xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.76 2005/07/07 20:28:26 hmp Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68 
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72 
73 #else
74 
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 #include <machine/atomic.h>
89 #include <machine/cpu.h>
90 
91 #endif
92 
93 static int untimely_switch = 0;
94 #ifdef	INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101 static __int64_t token_contention_count = 0;
102 static __int64_t mplock_contention_count = 0;
103 
104 #ifdef _KERNEL
105 
106 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
107 #ifdef	INVARIANTS
108 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
109 #endif
110 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
112 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
113 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
114 #ifdef	INVARIANTS
115 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
116 	&token_contention_count, 0, "spinning due to token contention");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
118 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
119 #endif
120 #endif
121 
122 /*
123  * These helper procedures handle the runq, they can only be called from
124  * within a critical section.
125  *
126  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
127  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128  * instead of 'mycpu' when referencing the globaldata structure.   Once
129  * SMP live enqueuing and dequeueing only occurs on the current cpu.
130  */
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
134 {
135     if (td->td_flags & TDF_RUNQ) {
136 	int nq = td->td_pri & TDPRI_MASK;
137 	struct globaldata *gd = td->td_gd;
138 
139 	td->td_flags &= ~TDF_RUNQ;
140 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141 	/* runqmask is passively cleaned up by the switcher */
142     }
143 }
144 
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
148 {
149     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
150 	int nq = td->td_pri & TDPRI_MASK;
151 	struct globaldata *gd = td->td_gd;
152 
153 	td->td_flags |= TDF_RUNQ;
154 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155 	gd->gd_runqmask |= 1 << nq;
156     }
157 }
158 
159 /*
160  * Schedule a thread to run.  As the current thread we can always safely
161  * schedule ourselves, and a shortcut procedure is provided for that
162  * function.
163  *
164  * (non-blocking, self contained on a per cpu basis)
165  */
166 void
167 lwkt_schedule_self(thread_t td)
168 {
169     crit_enter_quick(td);
170     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
171     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
172     _lwkt_enqueue(td);
173 #ifdef _KERNEL
174     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
175 	panic("SCHED SELF PANIC");
176 #endif
177     crit_exit_quick(td);
178 }
179 
180 /*
181  * Deschedule a thread.
182  *
183  * (non-blocking, self contained on a per cpu basis)
184  */
185 void
186 lwkt_deschedule_self(thread_t td)
187 {
188     crit_enter_quick(td);
189     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
190     _lwkt_dequeue(td);
191     crit_exit_quick(td);
192 }
193 
194 #ifdef _KERNEL
195 
196 /*
197  * LWKTs operate on a per-cpu basis
198  *
199  * WARNING!  Called from early boot, 'mycpu' may not work yet.
200  */
201 void
202 lwkt_gdinit(struct globaldata *gd)
203 {
204     int i;
205 
206     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
207 	TAILQ_INIT(&gd->gd_tdrunq[i]);
208     gd->gd_runqmask = 0;
209     TAILQ_INIT(&gd->gd_tdallq);
210 }
211 
212 #endif /* _KERNEL */
213 
214 /*
215  * Initialize a thread wait structure prior to first use.
216  *
217  * NOTE!  called from low level boot code, we cannot do anything fancy!
218  */
219 void
220 lwkt_wait_init(lwkt_wait_t w)
221 {
222     lwkt_token_init(&w->wa_token);
223     TAILQ_INIT(&w->wa_waitq);
224     w->wa_gen = 0;
225     w->wa_count = 0;
226 }
227 
228 /*
229  * Create a new thread.  The thread must be associated with a process context
230  * or LWKT start address before it can be scheduled.  If the target cpu is
231  * -1 the thread will be created on the current cpu.
232  *
233  * If you intend to create a thread without a process context this function
234  * does everything except load the startup and switcher function.
235  */
236 thread_t
237 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
238 {
239     void *stack;
240     int flags = 0;
241     globaldata_t gd = mycpu;
242 
243     if (td == NULL) {
244 	crit_enter_gd(gd);
245 	if (gd->gd_tdfreecount > 0) {
246 	    --gd->gd_tdfreecount;
247 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
248 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
249 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
250 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
251 	    crit_exit_gd(gd);
252 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
253 	} else {
254 	    crit_exit_gd(gd);
255 #ifdef _KERNEL
256 	    td = zalloc(thread_zone);
257 #else
258 	    td = malloc(sizeof(struct thread));
259 #endif
260 	    td->td_kstack = NULL;
261 	    td->td_kstack_size = 0;
262 	    flags |= TDF_ALLOCATED_THREAD;
263 	}
264     }
265     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
266 	if (flags & TDF_ALLOCATED_STACK) {
267 #ifdef _KERNEL
268 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
269 #else
270 	    libcaps_free_stack(stack, td->td_kstack_size);
271 #endif
272 	    stack = NULL;
273 	}
274     }
275     if (stack == NULL) {
276 #ifdef _KERNEL
277 	stack = (void *)kmem_alloc(kernel_map, stksize);
278 #else
279 	stack = libcaps_alloc_stack(stksize);
280 #endif
281 	flags |= TDF_ALLOCATED_STACK;
282     }
283     if (cpu < 0)
284 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
285     else
286 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
287     return(td);
288 }
289 
290 #ifdef _KERNEL
291 
292 /*
293  * Initialize a preexisting thread structure.  This function is used by
294  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
295  *
296  * All threads start out in a critical section at a priority of
297  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
298  * appropriate.  This function may send an IPI message when the
299  * requested cpu is not the current cpu and consequently gd_tdallq may
300  * not be initialized synchronously from the point of view of the originating
301  * cpu.
302  *
303  * NOTE! we have to be careful in regards to creating threads for other cpus
304  * if SMP has not yet been activated.
305  */
306 #ifdef SMP
307 
308 static void
309 lwkt_init_thread_remote(void *arg)
310 {
311     thread_t td = arg;
312 
313     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
314 }
315 
316 #endif
317 
318 void
319 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
320 		struct globaldata *gd)
321 {
322     globaldata_t mygd = mycpu;
323 
324     bzero(td, sizeof(struct thread));
325     td->td_kstack = stack;
326     td->td_kstack_size = stksize;
327     td->td_flags |= flags;
328     td->td_gd = gd;
329     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
330     lwkt_initport(&td->td_msgport, td);
331     pmap_init_thread(td);
332 #ifdef SMP
333     /*
334      * Normally initializing a thread for a remote cpu requires sending an
335      * IPI.  However, the idlethread is setup before the other cpus are
336      * activated so we have to treat it as a special case.  XXX manipulation
337      * of gd_tdallq requires the BGL.
338      */
339     if (gd == mygd || td == &gd->gd_idlethread) {
340 	crit_enter_gd(mygd);
341 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
342 	crit_exit_gd(mygd);
343     } else {
344 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
345     }
346 #else
347     crit_enter_gd(mygd);
348     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
349     crit_exit_gd(mygd);
350 #endif
351 }
352 
353 #endif /* _KERNEL */
354 
355 void
356 lwkt_set_comm(thread_t td, const char *ctl, ...)
357 {
358     __va_list va;
359 
360     __va_start(va, ctl);
361     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
362     __va_end(va);
363 }
364 
365 void
366 lwkt_hold(thread_t td)
367 {
368     ++td->td_refs;
369 }
370 
371 void
372 lwkt_rele(thread_t td)
373 {
374     KKASSERT(td->td_refs > 0);
375     --td->td_refs;
376 }
377 
378 #ifdef _KERNEL
379 
380 void
381 lwkt_wait_free(thread_t td)
382 {
383     while (td->td_refs)
384 	tsleep(td, 0, "tdreap", hz);
385 }
386 
387 #endif
388 
389 void
390 lwkt_free_thread(thread_t td)
391 {
392     struct globaldata *gd = mycpu;
393 
394     KASSERT((td->td_flags & TDF_RUNNING) == 0,
395 	("lwkt_free_thread: did not exit! %p", td));
396 
397     crit_enter_gd(gd);
398     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
399     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
400 	(td->td_flags & TDF_ALLOCATED_THREAD)
401     ) {
402 	++gd->gd_tdfreecount;
403 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
404 	crit_exit_gd(gd);
405     } else {
406 	crit_exit_gd(gd);
407 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
408 #ifdef _KERNEL
409 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
410 #else
411 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
412 #endif
413 	    /* gd invalid */
414 	    td->td_kstack = NULL;
415 	    td->td_kstack_size = 0;
416 	}
417 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
418 #ifdef _KERNEL
419 	    zfree(thread_zone, td);
420 #else
421 	    free(td);
422 #endif
423 	}
424     }
425 }
426 
427 
428 /*
429  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
430  * switch to the idlethread.  Switching must occur within a critical
431  * section to avoid races with the scheduling queue.
432  *
433  * We always have full control over our cpu's run queue.  Other cpus
434  * that wish to manipulate our queue must use the cpu_*msg() calls to
435  * talk to our cpu, so a critical section is all that is needed and
436  * the result is very, very fast thread switching.
437  *
438  * The LWKT scheduler uses a fixed priority model and round-robins at
439  * each priority level.  User process scheduling is a totally
440  * different beast and LWKT priorities should not be confused with
441  * user process priorities.
442  *
443  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
444  * cleans it up.  Note that the td_switch() function cannot do anything that
445  * requires the MP lock since the MP lock will have already been setup for
446  * the target thread (not the current thread).  It's nice to have a scheduler
447  * that does not need the MP lock to work because it allows us to do some
448  * really cool high-performance MP lock optimizations.
449  */
450 
451 void
452 lwkt_switch(void)
453 {
454     globaldata_t gd = mycpu;
455     thread_t td = gd->gd_curthread;
456     thread_t ntd;
457 #ifdef SMP
458     int mpheld;
459 #endif
460 
461     /*
462      * Switching from within a 'fast' (non thread switched) interrupt is
463      * illegal.
464      */
465     if (gd->gd_intr_nesting_level && panicstr == NULL) {
466 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet, td %p\n", td);
467     }
468 
469     /*
470      * Passive release (used to transition from user to kernel mode
471      * when we block or switch rather then when we enter the kernel).
472      * This function is NOT called if we are switching into a preemption
473      * or returning from a preemption.  Typically this causes us to lose
474      * our current process designation (if we have one) and become a true
475      * LWKT thread, and may also hand the current process designation to
476      * another process and schedule thread.
477      */
478     if (td->td_release)
479 	    td->td_release(td);
480 
481     crit_enter_gd(gd);
482 
483 #ifdef SMP
484     /*
485      * td_mpcount cannot be used to determine if we currently hold the
486      * MP lock because get_mplock() will increment it prior to attempting
487      * to get the lock, and switch out if it can't.  Our ownership of
488      * the actual lock will remain stable while we are in a critical section
489      * (but, of course, another cpu may own or release the lock so the
490      * actual value of mp_lock is not stable).
491      */
492     mpheld = MP_LOCK_HELD();
493 #ifdef	INVARIANTS
494     if (td->td_cscount) {
495 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
496 		td);
497 	if (panic_on_cscount)
498 	    panic("switching while mastering cpusync");
499     }
500 #endif
501 #endif
502     if ((ntd = td->td_preempted) != NULL) {
503 	/*
504 	 * We had preempted another thread on this cpu, resume the preempted
505 	 * thread.  This occurs transparently, whether the preempted thread
506 	 * was scheduled or not (it may have been preempted after descheduling
507 	 * itself).
508 	 *
509 	 * We have to setup the MP lock for the original thread after backing
510 	 * out the adjustment that was made to curthread when the original
511 	 * was preempted.
512 	 */
513 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
514 #ifdef SMP
515 	if (ntd->td_mpcount && mpheld == 0) {
516 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
517 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
518 	}
519 	if (ntd->td_mpcount) {
520 	    td->td_mpcount -= ntd->td_mpcount;
521 	    KKASSERT(td->td_mpcount >= 0);
522 	}
523 #endif
524 	ntd->td_flags |= TDF_PREEMPT_DONE;
525 
526 	/*
527 	 * XXX.  The interrupt may have woken a thread up, we need to properly
528 	 * set the reschedule flag if the originally interrupted thread is at
529 	 * a lower priority.
530 	 */
531 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
532 	    need_lwkt_resched();
533 	/* YYY release mp lock on switchback if original doesn't need it */
534     } else {
535 	/*
536 	 * Priority queue / round-robin at each priority.  Note that user
537 	 * processes run at a fixed, low priority and the user process
538 	 * scheduler deals with interactions between user processes
539 	 * by scheduling and descheduling them from the LWKT queue as
540 	 * necessary.
541 	 *
542 	 * We have to adjust the MP lock for the target thread.  If we
543 	 * need the MP lock and cannot obtain it we try to locate a
544 	 * thread that does not need the MP lock.  If we cannot, we spin
545 	 * instead of HLT.
546 	 *
547 	 * A similar issue exists for the tokens held by the target thread.
548 	 * If we cannot obtain ownership of the tokens we cannot immediately
549 	 * schedule the thread.
550 	 */
551 
552 	/*
553 	 * We are switching threads.  If there are any pending requests for
554 	 * tokens we can satisfy all of them here.
555 	 */
556 #ifdef SMP
557 	if (gd->gd_tokreqbase)
558 		lwkt_drain_token_requests();
559 #endif
560 
561 	/*
562 	 * If an LWKT reschedule was requested, well that is what we are
563 	 * doing now so clear it.
564 	 */
565 	clear_lwkt_resched();
566 again:
567 	if (gd->gd_runqmask) {
568 	    int nq = bsrl(gd->gd_runqmask);
569 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
570 		gd->gd_runqmask &= ~(1 << nq);
571 		goto again;
572 	    }
573 #ifdef SMP
574 	    /*
575 	     * If the target needs the MP lock and we couldn't get it,
576 	     * or if the target is holding tokens and we could not
577 	     * gain ownership of the tokens, continue looking for a
578 	     * thread to schedule and spin instead of HLT if we can't.
579 	     */
580 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
581 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
582 	    ) {
583 		u_int32_t rqmask = gd->gd_runqmask;
584 		while (rqmask) {
585 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
586 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
587 				/* spinning due to MP lock being held */
588 #ifdef	INVARIANTS
589 				++mplock_contention_count;
590 #endif
591 			    continue;
592 			}
593 			mpheld = MP_LOCK_HELD();
594 			if (ntd->td_toks && !lwkt_chktokens(ntd)) {
595 				/* spinning due to token contention */
596 #ifdef	INVARIANTS
597 				++token_contention_count;
598 #endif
599 			    continue;
600 			}
601 			break;
602 		    }
603 		    if (ntd)
604 			break;
605 		    rqmask &= ~(1 << nq);
606 		    nq = bsrl(rqmask);
607 		}
608 		if (ntd == NULL) {
609 		    ntd = &gd->gd_idlethread;
610 		    ntd->td_flags |= TDF_IDLE_NOHLT;
611 		} else {
612 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
613 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
614 		}
615 	    } else {
616 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
617 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
618 	    }
619 #else
620 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
621 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
622 #endif
623 	} else {
624 	    /*
625 	     * We have nothing to run but only let the idle loop halt
626 	     * the cpu if there are no pending interrupts.
627 	     */
628 	    ntd = &gd->gd_idlethread;
629 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
630 		ntd->td_flags |= TDF_IDLE_NOHLT;
631 	}
632     }
633     KASSERT(ntd->td_pri >= TDPRI_CRIT,
634 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
635 
636     /*
637      * Do the actual switch.  If the new target does not need the MP lock
638      * and we are holding it, release the MP lock.  If the new target requires
639      * the MP lock we have already acquired it for the target.
640      */
641 #ifdef SMP
642     if (ntd->td_mpcount == 0 ) {
643 	if (MP_LOCK_HELD())
644 	    cpu_rel_mplock();
645     } else {
646 	ASSERT_MP_LOCK_HELD();
647     }
648 #endif
649     if (td != ntd) {
650 	++switch_count;
651 	td->td_switch(ntd);
652     }
653     /* NOTE: current cpu may have changed after switch */
654     crit_exit_quick(td);
655 }
656 
657 /*
658  * Request that the target thread preempt the current thread.  Preemption
659  * only works under a specific set of conditions:
660  *
661  *	- We are not preempting ourselves
662  *	- The target thread is owned by the current cpu
663  *	- We are not currently being preempted
664  *	- The target is not currently being preempted
665  *	- We are able to satisfy the target's MP lock requirements (if any).
666  *
667  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
668  * this is called via lwkt_schedule() through the td_preemptable callback.
669  * critpri is the managed critical priority that we should ignore in order
670  * to determine whether preemption is possible (aka usually just the crit
671  * priority of lwkt_schedule() itself).
672  *
673  * XXX at the moment we run the target thread in a critical section during
674  * the preemption in order to prevent the target from taking interrupts
675  * that *WE* can't.  Preemption is strictly limited to interrupt threads
676  * and interrupt-like threads, outside of a critical section, and the
677  * preempted source thread will be resumed the instant the target blocks
678  * whether or not the source is scheduled (i.e. preemption is supposed to
679  * be as transparent as possible).
680  *
681  * The target thread inherits our MP count (added to its own) for the
682  * duration of the preemption in order to preserve the atomicy of the
683  * MP lock during the preemption.  Therefore, any preempting targets must be
684  * careful in regards to MP assertions.  Note that the MP count may be
685  * out of sync with the physical mp_lock, but we do not have to preserve
686  * the original ownership of the lock if it was out of synch (that is, we
687  * can leave it synchronized on return).
688  */
689 void
690 lwkt_preempt(thread_t ntd, int critpri)
691 {
692     struct globaldata *gd = mycpu;
693     thread_t td;
694 #ifdef SMP
695     int mpheld;
696     int savecnt;
697 #endif
698 
699     /*
700      * The caller has put us in a critical section.  We can only preempt
701      * if the caller of the caller was not in a critical section (basically
702      * a local interrupt), as determined by the 'critpri' parameter.
703      *
704      * YYY The target thread must be in a critical section (else it must
705      * inherit our critical section?  I dunno yet).
706      *
707      * Any tokens held by the target may not be held by thread(s) being
708      * preempted.  We take the easy way out and do not preempt if
709      * the target is holding tokens.
710      *
711      * Set need_lwkt_resched() unconditionally for now YYY.
712      */
713     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
714 
715     td = gd->gd_curthread;
716     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
717 	++preempt_miss;
718 	return;
719     }
720     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
721 	++preempt_miss;
722 	need_lwkt_resched();
723 	return;
724     }
725 #ifdef SMP
726     if (ntd->td_gd != gd) {
727 	++preempt_miss;
728 	need_lwkt_resched();
729 	return;
730     }
731 #endif
732     /*
733      * Take the easy way out and do not preempt if the target is holding
734      * one or more tokens.  We could test whether the thread(s) being
735      * preempted interlock against the target thread's tokens and whether
736      * we can get all the target thread's tokens, but this situation
737      * should not occur very often so its easier to simply not preempt.
738      */
739     if (ntd->td_toks != NULL) {
740 	++preempt_miss;
741 	need_lwkt_resched();
742 	return;
743     }
744     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
745 	++preempt_weird;
746 	need_lwkt_resched();
747 	return;
748     }
749     if (ntd->td_preempted) {
750 	++preempt_hit;
751 	need_lwkt_resched();
752 	return;
753     }
754 #ifdef SMP
755     /*
756      * note: an interrupt might have occured just as we were transitioning
757      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
758      * (non-zero) but not actually synchronized with the actual state of the
759      * lock.  We can use it to imply an MP lock requirement for the
760      * preemption but we cannot use it to test whether we hold the MP lock
761      * or not.
762      */
763     savecnt = td->td_mpcount;
764     mpheld = MP_LOCK_HELD();
765     ntd->td_mpcount += td->td_mpcount;
766     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
767 	ntd->td_mpcount -= td->td_mpcount;
768 	++preempt_miss;
769 	need_lwkt_resched();
770 	return;
771     }
772 #endif
773 
774     /*
775      * Since we are able to preempt the current thread, there is no need to
776      * call need_lwkt_resched().
777      */
778     ++preempt_hit;
779     ntd->td_preempted = td;
780     td->td_flags |= TDF_PREEMPT_LOCK;
781     td->td_switch(ntd);
782     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
783 #ifdef SMP
784     KKASSERT(savecnt == td->td_mpcount);
785     mpheld = MP_LOCK_HELD();
786     if (mpheld && td->td_mpcount == 0)
787 	cpu_rel_mplock();
788     else if (mpheld == 0 && td->td_mpcount)
789 	panic("lwkt_preempt(): MP lock was not held through");
790 #endif
791     ntd->td_preempted = NULL;
792     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
793 }
794 
795 /*
796  * Yield our thread while higher priority threads are pending.  This is
797  * typically called when we leave a critical section but it can be safely
798  * called while we are in a critical section.
799  *
800  * This function will not generally yield to equal priority threads but it
801  * can occur as a side effect.  Note that lwkt_switch() is called from
802  * inside the critical section to prevent its own crit_exit() from reentering
803  * lwkt_yield_quick().
804  *
805  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
806  * came along but was blocked and made pending.
807  *
808  * (self contained on a per cpu basis)
809  */
810 void
811 lwkt_yield_quick(void)
812 {
813     globaldata_t gd = mycpu;
814     thread_t td = gd->gd_curthread;
815 
816     /*
817      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
818      * it with a non-zero cpl then we might not wind up calling splz after
819      * a task switch when the critical section is exited even though the
820      * new task could accept the interrupt.
821      *
822      * XXX from crit_exit() only called after last crit section is released.
823      * If called directly will run splz() even if in a critical section.
824      *
825      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
826      * except for this special case, we MUST call splz() here to handle any
827      * pending ints, particularly after we switch, or we might accidently
828      * halt the cpu with interrupts pending.
829      */
830     if (gd->gd_reqflags && td->td_nest_count < 2)
831 	splz();
832 
833     /*
834      * YYY enabling will cause wakeup() to task-switch, which really
835      * confused the old 4.x code.  This is a good way to simulate
836      * preemption and MP without actually doing preemption or MP, because a
837      * lot of code assumes that wakeup() does not block.
838      */
839     if (untimely_switch && td->td_nest_count == 0 &&
840 	gd->gd_intr_nesting_level == 0
841     ) {
842 	crit_enter_quick(td);
843 	/*
844 	 * YYY temporary hacks until we disassociate the userland scheduler
845 	 * from the LWKT scheduler.
846 	 */
847 	if (td->td_flags & TDF_RUNQ) {
848 	    lwkt_switch();		/* will not reenter yield function */
849 	} else {
850 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
851 	    lwkt_switch();		/* will not reenter yield function */
852 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
853 	}
854 	crit_exit_noyield(td);
855     }
856 }
857 
858 /*
859  * This implements a normal yield which, unlike _quick, will yield to equal
860  * priority threads as well.  Note that gd_reqflags tests will be handled by
861  * the crit_exit() call in lwkt_switch().
862  *
863  * (self contained on a per cpu basis)
864  */
865 void
866 lwkt_yield(void)
867 {
868     lwkt_schedule_self(curthread);
869     lwkt_switch();
870 }
871 
872 /*
873  * Generic schedule.  Possibly schedule threads belonging to other cpus and
874  * deal with threads that might be blocked on a wait queue.
875  *
876  * We have a little helper inline function which does additional work after
877  * the thread has been enqueued, including dealing with preemption and
878  * setting need_lwkt_resched() (which prevents the kernel from returning
879  * to userland until it has processed higher priority threads).
880  */
881 static __inline
882 void
883 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
884 {
885     if (ntd->td_preemptable) {
886 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
887     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
888 	(ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
889     ) {
890 	need_lwkt_resched();
891     }
892 }
893 
894 void
895 lwkt_schedule(thread_t td)
896 {
897     globaldata_t mygd = mycpu;
898 
899 #ifdef	INVARIANTS
900     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
901     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
902 	&& td->td_proc->p_stat == SSLEEP
903     ) {
904 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
905 	    curthread,
906 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
907 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
908 	    td,
909 	    td->td_proc ? curthread->td_proc->p_pid : -1,
910 	    td->td_proc ? curthread->td_proc->p_stat : -1
911 	);
912 	panic("SCHED PANIC");
913     }
914 #endif
915     crit_enter_gd(mygd);
916     if (td == mygd->gd_curthread) {
917 	_lwkt_enqueue(td);
918     } else {
919 	lwkt_wait_t w;
920 
921 	/*
922 	 * If the thread is on a wait list we have to send our scheduling
923 	 * request to the owner of the wait structure.  Otherwise we send
924 	 * the scheduling request to the cpu owning the thread.  Races
925 	 * are ok, the target will forward the message as necessary (the
926 	 * message may chase the thread around before it finally gets
927 	 * acted upon).
928 	 *
929 	 * (remember, wait structures use stable storage)
930 	 *
931 	 * NOTE: we have to account for the number of critical sections
932 	 * under our control when calling _lwkt_schedule_post() so it
933 	 * can figure out whether preemption is allowed.
934 	 *
935 	 * NOTE: The wait structure algorithms are a mess and need to be
936 	 * rewritten.
937 	 *
938 	 * NOTE: We cannot safely acquire or release a token, even
939 	 * non-blocking, because this routine may be called in the context
940 	 * of a thread already holding the token and thus not provide any
941 	 * interlock protection.  We cannot safely manipulate the td_toks
942 	 * list for the same reason.  Instead we depend on our critical
943 	 * section if the token is owned by our cpu.
944 	 */
945 	if ((w = td->td_wait) != NULL) {
946 	    if (w->wa_token.t_cpu == mygd) {
947 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
948 		--w->wa_count;
949 		td->td_wait = NULL;
950 #ifdef SMP
951 		if (td->td_gd == mygd) {
952 		    _lwkt_enqueue(td);
953 		    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
954 		} else {
955 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
956 		}
957 #else
958 		_lwkt_enqueue(td);
959 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
960 #endif
961 	    } else {
962 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
963 	    }
964 	} else {
965 	    /*
966 	     * If the wait structure is NULL and we own the thread, there
967 	     * is no race (since we are in a critical section).  If we
968 	     * do not own the thread there might be a race but the
969 	     * target cpu will deal with it.
970 	     */
971 #ifdef SMP
972 	    if (td->td_gd == mygd) {
973 		_lwkt_enqueue(td);
974 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
975 	    } else {
976 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
977 	    }
978 #else
979 	    _lwkt_enqueue(td);
980 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
981 #endif
982 	}
983     }
984     crit_exit_gd(mygd);
985 }
986 
987 /*
988  * Managed acquisition.  This code assumes that the MP lock is held for
989  * the tdallq operation and that the thread has been descheduled from its
990  * original cpu.  We also have to wait for the thread to be entirely switched
991  * out on its original cpu (this is usually fast enough that we never loop)
992  * since the LWKT system does not have to hold the MP lock while switching
993  * and the target may have released it before switching.
994  */
995 void
996 lwkt_acquire(thread_t td)
997 {
998     globaldata_t gd;
999     globaldata_t mygd;
1000 
1001     gd = td->td_gd;
1002     mygd = mycpu;
1003     cpu_lfence();
1004     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1005     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
1006 	cpu_lfence();
1007     if (gd != mygd) {
1008 	crit_enter_gd(mygd);
1009 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
1010 	td->td_gd = mygd;
1011 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
1012 	crit_exit_gd(mygd);
1013     }
1014 }
1015 
1016 /*
1017  * Generic deschedule.  Descheduling threads other then your own should be
1018  * done only in carefully controlled circumstances.  Descheduling is
1019  * asynchronous.
1020  *
1021  * This function may block if the cpu has run out of messages.
1022  */
1023 void
1024 lwkt_deschedule(thread_t td)
1025 {
1026     crit_enter();
1027     if (td == curthread) {
1028 	_lwkt_dequeue(td);
1029     } else {
1030 	if (td->td_gd == mycpu) {
1031 	    _lwkt_dequeue(td);
1032 	} else {
1033 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
1034 	}
1035     }
1036     crit_exit();
1037 }
1038 
1039 /*
1040  * Set the target thread's priority.  This routine does not automatically
1041  * switch to a higher priority thread, LWKT threads are not designed for
1042  * continuous priority changes.  Yield if you want to switch.
1043  *
1044  * We have to retain the critical section count which uses the high bits
1045  * of the td_pri field.  The specified priority may also indicate zero or
1046  * more critical sections by adding TDPRI_CRIT*N.
1047  *
1048  * Note that we requeue the thread whether it winds up on a different runq
1049  * or not.  uio_yield() depends on this and the routine is not normally
1050  * called with the same priority otherwise.
1051  */
1052 void
1053 lwkt_setpri(thread_t td, int pri)
1054 {
1055     KKASSERT(pri >= 0);
1056     KKASSERT(td->td_gd == mycpu);
1057     crit_enter();
1058     if (td->td_flags & TDF_RUNQ) {
1059 	_lwkt_dequeue(td);
1060 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1061 	_lwkt_enqueue(td);
1062     } else {
1063 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1064     }
1065     crit_exit();
1066 }
1067 
1068 void
1069 lwkt_setpri_self(int pri)
1070 {
1071     thread_t td = curthread;
1072 
1073     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1074     crit_enter();
1075     if (td->td_flags & TDF_RUNQ) {
1076 	_lwkt_dequeue(td);
1077 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1078 	_lwkt_enqueue(td);
1079     } else {
1080 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1081     }
1082     crit_exit();
1083 }
1084 
1085 /*
1086  * Determine if there is a runnable thread at a higher priority then
1087  * the current thread.  lwkt_setpri() does not check this automatically.
1088  * Return 1 if there is, 0 if there isn't.
1089  *
1090  * Example: if bit 31 of runqmask is set and the current thread is priority
1091  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1092  *
1093  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1094  * up comparing against 0xffffffff, a comparison that will always be false.
1095  */
1096 int
1097 lwkt_checkpri_self(void)
1098 {
1099     globaldata_t gd = mycpu;
1100     thread_t td = gd->gd_curthread;
1101     int nq = td->td_pri & TDPRI_MASK;
1102 
1103     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1104 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1105 	    return(1);
1106 	++nq;
1107     }
1108     return(0);
1109 }
1110 
1111 /*
1112  * Migrate the current thread to the specified cpu.  The BGL must be held
1113  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1114  * descheduling ourselves from the current cpu, moving our thread to the
1115  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1116  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1117  */
1118 #ifdef SMP
1119 static void lwkt_setcpu_remote(void *arg);
1120 #endif
1121 
1122 void
1123 lwkt_setcpu_self(globaldata_t rgd)
1124 {
1125 #ifdef SMP
1126     thread_t td = curthread;
1127 
1128     if (td->td_gd != rgd) {
1129 	crit_enter_quick(td);
1130 	td->td_flags |= TDF_MIGRATING;
1131 	lwkt_deschedule_self(td);
1132 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1133 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1134 	lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1135 	lwkt_switch();
1136 	/* we are now on the target cpu */
1137 	crit_exit_quick(td);
1138     }
1139 #endif
1140 }
1141 
1142 /*
1143  * Remote IPI for cpu migration (called while in a critical section so we
1144  * do not have to enter another one).  The thread has already been moved to
1145  * our cpu's allq, but we must wait for the thread to be completely switched
1146  * out on the originating cpu before we schedule it on ours or the stack
1147  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1148  * change to main memory.
1149  *
1150  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1151  * against wakeups.  It is best if this interface is used only when there
1152  * are no pending events that might try to schedule the thread.
1153  */
1154 #ifdef SMP
1155 static void
1156 lwkt_setcpu_remote(void *arg)
1157 {
1158     thread_t td = arg;
1159     globaldata_t gd = mycpu;
1160 
1161     while (td->td_flags & TDF_RUNNING)
1162 	cpu_lfence();
1163     td->td_gd = gd;
1164     cpu_sfence();
1165     td->td_flags &= ~TDF_MIGRATING;
1166     _lwkt_enqueue(td);
1167 }
1168 #endif
1169 
1170 struct proc *
1171 lwkt_preempted_proc(void)
1172 {
1173     thread_t td = curthread;
1174     while (td->td_preempted)
1175 	td = td->td_preempted;
1176     return(td->td_proc);
1177 }
1178 
1179 /*
1180  * Block on the specified wait queue until signaled.  A generation number
1181  * must be supplied to interlock the wait queue.  The function will
1182  * return immediately if the generation number does not match the wait
1183  * structure's generation number.
1184  */
1185 void
1186 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1187 {
1188     thread_t td = curthread;
1189     lwkt_tokref ilock;
1190 
1191     lwkt_gettoken(&ilock, &w->wa_token);
1192     crit_enter();
1193     if (w->wa_gen == *gen) {
1194 	_lwkt_dequeue(td);
1195 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1196 	++w->wa_count;
1197 	td->td_wait = w;
1198 	td->td_wmesg = wmesg;
1199     again:
1200 	lwkt_switch();
1201 	if (td->td_wmesg != NULL) {
1202 	    _lwkt_dequeue(td);
1203 	    goto again;
1204 	}
1205     }
1206     crit_exit();
1207     *gen = w->wa_gen;
1208     lwkt_reltoken(&ilock);
1209 }
1210 
1211 /*
1212  * Signal a wait queue.  We gain ownership of the wait queue in order to
1213  * signal it.  Once a thread is removed from the wait queue we have to
1214  * deal with the cpu owning the thread.
1215  *
1216  * Note: alternatively we could message the target cpu owning the wait
1217  * queue.  YYY implement as sysctl.
1218  */
1219 void
1220 lwkt_signal(lwkt_wait_t w, int count)
1221 {
1222     thread_t td;
1223     lwkt_tokref ilock;
1224 
1225     lwkt_gettoken(&ilock, &w->wa_token);
1226     ++w->wa_gen;
1227     crit_enter();
1228     if (count < 0)
1229 	count = w->wa_count;
1230     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1231 	--count;
1232 	--w->wa_count;
1233 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1234 	td->td_wait = NULL;
1235 	td->td_wmesg = NULL;
1236 	if (td->td_gd == mycpu) {
1237 	    _lwkt_enqueue(td);
1238 	} else {
1239 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1240 	}
1241     }
1242     crit_exit();
1243     lwkt_reltoken(&ilock);
1244 }
1245 
1246 /*
1247  * Create a kernel process/thread/whatever.  It shares it's address space
1248  * with proc0 - ie: kernel only.
1249  *
1250  * NOTE!  By default new threads are created with the MP lock held.  A
1251  * thread which does not require the MP lock should release it by calling
1252  * rel_mplock() at the start of the new thread.
1253  */
1254 int
1255 lwkt_create(void (*func)(void *), void *arg,
1256     struct thread **tdp, thread_t template, int tdflags, int cpu,
1257     const char *fmt, ...)
1258 {
1259     thread_t td;
1260     __va_list ap;
1261 
1262     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1263     if (tdp)
1264 	*tdp = td;
1265     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1266     td->td_flags |= TDF_VERBOSE | tdflags;
1267 #ifdef SMP
1268     td->td_mpcount = 1;
1269 #endif
1270 
1271     /*
1272      * Set up arg0 for 'ps' etc
1273      */
1274     __va_start(ap, fmt);
1275     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1276     __va_end(ap);
1277 
1278     /*
1279      * Schedule the thread to run
1280      */
1281     if ((td->td_flags & TDF_STOPREQ) == 0)
1282 	lwkt_schedule(td);
1283     else
1284 	td->td_flags &= ~TDF_STOPREQ;
1285     return 0;
1286 }
1287 
1288 /*
1289  * kthread_* is specific to the kernel and is not needed by userland.
1290  */
1291 #ifdef _KERNEL
1292 
1293 /*
1294  * Destroy an LWKT thread.   Warning!  This function is not called when
1295  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1296  * uses a different reaping mechanism.
1297  */
1298 void
1299 lwkt_exit(void)
1300 {
1301     thread_t td = curthread;
1302     globaldata_t gd;
1303 
1304     if (td->td_flags & TDF_VERBOSE)
1305 	printf("kthread %p %s has exited\n", td, td->td_comm);
1306     caps_exit(td);
1307     crit_enter_quick(td);
1308     lwkt_deschedule_self(td);
1309     gd = mycpu;
1310     KKASSERT(gd == td->td_gd);
1311     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1312     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1313 	++gd->gd_tdfreecount;
1314 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1315     }
1316     cpu_thread_exit();
1317 }
1318 
1319 #endif /* _KERNEL */
1320 
1321 void
1322 crit_panic(void)
1323 {
1324     thread_t td = curthread;
1325     int lpri = td->td_pri;
1326 
1327     td->td_pri = 0;
1328     panic("td_pri is/would-go negative! %p %d", td, lpri);
1329 }
1330 
1331