xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision dae650601b7a1502cc3804a70c39222b46186f48)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 #include <sys/indefinite.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/indefinite2.h>
61 
62 #include <sys/dsched.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 #include <machine/clock.h>
76 
77 #ifdef _KERNEL_VIRTUAL
78 #include <pthread.h>
79 #endif
80 
81 #define LOOPMASK
82 
83 #if !defined(KTR_CTXSW)
84 #define KTR_CTXSW KTR_ALL
85 #endif
86 KTR_INFO_MASTER(ctxsw);
87 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
88 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
89 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
90 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
91 
92 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
93 
94 #ifdef	INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 #ifdef DEBUG_LWKT_THREAD
98 static int64_t switch_count = 0;
99 static int64_t preempt_hit = 0;
100 static int64_t preempt_miss = 0;
101 static int64_t preempt_weird = 0;
102 #endif
103 static int lwkt_use_spin_port;
104 __read_mostly static struct objcache *thread_cache;
105 int cpu_mwait_spin = 0;
106 
107 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
108 static void lwkt_setcpu_remote(void *arg);
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 #ifdef	INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118     "Panic if attempting to switch lwkt's while mastering cpusync");
119 #endif
120 #ifdef DEBUG_LWKT_THREAD
121 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
122     "Number of switched threads");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
124     "Successful preemption events");
125 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
126     "Failed preemption events");
127 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
128     "Number of preempted threads.");
129 #endif
130 extern int lwkt_sched_debug;
131 int lwkt_sched_debug = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
133 	&lwkt_sched_debug, 0, "Scheduler debug");
134 __read_mostly static u_int lwkt_spin_loops = 10;
135 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
136 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
137 __read_mostly static int preempt_enable = 1;
138 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
139 	&preempt_enable, 0, "Enable preemption");
140 static int lwkt_cache_threads = 0;
141 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
142 	&lwkt_cache_threads, 0, "thread+kstack cache");
143 
144 /*
145  * These helper procedures handle the runq, they can only be called from
146  * within a critical section.
147  *
148  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
149  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
150  * instead of 'mycpu' when referencing the globaldata structure.   Once
151  * SMP live enqueuing and dequeueing only occurs on the current cpu.
152  */
153 static __inline
154 void
155 _lwkt_dequeue(thread_t td)
156 {
157     if (td->td_flags & TDF_RUNQ) {
158 	struct globaldata *gd = td->td_gd;
159 
160 	td->td_flags &= ~TDF_RUNQ;
161 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
162 	--gd->gd_tdrunqcount;
163 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
164 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
165     }
166 }
167 
168 /*
169  * Priority enqueue.
170  *
171  * There are a limited number of lwkt threads runnable since user
172  * processes only schedule one at a time per cpu.  However, there can
173  * be many user processes in kernel mode exiting from a tsleep() which
174  * become runnable.
175  *
176  * We scan the queue in both directions to help deal with degenerate
177  * situations when hundreds or thousands (or more) threads are runnable.
178  *
179  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
180  *	 will ignore user priority.  This is to ensure that user threads in
181  *	 kernel mode get cpu at some point regardless of what the user
182  *	 scheduler thinks.
183  */
184 static __inline
185 void
186 _lwkt_enqueue(thread_t td)
187 {
188     thread_t xtd;	/* forward scan */
189     thread_t rtd;	/* reverse scan */
190 
191     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
192 	struct globaldata *gd = td->td_gd;
193 
194 	td->td_flags |= TDF_RUNQ;
195 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
196 	if (xtd == NULL) {
197 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
198 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
199 	} else {
200 	    /*
201 	     * NOTE: td_upri - higher numbers more desireable, same sense
202 	     *	     as td_pri (typically reversed from lwp_upri).
203 	     *
204 	     *	     In the equal priority case we want the best selection
205 	     *	     at the beginning so the less desireable selections know
206 	     *	     that they have to setrunqueue/go-to-another-cpu, even
207 	     *	     though it means switching back to the 'best' selection.
208 	     *	     This also avoids degenerate situations when many threads
209 	     *	     are runnable or waking up at the same time.
210 	     *
211 	     *	     If upri matches exactly place at end/round-robin.
212 	     */
213 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
214 
215 	    while (xtd &&
216 		   (xtd->td_pri > td->td_pri ||
217 		    (xtd->td_pri == td->td_pri &&
218 		     xtd->td_upri >= td->td_upri))) {
219 		xtd = TAILQ_NEXT(xtd, td_threadq);
220 
221 		/*
222 		 * Doing a reverse scan at the same time is an optimization
223 		 * for the insert-closer-to-tail case that avoids having to
224 		 * scan the entire list.  This situation can occur when
225 		 * thousands of threads are woken up at the same time.
226 		 */
227 		if (rtd->td_pri > td->td_pri ||
228 		    (rtd->td_pri == td->td_pri &&
229 		    rtd->td_upri >= td->td_upri)) {
230 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
231 			goto skip;
232 		}
233 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
234 	    }
235 	    if (xtd)
236 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
237 	    else
238 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
239 	}
240 skip:
241 	++gd->gd_tdrunqcount;
242 
243 	/*
244 	 * Request a LWKT reschedule if we are now at the head of the queue.
245 	 */
246 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
247 	    need_lwkt_resched();
248     }
249 }
250 
251 static boolean_t
252 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
253 {
254 	struct thread *td = (struct thread *)obj;
255 
256 	td->td_kstack = NULL;
257 	td->td_kstack_size = 0;
258 	td->td_flags = TDF_ALLOCATED_THREAD;
259 	td->td_mpflags = 0;
260 	return (1);
261 }
262 
263 static void
264 _lwkt_thread_dtor(void *obj, void *privdata)
265 {
266 	struct thread *td = (struct thread *)obj;
267 
268 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
269 	    ("_lwkt_thread_dtor: not allocated from objcache"));
270 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
271 		td->td_kstack_size > 0,
272 	    ("_lwkt_thread_dtor: corrupted stack"));
273 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
274 	td->td_kstack = NULL;
275 	td->td_flags = 0;
276 }
277 
278 /*
279  * Initialize the lwkt s/system.
280  *
281  * Nominally cache up to 32 thread + kstack structures.  Cache more on
282  * systems with a lot of cpu cores.
283  */
284 static void
285 lwkt_init(void)
286 {
287     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
288     if (lwkt_cache_threads == 0) {
289 	lwkt_cache_threads = ncpus * 4;
290 	if (lwkt_cache_threads < 32)
291 	    lwkt_cache_threads = 32;
292     }
293     thread_cache = objcache_create_mbacked(
294 				M_THREAD, sizeof(struct thread),
295 				0, lwkt_cache_threads,
296 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
297 }
298 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
299 
300 /*
301  * Schedule a thread to run.  As the current thread we can always safely
302  * schedule ourselves, and a shortcut procedure is provided for that
303  * function.
304  *
305  * (non-blocking, self contained on a per cpu basis)
306  */
307 void
308 lwkt_schedule_self(thread_t td)
309 {
310     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
311     crit_enter_quick(td);
312     KASSERT(td != &td->td_gd->gd_idlethread,
313 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
314     KKASSERT(td->td_lwp == NULL ||
315 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
316     _lwkt_enqueue(td);
317     crit_exit_quick(td);
318 }
319 
320 /*
321  * Deschedule a thread.
322  *
323  * (non-blocking, self contained on a per cpu basis)
324  */
325 void
326 lwkt_deschedule_self(thread_t td)
327 {
328     crit_enter_quick(td);
329     _lwkt_dequeue(td);
330     crit_exit_quick(td);
331 }
332 
333 /*
334  * LWKTs operate on a per-cpu basis
335  *
336  * WARNING!  Called from early boot, 'mycpu' may not work yet.
337  */
338 void
339 lwkt_gdinit(struct globaldata *gd)
340 {
341     TAILQ_INIT(&gd->gd_tdrunq);
342     TAILQ_INIT(&gd->gd_tdallq);
343     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
344 }
345 
346 /*
347  * Create a new thread.  The thread must be associated with a process context
348  * or LWKT start address before it can be scheduled.  If the target cpu is
349  * -1 the thread will be created on the current cpu.
350  *
351  * If you intend to create a thread without a process context this function
352  * does everything except load the startup and switcher function.
353  */
354 thread_t
355 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
356 {
357     static int cpu_rotator;
358     globaldata_t gd = mycpu;
359     void *stack;
360 
361     /*
362      * If static thread storage is not supplied allocate a thread.  Reuse
363      * a cached free thread if possible.  gd_freetd is used to keep an exiting
364      * thread intact through the exit.
365      */
366     if (td == NULL) {
367 	crit_enter_gd(gd);
368 	if ((td = gd->gd_freetd) != NULL) {
369 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
370 				      TDF_RUNQ)) == 0);
371 	    gd->gd_freetd = NULL;
372 	} else {
373 	    td = objcache_get(thread_cache, M_WAITOK);
374 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
375 				      TDF_RUNQ)) == 0);
376 	}
377 	crit_exit_gd(gd);
378     	KASSERT((td->td_flags &
379 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
380 		 TDF_ALLOCATED_THREAD,
381 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
382     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
383     }
384 
385     /*
386      * Try to reuse cached stack.
387      */
388     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
389 	if (flags & TDF_ALLOCATED_STACK) {
390 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
391 	    stack = NULL;
392 	}
393     }
394     if (stack == NULL) {
395 	if (cpu < 0)
396 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
397 	else
398 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
399 						 KM_CPU(cpu));
400 	flags |= TDF_ALLOCATED_STACK;
401     }
402     if (cpu < 0) {
403 	cpu = ++cpu_rotator;
404 	cpu_ccfence();
405 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
406     }
407     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
408     return(td);
409 }
410 
411 /*
412  * Initialize a preexisting thread structure.  This function is used by
413  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
414  *
415  * All threads start out in a critical section at a priority of
416  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
417  * appropriate.  This function may send an IPI message when the
418  * requested cpu is not the current cpu and consequently gd_tdallq may
419  * not be initialized synchronously from the point of view of the originating
420  * cpu.
421  *
422  * NOTE! we have to be careful in regards to creating threads for other cpus
423  * if SMP has not yet been activated.
424  */
425 static void
426 lwkt_init_thread_remote(void *arg)
427 {
428     thread_t td = arg;
429 
430     /*
431      * Protected by critical section held by IPI dispatch
432      */
433     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
434 }
435 
436 /*
437  * lwkt core thread structural initialization.
438  *
439  * NOTE: All threads are initialized as mpsafe threads.
440  */
441 void
442 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
443 		struct globaldata *gd)
444 {
445     globaldata_t mygd = mycpu;
446 
447     bzero(td, sizeof(struct thread));
448     td->td_kstack = stack;
449     td->td_kstack_size = stksize;
450     td->td_flags = flags;
451     td->td_mpflags = 0;
452     td->td_type = TD_TYPE_GENERIC;
453     td->td_gd = gd;
454     td->td_pri = TDPRI_KERN_DAEMON;
455     td->td_critcount = 1;
456     td->td_toks_have = NULL;
457     td->td_toks_stop = &td->td_toks_base;
458     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
459 	lwkt_initport_spin(&td->td_msgport, td,
460 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
461     } else {
462 	lwkt_initport_thread(&td->td_msgport, td);
463     }
464     pmap_init_thread(td);
465     /*
466      * Normally initializing a thread for a remote cpu requires sending an
467      * IPI.  However, the idlethread is setup before the other cpus are
468      * activated so we have to treat it as a special case.  XXX manipulation
469      * of gd_tdallq requires the BGL.
470      */
471     if (gd == mygd || td == &gd->gd_idlethread) {
472 	crit_enter_gd(mygd);
473 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
474 	crit_exit_gd(mygd);
475     } else {
476 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
477     }
478     dsched_enter_thread(td);
479 }
480 
481 void
482 lwkt_set_comm(thread_t td, const char *ctl, ...)
483 {
484     __va_list va;
485 
486     __va_start(va, ctl);
487     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
488     __va_end(va);
489     KTR_LOG(ctxsw_newtd, td, td->td_comm);
490 }
491 
492 /*
493  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
494  * this does not prevent the thread from migrating to another cpu so the
495  * gd_tdallq state is not protected by this.
496  */
497 void
498 lwkt_hold(thread_t td)
499 {
500     atomic_add_int(&td->td_refs, 1);
501 }
502 
503 void
504 lwkt_rele(thread_t td)
505 {
506     KKASSERT(td->td_refs > 0);
507     atomic_add_int(&td->td_refs, -1);
508 }
509 
510 void
511 lwkt_free_thread(thread_t td)
512 {
513     KKASSERT(td->td_refs == 0);
514     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
515 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
516     if (td->td_flags & TDF_ALLOCATED_THREAD) {
517     	objcache_put(thread_cache, td);
518     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
519 	/* client-allocated struct with internally allocated stack */
520 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
521 	    ("lwkt_free_thread: corrupted stack"));
522 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
523 	td->td_kstack = NULL;
524 	td->td_kstack_size = 0;
525     }
526 
527     KTR_LOG(ctxsw_deadtd, td);
528 }
529 
530 
531 /*
532  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
533  * switch to the idlethread.  Switching must occur within a critical
534  * section to avoid races with the scheduling queue.
535  *
536  * We always have full control over our cpu's run queue.  Other cpus
537  * that wish to manipulate our queue must use the cpu_*msg() calls to
538  * talk to our cpu, so a critical section is all that is needed and
539  * the result is very, very fast thread switching.
540  *
541  * The LWKT scheduler uses a fixed priority model and round-robins at
542  * each priority level.  User process scheduling is a totally
543  * different beast and LWKT priorities should not be confused with
544  * user process priorities.
545  *
546  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
547  * is not called by the current thread in the preemption case, only when
548  * the preempting thread blocks (in order to return to the original thread).
549  *
550  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
551  * migration and tsleep deschedule the current lwkt thread and call
552  * lwkt_switch().  In particular, the target cpu of the migration fully
553  * expects the thread to become non-runnable and can deadlock against
554  * cpusync operations if we run any IPIs prior to switching the thread out.
555  *
556  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
557  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
558  */
559 void
560 lwkt_switch(void)
561 {
562     globaldata_t gd = mycpu;
563     thread_t td = gd->gd_curthread;
564     thread_t ntd;
565     thread_t xtd;
566     int upri;
567 #ifdef LOOPMASK
568     uint64_t tsc_base = rdtsc();
569 #endif
570 
571     KKASSERT(gd->gd_processing_ipiq == 0);
572     KKASSERT(td->td_flags & TDF_RUNNING);
573 
574     /*
575      * Switching from within a 'fast' (non thread switched) interrupt or IPI
576      * is illegal.  However, we may have to do it anyway if we hit a fatal
577      * kernel trap or we have paniced.
578      *
579      * If this case occurs save and restore the interrupt nesting level.
580      */
581     if (gd->gd_intr_nesting_level) {
582 	int savegdnest;
583 	int savegdtrap;
584 
585 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
586 	    panic("lwkt_switch: Attempt to switch from a "
587 		  "fast interrupt, ipi, or hard code section, "
588 		  "td %p\n",
589 		  td);
590 	} else {
591 	    savegdnest = gd->gd_intr_nesting_level;
592 	    savegdtrap = gd->gd_trap_nesting_level;
593 	    gd->gd_intr_nesting_level = 0;
594 	    gd->gd_trap_nesting_level = 0;
595 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
596 		td->td_flags |= TDF_PANICWARN;
597 		kprintf("Warning: thread switch from interrupt, IPI, "
598 			"or hard code section.\n"
599 			"thread %p (%s)\n", td, td->td_comm);
600 		print_backtrace(-1);
601 	    }
602 	    lwkt_switch();
603 	    gd->gd_intr_nesting_level = savegdnest;
604 	    gd->gd_trap_nesting_level = savegdtrap;
605 	    return;
606 	}
607     }
608 
609     /*
610      * Release our current user process designation if we are blocking
611      * or if a user reschedule was requested.
612      *
613      * NOTE: This function is NOT called if we are switching into or
614      *	     returning from a preemption.
615      *
616      * NOTE: Releasing our current user process designation may cause
617      *	     it to be assigned to another thread, which in turn will
618      *	     cause us to block in the usched acquire code when we attempt
619      *	     to return to userland.
620      *
621      * NOTE: On SMP systems this can be very nasty when heavy token
622      *	     contention is present so we want to be careful not to
623      *	     release the designation gratuitously.
624      */
625     if (td->td_release &&
626 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
627 	    td->td_release(td);
628     }
629 
630     /*
631      * Release all tokens.  Once we do this we must remain in the critical
632      * section and cannot run IPIs or other interrupts until we switch away
633      * because they may implode if they try to get a token using our thread
634      * context.
635      */
636     crit_enter_gd(gd);
637     if (TD_TOKS_HELD(td))
638 	    lwkt_relalltokens(td);
639 
640     /*
641      * We had better not be holding any spin locks, but don't get into an
642      * endless panic loop.
643      */
644     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
645 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
646 	     gd->gd_spinlocks));
647 
648 #ifdef	INVARIANTS
649     if (td->td_cscount) {
650 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
651 		td);
652 	if (panic_on_cscount)
653 	    panic("switching while mastering cpusync");
654     }
655 #endif
656 
657     /*
658      * If we had preempted another thread on this cpu, resume the preempted
659      * thread.  This occurs transparently, whether the preempted thread
660      * was scheduled or not (it may have been preempted after descheduling
661      * itself).
662      *
663      * We have to setup the MP lock for the original thread after backing
664      * out the adjustment that was made to curthread when the original
665      * was preempted.
666      */
667     if ((ntd = td->td_preempted) != NULL) {
668 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
669 	ntd->td_flags |= TDF_PREEMPT_DONE;
670 	ntd->td_contended = 0;		/* reset contended */
671 
672 	/*
673 	 * The interrupt may have woken a thread up, we need to properly
674 	 * set the reschedule flag if the originally interrupted thread is
675 	 * at a lower priority.
676 	 *
677 	 * NOTE: The interrupt may not have descheduled ntd.
678 	 *
679 	 * NOTE: We do not reschedule if there are no threads on the runq.
680 	 *	 (ntd could be the idlethread).
681 	 */
682 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
683 	if (xtd && xtd != ntd)
684 	    need_lwkt_resched();
685 	goto havethread_preempted;
686     }
687 
688     /*
689      * Figure out switch target.  If we cannot switch to our desired target
690      * look for a thread that we can switch to.
691      *
692      * NOTE! The limited spin loop and related parameters are extremely
693      *	     important for system performance, particularly for pipes and
694      *	     concurrent conflicting VM faults.
695      */
696     clear_lwkt_resched();
697     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
698 
699     if (ntd) {
700 	do {
701 	    if (TD_TOKS_NOT_HELD(ntd) ||
702 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
703 	    {
704 		goto havethread;
705 	    }
706 	    ++ntd->td_contended;	/* overflow ok */
707 	    if (gd->gd_indefinite.type == 0)
708 		indefinite_init(&gd->gd_indefinite, NULL, 0, 't');
709 #ifdef LOOPMASK
710 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
711 		    kprintf("lwkt_switch: excessive contended %d "
712 			    "thread %p\n", ntd->td_contended, ntd);
713 		    tsc_base = rdtsc();
714 	    }
715 #endif
716 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
717 	upri = ntd->td_upri;
718 
719 	/*
720 	 * Bleh, the thread we wanted to switch to has a contended token.
721 	 * See if we can switch to another thread.
722 	 *
723 	 * We generally don't want to do this because it represents a
724 	 * priority inversion, but contending tokens on the same cpu can
725 	 * cause real problems if we don't now that we have an exclusive
726 	 * priority mechanism over shared for tokens.
727 	 *
728 	 * The solution is to allow threads with pending tokens to compete
729 	 * for them (a lower priority thread will get less cpu once it
730 	 * returns from the kernel anyway).  If a thread does not have
731 	 * any contending tokens, we go by td_pri and upri.
732 	 */
733 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
734 	    if (TD_TOKS_NOT_HELD(ntd) &&
735 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
736 		    continue;
737 	    }
738 	    if (upri < ntd->td_upri)
739 		upri = ntd->td_upri;
740 
741 	    /*
742 	     * Try this one.
743 	     */
744 	    if (TD_TOKS_NOT_HELD(ntd) ||
745 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
746 		    goto havethread;
747 	    }
748 	    ++ntd->td_contended;	/* overflow ok */
749 	}
750 
751 	/*
752 	 * Fall through, switch to idle thread to get us out of the current
753 	 * context.  Since we were contended, prevent HLT by flagging a
754 	 * LWKT reschedule.
755 	 */
756 	need_lwkt_resched();
757     }
758 
759     /*
760      * We either contended on ntd or the runq is empty.  We must switch
761      * through the idle thread to get out of the current context.
762      */
763     ntd = &gd->gd_idlethread;
764     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
765 	ASSERT_NO_TOKENS_HELD(ntd);
766     cpu_time.cp_msg[0] = 0;
767     goto haveidle;
768 
769 havethread:
770     /*
771      * Clear gd_idle_repeat when doing a normal switch to a non-idle
772      * thread.
773      */
774     ntd->td_wmesg = NULL;
775     ntd->td_contended = 0;	/* reset once scheduled */
776     ++gd->gd_cnt.v_swtch;
777     gd->gd_idle_repeat = 0;
778 
779     /*
780      * If we were busy waiting record final disposition
781      */
782     if (gd->gd_indefinite.type)
783 	    indefinite_done(&gd->gd_indefinite);
784 
785 havethread_preempted:
786     /*
787      * If the new target does not need the MP lock and we are holding it,
788      * release the MP lock.  If the new target requires the MP lock we have
789      * already acquired it for the target.
790      */
791     ;
792 haveidle:
793     KASSERT(ntd->td_critcount,
794 	    ("priority problem in lwkt_switch %d %d",
795 	    td->td_critcount, ntd->td_critcount));
796 
797     if (td != ntd) {
798 	/*
799 	 * Execute the actual thread switch operation.  This function
800 	 * returns to the current thread and returns the previous thread
801 	 * (which may be different from the thread we switched to).
802 	 *
803 	 * We are responsible for marking ntd as TDF_RUNNING.
804 	 */
805 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
806 #ifdef DEBUG_LWKT_THREAD
807 	++switch_count;
808 #endif
809 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
810 	ntd->td_flags |= TDF_RUNNING;
811 	lwkt_switch_return(td->td_switch(ntd));
812 	/* ntd invalid, td_switch() can return a different thread_t */
813     }
814 
815     /*
816      * catch-all.  XXX is this strictly needed?
817      */
818     splz_check();
819 
820     /* NOTE: current cpu may have changed after switch */
821     crit_exit_quick(td);
822 }
823 
824 /*
825  * Called by assembly in the td_switch (thread restore path) for thread
826  * bootstrap cases which do not 'return' to lwkt_switch().
827  */
828 void
829 lwkt_switch_return(thread_t otd)
830 {
831 	globaldata_t rgd;
832 #ifdef LOOPMASK
833 	uint64_t tsc_base = rdtsc();
834 #endif
835 	int exiting;
836 
837 	exiting = otd->td_flags & TDF_EXITING;
838 	cpu_ccfence();
839 
840 	/*
841 	 * Check if otd was migrating.  Now that we are on ntd we can finish
842 	 * up the migration.  This is a bit messy but it is the only place
843 	 * where td is known to be fully descheduled.
844 	 *
845 	 * We can only activate the migration if otd was migrating but not
846 	 * held on the cpu due to a preemption chain.  We still have to
847 	 * clear TDF_RUNNING on the old thread either way.
848 	 *
849 	 * We are responsible for clearing the previously running thread's
850 	 * TDF_RUNNING.
851 	 */
852 	if ((rgd = otd->td_migrate_gd) != NULL &&
853 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
854 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
855 			 (TDF_MIGRATING | TDF_RUNNING));
856 		otd->td_migrate_gd = NULL;
857 		otd->td_flags &= ~TDF_RUNNING;
858 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
859 	} else {
860 		otd->td_flags &= ~TDF_RUNNING;
861 	}
862 
863 	/*
864 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
865 	 * invalid the *instant* we set TDF_MP_EXITSIG.
866 	 *
867 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
868 	 * because if it is not set otd becomes invalid the instant we clear
869 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
870 	 * might 'steal' TDF_EXITING from another switch-return!).
871 	 */
872 	while (exiting) {
873 		u_int mpflags;
874 
875 		mpflags = otd->td_mpflags;
876 		cpu_ccfence();
877 
878 		if (mpflags & TDF_MP_EXITWAIT) {
879 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
880 					      mpflags | TDF_MP_EXITSIG)) {
881 				wakeup(otd);
882 				break;
883 			}
884 		} else {
885 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
886 					      mpflags | TDF_MP_EXITSIG)) {
887 				wakeup(otd);
888 				break;
889 			}
890 		}
891 
892 #ifdef LOOPMASK
893 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
894 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
895 				"thread %p\n", otd);
896 			tsc_base = rdtsc();
897 		}
898 #endif
899 	}
900 }
901 
902 /*
903  * Request that the target thread preempt the current thread.  Preemption
904  * can only occur only:
905  *
906  *	- If our critical section is the one that we were called with
907  *	- The relative priority of the target thread is higher
908  *	- The target is not excessively interrupt-nested via td_nest_count
909  *	- The target thread holds no tokens.
910  *	- The target thread is not already scheduled and belongs to the
911  *	  current cpu.
912  *	- The current thread is not holding any spin-locks.
913  *
914  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
915  * this is called via lwkt_schedule() through the td_preemptable callback.
916  * critcount is the managed critical priority that we should ignore in order
917  * to determine whether preemption is possible (aka usually just the crit
918  * priority of lwkt_schedule() itself).
919  *
920  * Preemption is typically limited to interrupt threads.
921  *
922  * Operation works in a fairly straight-forward manner.  The normal
923  * scheduling code is bypassed and we switch directly to the target
924  * thread.  When the target thread attempts to block or switch away
925  * code at the base of lwkt_switch() will switch directly back to our
926  * thread.  Our thread is able to retain whatever tokens it holds and
927  * if the target needs one of them the target will switch back to us
928  * and reschedule itself normally.
929  */
930 void
931 lwkt_preempt(thread_t ntd, int critcount)
932 {
933     struct globaldata *gd = mycpu;
934     thread_t xtd;
935     thread_t td;
936     int save_gd_intr_nesting_level;
937 
938     /*
939      * The caller has put us in a critical section.  We can only preempt
940      * if the caller of the caller was not in a critical section (basically
941      * a local interrupt), as determined by the 'critcount' parameter.  We
942      * also can't preempt if the caller is holding any spinlocks (even if
943      * he isn't in a critical section).  This also handles the tokens test.
944      *
945      * YYY The target thread must be in a critical section (else it must
946      * inherit our critical section?  I dunno yet).
947      */
948     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
949 
950     td = gd->gd_curthread;
951     if (preempt_enable == 0) {
952 #ifdef DEBUG_LWKT_THREAD
953 	++preempt_miss;
954 #endif
955 	return;
956     }
957     if (ntd->td_pri <= td->td_pri) {
958 #ifdef DEBUG_LWKT_THREAD
959 	++preempt_miss;
960 #endif
961 	return;
962     }
963     if (td->td_critcount > critcount) {
964 #ifdef DEBUG_LWKT_THREAD
965 	++preempt_miss;
966 #endif
967 	return;
968     }
969     if (td->td_nest_count >= 2) {
970 #ifdef DEBUG_LWKT_THREAD
971 	++preempt_miss;
972 #endif
973 	return;
974     }
975     if (td->td_cscount) {
976 #ifdef DEBUG_LWKT_THREAD
977 	++preempt_miss;
978 #endif
979 	return;
980     }
981     if (ntd->td_gd != gd) {
982 #ifdef DEBUG_LWKT_THREAD
983 	++preempt_miss;
984 #endif
985 	return;
986     }
987 
988     /*
989      * We don't have to check spinlocks here as they will also bump
990      * td_critcount.
991      *
992      * Do not try to preempt if the target thread is holding any tokens.
993      * We could try to acquire the tokens but this case is so rare there
994      * is no need to support it.
995      */
996     KKASSERT(gd->gd_spinlocks == 0);
997 
998     if (TD_TOKS_HELD(ntd)) {
999 #ifdef DEBUG_LWKT_THREAD
1000 	++preempt_miss;
1001 #endif
1002 	return;
1003     }
1004     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1005 #ifdef DEBUG_LWKT_THREAD
1006 	++preempt_weird;
1007 #endif
1008 	return;
1009     }
1010     if (ntd->td_preempted) {
1011 #ifdef DEBUG_LWKT_THREAD
1012 	++preempt_hit;
1013 #endif
1014 	return;
1015     }
1016     KKASSERT(gd->gd_processing_ipiq == 0);
1017 
1018     /*
1019      * Since we are able to preempt the current thread, there is no need to
1020      * call need_lwkt_resched().
1021      *
1022      * We must temporarily clear gd_intr_nesting_level around the switch
1023      * since switchouts from the target thread are allowed (they will just
1024      * return to our thread), and since the target thread has its own stack.
1025      *
1026      * A preemption must switch back to the original thread, assert the
1027      * case.
1028      */
1029 #ifdef DEBUG_LWKT_THREAD
1030     ++preempt_hit;
1031 #endif
1032     ntd->td_preempted = td;
1033     td->td_flags |= TDF_PREEMPT_LOCK;
1034     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1035     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1036     gd->gd_intr_nesting_level = 0;
1037 
1038     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1039     ntd->td_flags |= TDF_RUNNING;
1040     xtd = td->td_switch(ntd);
1041     KKASSERT(xtd == ntd);
1042     lwkt_switch_return(xtd);
1043     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1044 
1045     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1046     ntd->td_preempted = NULL;
1047     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1048 }
1049 
1050 /*
1051  * Conditionally call splz() if gd_reqflags indicates work is pending.
1052  * This will work inside a critical section but not inside a hard code
1053  * section.
1054  *
1055  * (self contained on a per cpu basis)
1056  */
1057 void
1058 splz_check(void)
1059 {
1060     globaldata_t gd = mycpu;
1061     thread_t td = gd->gd_curthread;
1062 
1063     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1064 	gd->gd_intr_nesting_level == 0 &&
1065 	td->td_nest_count < 2)
1066     {
1067 	splz();
1068     }
1069 }
1070 
1071 /*
1072  * This version is integrated into crit_exit, reqflags has already
1073  * been tested but td_critcount has not.
1074  *
1075  * We only want to execute the splz() on the 1->0 transition of
1076  * critcount and not in a hard code section or if too deeply nested.
1077  *
1078  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1079  */
1080 void
1081 lwkt_maybe_splz(thread_t td)
1082 {
1083     globaldata_t gd = td->td_gd;
1084 
1085     if (td->td_critcount == 0 &&
1086 	gd->gd_intr_nesting_level == 0 &&
1087 	td->td_nest_count < 2)
1088     {
1089 	splz();
1090     }
1091 }
1092 
1093 /*
1094  * Drivers which set up processing co-threads can call this function to
1095  * run the co-thread at a higher priority and to allow it to preempt
1096  * normal threads.
1097  */
1098 void
1099 lwkt_set_interrupt_support_thread(void)
1100 {
1101 	thread_t td = curthread;
1102 
1103         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1104 	td->td_flags |= TDF_INTTHREAD;
1105 	td->td_preemptable = lwkt_preempt;
1106 }
1107 
1108 
1109 /*
1110  * This function is used to negotiate a passive release of the current
1111  * process/lwp designation with the user scheduler, allowing the user
1112  * scheduler to schedule another user thread.  The related kernel thread
1113  * (curthread) continues running in the released state.
1114  */
1115 void
1116 lwkt_passive_release(struct thread *td)
1117 {
1118     struct lwp *lp = td->td_lwp;
1119 
1120     td->td_release = NULL;
1121     lwkt_setpri_self(TDPRI_KERN_USER);
1122 
1123     lp->lwp_proc->p_usched->release_curproc(lp);
1124 }
1125 
1126 
1127 /*
1128  * This implements a LWKT yield, allowing a kernel thread to yield to other
1129  * kernel threads at the same or higher priority.  This function can be
1130  * called in a tight loop and will typically only yield once per tick.
1131  *
1132  * Most kernel threads run at the same priority in order to allow equal
1133  * sharing.
1134  *
1135  * (self contained on a per cpu basis)
1136  */
1137 void
1138 lwkt_yield(void)
1139 {
1140     globaldata_t gd = mycpu;
1141     thread_t td = gd->gd_curthread;
1142 
1143     /*
1144      * Should never be called with spinlocks held but there is a path
1145      * via ACPI where it might happen.
1146      */
1147     if (gd->gd_spinlocks)
1148 	return;
1149 
1150     /*
1151      * Safe to call splz if we are not too-heavily nested.
1152      */
1153     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1154 	splz();
1155 
1156     /*
1157      * Caller allows switching
1158      */
1159     if (lwkt_resched_wanted()) {
1160 	atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1161 	lwkt_schedule_self(td);
1162 	lwkt_switch();
1163     }
1164 }
1165 
1166 /*
1167  * The quick version processes pending interrupts and higher-priority
1168  * LWKT threads but will not round-robin same-priority LWKT threads.
1169  *
1170  * When called while attempting to return to userland the only same-pri
1171  * threads are the ones which have already tried to become the current
1172  * user process.
1173  */
1174 void
1175 lwkt_yield_quick(void)
1176 {
1177     globaldata_t gd = mycpu;
1178     thread_t td = gd->gd_curthread;
1179 
1180     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1181 	splz();
1182     if (lwkt_resched_wanted()) {
1183 	crit_enter();
1184 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1185 	    clear_lwkt_resched();
1186 	} else {
1187 	    atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1188 	    lwkt_schedule_self(curthread);
1189 	    lwkt_switch();
1190 	}
1191 	crit_exit();
1192     }
1193 }
1194 
1195 /*
1196  * This yield is designed for kernel threads with a user context.
1197  *
1198  * The kernel acting on behalf of the user is potentially cpu-bound,
1199  * this function will efficiently allow other threads to run and also
1200  * switch to other processes by releasing.
1201  *
1202  * The lwkt_user_yield() function is designed to have very low overhead
1203  * if no yield is determined to be needed.
1204  */
1205 void
1206 lwkt_user_yield(void)
1207 {
1208     globaldata_t gd = mycpu;
1209     thread_t td = gd->gd_curthread;
1210 
1211     /*
1212      * Should never be called with spinlocks held but there is a path
1213      * via ACPI where it might happen.
1214      */
1215     if (gd->gd_spinlocks)
1216 	return;
1217 
1218     /*
1219      * Always run any pending interrupts in case we are in a critical
1220      * section.
1221      */
1222     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1223 	splz();
1224 
1225     /*
1226      * Switch (which forces a release) if another kernel thread needs
1227      * the cpu, if userland wants us to resched, or if our kernel
1228      * quantum has run out.
1229      */
1230     if (lwkt_resched_wanted() ||
1231 	user_resched_wanted())
1232     {
1233 	lwkt_switch();
1234     }
1235 
1236 #if 0
1237     /*
1238      * Reacquire the current process if we are released.
1239      *
1240      * XXX not implemented atm.  The kernel may be holding locks and such,
1241      *     so we want the thread to continue to receive cpu.
1242      */
1243     if (td->td_release == NULL && lp) {
1244 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1245 	td->td_release = lwkt_passive_release;
1246 	lwkt_setpri_self(TDPRI_USER_NORM);
1247     }
1248 #endif
1249 }
1250 
1251 /*
1252  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1253  * deal with threads that might be blocked on a wait queue.
1254  *
1255  * We have a little helper inline function which does additional work after
1256  * the thread has been enqueued, including dealing with preemption and
1257  * setting need_lwkt_resched() (which prevents the kernel from returning
1258  * to userland until it has processed higher priority threads).
1259  *
1260  * It is possible for this routine to be called after a failed _enqueue
1261  * (due to the target thread migrating, sleeping, or otherwise blocked).
1262  * We have to check that the thread is actually on the run queue!
1263  */
1264 static __inline
1265 void
1266 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1267 {
1268     if (ntd->td_flags & TDF_RUNQ) {
1269 	if (ntd->td_preemptable) {
1270 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1271 	}
1272     }
1273 }
1274 
1275 static __inline
1276 void
1277 _lwkt_schedule(thread_t td)
1278 {
1279     globaldata_t mygd = mycpu;
1280 
1281     KASSERT(td != &td->td_gd->gd_idlethread,
1282 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1283     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1284     crit_enter_gd(mygd);
1285     KKASSERT(td->td_lwp == NULL ||
1286 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1287 
1288     if (td == mygd->gd_curthread) {
1289 	_lwkt_enqueue(td);
1290     } else {
1291 	/*
1292 	 * If we own the thread, there is no race (since we are in a
1293 	 * critical section).  If we do not own the thread there might
1294 	 * be a race but the target cpu will deal with it.
1295 	 */
1296 	if (td->td_gd == mygd) {
1297 	    _lwkt_enqueue(td);
1298 	    _lwkt_schedule_post(mygd, td, 1);
1299 	} else {
1300 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1301 	}
1302     }
1303     crit_exit_gd(mygd);
1304 }
1305 
1306 void
1307 lwkt_schedule(thread_t td)
1308 {
1309     _lwkt_schedule(td);
1310 }
1311 
1312 void
1313 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1314 {
1315     _lwkt_schedule(td);
1316 }
1317 
1318 /*
1319  * When scheduled remotely if frame != NULL the IPIQ is being
1320  * run via doreti or an interrupt then preemption can be allowed.
1321  *
1322  * To allow preemption we have to drop the critical section so only
1323  * one is present in _lwkt_schedule_post.
1324  */
1325 static void
1326 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1327 {
1328     thread_t td = curthread;
1329     thread_t ntd = arg;
1330 
1331     if (frame && ntd->td_preemptable) {
1332 	crit_exit_noyield(td);
1333 	_lwkt_schedule(ntd);
1334 	crit_enter_quick(td);
1335     } else {
1336 	_lwkt_schedule(ntd);
1337     }
1338 }
1339 
1340 /*
1341  * Thread migration using a 'Pull' method.  The thread may or may not be
1342  * the current thread.  It MUST be descheduled and in a stable state.
1343  * lwkt_giveaway() must be called on the cpu owning the thread.
1344  *
1345  * At any point after lwkt_giveaway() is called, the target cpu may
1346  * 'pull' the thread by calling lwkt_acquire().
1347  *
1348  * We have to make sure the thread is not sitting on a per-cpu tsleep
1349  * queue or it will blow up when it moves to another cpu.
1350  *
1351  * MPSAFE - must be called under very specific conditions.
1352  */
1353 void
1354 lwkt_giveaway(thread_t td)
1355 {
1356     globaldata_t gd = mycpu;
1357 
1358     crit_enter_gd(gd);
1359     if (td->td_flags & TDF_TSLEEPQ)
1360 	tsleep_remove(td);
1361     KKASSERT(td->td_gd == gd);
1362     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1363     td->td_flags |= TDF_MIGRATING;
1364     crit_exit_gd(gd);
1365 }
1366 
1367 void
1368 lwkt_acquire(thread_t td)
1369 {
1370     globaldata_t gd;
1371     globaldata_t mygd;
1372 
1373     KKASSERT(td->td_flags & TDF_MIGRATING);
1374     gd = td->td_gd;
1375     mygd = mycpu;
1376     if (gd != mycpu) {
1377 #ifdef LOOPMASK
1378 	uint64_t tsc_base = rdtsc();
1379 #endif
1380 	cpu_lfence();
1381 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1382 	crit_enter_gd(mygd);
1383 	DEBUG_PUSH_INFO("lwkt_acquire");
1384 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1385 	    lwkt_process_ipiq();
1386 	    cpu_lfence();
1387 #ifdef _KERNEL_VIRTUAL
1388 	    pthread_yield();
1389 #endif
1390 #ifdef LOOPMASK
1391 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1392 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1393 			    td, td->td_flags);
1394 		    tsc_base = rdtsc();
1395 	    }
1396 #endif
1397 	}
1398 	DEBUG_POP_INFO();
1399 	cpu_mfence();
1400 	td->td_gd = mygd;
1401 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1402 	td->td_flags &= ~TDF_MIGRATING;
1403 	crit_exit_gd(mygd);
1404     } else {
1405 	crit_enter_gd(mygd);
1406 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1407 	td->td_flags &= ~TDF_MIGRATING;
1408 	crit_exit_gd(mygd);
1409     }
1410 }
1411 
1412 /*
1413  * Generic deschedule.  Descheduling threads other then your own should be
1414  * done only in carefully controlled circumstances.  Descheduling is
1415  * asynchronous.
1416  *
1417  * This function may block if the cpu has run out of messages.
1418  */
1419 void
1420 lwkt_deschedule(thread_t td)
1421 {
1422     crit_enter();
1423     if (td == curthread) {
1424 	_lwkt_dequeue(td);
1425     } else {
1426 	if (td->td_gd == mycpu) {
1427 	    _lwkt_dequeue(td);
1428 	} else {
1429 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1430 	}
1431     }
1432     crit_exit();
1433 }
1434 
1435 /*
1436  * Set the target thread's priority.  This routine does not automatically
1437  * switch to a higher priority thread, LWKT threads are not designed for
1438  * continuous priority changes.  Yield if you want to switch.
1439  */
1440 void
1441 lwkt_setpri(thread_t td, int pri)
1442 {
1443     if (td->td_pri != pri) {
1444 	KKASSERT(pri >= 0);
1445 	crit_enter();
1446 	if (td->td_flags & TDF_RUNQ) {
1447 	    KKASSERT(td->td_gd == mycpu);
1448 	    _lwkt_dequeue(td);
1449 	    td->td_pri = pri;
1450 	    _lwkt_enqueue(td);
1451 	} else {
1452 	    td->td_pri = pri;
1453 	}
1454 	crit_exit();
1455     }
1456 }
1457 
1458 /*
1459  * Set the initial priority for a thread prior to it being scheduled for
1460  * the first time.  The thread MUST NOT be scheduled before or during
1461  * this call.  The thread may be assigned to a cpu other then the current
1462  * cpu.
1463  *
1464  * Typically used after a thread has been created with TDF_STOPPREQ,
1465  * and before the thread is initially scheduled.
1466  */
1467 void
1468 lwkt_setpri_initial(thread_t td, int pri)
1469 {
1470     KKASSERT(pri >= 0);
1471     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1472     td->td_pri = pri;
1473 }
1474 
1475 void
1476 lwkt_setpri_self(int pri)
1477 {
1478     thread_t td = curthread;
1479 
1480     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1481     crit_enter();
1482     if (td->td_flags & TDF_RUNQ) {
1483 	_lwkt_dequeue(td);
1484 	td->td_pri = pri;
1485 	_lwkt_enqueue(td);
1486     } else {
1487 	td->td_pri = pri;
1488     }
1489     crit_exit();
1490 }
1491 
1492 /*
1493  * hz tick scheduler clock for LWKT threads
1494  */
1495 void
1496 lwkt_schedulerclock(thread_t td)
1497 {
1498     globaldata_t gd = td->td_gd;
1499     thread_t xtd;
1500 
1501     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1502     if (xtd == td) {
1503 	/*
1504 	 * If the current thread is at the head of the runq shift it to the
1505 	 * end of any equal-priority threads and request a LWKT reschedule
1506 	 * if it moved.
1507 	 *
1508 	 * Ignore upri in this situation.  There will only be one user thread
1509 	 * in user mode, all others will be user threads running in kernel
1510 	 * mode and we have to make sure they get some cpu.
1511 	 */
1512 	xtd = TAILQ_NEXT(td, td_threadq);
1513 	if (xtd && xtd->td_pri == td->td_pri) {
1514 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1515 	    while (xtd && xtd->td_pri == td->td_pri)
1516 		xtd = TAILQ_NEXT(xtd, td_threadq);
1517 	    if (xtd)
1518 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1519 	    else
1520 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1521 	    need_lwkt_resched();
1522 	}
1523     } else if (xtd) {
1524 	/*
1525 	 * If we scheduled a thread other than the one at the head of the
1526 	 * queue always request a reschedule every tick.
1527 	 */
1528 	need_lwkt_resched();
1529     }
1530     /* else curthread probably the idle thread, no need to reschedule */
1531 }
1532 
1533 /*
1534  * Migrate the current thread to the specified cpu.
1535  *
1536  * This is accomplished by descheduling ourselves from the current cpu
1537  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1538  * 'old' thread wants to migrate after it has been completely switched out
1539  * and will complete the migration.
1540  *
1541  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1542  *
1543  * We must be sure to release our current process designation (if a user
1544  * process) before clearing out any tsleepq we are on because the release
1545  * code may re-add us.
1546  *
1547  * We must be sure to remove ourselves from the current cpu's tsleepq
1548  * before potentially moving to another queue.  The thread can be on
1549  * a tsleepq due to a left-over tsleep_interlock().
1550  */
1551 
1552 void
1553 lwkt_setcpu_self(globaldata_t rgd)
1554 {
1555     thread_t td = curthread;
1556 
1557     if (td->td_gd != rgd) {
1558 	crit_enter_quick(td);
1559 
1560 	if (td->td_release)
1561 	    td->td_release(td);
1562 	if (td->td_flags & TDF_TSLEEPQ)
1563 	    tsleep_remove(td);
1564 
1565 	/*
1566 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1567 	 * trying to deschedule ourselves and switch away, then deschedule
1568 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1569 	 * call lwkt_switch() to complete the operation.
1570 	 */
1571 	td->td_flags |= TDF_MIGRATING;
1572 	lwkt_deschedule_self(td);
1573 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1574 	td->td_migrate_gd = rgd;
1575 	lwkt_switch();
1576 
1577 	/*
1578 	 * We are now on the target cpu
1579 	 */
1580 	KKASSERT(rgd == mycpu);
1581 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1582 	crit_exit_quick(td);
1583     }
1584 }
1585 
1586 void
1587 lwkt_migratecpu(int cpuid)
1588 {
1589 	globaldata_t rgd;
1590 
1591 	rgd = globaldata_find(cpuid);
1592 	lwkt_setcpu_self(rgd);
1593 }
1594 
1595 /*
1596  * Remote IPI for cpu migration (called while in a critical section so we
1597  * do not have to enter another one).
1598  *
1599  * The thread (td) has already been completely descheduled from the
1600  * originating cpu and we can simply assert the case.  The thread is
1601  * assigned to the new cpu and enqueued.
1602  *
1603  * The thread will re-add itself to tdallq when it resumes execution.
1604  */
1605 static void
1606 lwkt_setcpu_remote(void *arg)
1607 {
1608     thread_t td = arg;
1609     globaldata_t gd = mycpu;
1610 
1611     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1612     td->td_gd = gd;
1613     cpu_mfence();
1614     td->td_flags &= ~TDF_MIGRATING;
1615     KKASSERT(td->td_migrate_gd == NULL);
1616     KKASSERT(td->td_lwp == NULL ||
1617 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1618     _lwkt_enqueue(td);
1619 }
1620 
1621 struct lwp *
1622 lwkt_preempted_proc(void)
1623 {
1624     thread_t td = curthread;
1625     while (td->td_preempted)
1626 	td = td->td_preempted;
1627     return(td->td_lwp);
1628 }
1629 
1630 /*
1631  * Create a kernel process/thread/whatever.  It shares it's address space
1632  * with proc0 - ie: kernel only.
1633  *
1634  * If the cpu is not specified one will be selected.  In the future
1635  * specifying a cpu of -1 will enable kernel thread migration between
1636  * cpus.
1637  */
1638 int
1639 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1640 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1641 {
1642     thread_t td;
1643     __va_list ap;
1644 
1645     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1646 			   tdflags);
1647     if (tdp)
1648 	*tdp = td;
1649     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1650 
1651     /*
1652      * Set up arg0 for 'ps' etc
1653      */
1654     __va_start(ap, fmt);
1655     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1656     __va_end(ap);
1657 
1658     /*
1659      * Schedule the thread to run
1660      */
1661     if (td->td_flags & TDF_NOSTART)
1662 	td->td_flags &= ~TDF_NOSTART;
1663     else
1664 	lwkt_schedule(td);
1665     return 0;
1666 }
1667 
1668 /*
1669  * Destroy an LWKT thread.   Warning!  This function is not called when
1670  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1671  * uses a different reaping mechanism.
1672  */
1673 void
1674 lwkt_exit(void)
1675 {
1676     thread_t td = curthread;
1677     thread_t std;
1678     globaldata_t gd;
1679 
1680     /*
1681      * Do any cleanup that might block here
1682      */
1683     biosched_done(td);
1684     dsched_exit_thread(td);
1685 
1686     /*
1687      * Get us into a critical section to interlock gd_freetd and loop
1688      * until we can get it freed.
1689      *
1690      * We have to cache the current td in gd_freetd because objcache_put()ing
1691      * it would rip it out from under us while our thread is still active.
1692      *
1693      * We are the current thread so of course our own TDF_RUNNING bit will
1694      * be set, so unlike the lwp reap code we don't wait for it to clear.
1695      */
1696     gd = mycpu;
1697     crit_enter_quick(td);
1698     for (;;) {
1699 	if (td->td_refs) {
1700 	    tsleep(td, 0, "tdreap", 1);
1701 	    continue;
1702 	}
1703 	if ((std = gd->gd_freetd) != NULL) {
1704 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1705 	    gd->gd_freetd = NULL;
1706 	    objcache_put(thread_cache, std);
1707 	    continue;
1708 	}
1709 	break;
1710     }
1711 
1712     /*
1713      * Remove thread resources from kernel lists and deschedule us for
1714      * the last time.  We cannot block after this point or we may end
1715      * up with a stale td on the tsleepq.
1716      *
1717      * None of this may block, the critical section is the only thing
1718      * protecting tdallq and the only thing preventing new lwkt_hold()
1719      * thread refs now.
1720      */
1721     if (td->td_flags & TDF_TSLEEPQ)
1722 	tsleep_remove(td);
1723     lwkt_deschedule_self(td);
1724     lwkt_remove_tdallq(td);
1725     KKASSERT(td->td_refs == 0);
1726 
1727     /*
1728      * Final cleanup
1729      */
1730     KKASSERT(gd->gd_freetd == NULL);
1731     if (td->td_flags & TDF_ALLOCATED_THREAD)
1732 	gd->gd_freetd = td;
1733     cpu_thread_exit();
1734 }
1735 
1736 void
1737 lwkt_remove_tdallq(thread_t td)
1738 {
1739     KKASSERT(td->td_gd == mycpu);
1740     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1741 }
1742 
1743 /*
1744  * Code reduction and branch prediction improvements.  Call/return
1745  * overhead on modern cpus often degenerates into 0 cycles due to
1746  * the cpu's branch prediction hardware and return pc cache.  We
1747  * can take advantage of this by not inlining medium-complexity
1748  * functions and we can also reduce the branch prediction impact
1749  * by collapsing perfectly predictable branches into a single
1750  * procedure instead of duplicating it.
1751  *
1752  * Is any of this noticeable?  Probably not, so I'll take the
1753  * smaller code size.
1754  */
1755 void
1756 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1757 {
1758     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1759 }
1760 
1761 void
1762 crit_panic(void)
1763 {
1764     thread_t td = curthread;
1765     int lcrit = td->td_critcount;
1766 
1767     td->td_critcount = 0;
1768     cpu_ccfence();
1769     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1770     /* NOT REACHED */
1771 }
1772 
1773 /*
1774  * Called from debugger/panic on cpus which have been stopped.  We must still
1775  * process the IPIQ while stopped.
1776  *
1777  * If we are dumping also try to process any pending interrupts.  This may
1778  * or may not work depending on the state of the cpu at the point it was
1779  * stopped.
1780  */
1781 void
1782 lwkt_smp_stopped(void)
1783 {
1784     globaldata_t gd = mycpu;
1785 
1786     if (dumping) {
1787 	lwkt_process_ipiq();
1788 	--gd->gd_intr_nesting_level;
1789 	splz();
1790 	++gd->gd_intr_nesting_level;
1791     } else {
1792 	lwkt_process_ipiq();
1793     }
1794     cpu_smp_stopped();
1795 }
1796