xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision ece77bbaa23bf75f3b7bb9d110e2a795e3112878)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.54 2004/02/15 02:14:41 dillon Exp $
27  */
28 
29 /*
30  * Each cpu in a system has its own self-contained light weight kernel
31  * thread scheduler, which means that generally speaking we only need
32  * to use a critical section to avoid problems.  Foreign thread
33  * scheduling is queued via (async) IPIs.
34  *
35  * NOTE: on UP machines smp_active is defined to be 0.  On SMP machines
36  * smp_active is 0 prior to SMP activation, then it is 1.  The LWKT module
37  * uses smp_active to optimize UP builds and to avoid sending IPIs during
38  * early boot (primarily interrupt and network thread initialization).
39  */
40 
41 #ifdef _KERNEL
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/rtprio.h>
48 #include <sys/queue.h>
49 #include <sys/thread2.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 
56 #include <vm/vm.h>
57 #include <vm/vm_param.h>
58 #include <vm/vm_kern.h>
59 #include <vm/vm_object.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_pager.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_zone.h>
65 
66 #include <machine/stdarg.h>
67 #include <machine/ipl.h>
68 #include <machine/smp.h>
69 
70 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
71 
72 #else
73 
74 #include <sys/stdint.h>
75 #include <libcaps/thread.h>
76 #include <sys/thread.h>
77 #include <sys/msgport.h>
78 #include <sys/errno.h>
79 #include <libcaps/globaldata.h>
80 #include <sys/thread2.h>
81 #include <sys/msgport2.h>
82 #include <stdio.h>
83 #include <stdlib.h>
84 #include <string.h>
85 #include <machine/cpufunc.h>
86 #include <machine/lock.h>
87 
88 #endif
89 
90 static int untimely_switch = 0;
91 static __int64_t switch_count = 0;
92 static __int64_t preempt_hit = 0;
93 static __int64_t preempt_miss = 0;
94 static __int64_t preempt_weird = 0;
95 
96 #ifdef _KERNEL
97 
98 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
99 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
100 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
102 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
103 
104 #endif
105 
106 /*
107  * These helper procedures handle the runq, they can only be called from
108  * within a critical section.
109  *
110  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
111  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
112  * instead of 'mycpu' when referencing the globaldata structure.   Once
113  * SMP live enqueuing and dequeueing only occurs on the current cpu.
114  */
115 static __inline
116 void
117 _lwkt_dequeue(thread_t td)
118 {
119     if (td->td_flags & TDF_RUNQ) {
120 	int nq = td->td_pri & TDPRI_MASK;
121 	struct globaldata *gd = td->td_gd;
122 
123 	td->td_flags &= ~TDF_RUNQ;
124 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
125 	/* runqmask is passively cleaned up by the switcher */
126     }
127 }
128 
129 static __inline
130 void
131 _lwkt_enqueue(thread_t td)
132 {
133     if ((td->td_flags & TDF_RUNQ) == 0) {
134 	int nq = td->td_pri & TDPRI_MASK;
135 	struct globaldata *gd = td->td_gd;
136 
137 	td->td_flags |= TDF_RUNQ;
138 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
139 	gd->gd_runqmask |= 1 << nq;
140     }
141 }
142 
143 static __inline
144 int
145 _lwkt_wantresched(thread_t ntd, thread_t cur)
146 {
147     return((ntd->td_pri & TDPRI_MASK) > (cur->td_pri & TDPRI_MASK));
148 }
149 
150 #ifdef _KERNEL
151 
152 /*
153  * LWKTs operate on a per-cpu basis
154  *
155  * WARNING!  Called from early boot, 'mycpu' may not work yet.
156  */
157 void
158 lwkt_gdinit(struct globaldata *gd)
159 {
160     int i;
161 
162     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
163 	TAILQ_INIT(&gd->gd_tdrunq[i]);
164     gd->gd_runqmask = 0;
165     TAILQ_INIT(&gd->gd_tdallq);
166 }
167 
168 #endif /* _KERNEL */
169 
170 /*
171  * Initialize a thread wait structure prior to first use.
172  *
173  * NOTE!  called from low level boot code, we cannot do anything fancy!
174  */
175 void
176 lwkt_init_wait(lwkt_wait_t w)
177 {
178     TAILQ_INIT(&w->wa_waitq);
179 }
180 
181 /*
182  * Create a new thread.  The thread must be associated with a process context
183  * or LWKT start address before it can be scheduled.  If the target cpu is
184  * -1 the thread will be created on the current cpu.
185  *
186  * If you intend to create a thread without a process context this function
187  * does everything except load the startup and switcher function.
188  */
189 thread_t
190 lwkt_alloc_thread(struct thread *td, int cpu)
191 {
192     void *stack;
193     int flags = 0;
194 
195     if (td == NULL) {
196 	crit_enter();
197 	if (mycpu->gd_tdfreecount > 0) {
198 	    --mycpu->gd_tdfreecount;
199 	    td = TAILQ_FIRST(&mycpu->gd_tdfreeq);
200 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
201 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
202 	    TAILQ_REMOVE(&mycpu->gd_tdfreeq, td, td_threadq);
203 	    crit_exit();
204 	    stack = td->td_kstack;
205 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
206 	} else {
207 	    crit_exit();
208 #ifdef _KERNEL
209 	    td = zalloc(thread_zone);
210 #else
211 	    td = malloc(sizeof(struct thread));
212 #endif
213 	    td->td_kstack = NULL;
214 	    flags |= TDF_ALLOCATED_THREAD;
215 	}
216     }
217     if ((stack = td->td_kstack) == NULL) {
218 #ifdef _KERNEL
219 	stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
220 #else
221 	stack = libcaps_alloc_stack(THREAD_STACK);
222 #endif
223 	flags |= TDF_ALLOCATED_STACK;
224     }
225     if (cpu < 0)
226 	lwkt_init_thread(td, stack, flags, mycpu);
227     else
228 	lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
229     return(td);
230 }
231 
232 #ifdef _KERNEL
233 
234 /*
235  * Initialize a preexisting thread structure.  This function is used by
236  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
237  *
238  * All threads start out in a critical section at a priority of
239  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
240  * appropriate.  This function may send an IPI message when the
241  * requested cpu is not the current cpu and consequently gd_tdallq may
242  * not be initialized synchronously from the point of view of the originating
243  * cpu.
244  *
245  * NOTE! we have to be careful in regards to creating threads for other cpus
246  * if SMP has not yet been activated.
247  */
248 static void
249 lwkt_init_thread_remote(void *arg)
250 {
251     thread_t td = arg;
252 
253     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
254 }
255 
256 void
257 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
258 {
259     bzero(td, sizeof(struct thread));
260     td->td_kstack = stack;
261     td->td_flags |= flags;
262     td->td_gd = gd;
263     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
264     lwkt_initport(&td->td_msgport, td);
265     pmap_init_thread(td);
266     if (smp_active == 0 || gd == mycpu) {
267 	crit_enter();
268 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
269 	crit_exit();
270     } else {
271 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
272     }
273 }
274 
275 #endif /* _KERNEL */
276 
277 void
278 lwkt_set_comm(thread_t td, const char *ctl, ...)
279 {
280     __va_list va;
281 
282     __va_start(va, ctl);
283     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
284     __va_end(va);
285 }
286 
287 void
288 lwkt_hold(thread_t td)
289 {
290     ++td->td_refs;
291 }
292 
293 void
294 lwkt_rele(thread_t td)
295 {
296     KKASSERT(td->td_refs > 0);
297     --td->td_refs;
298 }
299 
300 #ifdef _KERNEL
301 
302 void
303 lwkt_wait_free(thread_t td)
304 {
305     while (td->td_refs)
306 	tsleep(td, 0, "tdreap", hz);
307 }
308 
309 #endif
310 
311 void
312 lwkt_free_thread(thread_t td)
313 {
314     struct globaldata *gd = mycpu;
315 
316     KASSERT((td->td_flags & TDF_RUNNING) == 0,
317 	("lwkt_free_thread: did not exit! %p", td));
318 
319     crit_enter();
320     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
321     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
322 	(td->td_flags & TDF_ALLOCATED_THREAD)
323     ) {
324 	++gd->gd_tdfreecount;
325 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
326 	crit_exit();
327     } else {
328 	crit_exit();
329 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
330 #ifdef _KERNEL
331 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
332 #else
333 	    libcaps_free_stack(td->td_kstack, THREAD_STACK);
334 #endif
335 	    /* gd invalid */
336 	    td->td_kstack = NULL;
337 	}
338 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
339 #ifdef _KERNEL
340 	    zfree(thread_zone, td);
341 #else
342 	    free(td);
343 #endif
344 	}
345     }
346 }
347 
348 
349 /*
350  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
351  * switch to the idlethread.  Switching must occur within a critical
352  * section to avoid races with the scheduling queue.
353  *
354  * We always have full control over our cpu's run queue.  Other cpus
355  * that wish to manipulate our queue must use the cpu_*msg() calls to
356  * talk to our cpu, so a critical section is all that is needed and
357  * the result is very, very fast thread switching.
358  *
359  * The LWKT scheduler uses a fixed priority model and round-robins at
360  * each priority level.  User process scheduling is a totally
361  * different beast and LWKT priorities should not be confused with
362  * user process priorities.
363  *
364  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
365  * cleans it up.  Note that the td_switch() function cannot do anything that
366  * requires the MP lock since the MP lock will have already been setup for
367  * the target thread (not the current thread).  It's nice to have a scheduler
368  * that does not need the MP lock to work because it allows us to do some
369  * really cool high-performance MP lock optimizations.
370  */
371 
372 void
373 lwkt_switch(void)
374 {
375     struct globaldata *gd;
376     thread_t td = curthread;
377     thread_t ntd;
378 #ifdef SMP
379     int mpheld;
380 #endif
381 
382     /*
383      * Switching from within a 'fast' (non thread switched) interrupt is
384      * illegal.
385      */
386     if (mycpu->gd_intr_nesting_level && panicstr == NULL) {
387 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet\n");
388     }
389 
390     /*
391      * Passive release (used to transition from user to kernel mode
392      * when we block or switch rather then when we enter the kernel).
393      * This function is NOT called if we are switching into a preemption
394      * or returning from a preemption.  Typically this causes us to lose
395      * our P_CURPROC designation (if we have one) and become a true LWKT
396      * thread, and may also hand P_CURPROC to another process and schedule
397      * its thread.
398      */
399     if (td->td_release)
400 	    td->td_release(td);
401 
402     crit_enter();
403     ++switch_count;
404 
405 #ifdef SMP
406     /*
407      * td_mpcount cannot be used to determine if we currently hold the
408      * MP lock because get_mplock() will increment it prior to attempting
409      * to get the lock, and switch out if it can't.  Our ownership of
410      * the actual lock will remain stable while we are in a critical section
411      * (but, of course, another cpu may own or release the lock so the
412      * actual value of mp_lock is not stable).
413      */
414     mpheld = MP_LOCK_HELD();
415 #endif
416     if ((ntd = td->td_preempted) != NULL) {
417 	/*
418 	 * We had preempted another thread on this cpu, resume the preempted
419 	 * thread.  This occurs transparently, whether the preempted thread
420 	 * was scheduled or not (it may have been preempted after descheduling
421 	 * itself).
422 	 *
423 	 * We have to setup the MP lock for the original thread after backing
424 	 * out the adjustment that was made to curthread when the original
425 	 * was preempted.
426 	 */
427 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
428 #ifdef SMP
429 	if (ntd->td_mpcount && mpheld == 0) {
430 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d\n",
431 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
432 	}
433 	if (ntd->td_mpcount) {
434 	    td->td_mpcount -= ntd->td_mpcount;
435 	    KKASSERT(td->td_mpcount >= 0);
436 	}
437 #endif
438 	ntd->td_flags |= TDF_PREEMPT_DONE;
439 	/* YYY release mp lock on switchback if original doesn't need it */
440     } else {
441 	/*
442 	 * Priority queue / round-robin at each priority.  Note that user
443 	 * processes run at a fixed, low priority and the user process
444 	 * scheduler deals with interactions between user processes
445 	 * by scheduling and descheduling them from the LWKT queue as
446 	 * necessary.
447 	 *
448 	 * We have to adjust the MP lock for the target thread.  If we
449 	 * need the MP lock and cannot obtain it we try to locate a
450 	 * thread that does not need the MP lock.
451 	 */
452 	gd = mycpu;
453 again:
454 	if (gd->gd_runqmask) {
455 	    int nq = bsrl(gd->gd_runqmask);
456 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
457 		gd->gd_runqmask &= ~(1 << nq);
458 		goto again;
459 	    }
460 #ifdef SMP
461 	    if (ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) {
462 		/*
463 		 * Target needs MP lock and we couldn't get it, try
464 		 * to locate a thread which does not need the MP lock
465 		 * to run.  If we cannot locate a thread spin in idle.
466 		 */
467 		u_int32_t rqmask = gd->gd_runqmask;
468 		while (rqmask) {
469 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
470 			if (ntd->td_mpcount == 0)
471 			    break;
472 		    }
473 		    if (ntd)
474 			break;
475 		    rqmask &= ~(1 << nq);
476 		    nq = bsrl(rqmask);
477 		}
478 		if (ntd == NULL) {
479 		    ntd = &gd->gd_idlethread;
480 		    ntd->td_flags |= TDF_IDLE_NOHLT;
481 		} else {
482 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
483 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
484 		}
485 	    } else {
486 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
487 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
488 	    }
489 #else
490 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
491 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
492 #endif
493 	} else {
494 	    /*
495 	     * We have nothing to run but only let the idle loop halt
496 	     * the cpu if there are no pending interrupts.
497 	     */
498 	    ntd = &gd->gd_idlethread;
499 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
500 		ntd->td_flags |= TDF_IDLE_NOHLT;
501 	}
502     }
503     KASSERT(ntd->td_pri >= TDPRI_CRIT,
504 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
505 
506     /*
507      * Do the actual switch.  If the new target does not need the MP lock
508      * and we are holding it, release the MP lock.  If the new target requires
509      * the MP lock we have already acquired it for the target.
510      */
511 #ifdef SMP
512     if (ntd->td_mpcount == 0 ) {
513 	if (MP_LOCK_HELD())
514 	    cpu_rel_mplock();
515     } else {
516 	ASSERT_MP_LOCK_HELD();
517     }
518 #endif
519     if (td != ntd) {
520 	td->td_switch(ntd);
521     }
522 
523     crit_exit();
524 }
525 
526 /*
527  * Switch if another thread has a higher priority.  Do not switch to other
528  * threads at the same priority.
529  */
530 void
531 lwkt_maybe_switch()
532 {
533     struct globaldata *gd = mycpu;
534     struct thread *td = gd->gd_curthread;
535 
536     if ((td->td_pri & TDPRI_MASK) < bsrl(gd->gd_runqmask)) {
537 	lwkt_switch();
538     }
539 }
540 
541 /*
542  * Request that the target thread preempt the current thread.  Preemption
543  * only works under a specific set of conditions:
544  *
545  *	- We are not preempting ourselves
546  *	- The target thread is owned by the current cpu
547  *	- We are not currently being preempted
548  *	- The target is not currently being preempted
549  *	- We are able to satisfy the target's MP lock requirements (if any).
550  *
551  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
552  * this is called via lwkt_schedule() through the td_preemptable callback.
553  * critpri is the managed critical priority that we should ignore in order
554  * to determine whether preemption is possible (aka usually just the crit
555  * priority of lwkt_schedule() itself).
556  *
557  * XXX at the moment we run the target thread in a critical section during
558  * the preemption in order to prevent the target from taking interrupts
559  * that *WE* can't.  Preemption is strictly limited to interrupt threads
560  * and interrupt-like threads, outside of a critical section, and the
561  * preempted source thread will be resumed the instant the target blocks
562  * whether or not the source is scheduled (i.e. preemption is supposed to
563  * be as transparent as possible).
564  *
565  * The target thread inherits our MP count (added to its own) for the
566  * duration of the preemption in order to preserve the atomicy of the
567  * MP lock during the preemption.  Therefore, any preempting targets must be
568  * careful in regards to MP assertions.  Note that the MP count may be
569  * out of sync with the physical mp_lock, but we do not have to preserve
570  * the original ownership of the lock if it was out of synch (that is, we
571  * can leave it synchronized on return).
572  */
573 void
574 lwkt_preempt(thread_t ntd, int critpri)
575 {
576     struct globaldata *gd = mycpu;
577     thread_t td = gd->gd_curthread;
578 #ifdef SMP
579     int mpheld;
580     int savecnt;
581 #endif
582 
583     /*
584      * The caller has put us in a critical section.  We can only preempt
585      * if the caller of the caller was not in a critical section (basically
586      * a local interrupt), as determined by the 'critpri' parameter.   If
587      * we are unable to preempt
588      *
589      * YYY The target thread must be in a critical section (else it must
590      * inherit our critical section?  I dunno yet).
591      */
592     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
593 
594     need_resched();
595     if (!_lwkt_wantresched(ntd, td)) {
596 	++preempt_miss;
597 	return;
598     }
599     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
600 	++preempt_miss;
601 	return;
602     }
603 #ifdef SMP
604     if (ntd->td_gd != gd) {
605 	++preempt_miss;
606 	return;
607     }
608 #endif
609     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
610 	++preempt_weird;
611 	return;
612     }
613     if (ntd->td_preempted) {
614 	++preempt_hit;
615 	return;
616     }
617 #ifdef SMP
618     /*
619      * note: an interrupt might have occured just as we were transitioning
620      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
621      * (non-zero) but not actually synchronized with the actual state of the
622      * lock.  We can use it to imply an MP lock requirement for the
623      * preemption but we cannot use it to test whether we hold the MP lock
624      * or not.
625      */
626     savecnt = td->td_mpcount;
627     mpheld = MP_LOCK_HELD();
628     ntd->td_mpcount += td->td_mpcount;
629     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
630 	ntd->td_mpcount -= td->td_mpcount;
631 	++preempt_miss;
632 	return;
633     }
634 #endif
635 
636     ++preempt_hit;
637     ntd->td_preempted = td;
638     td->td_flags |= TDF_PREEMPT_LOCK;
639     td->td_switch(ntd);
640     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
641 #ifdef SMP
642     KKASSERT(savecnt == td->td_mpcount);
643     mpheld = MP_LOCK_HELD();
644     if (mpheld && td->td_mpcount == 0)
645 	cpu_rel_mplock();
646     else if (mpheld == 0 && td->td_mpcount)
647 	panic("lwkt_preempt(): MP lock was not held through");
648 #endif
649     ntd->td_preempted = NULL;
650     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
651 }
652 
653 /*
654  * Yield our thread while higher priority threads are pending.  This is
655  * typically called when we leave a critical section but it can be safely
656  * called while we are in a critical section.
657  *
658  * This function will not generally yield to equal priority threads but it
659  * can occur as a side effect.  Note that lwkt_switch() is called from
660  * inside the critical section to prevent its own crit_exit() from reentering
661  * lwkt_yield_quick().
662  *
663  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
664  * came along but was blocked and made pending.
665  *
666  * (self contained on a per cpu basis)
667  */
668 void
669 lwkt_yield_quick(void)
670 {
671     globaldata_t gd = mycpu;
672     thread_t td = gd->gd_curthread;
673 
674     /*
675      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
676      * it with a non-zero cpl then we might not wind up calling splz after
677      * a task switch when the critical section is exited even though the
678      * new task could accept the interrupt.
679      *
680      * XXX from crit_exit() only called after last crit section is released.
681      * If called directly will run splz() even if in a critical section.
682      *
683      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
684      * except for this special case, we MUST call splz() here to handle any
685      * pending ints, particularly after we switch, or we might accidently
686      * halt the cpu with interrupts pending.
687      */
688     if (gd->gd_reqflags && td->td_nest_count < 2)
689 	splz();
690 
691     /*
692      * YYY enabling will cause wakeup() to task-switch, which really
693      * confused the old 4.x code.  This is a good way to simulate
694      * preemption and MP without actually doing preemption or MP, because a
695      * lot of code assumes that wakeup() does not block.
696      */
697     if (untimely_switch && td->td_nest_count == 0 &&
698 	gd->gd_intr_nesting_level == 0
699     ) {
700 	crit_enter();
701 	/*
702 	 * YYY temporary hacks until we disassociate the userland scheduler
703 	 * from the LWKT scheduler.
704 	 */
705 	if (td->td_flags & TDF_RUNQ) {
706 	    lwkt_switch();		/* will not reenter yield function */
707 	} else {
708 	    lwkt_schedule_self();	/* make sure we are scheduled */
709 	    lwkt_switch();		/* will not reenter yield function */
710 	    lwkt_deschedule_self();	/* make sure we are descheduled */
711 	}
712 	crit_exit_noyield(td);
713     }
714 }
715 
716 /*
717  * This implements a normal yield which, unlike _quick, will yield to equal
718  * priority threads as well.  Note that gd_reqflags tests will be handled by
719  * the crit_exit() call in lwkt_switch().
720  *
721  * (self contained on a per cpu basis)
722  */
723 void
724 lwkt_yield(void)
725 {
726     lwkt_schedule_self();
727     lwkt_switch();
728 }
729 
730 /*
731  * Schedule a thread to run.  As the current thread we can always safely
732  * schedule ourselves, and a shortcut procedure is provided for that
733  * function.
734  *
735  * (non-blocking, self contained on a per cpu basis)
736  */
737 void
738 lwkt_schedule_self(void)
739 {
740     thread_t td = curthread;
741 
742     crit_enter();
743     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
744     _lwkt_enqueue(td);
745 #ifdef _KERNEL
746     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
747 	panic("SCHED SELF PANIC");
748 #endif
749     crit_exit();
750 }
751 
752 /*
753  * Generic schedule.  Possibly schedule threads belonging to other cpus and
754  * deal with threads that might be blocked on a wait queue.
755  *
756  * YYY this is one of the best places to implement load balancing code.
757  * Load balancing can be accomplished by requesting other sorts of actions
758  * for the thread in question.
759  */
760 void
761 lwkt_schedule(thread_t td)
762 {
763 #ifdef	INVARIANTS
764     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
765 	&& td->td_proc->p_stat == SSLEEP
766     ) {
767 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
768 	    curthread,
769 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
770 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
771 	    td,
772 	    td->td_proc ? curthread->td_proc->p_pid : -1,
773 	    td->td_proc ? curthread->td_proc->p_stat : -1
774 	);
775 	panic("SCHED PANIC");
776     }
777 #endif
778     crit_enter();
779     if (td == curthread) {
780 	_lwkt_enqueue(td);
781     } else {
782 	lwkt_wait_t w;
783 
784 	/*
785 	 * If the thread is on a wait list we have to send our scheduling
786 	 * request to the owner of the wait structure.  Otherwise we send
787 	 * the scheduling request to the cpu owning the thread.  Races
788 	 * are ok, the target will forward the message as necessary (the
789 	 * message may chase the thread around before it finally gets
790 	 * acted upon).
791 	 *
792 	 * (remember, wait structures use stable storage)
793 	 */
794 	if ((w = td->td_wait) != NULL) {
795 	    if (lwkt_trytoken(&w->wa_token)) {
796 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
797 		--w->wa_count;
798 		td->td_wait = NULL;
799 		if (smp_active == 0 || td->td_gd == mycpu) {
800 		    _lwkt_enqueue(td);
801 		    if (td->td_preemptable) {
802 			td->td_preemptable(td, TDPRI_CRIT*2); /* YYY +token */
803 		    } else if (_lwkt_wantresched(td, curthread)) {
804 			need_resched();
805 		    }
806 		} else {
807 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
808 		}
809 		lwkt_reltoken(&w->wa_token);
810 	    } else {
811 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
812 	    }
813 	} else {
814 	    /*
815 	     * If the wait structure is NULL and we own the thread, there
816 	     * is no race (since we are in a critical section).  If we
817 	     * do not own the thread there might be a race but the
818 	     * target cpu will deal with it.
819 	     */
820 	    if (smp_active == 0 || td->td_gd == mycpu) {
821 		_lwkt_enqueue(td);
822 		if (td->td_preemptable) {
823 		    td->td_preemptable(td, TDPRI_CRIT);
824 		} else if (_lwkt_wantresched(td, curthread)) {
825 		    need_resched();
826 		}
827 	    } else {
828 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
829 	    }
830 	}
831     }
832     crit_exit();
833 }
834 
835 /*
836  * Managed acquisition.  This code assumes that the MP lock is held for
837  * the tdallq operation and that the thread has been descheduled from its
838  * original cpu.  We also have to wait for the thread to be entirely switched
839  * out on its original cpu (this is usually fast enough that we never loop)
840  * since the LWKT system does not have to hold the MP lock while switching
841  * and the target may have released it before switching.
842  */
843 void
844 lwkt_acquire(thread_t td)
845 {
846     struct globaldata *gd;
847 
848     gd = td->td_gd;
849     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
850     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
851 	;
852     if (gd != mycpu) {
853 	crit_enter();
854 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
855 	gd = mycpu;
856 	td->td_gd = gd;
857 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); /* protected by BGL */
858 	crit_exit();
859     }
860 }
861 
862 /*
863  * Deschedule a thread.
864  *
865  * (non-blocking, self contained on a per cpu basis)
866  */
867 void
868 lwkt_deschedule_self(void)
869 {
870     thread_t td = curthread;
871 
872     crit_enter();
873     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
874     _lwkt_dequeue(td);
875     crit_exit();
876 }
877 
878 /*
879  * Generic deschedule.  Descheduling threads other then your own should be
880  * done only in carefully controlled circumstances.  Descheduling is
881  * asynchronous.
882  *
883  * This function may block if the cpu has run out of messages.
884  */
885 void
886 lwkt_deschedule(thread_t td)
887 {
888     crit_enter();
889     if (td == curthread) {
890 	_lwkt_dequeue(td);
891     } else {
892 	if (td->td_gd == mycpu) {
893 	    _lwkt_dequeue(td);
894 	} else {
895 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
896 	}
897     }
898     crit_exit();
899 }
900 
901 /*
902  * Set the target thread's priority.  This routine does not automatically
903  * switch to a higher priority thread, LWKT threads are not designed for
904  * continuous priority changes.  Yield if you want to switch.
905  *
906  * We have to retain the critical section count which uses the high bits
907  * of the td_pri field.  The specified priority may also indicate zero or
908  * more critical sections by adding TDPRI_CRIT*N.
909  */
910 void
911 lwkt_setpri(thread_t td, int pri)
912 {
913     KKASSERT(pri >= 0);
914     KKASSERT(td->td_gd == mycpu);
915     crit_enter();
916     if (td->td_flags & TDF_RUNQ) {
917 	_lwkt_dequeue(td);
918 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
919 	_lwkt_enqueue(td);
920     } else {
921 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
922     }
923     crit_exit();
924 }
925 
926 void
927 lwkt_setpri_self(int pri)
928 {
929     thread_t td = curthread;
930 
931     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
932     crit_enter();
933     if (td->td_flags & TDF_RUNQ) {
934 	_lwkt_dequeue(td);
935 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
936 	_lwkt_enqueue(td);
937     } else {
938 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
939     }
940     crit_exit();
941 }
942 
943 struct proc *
944 lwkt_preempted_proc(void)
945 {
946     thread_t td = curthread;
947     while (td->td_preempted)
948 	td = td->td_preempted;
949     return(td->td_proc);
950 }
951 
952 #if 0
953 
954 /*
955  * This function deschedules the current thread and blocks on the specified
956  * wait queue.  We obtain ownership of the wait queue in order to block
957  * on it.  A generation number is used to interlock the wait queue in case
958  * it gets signalled while we are blocked waiting on the token.
959  *
960  * Note: alternatively we could dequeue our thread and then message the
961  * target cpu owning the wait queue.  YYY implement as sysctl.
962  *
963  * Note: wait queue signals normally ping-pong the cpu as an optimization.
964  */
965 
966 void
967 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
968 {
969     thread_t td = curthread;
970 
971     lwkt_gettoken(&w->wa_token);
972     if (w->wa_gen == *gen) {
973 	_lwkt_dequeue(td);
974 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
975 	++w->wa_count;
976 	td->td_wait = w;
977 	td->td_wmesg = wmesg;
978 again:
979 	lwkt_switch();
980 	lwkt_regettoken(&w->wa_token);
981 	if (td->td_wmesg != NULL) {
982 	    _lwkt_dequeue(td);
983 	    goto again;
984 	}
985     }
986     /* token might be lost, doesn't matter for gen update */
987     *gen = w->wa_gen;
988     lwkt_reltoken(&w->wa_token);
989 }
990 
991 /*
992  * Signal a wait queue.  We gain ownership of the wait queue in order to
993  * signal it.  Once a thread is removed from the wait queue we have to
994  * deal with the cpu owning the thread.
995  *
996  * Note: alternatively we could message the target cpu owning the wait
997  * queue.  YYY implement as sysctl.
998  */
999 void
1000 lwkt_signal(lwkt_wait_t w, int count)
1001 {
1002     thread_t td;
1003     int count;
1004 
1005     lwkt_gettoken(&w->wa_token);
1006     ++w->wa_gen;
1007     if (count < 0)
1008 	count = w->wa_count;
1009     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1010 	--count;
1011 	--w->wa_count;
1012 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1013 	td->td_wait = NULL;
1014 	td->td_wmesg = NULL;
1015 	if (td->td_gd == mycpu) {
1016 	    _lwkt_enqueue(td);
1017 	} else {
1018 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1019 	}
1020 	lwkt_regettoken(&w->wa_token);
1021     }
1022     lwkt_reltoken(&w->wa_token);
1023 }
1024 
1025 #endif
1026 
1027 /*
1028  * Create a kernel process/thread/whatever.  It shares it's address space
1029  * with proc0 - ie: kernel only.
1030  *
1031  * NOTE!  By default new threads are created with the MP lock held.  A
1032  * thread which does not require the MP lock should release it by calling
1033  * rel_mplock() at the start of the new thread.
1034  */
1035 int
1036 lwkt_create(void (*func)(void *), void *arg,
1037     struct thread **tdp, thread_t template, int tdflags, int cpu,
1038     const char *fmt, ...)
1039 {
1040     thread_t td;
1041     __va_list ap;
1042 
1043     td = lwkt_alloc_thread(template, cpu);
1044     if (tdp)
1045 	*tdp = td;
1046     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1047     td->td_flags |= TDF_VERBOSE | tdflags;
1048 #ifdef SMP
1049     td->td_mpcount = 1;
1050 #endif
1051 
1052     /*
1053      * Set up arg0 for 'ps' etc
1054      */
1055     __va_start(ap, fmt);
1056     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1057     __va_end(ap);
1058 
1059     /*
1060      * Schedule the thread to run
1061      */
1062     if ((td->td_flags & TDF_STOPREQ) == 0)
1063 	lwkt_schedule(td);
1064     else
1065 	td->td_flags &= ~TDF_STOPREQ;
1066     return 0;
1067 }
1068 
1069 /*
1070  * kthread_* is specific to the kernel and is not needed by userland.
1071  */
1072 #ifdef _KERNEL
1073 
1074 /*
1075  * Destroy an LWKT thread.   Warning!  This function is not called when
1076  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1077  * uses a different reaping mechanism.
1078  */
1079 void
1080 lwkt_exit(void)
1081 {
1082     thread_t td = curthread;
1083 
1084     if (td->td_flags & TDF_VERBOSE)
1085 	printf("kthread %p %s has exited\n", td, td->td_comm);
1086     caps_exit(td);
1087     crit_enter();
1088     lwkt_deschedule_self();
1089     ++mycpu->gd_tdfreecount;
1090     TAILQ_INSERT_TAIL(&mycpu->gd_tdfreeq, td, td_threadq);
1091     cpu_thread_exit();
1092 }
1093 
1094 /*
1095  * Create a kernel process/thread/whatever.  It shares it's address space
1096  * with proc0 - ie: kernel only.  5.x compatible.
1097  *
1098  * NOTE!  By default kthreads are created with the MP lock held.  A
1099  * thread which does not require the MP lock should release it by calling
1100  * rel_mplock() at the start of the new thread.
1101  */
1102 int
1103 kthread_create(void (*func)(void *), void *arg,
1104     struct thread **tdp, const char *fmt, ...)
1105 {
1106     thread_t td;
1107     __va_list ap;
1108 
1109     td = lwkt_alloc_thread(NULL, -1);
1110     if (tdp)
1111 	*tdp = td;
1112     cpu_set_thread_handler(td, kthread_exit, func, arg);
1113     td->td_flags |= TDF_VERBOSE;
1114 #ifdef SMP
1115     td->td_mpcount = 1;
1116 #endif
1117 
1118     /*
1119      * Set up arg0 for 'ps' etc
1120      */
1121     __va_start(ap, fmt);
1122     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1123     __va_end(ap);
1124 
1125     /*
1126      * Schedule the thread to run
1127      */
1128     lwkt_schedule(td);
1129     return 0;
1130 }
1131 
1132 /*
1133  * Destroy an LWKT thread.   Warning!  This function is not called when
1134  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1135  * uses a different reaping mechanism.
1136  *
1137  * XXX duplicates lwkt_exit()
1138  */
1139 void
1140 kthread_exit(void)
1141 {
1142     lwkt_exit();
1143 }
1144 
1145 #endif /* _KERNEL */
1146 
1147 void
1148 crit_panic(void)
1149 {
1150     thread_t td = curthread;
1151     int lpri = td->td_pri;
1152 
1153     td->td_pri = 0;
1154     panic("td_pri is/would-go negative! %p %d", td, lpri);
1155 }
1156 
1157