_get_device(dc, unit));
793 	return (NULL);
794 }
795 
796 int
797 devclass_add_driver(devclass_t dc, driver_t *driver)
798 {
799 	driverlink_t dl;
800 	device_t dev;
801 	int i;
802 
803 	PDEBUG(("%s", DRIVERNAME(driver)));
804 
805 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
806 
807 	/*
808 	 * Compile the driver's methods. Also increase the reference count
809 	 * so that the class doesn't get freed when the last instance
810 	 * goes. This means we can safely use static methods and avoids a
811 	 * double-free in devclass_delete_driver.
812 	 */
813 	kobj_class_instantiate(driver);
814 
815 	/*
816 	 * Make sure the devclass which the driver is implementing exists.
817 	 */
818 	devclass_find_internal(driver->name, NULL, TRUE);
819 
820 	dl->driver = driver;
821 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
822 
823 	/*
824 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
825 	 * but only if the bus has already been attached (otherwise we
826 	 * might probe too early).
827 	 *
828 	 * This is what will cause a newly loaded module to be associated
829 	 * with hardware.  bus_generic_driver_added() is typically what ends
830 	 * up being called.
831 	 */
832 	for (i = 0; i < dc->maxunit; i++) {
833 		if ((dev = dc->devices[i]) != NULL) {
834 			if (dev->state >= DS_ATTACHED)
835 				BUS_DRIVER_ADDED(dev, driver);
836 		}
837 	}
838 
839 	bus_data_generation_update();
840 	return(0);
841 }
842 
843 int
844 devclass_delete_driver(devclass_t busclass, driver_t *driver)
845 {
846 	devclass_t dc = devclass_find(driver->name);
847 	driverlink_t dl;
848 	device_t dev;
849 	int i;
850 	int error;
851 
852 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
853 
854 	if (!dc)
855 		return(0);
856 
857 	/*
858 	 * Find the link structure in the bus' list of drivers.
859 	 */
860 	TAILQ_FOREACH(dl, &busclass->drivers, link)
861 		if (dl->driver == driver)
862 			break;
863 
864 	if (!dl) {
865 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
866 		return(ENOENT);
867 	}
868 
869 	/*
870 	 * Disassociate from any devices.  We iterate through all the
871 	 * devices in the devclass of the driver and detach any which are
872 	 * using the driver and which have a parent in the devclass which
873 	 * we are deleting from.
874 	 *
875 	 * Note that since a driver can be in multiple devclasses, we
876 	 * should not detach devices which are not children of devices in
877 	 * the affected devclass.
878 	 */
879 	for (i = 0; i < dc->maxunit; i++)
880 		if (dc->devices[i]) {
881 			dev = dc->devices[i];
882 			if (dev->driver == driver && dev->parent &&
883 			    dev->parent->devclass == busclass) {
884 				if ((error = device_detach(dev)) != 0)
885 					return(error);
886 				device_set_driver(dev, NULL);
887 		    	}
888 		}
889 
890 	TAILQ_REMOVE(&busclass->drivers, dl, link);
891 	kfree(dl, M_BUS);
892 
893 	kobj_class_uninstantiate(driver);
894 
895 	bus_data_generation_update();
896 	return(0);
897 }
898 
899 static driverlink_t
900 devclass_find_driver_internal(devclass_t dc, const char *classname)
901 {
902 	driverlink_t dl;
903 
904 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
905 
906 	TAILQ_FOREACH(dl, &dc->drivers, link)
907 		if (!strcmp(dl->driver->name, classname))
908 			return(dl);
909 
910 	PDEBUG(("not found"));
911 	return(NULL);
912 }
913 
914 kobj_class_t
915 devclass_find_driver(devclass_t dc, const char *classname)
916 {
917 	driverlink_t dl;
918 
919 	dl = devclass_find_driver_internal(dc, classname);
920 	if (dl)
921 		return(dl->driver);
922 	else
923 		return(NULL);
924 }
925 
926 const char *
927 devclass_get_name(devclass_t dc)
928 {
929 	return(dc->name);
930 }
931 
932 device_t
933 devclass_get_device(devclass_t dc, int unit)
934 {
935 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
936 		return(NULL);
937 	return(dc->devices[unit]);
938 }
939 
940 void *
941 devclass_get_softc(devclass_t dc, int unit)
942 {
943 	device_t dev;
944 
945 	dev = devclass_get_device(dc, unit);
946 	if (!dev)
947 		return(NULL);
948 
949 	return(device_get_softc(dev));
950 }
951 
952 int
953 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
954 {
955 	int i;
956 	int count;
957 	device_t *list;
958 
959 	count = 0;
960 	for (i = 0; i < dc->maxunit; i++)
961 		if (dc->devices[i])
962 			count++;
963 
964 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
965 
966 	count = 0;
967 	for (i = 0; i < dc->maxunit; i++)
968 		if (dc->devices[i]) {
969 			list[count] = dc->devices[i];
970 			count++;
971 		}
972 
973 	*devlistp = list;
974 	*devcountp = count;
975 
976 	return(0);
977 }
978 
979 /**
980  * @brief Get a list of drivers in the devclass
981  *
982  * An array containing a list of pointers to all the drivers in the
983  * given devclass is allocated and returned in @p *listp.  The number
984  * of drivers in the array is returned in @p *countp. The caller should
985  * free the array using @c free(p, M_TEMP).
986  *
987  * @param dc            the devclass to examine
988  * @param listp         gives location for array pointer return value
989  * @param countp        gives location for number of array elements
990  *                      return value
991  *
992  * @retval 0            success
993  * @retval ENOMEM       the array allocation failed
994  */
995 int
996 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
997 {
998         driverlink_t dl;
999         driver_t **list;
1000         int count;
1001 
1002         count = 0;
1003         TAILQ_FOREACH(dl, &dc->drivers, link)
1004                 count++;
1005         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1006         if (list == NULL)
1007                 return (ENOMEM);
1008 
1009         count = 0;
1010         TAILQ_FOREACH(dl, &dc->drivers, link) {
1011                 list[count] = dl->driver;
1012                 count++;
1013         }
1014         *listp = list;
1015         *countp = count;
1016 
1017         return (0);
1018 }
1019 
1020 /**
1021  * @brief Get the number of devices in a devclass
1022  *
1023  * @param dc		the devclass to examine
1024  */
1025 int
1026 devclass_get_count(devclass_t dc)
1027 {
1028 	int count, i;
1029 
1030 	count = 0;
1031 	for (i = 0; i < dc->maxunit; i++)
1032 		if (dc->devices[i])
1033 			count++;
1034 	return (count);
1035 }
1036 
1037 int
1038 devclass_get_maxunit(devclass_t dc)
1039 {
1040 	return(dc->maxunit);
1041 }
1042 
1043 void
1044 devclass_set_parent(devclass_t dc, devclass_t pdc)
1045 {
1046         dc->parent = pdc;
1047 }
1048 
1049 devclass_t
1050 devclass_get_parent(devclass_t dc)
1051 {
1052 	return(dc->parent);
1053 }
1054 
1055 static int
1056 devclass_alloc_unit(devclass_t dc, int *unitp)
1057 {
1058 	int unit = *unitp;
1059 
1060 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1061 
1062 	/* If we have been given a wired unit number, check for existing device */
1063 	if (unit != -1) {
1064 		if (unit >= 0 && unit < dc->maxunit &&
1065 		    dc->devices[unit] != NULL) {
1066 			if (bootverbose)
1067 				kprintf("%s-: %s%d exists, using next available unit number\n",
1068 				       dc->name, dc->name, unit);
1069 			/* find the next available slot */
1070 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1071 				;
1072 		}
1073 	} else {
1074 		/* Unwired device, find the next available slot for it */
1075 		unit = 0;
1076 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1077 			unit++;
1078 	}
1079 
1080 	/*
1081 	 * We've selected a unit beyond the length of the table, so let's
1082 	 * extend the table to make room for all units up to and including
1083 	 * this one.
1084 	 */
1085 	if (unit >= dc->maxunit) {
1086 		device_t *newlist;
1087 		int newsize;
1088 
1089 		newsize = (unit + 1);
1090 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1091 				 M_INTWAIT | M_ZERO);
1092 		if (newlist == NULL)
1093 			return(ENOMEM);
1094 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1095 		if (dc->devices)
1096 			kfree(dc->devices, M_BUS);
1097 		dc->devices = newlist;
1098 		dc->maxunit = newsize;
1099 	}
1100 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1101 
1102 	*unitp = unit;
1103 	return(0);
1104 }
1105 
1106 static int
1107 devclass_add_device(devclass_t dc, device_t dev)
1108 {
1109 	int buflen, error;
1110 
1111 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1112 
1113 	buflen = strlen(dc->name) + 5;
1114 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1115 	if (dev->nameunit == NULL)
1116 		return(ENOMEM);
1117 
1118 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1119 		kfree(dev->nameunit, M_BUS);
1120 		dev->nameunit = NULL;
1121 		return(error);
1122 	}
1123 	dc->devices[dev->unit] = dev;
1124 	dev->devclass = dc;
1125 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1126 
1127 	return(0);
1128 }
1129 
1130 static int
1131 devclass_delete_device(devclass_t dc, device_t dev)
1132 {
1133 	if (!dc || !dev)
1134 		return(0);
1135 
1136 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1137 
1138 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1139 		panic("devclass_delete_device: inconsistent device class");
1140 	dc->devices[dev->unit] = NULL;
1141 	if (dev->flags & DF_WILDCARD)
1142 		dev->unit = -1;
1143 	dev->devclass = NULL;
1144 	kfree(dev->nameunit, M_BUS);
1145 	dev->nameunit = NULL;
1146 
1147 	return(0);
1148 }
1149 
1150 static device_t
1151 make_device(device_t parent, const char *name, int unit)
1152 {
1153 	device_t dev;
1154 	devclass_t dc;
1155 
1156 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1157 
1158 	if (name != NULL) {
1159 		dc = devclass_find_internal(name, NULL, TRUE);
1160 		if (!dc) {
1161 			kprintf("make_device: can't find device class %s\n", name);
1162 			return(NULL);
1163 		}
1164 	} else
1165 		dc = NULL;
1166 
1167 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1168 	if (!dev)
1169 		return(0);
1170 
1171 	dev->parent = parent;
1172 	TAILQ_INIT(&dev->children);
1173 	kobj_init((kobj_t) dev, &null_class);
1174 	dev->driver = NULL;
1175 	dev->devclass = NULL;
1176 	dev->unit = unit;
1177 	dev->nameunit = NULL;
1178 	dev->desc = NULL;
1179 	dev->busy = 0;
1180 	dev->devflags = 0;
1181 	dev->flags = DF_ENABLED;
1182 	dev->order = 0;
1183 	if (unit == -1)
1184 		dev->flags |= DF_WILDCARD;
1185 	if (name) {
1186 		dev->flags |= DF_FIXEDCLASS;
1187 		if (devclass_add_device(dc, dev) != 0) {
1188 			kobj_delete((kobj_t)dev, M_BUS);
1189 			return(NULL);
1190 		}
1191     	}
1192 	dev->ivars = NULL;
1193 	dev->softc = NULL;
1194 
1195 	dev->state = DS_NOTPRESENT;
1196 
1197 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1198 	bus_data_generation_update();
1199 
1200 	return(dev);
1201 }
1202 
1203 static int
1204 device_print_child(device_t dev, device_t child)
1205 {
1206 	int retval = 0;
1207 
1208 	if (device_is_alive(child))
1209 		retval += BUS_PRINT_CHILD(dev, child);
1210 	else
1211 		retval += device_printf(child, " not found\n");
1212 
1213 	return(retval);
1214 }
1215 
1216 device_t
1217 device_add_child(device_t dev, const char *name, int unit)
1218 {
1219 	return device_add_child_ordered(dev, 0, name, unit);
1220 }
1221 
1222 device_t
1223 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1224 {
1225 	device_t child;
1226 	device_t place;
1227 
1228 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1229 		order, unit));
1230 
1231 	child = make_device(dev, name, unit);
1232 	if (child == NULL)
1233 		return child;
1234 	child->order = order;
1235 
1236 	TAILQ_FOREACH(place, &dev->children, link) {
1237 		if (place->order > order)
1238 			break;
1239 	}
1240 
1241 	if (place) {
1242 		/*
1243 		 * The device 'place' is the first device whose order is
1244 		 * greater than the new child.
1245 		 */
1246 		TAILQ_INSERT_BEFORE(place, child, link);
1247 	} else {
1248 		/*
1249 		 * The new child's order is greater or equal to the order of
1250 		 * any existing device. Add the child to the tail of the list.
1251 		 */
1252 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1253     	}
1254 
1255 	bus_data_generation_update();
1256 	return(child);
1257 }
1258 
1259 int
1260 device_delete_child(device_t dev, device_t child)
1261 {
1262 	int error;
1263 	device_t grandchild;
1264 
1265 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1266 
1267 	/* remove children first */
1268 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1269         	error = device_delete_child(child, grandchild);
1270 		if (error)
1271 			return(error);
1272 	}
1273 
1274 	if ((error = device_detach(child)) != 0)
1275 		return(error);
1276 	if (child->devclass)
1277 		devclass_delete_device(child->devclass, child);
1278 	TAILQ_REMOVE(&dev->children, child, link);
1279 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1280 	kobj_delete((kobj_t)child, M_BUS);
1281 
1282 	bus_data_generation_update();
1283 	return(0);
1284 }
1285 
1286 /**
1287  * @brief Delete all children devices of the given device, if any.
1288  *
1289  * This function deletes all children devices of the given device, if
1290  * any, using the device_delete_child() function for each device it
1291  * finds. If a child device cannot be deleted, this function will
1292  * return an error code.
1293  *
1294  * @param dev		the parent device
1295  *
1296  * @retval 0		success
1297  * @retval non-zero	a device would not detach
1298  */
1299 int
1300 device_delete_children(device_t dev)
1301 {
1302 	device_t child;
1303 	int error;
1304 
1305 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1306 
1307 	error = 0;
1308 
1309 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1310 		error = device_delete_child(dev, child);
1311 		if (error) {
1312 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1313 			break;
1314 		}
1315 	}
1316 	return (error);
1317 }
1318 
1319 /**
1320  * @brief Find a device given a unit number
1321  *
1322  * This is similar to devclass_get_devices() but only searches for
1323  * devices which have @p dev as a parent.
1324  *
1325  * @param dev		the parent device to search
1326  * @param unit		the unit number to search for.  If the unit is -1,
1327  *			return the first child of @p dev which has name
1328  *			@p classname (that is, the one with the lowest unit.)
1329  *
1330  * @returns		the device with the given unit number or @c
1331  *			NULL if there is no such device
1332  */
1333 device_t
1334 device_find_child(device_t dev, const char *classname, int unit)
1335 {
1336 	devclass_t dc;
1337 	device_t child;
1338 
1339 	dc = devclass_find(classname);
1340 	if (!dc)
1341 		return(NULL);
1342 
1343 	if (unit != -1) {
1344 		child = devclass_get_device(dc, unit);
1345 		if (child && child->parent == dev)
1346 			return (child);
1347 	} else {
1348 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1349 			child = devclass_get_device(dc, unit);
1350 			if (child && child->parent == dev)
1351 				return (child);
1352 		}
1353 	}
1354 	return(NULL);
1355 }
1356 
1357 static driverlink_t
1358 first_matching_driver(devclass_t dc, device_t dev)
1359 {
1360 	if (dev->devclass)
1361 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1362 	else
1363 		return(TAILQ_FIRST(&dc->drivers));
1364 }
1365 
1366 static driverlink_t
1367 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1368 {
1369 	if (dev->devclass) {
1370 		driverlink_t dl;
1371 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1372 			if (!strcmp(dev->devclass->name, dl->driver->name))
1373 				return(dl);
1374 		return(NULL);
1375 	} else
1376 		return(TAILQ_NEXT(last, link));
1377 }
1378 
1379 int
1380 device_probe_child(device_t dev, device_t child)
1381 {
1382 	devclass_t dc;
1383 	driverlink_t best = NULL;
1384 	driverlink_t dl;
1385 	int result, pri = 0;
1386 	int hasclass = (child->devclass != NULL);
1387 
1388 	dc = dev->devclass;
1389 	if (!dc)
1390 		panic("device_probe_child: parent device has no devclass");
1391 
1392 	if (child->state == DS_ALIVE)
1393 		return(0);
1394 
1395 	for (; dc; dc = dc->parent) {
1396 		for (dl = first_matching_driver(dc, child); dl;
1397 		     dl = next_matching_driver(dc, child, dl)) {
1398 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1399 			device_set_driver(child, dl->driver);
1400 			if (!hasclass)
1401 				device_set_devclass(child, dl->driver->name);
1402 			result = DEVICE_PROBE(child);
1403 			if (!hasclass)
1404 				device_set_devclass(child, 0);
1405 
1406 			/*
1407 			 * If the driver returns SUCCESS, there can be
1408 			 * no higher match for this device.
1409 			 */
1410 			if (result == 0) {
1411 				best = dl;
1412 				pri = 0;
1413 				break;
1414 			}
1415 
1416 			/*
1417 			 * The driver returned an error so it
1418 			 * certainly doesn't match.
1419 			 */
1420 			if (result > 0) {
1421 				device_set_driver(child, NULL);
1422 				continue;
1423 			}
1424 
1425 			/*
1426 			 * A priority lower than SUCCESS, remember the
1427 			 * best matching driver. Initialise the value
1428 			 * of pri for the first match.
1429 			 */
1430 			if (best == NULL || result > pri) {
1431 				best = dl;
1432 				pri = result;
1433 				continue;
1434 			}
1435 		}
1436 		/*
1437 	         * If we have unambiguous match in this devclass,
1438 	         * don't look in the parent.
1439 	         */
1440 	        if (best && pri == 0)
1441 			break;
1442 	}
1443 
1444 	/*
1445 	 * If we found a driver, change state and initialise the devclass.
1446 	 */
1447 	if (best) {
1448 		if (!child->devclass)
1449 			device_set_devclass(child, best->driver->name);
1450 		device_set_driver(child, best->driver);
1451 		if (pri < 0) {
1452 			/*
1453 			 * A bit bogus. Call the probe method again to make
1454 			 * sure that we have the right description.
1455 			 */
1456 			DEVICE_PROBE(child);
1457 		}
1458 
1459 		bus_data_generation_update();
1460 		child->state = DS_ALIVE;
1461 		return(0);
1462 	}
1463 
1464 	return(ENXIO);
1465 }
1466 
1467 int
1468 device_probe_child_gpri(device_t dev, device_t child, u_int gpri)
1469 {
1470 	devclass_t dc;
1471 	driverlink_t best = NULL;
1472 	driverlink_t dl;
1473 	int result, pri = 0;
1474 	int hasclass = (child->devclass != NULL);
1475 
1476 	dc = dev->devclass;
1477 	if (!dc)
1478 		panic("device_probe_child: parent device has no devclass");
1479 
1480 	if (child->state == DS_ALIVE)
1481 		return(0);
1482 
1483 	for (; dc; dc = dc->parent) {
1484 		for (dl = first_matching_driver(dc, child); dl;
1485 			dl = next_matching_driver(dc, child, dl)) {
1486 			/*
1487 			 * GPRI handling, only probe drivers with the
1488 			 * specific GPRI.
1489 			 */
1490 			if (dl->driver->gpri != gpri)
1491 				continue;
1492 
1493 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1494 			device_set_driver(child, dl->driver);
1495 			if (!hasclass)
1496 				device_set_devclass(child, dl->driver->name);
1497 			result = DEVICE_PROBE(child);
1498 			if (!hasclass)
1499 				device_set_devclass(child, 0);
1500 
1501 			/*
1502 			 * If the driver returns SUCCESS, there can be
1503 			 * no higher match for this device.
1504 			 */
1505 			if (result == 0) {
1506 				best = dl;
1507 				pri = 0;
1508 				break;
1509 			}
1510 
1511 			/*
1512 			 * The driver returned an error so it
1513 			 * certainly doesn't match.
1514 			 */
1515 			if (result > 0) {
1516 				device_set_driver(child, NULL);
1517 				continue;
1518 			}
1519 
1520 			/*
1521 			 * A priority lower than SUCCESS, remember the
1522 			 * best matching driver. Initialise the value
1523 			 * of pri for the first match.
1524 			 */
1525 			if (best == NULL || result > pri) {
1526 				best = dl;
1527 				pri = result;
1528 				continue;
1529 			}
1530 	        }
1531 		/*
1532 	         * If we have unambiguous match in this devclass,
1533 	         * don't look in the parent.
1534 	         */
1535 	        if (best && pri == 0)
1536 			break;
1537 	}
1538 
1539 	/*
1540 	 * If we found a driver, change state and initialise the devclass.
1541 	 */
1542 	if (best) {
1543 		if (!child->devclass)
1544 			device_set_devclass(child, best->driver->name);
1545 		device_set_driver(child, best->driver);
1546 		if (pri < 0) {
1547 			/*
1548 			 * A bit bogus. Call the probe method again to make
1549 			 * sure that we have the right description.
1550 			 */
1551 			DEVICE_PROBE(child);
1552 		}
1553 
1554 		bus_data_generation_update();
1555 		child->state = DS_ALIVE;
1556 		return(0);
1557 	}
1558 
1559 	return(ENXIO);
1560 }
1561 
1562 device_t
1563 device_get_parent(device_t dev)
1564 {
1565 	return dev->parent;
1566 }
1567 
1568 int
1569 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1570 {
1571 	int count;
1572 	device_t child;
1573 	device_t *list;
1574 
1575 	count = 0;
1576 	TAILQ_FOREACH(child, &dev->children, link)
1577 		count++;
1578 
1579 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1580 
1581 	count = 0;
1582 	TAILQ_FOREACH(child, &dev->children, link) {
1583 		list[count] = child;
1584 		count++;
1585 	}
1586 
1587 	*devlistp = list;
1588 	*devcountp = count;
1589 
1590 	return(0);
1591 }
1592 
1593 driver_t *
1594 device_get_driver(device_t dev)
1595 {
1596 	return(dev->driver);
1597 }
1598 
1599 devclass_t
1600 device_get_devclass(device_t dev)
1601 {
1602 	return(dev->devclass);
1603 }
1604 
1605 const char *
1606 device_get_name(device_t dev)
1607 {
1608 	if (dev->devclass)
1609 		return devclass_get_name(dev->devclass);
1610 	return(NULL);
1611 }
1612 
1613 const char *
1614 device_get_nameunit(device_t dev)
1615 {
1616 	return(dev->nameunit);
1617 }
1618 
1619 int
1620 device_get_unit(device_t dev)
1621 {
1622 	return(dev->unit);
1623 }
1624 
1625 const char *
1626 device_get_desc(device_t dev)
1627 {
1628 	return(dev->desc);
1629 }
1630 
1631 uint32_t
1632 device_get_flags(device_t dev)
1633 {
1634 	return(dev->devflags);
1635 }
1636 
1637 struct sysctl_ctx_list *
1638 device_get_sysctl_ctx(device_t dev)
1639 {
1640 	return (&dev->sysctl_ctx);
1641 }
1642 
1643 struct sysctl_oid *
1644 device_get_sysctl_tree(device_t dev)
1645 {
1646 	return (dev->sysctl_tree);
1647 }
1648 
1649 int
1650 device_print_prettyname(device_t dev)
1651 {
1652 	const char *name = device_get_name(dev);
1653 
1654 	if (name == NULL)
1655 		return kprintf("unknown: ");
1656 	else
1657 		return kprintf("%s%d: ", name, device_get_unit(dev));
1658 }
1659 
1660 int
1661 device_printf(device_t dev, const char * fmt, ...)
1662 {
1663 	__va_list ap;
1664 	int retval;
1665 
1666 	retval = device_print_prettyname(dev);
1667 	__va_start(ap, fmt);
1668 	retval += kvprintf(fmt, ap);
1669 	__va_end(ap);
1670 	return retval;
1671 }
1672 
1673 static void
1674 device_set_desc_internal(device_t dev, const char* desc, int copy)
1675 {
1676 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1677 		kfree(dev->desc, M_BUS);
1678 		dev->flags &= ~DF_DESCMALLOCED;
1679 		dev->desc = NULL;
1680 	}
1681 
1682 	if (copy && desc) {
1683 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1684 		if (dev->desc) {
1685 			strcpy(dev->desc, desc);
1686 			dev->flags |= DF_DESCMALLOCED;
1687 		}
1688 	} else {
1689 		/* Avoid a -Wcast-qual warning */
1690 		dev->desc = (char *)(uintptr_t) desc;
1691 	}
1692 
1693 	bus_data_generation_update();
1694 }
1695 
1696 void
1697 device_set_desc(device_t dev, const char* desc)
1698 {
1699 	device_set_desc_internal(dev, desc, FALSE);
1700 }
1701 
1702 void
1703 device_set_desc_copy(device_t dev, const char* desc)
1704 {
1705 	device_set_desc_internal(dev, desc, TRUE);
1706 }
1707 
1708 void
1709 device_set_flags(device_t dev, uint32_t flags)
1710 {
1711 	dev->devflags = flags;
1712 }
1713 
1714 void *
1715 device_get_softc(device_t dev)
1716 {
1717 	return dev->softc;
1718 }
1719 
1720 void
1721 device_set_softc(device_t dev, void *softc)
1722 {
1723 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1724 		kfree(dev->softc, M_BUS);
1725 	dev->softc = softc;
1726 	if (dev->softc)
1727 		dev->flags |= DF_EXTERNALSOFTC;
1728 	else
1729 		dev->flags &= ~DF_EXTERNALSOFTC;
1730 }
1731 
1732 void
1733 device_set_async_attach(device_t dev, int enable)
1734 {
1735 	if (enable)
1736 		dev->flags |= DF_ASYNCPROBE;
1737 	else
1738 		dev->flags &= ~DF_ASYNCPROBE;
1739 }
1740 
1741 void *
1742 device_get_ivars(device_t dev)
1743 {
1744 	return dev->ivars;
1745 }
1746 
1747 void
1748 device_set_ivars(device_t dev, void * ivars)
1749 {
1750 	if (!dev)
1751 		return;
1752 
1753 	dev->ivars = ivars;
1754 }
1755 
1756 device_state_t
1757 device_get_state(device_t dev)
1758 {
1759 	return(dev->state);
1760 }
1761 
1762 void
1763 device_enable(device_t dev)
1764 {
1765 	dev->flags |= DF_ENABLED;
1766 }
1767 
1768 void
1769 device_disable(device_t dev)
1770 {
1771 	dev->flags &= ~DF_ENABLED;
1772 }
1773 
1774 /*
1775  * YYY cannot block
1776  */
1777 void
1778 device_busy(device_t dev)
1779 {
1780 	if (dev->state < DS_ATTACHED)
1781 		panic("device_busy: called for unattached device");
1782 	if (dev->busy == 0 && dev->parent)
1783 		device_busy(dev->parent);
1784 	dev->busy++;
1785 	dev->state = DS_BUSY;
1786 }
1787 
1788 /*
1789  * YYY cannot block
1790  */
1791 void
1792 device_unbusy(device_t dev)
1793 {
1794 	if (dev->state != DS_BUSY)
1795 		panic("device_unbusy: called for non-busy device");
1796 	dev->busy--;
1797 	if (dev->busy == 0) {
1798 		if (dev->parent)
1799 			device_unbusy(dev->parent);
1800 		dev->state = DS_ATTACHED;
1801 	}
1802 }
1803 
1804 void
1805 device_quiet(device_t dev)
1806 {
1807 	dev->flags |= DF_QUIET;
1808 }
1809 
1810 void
1811 device_verbose(device_t dev)
1812 {
1813 	dev->flags &= ~DF_QUIET;
1814 }
1815 
1816 int
1817 device_is_quiet(device_t dev)
1818 {
1819 	return((dev->flags & DF_QUIET) != 0);
1820 }
1821 
1822 int
1823 device_is_enabled(device_t dev)
1824 {
1825 	return((dev->flags & DF_ENABLED) != 0);
1826 }
1827 
1828 int
1829 device_is_alive(device_t dev)
1830 {
1831 	return(dev->state >= DS_ALIVE);
1832 }
1833 
1834 int
1835 device_is_attached(device_t dev)
1836 {
1837 	return(dev->state >= DS_ATTACHED);
1838 }
1839 
1840 int
1841 device_set_devclass(device_t dev, const char *classname)
1842 {
1843 	devclass_t dc;
1844 	int error;
1845 
1846 	if (!classname) {
1847 		if (dev->devclass)
1848 			devclass_delete_device(dev->devclass, dev);
1849 		return(0);
1850 	}
1851 
1852 	if (dev->devclass) {
1853 		kprintf("device_set_devclass: device class already set\n");
1854 		return(EINVAL);
1855 	}
1856 
1857 	dc = devclass_find_internal(classname, NULL, TRUE);
1858 	if (!dc)
1859 		return(ENOMEM);
1860 
1861 	error = devclass_add_device(dc, dev);
1862 
1863 	bus_data_generation_update();
1864 	return(error);
1865 }
1866 
1867 int
1868 device_set_driver(device_t dev, driver_t *driver)
1869 {
1870 	if (dev->state >= DS_ATTACHED)
1871 		return(EBUSY);
1872 
1873 	if (dev->driver == driver)
1874 		return(0);
1875 
1876 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1877 		kfree(dev->softc, M_BUS);
1878 		dev->softc = NULL;
1879 	}
1880 	device_set_desc(dev, NULL);
1881 	kobj_delete((kobj_t) dev, 0);
1882 	dev->driver = driver;
1883 	if (driver) {
1884 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1885 		if (!(dev->flags & DF_EXTERNALSOFTC))
1886 			dev->softc = kmalloc(driver->size, M_BUS,
1887 					    M_INTWAIT | M_ZERO);
1888 	} else {
1889 		kobj_init((kobj_t) dev, &null_class);
1890 	}
1891 
1892 	bus_data_generation_update();
1893 	return(0);
1894 }
1895 
1896 int
1897 device_probe_and_attach(device_t dev)
1898 {
1899 	device_t bus = dev->parent;
1900 	int error = 0;
1901 
1902 	if (dev->state >= DS_ALIVE)
1903 		return(0);
1904 
1905 	if ((dev->flags & DF_ENABLED) == 0) {
1906 		if (bootverbose) {
1907 			device_print_prettyname(dev);
1908 			kprintf("not probed (disabled)\n");
1909 		}
1910 		return(0);
1911 	}
1912 
1913 	error = device_probe_child(bus, dev);
1914 	if (error) {
1915 		if (!(dev->flags & DF_DONENOMATCH)) {
1916 			BUS_PROBE_NOMATCH(bus, dev);
1917 			devnomatch(dev);
1918 			dev->flags |= DF_DONENOMATCH;
1919 		}
1920 		return(error);
1921 	}
1922 
1923 	/*
1924 	 * Output the exact device chain prior to the attach in case the
1925 	 * system locks up during attach, and generate the full info after
1926 	 * the attach so correct irq and other information is displayed.
1927 	 */
1928 	if (bootverbose && !device_is_quiet(dev)) {
1929 		device_t tmp;
1930 
1931 		kprintf("%s", device_get_nameunit(dev));
1932 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1933 			kprintf(".%s", device_get_nameunit(tmp));
1934 		kprintf("\n");
1935 	}
1936 	if (!device_is_quiet(dev))
1937 		device_print_child(bus, dev);
1938 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1939 		kprintf("%s: probing asynchronously\n",
1940 			device_get_nameunit(dev));
1941 		dev->state = DS_INPROGRESS;
1942 		device_attach_async(dev);
1943 		error = 0;
1944 	} else {
1945 		error = device_doattach(dev);
1946 	}
1947 	return(error);
1948 }
1949 
1950 int
1951 device_probe_and_attach_gpri(device_t dev, u_int gpri)
1952 {
1953 	device_t bus = dev->parent;
1954 	int error = 0;
1955 
1956 	if (dev->state >= DS_ALIVE)
1957 		return(0);
1958 
1959 	if ((dev->flags & DF_ENABLED) == 0) {
1960 		if (bootverbose) {
1961 			device_print_prettyname(dev);
1962 			kprintf("not probed (disabled)\n");
1963 		}
1964 		return(0);
1965 	}
1966 
1967 	error = device_probe_child_gpri(bus, dev, gpri);
1968 	if (error) {
1969 #if 0
1970 		if (!(dev->flags & DF_DONENOMATCH)) {
1971 			BUS_PROBE_NOMATCH(bus, dev);
1972 			devnomatch(dev);
1973 			dev->flags |= DF_DONENOMATCH;
1974 		}
1975 #endif
1976 		return(error);
1977 	}
1978 
1979 	/*
1980 	 * Output the exact device chain prior to the attach in case the
1981 	 * system locks up during attach, and generate the full info after
1982 	 * the attach so correct irq and other information is displayed.
1983 	 */
1984 	if (bootverbose && !device_is_quiet(dev)) {
1985 		device_t tmp;
1986 
1987 		kprintf("%s", device_get_nameunit(dev));
1988 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1989 			kprintf(".%s", device_get_nameunit(tmp));
1990 		kprintf("\n");
1991 	}
1992 	if (!device_is_quiet(dev))
1993 		device_print_child(bus, dev);
1994 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1995 		kprintf("%s: probing asynchronously\n",
1996 			device_get_nameunit(dev));
1997 		dev->state = DS_INPROGRESS;
1998 		device_attach_async(dev);
1999 		error = 0;
2000 	} else {
2001 		error = device_doattach(dev);
2002 	}
2003 	return(error);
2004 }
2005 
2006 /*
2007  * Device is known to be alive, do the attach asynchronously.
2008  * However, serialize the attaches with the mp lock.
2009  */
2010 static void
2011 device_attach_async(device_t dev)
2012 {
2013 	thread_t td;
2014 
2015 	atomic_add_int(&numasyncthreads, 1);
2016 	lwkt_create(device_attach_thread, dev, &td, NULL,
2017 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
2018 }
2019 
2020 static void
2021 device_attach_thread(void *arg)
2022 {
2023 	device_t dev = arg;
2024 
2025 	(void)device_doattach(dev);
2026 	atomic_subtract_int(&numasyncthreads, 1);
2027 	wakeup(&numasyncthreads);
2028 }
2029 
2030 /*
2031  * Device is known to be alive, do the attach (synchronous or asynchronous)
2032  */
2033 static int
2034 device_doattach(device_t dev)
2035 {
2036 	device_t bus = dev->parent;
2037 	int hasclass = (dev->devclass != NULL);
2038 	int error;
2039 
2040 	device_sysctl_init(dev);
2041 	error = DEVICE_ATTACH(dev);
2042 	if (error == 0) {
2043 		dev->state = DS_ATTACHED;
2044 		if (bootverbose && !device_is_quiet(dev))
2045 			device_print_child(bus, dev);
2046 		device_sysctl_update(dev);
2047 		devadded(dev);
2048 	} else {
2049 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
2050 		       dev->driver->name, dev->unit, error);
2051 		/* Unset the class that was set in device_probe_child */
2052 		if (!hasclass)
2053 			device_set_devclass(dev, 0);
2054 		device_set_driver(dev, NULL);
2055 		dev->state = DS_NOTPRESENT;
2056 		device_sysctl_fini(dev);
2057 	}
2058 	return(error);
2059 }
2060 
2061 int
2062 device_detach(device_t dev)
2063 {
2064 	int error;
2065 
2066 	PDEBUG(("%s", DEVICENAME(dev)));
2067 	if (dev->state == DS_BUSY)
2068 		return(EBUSY);
2069 	if (dev->state != DS_ATTACHED)
2070 		return(0);
2071 
2072 	if ((error = DEVICE_DETACH(dev)) != 0)
2073 		return(error);
2074 	devremoved(dev);
2075 	device_printf(dev, "detached\n");
2076 	if (dev->parent)
2077 		BUS_CHILD_DETACHED(dev->parent, dev);
2078 
2079 	if (!(dev->flags & DF_FIXEDCLASS))
2080 		devclass_delete_device(dev->devclass, dev);
2081 
2082 	dev->state = DS_NOTPRESENT;
2083 	device_set_driver(dev, NULL);
2084 	device_sysctl_fini(dev);
2085 
2086 	return(0);
2087 }
2088 
2089 int
2090 device_shutdown(device_t dev)
2091 {
2092 	if (dev->state < DS_ATTACHED)
2093 		return 0;
2094 	PDEBUG(("%s", DEVICENAME(dev)));
2095 	return DEVICE_SHUTDOWN(dev);
2096 }
2097 
2098 int
2099 device_set_unit(device_t dev, int unit)
2100 {
2101 	devclass_t dc;
2102 	int err;
2103 
2104 	dc = device_get_devclass(dev);
2105 	if (unit < dc->maxunit && dc->devices[unit])
2106 		return(EBUSY);
2107 	err = devclass_delete_device(dc, dev);
2108 	if (err)
2109 		return(err);
2110 	dev->unit = unit;
2111 	err = devclass_add_device(dc, dev);
2112 	if (err)
2113 		return(err);
2114 
2115 	bus_data_generation_update();
2116 	return(0);
2117 }
2118 
2119 /*======================================*/
2120 /*
2121  * Access functions for device resources.
2122  */
2123 
2124 /* Supplied by config(8) in ioconf.c */
2125 extern struct config_device config_devtab[];
2126 extern int devtab_count;
2127 
2128 /* Runtime version */
2129 struct config_device *devtab = config_devtab;
2130 
2131 static int
2132 resource_new_name(const char *name, int unit)
2133 {
2134 	struct config_device *new;
2135 
2136 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
2137 		     M_INTWAIT | M_ZERO);
2138 	if (devtab && devtab_count > 0)
2139 		bcopy(devtab, new, devtab_count * sizeof(*new));
2140 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
2141 	if (new[devtab_count].name == NULL) {
2142 		kfree(new, M_TEMP);
2143 		return(-1);
2144 	}
2145 	strcpy(new[devtab_count].name, name);
2146 	new[devtab_count].unit = unit;
2147 	new[devtab_count].resource_count = 0;
2148 	new[devtab_count].resources = NULL;
2149 	if (devtab && devtab != config_devtab)
2150 		kfree(devtab, M_TEMP);
2151 	devtab = new;
2152 	return devtab_count++;
2153 }
2154 
2155 static int
2156 resource_new_resname(int j, const char *resname, resource_type type)
2157 {
2158 	struct config_resource *new;
2159 	int i;
2160 
2161 	i = devtab[j].resource_count;
2162 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2163 	if (devtab[j].resources && i > 0)
2164 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2165 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2166 	if (new[i].name == NULL) {
2167 		kfree(new, M_TEMP);
2168 		return(-1);
2169 	}
2170 	strcpy(new[i].name, resname);
2171 	new[i].type = type;
2172 	if (devtab[j].resources)
2173 		kfree(devtab[j].resources, M_TEMP);
2174 	devtab[j].resources = new;
2175 	devtab[j].resource_count = i + 1;
2176 	return(i);
2177 }
2178 
2179 static int
2180 resource_match_string(int i, const char *resname, const char *value)
2181 {
2182 	int j;
2183 	struct config_resource *res;
2184 
2185 	for (j = 0, res = devtab[i].resources;
2186 	     j < devtab[i].resource_count; j++, res++)
2187 		if (!strcmp(res->name, resname)
2188 		    && res->type == RES_STRING
2189 		    && !strcmp(res->u.stringval, value))
2190 			return(j);
2191 	return(-1);
2192 }
2193 
2194 static int
2195 resource_find(const char *name, int unit, const char *resname,
2196 	      struct config_resource **result)
2197 {
2198 	int i, j;
2199 	struct config_resource *res;
2200 
2201 	/*
2202 	 * First check specific instances, then generic.
2203 	 */
2204 	for (i = 0; i < devtab_count; i++) {
2205 		if (devtab[i].unit < 0)
2206 			continue;
2207 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2208 			res = devtab[i].resources;
2209 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2210 				if (!strcmp(res->name, resname)) {
2211 					*result = res;
2212 					return(0);
2213 				}
2214 		}
2215 	}
2216 	for (i = 0; i < devtab_count; i++) {
2217 		if (devtab[i].unit >= 0)
2218 			continue;
2219 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2220 		/* XXX if so, then the generic match does nothing */
2221 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2222 			res = devtab[i].resources;
2223 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2224 				if (!strcmp(res->name, resname)) {
2225 					*result = res;
2226 					return(0);
2227 				}
2228 		}
2229 	}
2230 	return(ENOENT);
2231 }
2232 
2233 static int
2234 resource_kenv(const char *name, int unit, const char *resname, long *result)
2235 {
2236 	const char *env;
2237 	char buf[64];
2238 
2239 	/*
2240 	 * DragonFly style loader.conf hinting
2241 	 */
2242 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2243 	if ((env = kgetenv(buf)) != NULL) {
2244 		*result = strtol(env, NULL, 0);
2245 		return(0);
2246 	}
2247 
2248 	/*
2249 	 * Also support FreeBSD style loader.conf hinting
2250 	 */
2251 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2252 	if ((env = kgetenv(buf)) != NULL) {
2253 		*result = strtol(env, NULL, 0);
2254 		return(0);
2255 	}
2256 
2257 	return (ENOENT);
2258 }
2259 
2260 int
2261 resource_int_value(const char *name, int unit, const char *resname, int *result)
2262 {
2263 	struct config_resource *res;
2264 	long kvalue = 0;
2265 	int error;
2266 
2267 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2268 		*result = (int)kvalue;
2269 		return 0;
2270 	}
2271 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2272 		return(error);
2273 	if (res->type != RES_INT)
2274 		return(EFTYPE);
2275 	*result = res->u.intval;
2276 	return(0);
2277 }
2278 
2279 int
2280 resource_long_value(const char *name, int unit, const char *resname,
2281 		    long *result)
2282 {
2283 	struct config_resource *res;
2284 	long kvalue;
2285 	int error;
2286 
2287 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2288 		*result = kvalue;
2289 		return 0;
2290 	}
2291 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2292 		return(error);
2293 	if (res->type != RES_LONG)
2294 		return(EFTYPE);
2295 	*result = res->u.longval;
2296 	return(0);
2297 }
2298 
2299 int
2300 resource_string_value(const char *name, int unit, const char *resname,
2301     const char **result)
2302 {
2303 	int error;
2304 	struct config_resource *res;
2305 	char buf[64];
2306 	const char *env;
2307 
2308 	/*
2309 	 * DragonFly style loader.conf hinting
2310 	 */
2311 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2312 	if ((env = kgetenv(buf)) != NULL) {
2313 		*result = env;
2314 		return 0;
2315 	}
2316 
2317 	/*
2318 	 * Also support FreeBSD style loader.conf hinting
2319 	 */
2320 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2321 	if ((env = kgetenv(buf)) != NULL) {
2322 		*result = env;
2323 		return 0;
2324 	}
2325 
2326 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2327 		return(error);
2328 	if (res->type != RES_STRING)
2329 		return(EFTYPE);
2330 	*result = res->u.stringval;
2331 	return(0);
2332 }
2333 
2334 int
2335 resource_query_string(int i, const char *resname, const char *value)
2336 {
2337 	if (i < 0)
2338 		i = 0;
2339 	else
2340 		i = i + 1;
2341 	for (; i < devtab_count; i++)
2342 		if (resource_match_string(i, resname, value) >= 0)
2343 			return(i);
2344 	return(-1);
2345 }
2346 
2347 int
2348 resource_locate(int i, const char *resname)
2349 {
2350 	if (i < 0)
2351 		i = 0;
2352 	else
2353 		i = i + 1;
2354 	for (; i < devtab_count; i++)
2355 		if (!strcmp(devtab[i].name, resname))
2356 			return(i);
2357 	return(-1);
2358 }
2359 
2360 int
2361 resource_count(void)
2362 {
2363 	return(devtab_count);
2364 }
2365 
2366 char *
2367 resource_query_name(int i)
2368 {
2369 	return(devtab[i].name);
2370 }
2371 
2372 int
2373 resource_query_unit(int i)
2374 {
2375 	return(devtab[i].unit);
2376 }
2377 
2378 static int
2379 resource_create(const char *name, int unit, const char *resname,
2380 		resource_type type, struct config_resource **result)
2381 {
2382 	int i, j;
2383 	struct config_resource *res = NULL;
2384 
2385 	for (i = 0; i < devtab_count; i++)
2386 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2387 			res = devtab[i].resources;
2388 			break;
2389 		}
2390 	if (res == NULL) {
2391 		i = resource_new_name(name, unit);
2392 		if (i < 0)
2393 			return(ENOMEM);
2394 		res = devtab[i].resources;
2395 	}
2396 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2397 		if (!strcmp(res->name, resname)) {
2398 			*result = res;
2399 			return(0);
2400 		}
2401 	j = resource_new_resname(i, resname, type);
2402 	if (j < 0)
2403 		return(ENOMEM);
2404 	res = &devtab[i].resources[j];
2405 	*result = res;
2406 	return(0);
2407 }
2408 
2409 int
2410 resource_set_int(const char *name, int unit, const char *resname, int value)
2411 {
2412 	int error;
2413 	struct config_resource *res;
2414 
2415 	error = resource_create(name, unit, resname, RES_INT, &res);
2416 	if (error)
2417 		return(error);
2418 	if (res->type != RES_INT)
2419 		return(EFTYPE);
2420 	res->u.intval = value;
2421 	return(0);
2422 }
2423 
2424 int
2425 resource_set_long(const char *name, int unit, const char *resname, long value)
2426 {
2427 	int error;
2428 	struct config_resource *res;
2429 
2430 	error = resource_create(name, unit, resname, RES_LONG, &res);
2431 	if (error)
2432 		return(error);
2433 	if (res->type != RES_LONG)
2434 		return(EFTYPE);
2435 	res->u.longval = value;
2436 	return(0);
2437 }
2438 
2439 int
2440 resource_set_string(const char *name, int unit, const char *resname,
2441 		    const char *value)
2442 {
2443 	int error;
2444 	struct config_resource *res;
2445 
2446 	error = resource_create(name, unit, resname, RES_STRING, &res);
2447 	if (error)
2448 		return(error);
2449 	if (res->type != RES_STRING)
2450 		return(EFTYPE);
2451 	if (res->u.stringval)
2452 		kfree(res->u.stringval, M_TEMP);
2453 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2454 	if (res->u.stringval == NULL)
2455 		return(ENOMEM);
2456 	strcpy(res->u.stringval, value);
2457 	return(0);
2458 }
2459 
2460 static void
2461 resource_cfgload(void *dummy __unused)
2462 {
2463 	struct config_resource *res, *cfgres;
2464 	int i, j;
2465 	int error;
2466 	char *name, *resname;
2467 	int unit;
2468 	resource_type type;
2469 	char *stringval;
2470 	int config_devtab_count;
2471 
2472 	config_devtab_count = devtab_count;
2473 	devtab = NULL;
2474 	devtab_count = 0;
2475 
2476 	for (i = 0; i < config_devtab_count; i++) {
2477 		name = config_devtab[i].name;
2478 		unit = config_devtab[i].unit;
2479 
2480 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2481 			cfgres = config_devtab[i].resources;
2482 			resname = cfgres[j].name;
2483 			type = cfgres[j].type;
2484 			error = resource_create(name, unit, resname, type,
2485 						&res);
2486 			if (error) {
2487 				kprintf("create resource %s%d: error %d\n",
2488 					name, unit, error);
2489 				continue;
2490 			}
2491 			if (res->type != type) {
2492 				kprintf("type mismatch %s%d: %d != %d\n",
2493 					name, unit, res->type, type);
2494 				continue;
2495 			}
2496 			switch (type) {
2497 			case RES_INT:
2498 				res->u.intval = cfgres[j].u.intval;
2499 				break;
2500 			case RES_LONG:
2501 				res->u.longval = cfgres[j].u.longval;
2502 				break;
2503 			case RES_STRING:
2504 				if (res->u.stringval)
2505 					kfree(res->u.stringval, M_TEMP);
2506 				stringval = cfgres[j].u.stringval;
2507 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2508 							  M_TEMP, M_INTWAIT);
2509 				if (res->u.stringval == NULL)
2510 					break;
2511 				strcpy(res->u.stringval, stringval);
2512 				break;
2513 			default:
2514 				panic("unknown resource type %d", type);
2515 			}
2516 		}
2517 	}
2518 }
2519 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2520 
2521 
2522 /*======================================*/
2523 /*
2524  * Some useful method implementations to make life easier for bus drivers.
2525  */
2526 
2527 void
2528 resource_list_init(struct resource_list *rl)
2529 {
2530 	SLIST_INIT(rl);
2531 }
2532 
2533 void
2534 resource_list_free(struct resource_list *rl)
2535 {
2536 	struct resource_list_entry *rle;
2537 
2538 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2539 		if (rle->res)
2540 			panic("resource_list_free: resource entry is busy");
2541 		SLIST_REMOVE_HEAD(rl, link);
2542 		kfree(rle, M_BUS);
2543 	}
2544 }
2545 
2546 void
2547 resource_list_add(struct resource_list *rl, int type, int rid,
2548     u_long start, u_long end, u_long count, int cpuid)
2549 {
2550 	struct resource_list_entry *rle;
2551 
2552 	rle = resource_list_find(rl, type, rid);
2553 	if (rle == NULL) {
2554 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2555 			     M_INTWAIT);
2556 		SLIST_INSERT_HEAD(rl, rle, link);
2557 		rle->type = type;
2558 		rle->rid = rid;
2559 		rle->res = NULL;
2560 		rle->cpuid = -1;
2561 	}
2562 
2563 	if (rle->res)
2564 		panic("resource_list_add: resource entry is busy");
2565 
2566 	rle->start = start;
2567 	rle->end = end;
2568 	rle->count = count;
2569 
2570 	if (cpuid != -1) {
2571 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2572 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2573 			    rle->cpuid, cpuid);
2574 		}
2575 		rle->cpuid = cpuid;
2576 	}
2577 }
2578 
2579 struct resource_list_entry*
2580 resource_list_find(struct resource_list *rl,
2581 		   int type, int rid)
2582 {
2583 	struct resource_list_entry *rle;
2584 
2585 	SLIST_FOREACH(rle, rl, link)
2586 		if (rle->type == type && rle->rid == rid)
2587 			return(rle);
2588 	return(NULL);
2589 }
2590 
2591 void
2592 resource_list_delete(struct resource_list *rl,
2593 		     int type, int rid)
2594 {
2595 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2596 
2597 	if (rle) {
2598 		if (rle->res != NULL)
2599 			panic("resource_list_delete: resource has not been released");
2600 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2601 		kfree(rle, M_BUS);
2602 	}
2603 }
2604 
2605 struct resource *
2606 resource_list_alloc(struct resource_list *rl,
2607 		    device_t bus, device_t child,
2608 		    int type, int *rid,
2609 		    u_long start, u_long end,
2610 		    u_long count, u_int flags, int cpuid)
2611 {
2612 	struct resource_list_entry *rle = NULL;
2613 	int passthrough = (device_get_parent(child) != bus);
2614 	int isdefault = (start == 0UL && end == ~0UL);
2615 
2616 	if (passthrough) {
2617 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2618 					  type, rid,
2619 					  start, end, count, flags, cpuid));
2620 	}
2621 
2622 	rle = resource_list_find(rl, type, *rid);
2623 
2624 	if (!rle)
2625 		return(0);		/* no resource of that type/rid */
2626 
2627 	if (rle->res)
2628 		panic("resource_list_alloc: resource entry is busy");
2629 
2630 	if (isdefault) {
2631 		start = rle->start;
2632 		count = max(count, rle->count);
2633 		end = max(rle->end, start + count - 1);
2634 	}
2635 	cpuid = rle->cpuid;
2636 
2637 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2638 				      type, rid, start, end, count,
2639 				      flags, cpuid);
2640 
2641 	/*
2642 	 * Record the new range.
2643 	 */
2644 	if (rle->res) {
2645 		rle->start = rman_get_start(rle->res);
2646 		rle->end = rman_get_end(rle->res);
2647 		rle->count = count;
2648 	}
2649 
2650 	return(rle->res);
2651 }
2652 
2653 int
2654 resource_list_release(struct resource_list *rl,
2655 		      device_t bus, device_t child,
2656 		      int type, int rid, struct resource *res)
2657 {
2658 	struct resource_list_entry *rle = NULL;
2659 	int passthrough = (device_get_parent(child) != bus);
2660 	int error;
2661 
2662 	if (passthrough) {
2663 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2664 					    type, rid, res));
2665 	}
2666 
2667 	rle = resource_list_find(rl, type, rid);
2668 
2669 	if (!rle)
2670 		panic("resource_list_release: can't find resource");
2671 	if (!rle->res)
2672 		panic("resource_list_release: resource entry is not busy");
2673 
2674 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2675 				     type, rid, res);
2676 	if (error)
2677 		return(error);
2678 
2679 	rle->res = NULL;
2680 	return(0);
2681 }
2682 
2683 int
2684 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2685 			 const char *format)
2686 {
2687 	struct resource_list_entry *rle;
2688 	int printed, retval;
2689 
2690 	printed = 0;
2691 	retval = 0;
2692 	/* Yes, this is kinda cheating */
2693 	SLIST_FOREACH(rle, rl, link) {
2694 		if (rle->type == type) {
2695 			if (printed == 0)
2696 				retval += kprintf(" %s ", name);
2697 			else
2698 				retval += kprintf(",");
2699 			printed++;
2700 			retval += kprintf(format, rle->start);
2701 			if (rle->count > 1) {
2702 				retval += kprintf("-");
2703 				retval += kprintf(format, rle->start +
2704 						 rle->count - 1);
2705 			}
2706 		}
2707 	}
2708 	return(retval);
2709 }
2710 
2711 /*
2712  * Generic driver/device identify functions.  These will install a device
2713  * rendezvous point under the parent using the same name as the driver
2714  * name, which will at a later time be probed and attached.
2715  *
2716  * These functions are used when the parent does not 'scan' its bus for
2717  * matching devices, or for the particular devices using these functions,
2718  * or when the device is a pseudo or synthesized device (such as can be
2719  * found under firewire and ppbus).
2720  */
2721 int
2722 bus_generic_identify(driver_t *driver, device_t parent)
2723 {
2724 	if (parent->state == DS_ATTACHED)
2725 		return (0);
2726 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2727 	return (0);
2728 }
2729 
2730 int
2731 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2732 {
2733 	if (parent->state == DS_ATTACHED)
2734 		return (0);
2735 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2736 	return (0);
2737 }
2738 
2739 /*
2740  * Call DEVICE_IDENTIFY for each driver.
2741  */
2742 int
2743 bus_generic_probe(device_t dev)
2744 {
2745 	devclass_t dc = dev->devclass;
2746 	driverlink_t dl;
2747 
2748 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2749 		DEVICE_IDENTIFY(dl->driver, dev);
2750 	}
2751 
2752 	return(0);
2753 }
2754 
2755 /*
2756  * This is an aweful hack due to the isa bus and autoconf code not
2757  * probing the ISA devices until after everything else has configured.
2758  * The ISA bus did a dummy attach long ago so we have to set it back
2759  * to an earlier state so the probe thinks its the initial probe and
2760  * not a bus rescan.
2761  *
2762  * XXX remove by properly defering the ISA bus scan.
2763  */
2764 int
2765 bus_generic_probe_hack(device_t dev)
2766 {
2767 	if (dev->state == DS_ATTACHED) {
2768 		dev->state = DS_ALIVE;
2769 		bus_generic_probe(dev);
2770 		dev->state = DS_ATTACHED;
2771 	}
2772 	return (0);
2773 }
2774 
2775 int
2776 bus_generic_attach(device_t dev)
2777 {
2778 	device_t child;
2779 
2780 	TAILQ_FOREACH(child, &dev->children, link) {
2781 		device_probe_and_attach(child);
2782 	}
2783 
2784 	return(0);
2785 }
2786 
2787 int
2788 bus_generic_attach_gpri(device_t dev, u_int gpri)
2789 {
2790 	device_t child;
2791 
2792 	TAILQ_FOREACH(child, &dev->children, link) {
2793 		device_probe_and_attach_gpri(child, gpri);
2794 	}
2795 
2796 	return(0);
2797 }
2798 
2799 int
2800 bus_generic_detach(device_t dev)
2801 {
2802 	device_t child;
2803 	int error;
2804 
2805 	if (dev->state != DS_ATTACHED)
2806 		return(EBUSY);
2807 
2808 	TAILQ_FOREACH(child, &dev->children, link)
2809 		if ((error = device_detach(child)) != 0)
2810 			return(error);
2811 
2812 	return 0;
2813 }
2814 
2815 int
2816 bus_generic_shutdown(device_t dev)
2817 {
2818 	device_t child;
2819 
2820 	TAILQ_FOREACH(child, &dev->children, link)
2821 		device_shutdown(child);
2822 
2823 	return(0);
2824 }
2825 
2826 int
2827 bus_generic_suspend(device_t dev)
2828 {
2829 	int error;
2830 	device_t child, child2;
2831 
2832 	TAILQ_FOREACH(child, &dev->children, link) {
2833 		error = DEVICE_SUSPEND(child);
2834 		if (error) {
2835 			for (child2 = TAILQ_FIRST(&dev->children);
2836 			     child2 && child2 != child;
2837 			     child2 = TAILQ_NEXT(child2, link))
2838 				DEVICE_RESUME(child2);
2839 			return(error);
2840 		}
2841 	}
2842 	return(0);
2843 }
2844 
2845 int
2846 bus_generic_resume(device_t dev)
2847 {
2848 	device_t child;
2849 
2850 	TAILQ_FOREACH(child, &dev->children, link)
2851 		DEVICE_RESUME(child);
2852 		/* if resume fails, there's nothing we can usefully do... */
2853 
2854 	return(0);
2855 }
2856 
2857 int
2858 bus_print_child_header(device_t dev, device_t child)
2859 {
2860 	int retval = 0;
2861 
2862 	if (device_get_desc(child))
2863 		retval += device_printf(child, "<%s>", device_get_desc(child));
2864 	else
2865 		retval += kprintf("%s", device_get_nameunit(child));
2866 	if (bootverbose) {
2867 		if (child->state != DS_ATTACHED)
2868 			kprintf(" [tentative]");
2869 		else
2870 			kprintf(" [attached!]");
2871 	}
2872 	return(retval);
2873 }
2874 
2875 int
2876 bus_print_child_footer(device_t dev, device_t child)
2877 {
2878 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2879 }
2880 
2881 device_t
2882 bus_generic_add_child(device_t dev, device_t child, int order,
2883 		      const char *name, int unit)
2884 {
2885 	if (dev->parent)
2886 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2887 	else
2888 		dev = device_add_child_ordered(child, order, name, unit);
2889 	return(dev);
2890 
2891 }
2892 
2893 int
2894 bus_generic_print_child(device_t dev, device_t child)
2895 {
2896 	int retval = 0;
2897 
2898 	retval += bus_print_child_header(dev, child);
2899 	retval += bus_print_child_footer(dev, child);
2900 
2901 	return(retval);
2902 }
2903 
2904 int
2905 bus_generic_read_ivar(device_t dev, device_t child, int index,
2906 		      uintptr_t * result)
2907 {
2908 	int error;
2909 
2910 	if (dev->parent)
2911 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2912 	else
2913 		error = ENOENT;
2914 	return (error);
2915 }
2916 
2917 int
2918 bus_generic_write_ivar(device_t dev, device_t child, int index,
2919 		       uintptr_t value)
2920 {
2921 	int error;
2922 
2923 	if (dev->parent)
2924 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2925 	else
2926 		error = ENOENT;
2927 	return (error);
2928 }
2929 
2930 /*
2931  * Resource list are used for iterations, do not recurse.
2932  */
2933 struct resource_list *
2934 bus_generic_get_resource_list(device_t dev, device_t child)
2935 {
2936 	return (NULL);
2937 }
2938 
2939 void
2940 bus_generic_driver_added(device_t dev, driver_t *driver)
2941 {
2942 	device_t child;
2943 
2944 	DEVICE_IDENTIFY(driver, dev);
2945 	TAILQ_FOREACH(child, &dev->children, link) {
2946 		if (child->state == DS_NOTPRESENT)
2947 			device_probe_and_attach(child);
2948 	}
2949 }
2950 
2951 int
2952 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2953     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2954     lwkt_serialize_t serializer, const char *desc)
2955 {
2956 	/* Propagate up the bus hierarchy until someone handles it. */
2957 	if (dev->parent) {
2958 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2959 		    intr, arg, cookiep, serializer, desc);
2960 	} else {
2961 		return EINVAL;
2962 	}
2963 }
2964 
2965 int
2966 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2967 			  void *cookie)
2968 {
2969 	/* Propagate up the bus hierarchy until someone handles it. */
2970 	if (dev->parent)
2971 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2972 	else
2973 		return(EINVAL);
2974 }
2975 
2976 int
2977 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2978 {
2979 	if (dev->parent)
2980 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2981 	else
2982 		return(0);
2983 }
2984 
2985 void
2986 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2987 {
2988 	if (dev->parent)
2989 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2990 }
2991 
2992 int
2993 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2994     enum intr_polarity pol)
2995 {
2996 	/* Propagate up the bus hierarchy until someone handles it. */
2997 	if (dev->parent)
2998 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2999 	else
3000 		return(EINVAL);
3001 }
3002 
3003 struct resource *
3004 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3005     u_long start, u_long end, u_long count, u_int flags, int cpuid)
3006 {
3007 	/* Propagate up the bus hierarchy until someone handles it. */
3008 	if (dev->parent)
3009 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3010 					   start, end, count, flags, cpuid));
3011 	else
3012 		return(NULL);
3013 }
3014 
3015 int
3016 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3017 			     struct resource *r)
3018 {
3019 	/* Propagate up the bus hierarchy until someone handles it. */
3020 	if (dev->parent)
3021 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
3022 	else
3023 		return(EINVAL);
3024 }
3025 
3026 int
3027 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3028 			      struct resource *r)
3029 {
3030 	/* Propagate up the bus hierarchy until someone handles it. */
3031 	if (dev->parent)
3032 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
3033 	else
3034 		return(EINVAL);
3035 }
3036 
3037 int
3038 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3039 				int rid, struct resource *r)
3040 {
3041 	/* Propagate up the bus hierarchy until someone handles it. */
3042 	if (dev->parent)
3043 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3044 					       r));
3045 	else
3046 		return(EINVAL);
3047 }
3048 
3049 int
3050 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
3051 			 u_long *startp, u_long *countp)
3052 {
3053 	int error;
3054 
3055 	error = ENOENT;
3056 	if (dev->parent) {
3057 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
3058 					 startp, countp);
3059 	}
3060 	return (error);
3061 }
3062 
3063 int
3064 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
3065 			u_long start, u_long count, int cpuid)
3066 {
3067 	int error;
3068 
3069 	error = EINVAL;
3070 	if (dev->parent) {
3071 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
3072 					 start, count, cpuid);
3073 	}
3074 	return (error);
3075 }
3076 
3077 void
3078 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
3079 {
3080 	if (dev->parent)
3081 		BUS_DELETE_RESOURCE(dev, child, type, rid);
3082 }
3083 
3084 /**
3085  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3086  *
3087  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3088  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3089  */
3090 bus_dma_tag_t
3091 bus_generic_get_dma_tag(device_t dev, device_t child)
3092 {
3093 
3094 	/* Propagate up the bus hierarchy until someone handles it. */
3095 	if (dev->parent != NULL)
3096 		return (BUS_GET_DMA_TAG(dev->parent, child));
3097 	return (NULL);
3098 }
3099 
3100 int
3101 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3102     u_long *startp, u_long *countp)
3103 {
3104 	struct resource_list *rl = NULL;
3105 	struct resource_list_entry *rle = NULL;
3106 
3107 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3108 	if (!rl)
3109 		return(EINVAL);
3110 
3111 	rle = resource_list_find(rl, type, rid);
3112 	if (!rle)
3113 		return(ENOENT);
3114 
3115 	if (startp)
3116 		*startp = rle->start;
3117 	if (countp)
3118 		*countp = rle->count;
3119 
3120 	return(0);
3121 }
3122 
3123 int
3124 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3125     u_long start, u_long count, int cpuid)
3126 {
3127 	struct resource_list *rl = NULL;
3128 
3129 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3130 	if (!rl)
3131 		return(EINVAL);
3132 
3133 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
3134 	    cpuid);
3135 
3136 	return(0);
3137 }
3138 
3139 void
3140 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3141 {
3142 	struct resource_list *rl = NULL;
3143 
3144 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3145 	if (!rl)
3146 		return;
3147 
3148 	resource_list_delete(rl, type, rid);
3149 }
3150 
3151 int
3152 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3153     int rid, struct resource *r)
3154 {
3155 	struct resource_list *rl = NULL;
3156 
3157 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3158 	if (!rl)
3159 		return(EINVAL);
3160 
3161 	return(resource_list_release(rl, dev, child, type, rid, r));
3162 }
3163 
3164 struct resource *
3165 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3166     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
3167 {
3168 	struct resource_list *rl = NULL;
3169 
3170 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3171 	if (!rl)
3172 		return(NULL);
3173 
3174 	return(resource_list_alloc(rl, dev, child, type, rid,
3175 	    start, end, count, flags, cpuid));
3176 }
3177 
3178 int
3179 bus_generic_child_present(device_t bus, device_t child)
3180 {
3181 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
3182 }
3183 
3184 
3185 /*
3186  * Some convenience functions to make it easier for drivers to use the
3187  * resource-management functions.  All these really do is hide the
3188  * indirection through the parent's method table, making for slightly
3189  * less-wordy code.  In the future, it might make sense for this code
3190  * to maintain some sort of a list of resources allocated by each device.
3191  */
3192 int
3193 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3194     struct resource **res)
3195 {
3196 	int i;
3197 
3198 	for (i = 0; rs[i].type != -1; i++)
3199 	        res[i] = NULL;
3200 	for (i = 0; rs[i].type != -1; i++) {
3201 		res[i] = bus_alloc_resource_any(dev,
3202 		    rs[i].type, &rs[i].rid, rs[i].flags);
3203 		if (res[i] == NULL) {
3204 			bus_release_resources(dev, rs, res);
3205 			return (ENXIO);
3206 		}
3207 	}
3208 	return (0);
3209 }
3210 
3211 void
3212 bus_release_resources(device_t dev, const struct resource_spec *rs,
3213     struct resource **res)
3214 {
3215 	int i;
3216 
3217 	for (i = 0; rs[i].type != -1; i++)
3218 		if (res[i] != NULL) {
3219 			bus_release_resource(
3220 			    dev, rs[i].type, rs[i].rid, res[i]);
3221 			res[i] = NULL;
3222 		}
3223 }
3224 
3225 struct resource *
3226 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3227 		   u_long count, u_int flags)
3228 {
3229 	if (dev->parent == NULL)
3230 		return(0);
3231 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3232 				  count, flags, -1));
3233 }
3234 
3235 struct resource *
3236 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3237 {
3238 	if (dev->parent == NULL)
3239 		return(0);
3240 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3241 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3242 }
3243 
3244 int
3245 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3246 {
3247 	if (dev->parent == NULL)
3248 		return(EINVAL);
3249 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3250 }
3251 
3252 int
3253 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3254 {
3255 	if (dev->parent == NULL)
3256 		return(EINVAL);
3257 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3258 }
3259 
3260 int
3261 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3262 {
3263 	if (dev->parent == NULL)
3264 		return(EINVAL);
3265 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3266 }
3267 
3268 int
3269 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3270     driver_intr_t handler, void *arg, void **cookiep,
3271     lwkt_serialize_t serializer, const char *desc)
3272 {
3273 	if (dev->parent == NULL)
3274 		return EINVAL;
3275 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3276 	    cookiep, serializer, desc);
3277 }
3278 
3279 int
3280 bus_setup_intr(device_t dev, struct resource *r, int flags,
3281     driver_intr_t handler, void *arg, void **cookiep,
3282     lwkt_serialize_t serializer)
3283 {
3284 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3285 	    serializer, NULL);
3286 }
3287 
3288 int
3289 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3290 {
3291 	if (dev->parent == NULL)
3292 		return(EINVAL);
3293 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3294 }
3295 
3296 void
3297 bus_enable_intr(device_t dev, void *cookie)
3298 {
3299 	if (dev->parent)
3300 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3301 }
3302 
3303 int
3304 bus_disable_intr(device_t dev, void *cookie)
3305 {
3306 	if (dev->parent)
3307 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3308 	else
3309 		return(0);
3310 }
3311 
3312 int
3313 bus_set_resource(device_t dev, int type, int rid,
3314 		 u_long start, u_long count, int cpuid)
3315 {
3316 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3317 				start, count, cpuid));
3318 }
3319 
3320 int
3321 bus_get_resource(device_t dev, int type, int rid,
3322 		 u_long *startp, u_long *countp)
3323 {
3324 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3325 				startp, countp));
3326 }
3327 
3328 u_long
3329 bus_get_resource_start(device_t dev, int type, int rid)
3330 {
3331 	u_long start, count;
3332 	int error;
3333 
3334 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3335 				 &start, &count);
3336 	if (error)
3337 		return(0);
3338 	return(start);
3339 }
3340 
3341 u_long
3342 bus_get_resource_count(device_t dev, int type, int rid)
3343 {
3344 	u_long start, count;
3345 	int error;
3346 
3347 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3348 				 &start, &count);
3349 	if (error)
3350 		return(0);
3351 	return(count);
3352 }
3353 
3354 void
3355 bus_delete_resource(device_t dev, int type, int rid)
3356 {
3357 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3358 }
3359 
3360 int
3361 bus_child_present(device_t child)
3362 {
3363 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3364 }
3365 
3366 int
3367 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3368 {
3369 	device_t parent;
3370 
3371 	parent = device_get_parent(child);
3372 	if (parent == NULL) {
3373 		*buf = '\0';
3374 		return (0);
3375 	}
3376 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3377 }
3378 
3379 int
3380 bus_child_location_str(device_t child, char *buf, size_t buflen)
3381 {
3382 	device_t parent;
3383 
3384 	parent = device_get_parent(child);
3385 	if (parent == NULL) {
3386 		*buf = '\0';
3387 		return (0);
3388 	}
3389 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3390 }
3391 
3392 /**
3393  * @brief Wrapper function for BUS_GET_DMA_TAG().
3394  *
3395  * This function simply calls the BUS_GET_DMA_TAG() method of the
3396  * parent of @p dev.
3397  */
3398 bus_dma_tag_t
3399 bus_get_dma_tag(device_t dev)
3400 {
3401 	device_t parent;
3402 
3403 	parent = device_get_parent(dev);
3404 	if (parent == NULL)
3405 		return (NULL);
3406 	return (BUS_GET_DMA_TAG(parent, dev));
3407 }
3408 
3409 static int
3410 root_print_child(device_t dev, device_t child)
3411 {
3412 	return(0);
3413 }
3414 
3415 static int
3416 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3417 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3418 {
3419 	/*
3420 	 * If an interrupt mapping gets to here something bad has happened.
3421 	 */
3422 	panic("root_setup_intr");
3423 }
3424 
3425 /*
3426  * If we get here, assume that the device is permanant and really is
3427  * present in the system.  Removable bus drivers are expected to intercept
3428  * this call long before it gets here.  We return -1 so that drivers that
3429  * really care can check vs -1 or some ERRNO returned higher in the food
3430  * chain.
3431  */
3432 static int
3433 root_child_present(device_t dev, device_t child)
3434 {
3435 	return(-1);
3436 }
3437 
3438 /*
3439  * XXX NOTE! other defaults may be set in bus_if.m
3440  */
3441 static kobj_method_t root_methods[] = {
3442 	/* Device interface */
3443 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3444 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3445 	KOBJMETHOD(device_resume,	bus_generic_resume),
3446 
3447 	/* Bus interface */
3448 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3449 	KOBJMETHOD(bus_print_child,	root_print_child),
3450 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3451 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3452 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3453 	KOBJMETHOD(bus_child_present,   root_child_present),
3454 
3455 	KOBJMETHOD_END
3456 };
3457 
3458 static driver_t root_driver = {
3459 	"root",
3460 	root_methods,
3461 	1,			/* no softc */
3462 };
3463 
3464 device_t	root_bus;
3465 devclass_t	root_devclass;
3466 
3467 static int
3468 root_bus_module_handler(module_t mod, int what, void* arg)
3469 {
3470 	switch (what) {
3471 	case MOD_LOAD:
3472 		TAILQ_INIT(&bus_data_devices);
3473 		root_bus = make_device(NULL, "root", 0);
3474 		root_bus->desc = "System root bus";
3475 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3476 		root_bus->driver = &root_driver;
3477 		root_bus->state = DS_ALIVE;
3478 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3479 		devinit();
3480 		return(0);
3481 
3482 	case MOD_SHUTDOWN:
3483 		device_shutdown(root_bus);
3484 		return(0);
3485 	default:
3486 		return(0);
3487 	}
3488 }
3489 
3490 static moduledata_t root_bus_mod = {
3491 	"rootbus",
3492 	root_bus_module_handler,
3493 	0
3494 };
3495 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3496 
3497 void
3498 root_bus_configure(void)
3499 {
3500 	int warncount;
3501 	device_t dev;
3502 
3503 	PDEBUG(("."));
3504 
3505 	/*
3506 	 * handle device_identify based device attachments to the root_bus
3507 	 * (typically nexus).
3508 	 */
3509 	bus_generic_probe(root_bus);
3510 
3511 	/*
3512 	 * Probe and attach the devices under root_bus.
3513 	 */
3514 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3515 		device_probe_and_attach(dev);
3516 	}
3517 
3518 	/*
3519 	 * Wait for all asynchronous attaches to complete.  If we don't
3520 	 * our legacy ISA bus scan could steal device unit numbers or
3521 	 * even I/O ports.
3522 	 */
3523 	warncount = 10;
3524 	if (numasyncthreads)
3525 		kprintf("Waiting for async drivers to attach\n");
3526 	while (numasyncthreads > 0) {
3527 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3528 			--warncount;
3529 		if (warncount == 0) {
3530 			kprintf("Warning: Still waiting for %d "
3531 				"drivers to attach\n", numasyncthreads);
3532 		} else if (warncount == -30) {
3533 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3534 			break;
3535 		}
3536 	}
3537 	root_bus->state = DS_ATTACHED;
3538 }
3539 
3540 int
3541 driver_module_handler(module_t mod, int what, void *arg)
3542 {
3543 	int error;
3544 	struct driver_module_data *dmd;
3545 	devclass_t bus_devclass;
3546 	kobj_class_t driver;
3547         const char *parentname;
3548 
3549 	dmd = (struct driver_module_data *)arg;
3550 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3551 	error = 0;
3552 
3553 	switch (what) {
3554 	case MOD_LOAD:
3555 		if (dmd->dmd_chainevh)
3556 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3557 
3558 		driver = dmd->dmd_driver;
3559 		PDEBUG(("Loading module: driver %s on bus %s",
3560 		        DRIVERNAME(driver), dmd->dmd_busname));
3561 
3562 		/*
3563 		 * If the driver has any base classes, make the
3564 		 * devclass inherit from the devclass of the driver's
3565 		 * first base class. This will allow the system to
3566 		 * search for drivers in both devclasses for children
3567 		 * of a device using this driver.
3568 		 */
3569 		if (driver->baseclasses)
3570 			parentname = driver->baseclasses[0]->name;
3571 		else
3572 			parentname = NULL;
3573 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3574 							    parentname, TRUE);
3575 
3576 		error = devclass_add_driver(bus_devclass, driver);
3577 		if (error)
3578 			break;
3579 		break;
3580 
3581 	case MOD_UNLOAD:
3582 		PDEBUG(("Unloading module: driver %s from bus %s",
3583 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3584 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3585 
3586 		if (!error && dmd->dmd_chainevh)
3587 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3588 		break;
3589 	}
3590 
3591 	return (error);
3592 }
3593 
3594 #ifdef BUS_DEBUG
3595 
3596 /*
3597  * The _short versions avoid iteration by not calling anything that prints
3598  * more than oneliners. I love oneliners.
3599  */
3600 
3601 static void
3602 print_device_short(device_t dev, int indent)
3603 {
3604 	if (!dev)
3605 		return;
3606 
3607 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3608 		      dev->unit, dev->desc,
3609 		      (dev->parent? "":"no "),
3610 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3611 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3612 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3613 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3614 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3615 		      (dev->ivars? "":"no "),
3616 		      (dev->softc? "":"no "),
3617 		      dev->busy));
3618 }
3619 
3620 static void
3621 print_device(device_t dev, int indent)
3622 {
3623 	if (!dev)
3624 		return;
3625 
3626 	print_device_short(dev, indent);
3627 
3628 	indentprintf(("Parent:\n"));
3629 	print_device_short(dev->parent, indent+1);
3630 	indentprintf(("Driver:\n"));
3631 	print_driver_short(dev->driver, indent+1);
3632 	indentprintf(("Devclass:\n"));
3633 	print_devclass_short(dev->devclass, indent+1);
3634 }
3635 
3636 /*
3637  * Print the device and all its children (indented).
3638  */
3639 void
3640 print_device_tree_short(device_t dev, int indent)
3641 {
3642 	device_t child;
3643 
3644 	if (!dev)
3645 		return;
3646 
3647 	print_device_short(dev, indent);
3648 
3649 	TAILQ_FOREACH(child, &dev->children, link)
3650 		print_device_tree_short(child, indent+1);
3651 }
3652 
3653 /*
3654  * Print the device and all its children (indented).
3655  */
3656 void
3657 print_device_tree(device_t dev, int indent)
3658 {
3659 	device_t child;
3660 
3661 	if (!dev)
3662 		return;
3663 
3664 	print_device(dev, indent);
3665 
3666 	TAILQ_FOREACH(child, &dev->children, link)
3667 		print_device_tree(child, indent+1);
3668 }
3669 
3670 static void
3671 print_driver_short(driver_t *driver, int indent)
3672 {
3673 	if (!driver)
3674 		return;
3675 
3676 	indentprintf(("driver %s: softc size = %zu\n",
3677 		      driver->name, driver->size));
3678 }
3679 
3680 static void
3681 print_driver(driver_t *driver, int indent)
3682 {
3683 	if (!driver)
3684 		return;
3685 
3686 	print_driver_short(driver, indent);
3687 }
3688 
3689 
3690 static void
3691 print_driver_list(driver_list_t drivers, int indent)
3692 {
3693 	driverlink_t driver;
3694 
3695 	TAILQ_FOREACH(driver, &drivers, link)
3696 		print_driver(driver->driver, indent);
3697 }
3698 
3699 static void
3700 print_devclass_short(devclass_t dc, int indent)
3701 {
3702 	if (!dc)
3703 		return;
3704 
3705 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3706 }
3707 
3708 static void
3709 print_devclass(devclass_t dc, int indent)
3710 {
3711 	int i;
3712 
3713 	if (!dc)
3714 		return;
3715 
3716 	print_devclass_short(dc, indent);
3717 	indentprintf(("Drivers:\n"));
3718 	print_driver_list(dc->drivers, indent+1);
3719 
3720 	indentprintf(("Devices:\n"));
3721 	for (i = 0; i < dc->maxunit; i++)
3722 		if (dc->devices[i])
3723 			print_device(dc->devices[i], indent+1);
3724 }
3725 
3726 void
3727 print_devclass_list_short(void)
3728 {
3729 	devclass_t dc;
3730 
3731 	kprintf("Short listing of devclasses, drivers & devices:\n");
3732 	TAILQ_FOREACH(dc, &devclasses, link) {
3733 		print_devclass_short(dc, 0);
3734 	}
3735 }
3736 
3737 void
3738 print_devclass_list(void)
3739 {
3740 	devclass_t dc;
3741 
3742 	kprintf("Full listing of devclasses, drivers & devices:\n");
3743 	TAILQ_FOREACH(dc, &devclasses, link) {
3744 		print_devclass(dc, 0);
3745 	}
3746 }
3747 
3748 #endif
3749 
3750 /*
3751  * Check to see if a device is disabled via a disabled hint.
3752  */
3753 int
3754 resource_disabled(const char *name, int unit)
3755 {
3756 	int error, value;
3757 
3758 	error = resource_int_value(name, unit, "disabled", &value);
3759 	if (error)
3760 	       return(0);
3761 	return(value);
3762 }
3763 
3764 /*
3765  * User-space access to the device tree.
3766  *
3767  * We implement a small set of nodes:
3768  *
3769  * hw.bus			Single integer read method to obtain the
3770  *				current generation count.
3771  * hw.bus.devices		Reads the entire device tree in flat space.
3772  * hw.bus.rman			Resource manager interface
3773  *
3774  * We might like to add the ability to scan devclasses and/or drivers to
3775  * determine what else is currently loaded/available.
3776  */
3777 
3778 static int
3779 sysctl_bus(SYSCTL_HANDLER_ARGS)
3780 {
3781 	struct u_businfo	ubus;
3782 
3783 	ubus.ub_version = BUS_USER_VERSION;
3784 	ubus.ub_generation = bus_data_generation;
3785 
3786 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3787 }
3788 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3789     "bus-related data");
3790 
3791 static int
3792 sysctl_devices(SYSCTL_HANDLER_ARGS)
3793 {
3794 	int			*name = (int *)arg1;
3795 	u_int			namelen = arg2;
3796 	int			index;
3797 	device_t		dev;
3798 	struct u_device		udev;	/* XXX this is a bit big */
3799 	int			error;
3800 
3801 	if (namelen != 2)
3802 		return (EINVAL);
3803 
3804 	if (bus_data_generation_check(name[0]))
3805 		return (EINVAL);
3806 
3807 	index = name[1];
3808 
3809 	/*
3810 	 * Scan the list of devices, looking for the requested index.
3811 	 */
3812 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3813 		if (index-- == 0)
3814 			break;
3815 	}
3816 	if (dev == NULL)
3817 		return (ENOENT);
3818 
3819 	/*
3820 	 * Populate the return array.
3821 	 */
3822 	bzero(&udev, sizeof(udev));
3823 	udev.dv_handle = (uintptr_t)dev;
3824 	udev.dv_parent = (uintptr_t)dev->parent;
3825 	if (dev->nameunit != NULL)
3826 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3827 	if (dev->desc != NULL)
3828 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3829 	if (dev->driver != NULL && dev->driver->name != NULL)
3830 		strlcpy(udev.dv_drivername, dev->driver->name,
3831 		    sizeof(udev.dv_drivername));
3832 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3833 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3834 	udev.dv_devflags = dev->devflags;
3835 	udev.dv_flags = dev->flags;
3836 	udev.dv_state = dev->state;
3837 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3838 	return (error);
3839 }
3840 
3841 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3842     "system device tree");
3843 
3844 int
3845 bus_data_generation_check(int generation)
3846 {
3847 	if (generation != bus_data_generation)
3848 		return (1);
3849 
3850 	/* XXX generate optimised lists here? */
3851 	return (0);
3852 }
3853 
3854 void
3855 bus_data_generation_update(void)
3856 {
3857 	bus_data_generation++;
3858 }
3859 
3860 const char *
3861 intr_str_polarity(enum intr_polarity pola)
3862 {
3863 	switch (pola) {
3864 	case INTR_POLARITY_LOW:
3865 		return "low";
3866 
3867 	case INTR_POLARITY_HIGH:
3868 		return "high";
3869 
3870 	case INTR_POLARITY_CONFORM:
3871 		return "conform";
3872 	}
3873 	return "unknown";
3874 }
3875 
3876 const char *
3877 intr_str_trigger(enum intr_trigger trig)
3878 {
3879 	switch (trig) {
3880 	case INTR_TRIGGER_EDGE:
3881 		return "edge";
3882 
3883 	case INTR_TRIGGER_LEVEL:
3884 		return "level";
3885 
3886 	case INTR_TRIGGER_CONFORM:
3887 		return "conform";
3888 	}
3889 	return "unknown";
3890 }
3891 
3892 int
3893 device_getenv_int(device_t dev, const char *knob, int def)
3894 {
3895 	char env[128];
3896 
3897 	/* Deprecated; for compat */
3898 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3899 	kgetenv_int(env, &def);
3900 
3901 	/* Prefer dev.driver.unit.knob */
3902 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3903 	    device_get_name(dev), device_get_unit(dev), knob);
3904 	kgetenv_int(env, &def);
3905 
3906 	return def;
3907 }
3908 
3909 void
3910 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3911     int dlen, const char * __restrict def)
3912 {
3913 	char env[128];
3914 
3915 	strlcpy(data, def, dlen);
3916 
3917 	/* Deprecated; for compat */
3918 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3919 	kgetenv_string(env, data, dlen);
3920 
3921 	/* Prefer dev.driver.unit.knob */
3922 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3923 	    device_get_name(dev), device_get_unit(dev), knob);
3924 	kgetenv_string(env, data, dlen);
3925 }
3926