1 /* 2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Each cpu in a system has its own self-contained light weight kernel 37 * thread scheduler, which means that generally speaking we only need 38 * to use a critical section to avoid problems. Foreign thread 39 * scheduling is queued via (async) IPIs. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/rtprio.h> 47 #include <sys/kinfo.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 #include <machine/cpu.h> 52 #include <sys/lock.h> 53 #include <sys/caps.h> 54 #include <sys/spinlock.h> 55 #include <sys/ktr.h> 56 57 #include <sys/thread2.h> 58 #include <sys/spinlock2.h> 59 #include <sys/mplock2.h> 60 61 #include <sys/dsched.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_pager.h> 70 #include <vm/vm_extern.h> 71 72 #include <machine/stdarg.h> 73 #include <machine/smp.h> 74 75 #if !defined(KTR_CTXSW) 76 #define KTR_CTXSW KTR_ALL 77 #endif 78 KTR_INFO_MASTER(ctxsw); 79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", 80 sizeof(int) + sizeof(struct thread *)); 81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", 82 sizeof(int) + sizeof(struct thread *)); 83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", 84 sizeof (struct thread *) + sizeof(char *)); 85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *)); 86 87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads"); 88 89 #ifdef INVARIANTS 90 static int panic_on_cscount = 0; 91 #endif 92 static __int64_t switch_count = 0; 93 static __int64_t preempt_hit = 0; 94 static __int64_t preempt_miss = 0; 95 static __int64_t preempt_weird = 0; 96 static __int64_t token_contention_count __debugvar = 0; 97 static int lwkt_use_spin_port; 98 static struct objcache *thread_cache; 99 100 #ifdef SMP 101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame); 102 #endif 103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td); 104 105 extern void cpu_heavy_restore(void); 106 extern void cpu_lwkt_restore(void); 107 extern void cpu_kthread_restore(void); 108 extern void cpu_idle_restore(void); 109 110 #ifdef __x86_64__ 111 112 static int 113 jg_tos_ok(struct thread *td) 114 { 115 void *tos; 116 int tos_ok; 117 118 if (td == NULL) { 119 return 1; 120 } 121 KKASSERT(td->td_sp != NULL); 122 tos = ((void **)td->td_sp)[0]; 123 tos_ok = 0; 124 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) || 125 (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) { 126 tos_ok = 1; 127 } 128 return tos_ok; 129 } 130 131 #endif 132 133 /* 134 * We can make all thread ports use the spin backend instead of the thread 135 * backend. This should only be set to debug the spin backend. 136 */ 137 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port); 138 139 #ifdef INVARIANTS 140 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, ""); 141 #endif 142 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, ""); 143 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 144 "Successful preemption events"); 145 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 146 "Failed preemption events"); 147 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, ""); 148 #ifdef INVARIANTS 149 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW, 150 &token_contention_count, 0, "spinning due to token contention"); 151 #endif 152 static int fairq_enable = 1; 153 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, &fairq_enable, 0, ""); 154 static int user_pri_sched = 0; 155 SYSCTL_INT(_lwkt, OID_AUTO, user_pri_sched, CTLFLAG_RW, &user_pri_sched, 0, ""); 156 static int preempt_enable = 1; 157 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, &preempt_enable, 0, ""); 158 159 160 /* 161 * These helper procedures handle the runq, they can only be called from 162 * within a critical section. 163 * 164 * WARNING! Prior to SMP being brought up it is possible to enqueue and 165 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 166 * instead of 'mycpu' when referencing the globaldata structure. Once 167 * SMP live enqueuing and dequeueing only occurs on the current cpu. 168 */ 169 static __inline 170 void 171 _lwkt_dequeue(thread_t td) 172 { 173 if (td->td_flags & TDF_RUNQ) { 174 struct globaldata *gd = td->td_gd; 175 176 td->td_flags &= ~TDF_RUNQ; 177 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 178 gd->gd_fairq_total_pri -= td->td_pri; 179 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL) 180 atomic_clear_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING); 181 } 182 } 183 184 /* 185 * Priority enqueue. 186 * 187 * NOTE: There are a limited number of lwkt threads runnable since user 188 * processes only schedule one at a time per cpu. 189 */ 190 static __inline 191 void 192 _lwkt_enqueue(thread_t td) 193 { 194 thread_t xtd; 195 196 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) { 197 struct globaldata *gd = td->td_gd; 198 199 td->td_flags |= TDF_RUNQ; 200 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 201 if (xtd == NULL) { 202 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 203 atomic_set_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING); 204 } else { 205 while (xtd && xtd->td_pri > td->td_pri) 206 xtd = TAILQ_NEXT(xtd, td_threadq); 207 if (xtd) 208 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 209 else 210 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 211 } 212 gd->gd_fairq_total_pri += td->td_pri; 213 } 214 } 215 216 static __boolean_t 217 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags) 218 { 219 struct thread *td = (struct thread *)obj; 220 221 td->td_kstack = NULL; 222 td->td_kstack_size = 0; 223 td->td_flags = TDF_ALLOCATED_THREAD; 224 return (1); 225 } 226 227 static void 228 _lwkt_thread_dtor(void *obj, void *privdata) 229 { 230 struct thread *td = (struct thread *)obj; 231 232 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD, 233 ("_lwkt_thread_dtor: not allocated from objcache")); 234 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack && 235 td->td_kstack_size > 0, 236 ("_lwkt_thread_dtor: corrupted stack")); 237 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 238 } 239 240 /* 241 * Initialize the lwkt s/system. 242 */ 243 void 244 lwkt_init(void) 245 { 246 /* An objcache has 2 magazines per CPU so divide cache size by 2. */ 247 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread), 248 NULL, CACHE_NTHREADS/2, 249 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL); 250 } 251 252 /* 253 * Schedule a thread to run. As the current thread we can always safely 254 * schedule ourselves, and a shortcut procedure is provided for that 255 * function. 256 * 257 * (non-blocking, self contained on a per cpu basis) 258 */ 259 void 260 lwkt_schedule_self(thread_t td) 261 { 262 crit_enter_quick(td); 263 KASSERT(td != &td->td_gd->gd_idlethread, 264 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 265 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 266 _lwkt_enqueue(td); 267 crit_exit_quick(td); 268 } 269 270 /* 271 * Deschedule a thread. 272 * 273 * (non-blocking, self contained on a per cpu basis) 274 */ 275 void 276 lwkt_deschedule_self(thread_t td) 277 { 278 crit_enter_quick(td); 279 _lwkt_dequeue(td); 280 crit_exit_quick(td); 281 } 282 283 /* 284 * LWKTs operate on a per-cpu basis 285 * 286 * WARNING! Called from early boot, 'mycpu' may not work yet. 287 */ 288 void 289 lwkt_gdinit(struct globaldata *gd) 290 { 291 TAILQ_INIT(&gd->gd_tdrunq); 292 TAILQ_INIT(&gd->gd_tdallq); 293 } 294 295 /* 296 * Create a new thread. The thread must be associated with a process context 297 * or LWKT start address before it can be scheduled. If the target cpu is 298 * -1 the thread will be created on the current cpu. 299 * 300 * If you intend to create a thread without a process context this function 301 * does everything except load the startup and switcher function. 302 */ 303 thread_t 304 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags) 305 { 306 globaldata_t gd = mycpu; 307 void *stack; 308 309 /* 310 * If static thread storage is not supplied allocate a thread. Reuse 311 * a cached free thread if possible. gd_freetd is used to keep an exiting 312 * thread intact through the exit. 313 */ 314 if (td == NULL) { 315 if ((td = gd->gd_freetd) != NULL) 316 gd->gd_freetd = NULL; 317 else 318 td = objcache_get(thread_cache, M_WAITOK); 319 KASSERT((td->td_flags & 320 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD, 321 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags)); 322 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK); 323 } 324 325 /* 326 * Try to reuse cached stack. 327 */ 328 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 329 if (flags & TDF_ALLOCATED_STACK) { 330 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size); 331 stack = NULL; 332 } 333 } 334 if (stack == NULL) { 335 stack = (void *)kmem_alloc(&kernel_map, stksize); 336 flags |= TDF_ALLOCATED_STACK; 337 } 338 if (cpu < 0) 339 lwkt_init_thread(td, stack, stksize, flags, gd); 340 else 341 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 342 return(td); 343 } 344 345 /* 346 * Initialize a preexisting thread structure. This function is used by 347 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 348 * 349 * All threads start out in a critical section at a priority of 350 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 351 * appropriate. This function may send an IPI message when the 352 * requested cpu is not the current cpu and consequently gd_tdallq may 353 * not be initialized synchronously from the point of view of the originating 354 * cpu. 355 * 356 * NOTE! we have to be careful in regards to creating threads for other cpus 357 * if SMP has not yet been activated. 358 */ 359 #ifdef SMP 360 361 static void 362 lwkt_init_thread_remote(void *arg) 363 { 364 thread_t td = arg; 365 366 /* 367 * Protected by critical section held by IPI dispatch 368 */ 369 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 370 } 371 372 #endif 373 374 /* 375 * lwkt core thread structural initialization. 376 * 377 * NOTE: All threads are initialized as mpsafe threads. 378 */ 379 void 380 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 381 struct globaldata *gd) 382 { 383 globaldata_t mygd = mycpu; 384 385 bzero(td, sizeof(struct thread)); 386 td->td_kstack = stack; 387 td->td_kstack_size = stksize; 388 td->td_flags = flags; 389 td->td_gd = gd; 390 td->td_pri = TDPRI_KERN_DAEMON; 391 td->td_critcount = 1; 392 td->td_toks_stop = &td->td_toks_base; 393 if (lwkt_use_spin_port) 394 lwkt_initport_spin(&td->td_msgport); 395 else 396 lwkt_initport_thread(&td->td_msgport, td); 397 pmap_init_thread(td); 398 #ifdef SMP 399 /* 400 * Normally initializing a thread for a remote cpu requires sending an 401 * IPI. However, the idlethread is setup before the other cpus are 402 * activated so we have to treat it as a special case. XXX manipulation 403 * of gd_tdallq requires the BGL. 404 */ 405 if (gd == mygd || td == &gd->gd_idlethread) { 406 crit_enter_gd(mygd); 407 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 408 crit_exit_gd(mygd); 409 } else { 410 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 411 } 412 #else 413 crit_enter_gd(mygd); 414 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 415 crit_exit_gd(mygd); 416 #endif 417 418 dsched_new_thread(td); 419 } 420 421 void 422 lwkt_set_comm(thread_t td, const char *ctl, ...) 423 { 424 __va_list va; 425 426 __va_start(va, ctl); 427 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 428 __va_end(va); 429 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]); 430 } 431 432 void 433 lwkt_hold(thread_t td) 434 { 435 ++td->td_refs; 436 } 437 438 void 439 lwkt_rele(thread_t td) 440 { 441 KKASSERT(td->td_refs > 0); 442 --td->td_refs; 443 } 444 445 void 446 lwkt_wait_free(thread_t td) 447 { 448 while (td->td_refs) 449 tsleep(td, 0, "tdreap", hz); 450 } 451 452 void 453 lwkt_free_thread(thread_t td) 454 { 455 KASSERT((td->td_flags & TDF_RUNNING) == 0, 456 ("lwkt_free_thread: did not exit! %p", td)); 457 458 if (td->td_flags & TDF_ALLOCATED_THREAD) { 459 objcache_put(thread_cache, td); 460 } else if (td->td_flags & TDF_ALLOCATED_STACK) { 461 /* client-allocated struct with internally allocated stack */ 462 KASSERT(td->td_kstack && td->td_kstack_size > 0, 463 ("lwkt_free_thread: corrupted stack")); 464 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 465 td->td_kstack = NULL; 466 td->td_kstack_size = 0; 467 } 468 KTR_LOG(ctxsw_deadtd, td); 469 } 470 471 472 /* 473 * Switch to the next runnable lwkt. If no LWKTs are runnable then 474 * switch to the idlethread. Switching must occur within a critical 475 * section to avoid races with the scheduling queue. 476 * 477 * We always have full control over our cpu's run queue. Other cpus 478 * that wish to manipulate our queue must use the cpu_*msg() calls to 479 * talk to our cpu, so a critical section is all that is needed and 480 * the result is very, very fast thread switching. 481 * 482 * The LWKT scheduler uses a fixed priority model and round-robins at 483 * each priority level. User process scheduling is a totally 484 * different beast and LWKT priorities should not be confused with 485 * user process priorities. 486 * 487 * The MP lock may be out of sync with the thread's td_mpcount + td_xpcount. 488 * lwkt_switch() cleans it up. 489 * 490 * Note that the td_switch() function cannot do anything that requires 491 * the MP lock since the MP lock will have already been setup for 492 * the target thread (not the current thread). It's nice to have a scheduler 493 * that does not need the MP lock to work because it allows us to do some 494 * really cool high-performance MP lock optimizations. 495 * 496 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch() 497 * is not called by the current thread in the preemption case, only when 498 * the preempting thread blocks (in order to return to the original thread). 499 */ 500 void 501 lwkt_switch(void) 502 { 503 globaldata_t gd = mycpu; 504 thread_t td = gd->gd_curthread; 505 thread_t ntd; 506 thread_t xtd; 507 thread_t nlast; 508 int nquserok; 509 #ifdef SMP 510 int mpheld; 511 #endif 512 int didaccumulate; 513 const char *lmsg; /* diagnostic - 'systat -pv 1' */ 514 const void *laddr; 515 516 /* 517 * Switching from within a 'fast' (non thread switched) interrupt or IPI 518 * is illegal. However, we may have to do it anyway if we hit a fatal 519 * kernel trap or we have paniced. 520 * 521 * If this case occurs save and restore the interrupt nesting level. 522 */ 523 if (gd->gd_intr_nesting_level) { 524 int savegdnest; 525 int savegdtrap; 526 527 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) { 528 panic("lwkt_switch: Attempt to switch from a " 529 "a fast interrupt, ipi, or hard code section, " 530 "td %p\n", 531 td); 532 } else { 533 savegdnest = gd->gd_intr_nesting_level; 534 savegdtrap = gd->gd_trap_nesting_level; 535 gd->gd_intr_nesting_level = 0; 536 gd->gd_trap_nesting_level = 0; 537 if ((td->td_flags & TDF_PANICWARN) == 0) { 538 td->td_flags |= TDF_PANICWARN; 539 kprintf("Warning: thread switch from interrupt, IPI, " 540 "or hard code section.\n" 541 "thread %p (%s)\n", td, td->td_comm); 542 print_backtrace(-1); 543 } 544 lwkt_switch(); 545 gd->gd_intr_nesting_level = savegdnest; 546 gd->gd_trap_nesting_level = savegdtrap; 547 return; 548 } 549 } 550 551 /* 552 * Passive release (used to transition from user to kernel mode 553 * when we block or switch rather then when we enter the kernel). 554 * This function is NOT called if we are switching into a preemption 555 * or returning from a preemption. Typically this causes us to lose 556 * our current process designation (if we have one) and become a true 557 * LWKT thread, and may also hand the current process designation to 558 * another process and schedule thread. 559 */ 560 if (td->td_release) 561 td->td_release(td); 562 563 crit_enter_gd(gd); 564 if (TD_TOKS_HELD(td)) 565 lwkt_relalltokens(td); 566 567 /* 568 * We had better not be holding any spin locks, but don't get into an 569 * endless panic loop. 570 */ 571 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 572 ("lwkt_switch: still holding %d exclusive spinlocks!", 573 gd->gd_spinlocks_wr)); 574 575 576 #ifdef SMP 577 /* 578 * td_mpcount + td_xpcount cannot be used to determine if we currently 579 * hold the MP lock because get_mplock() will increment it prior to 580 * attempting to get the lock, and switch out if it can't. Our 581 * ownership of the actual lock will remain stable while we are 582 * in a critical section, and once we actually acquire the underlying 583 * lock as long as the count is greater than 0. 584 */ 585 mpheld = MP_LOCK_HELD(gd); 586 #ifdef INVARIANTS 587 if (td->td_cscount) { 588 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 589 td); 590 if (panic_on_cscount) 591 panic("switching while mastering cpusync"); 592 } 593 #endif 594 #endif 595 596 /* 597 * If we had preempted another thread on this cpu, resume the preempted 598 * thread. This occurs transparently, whether the preempted thread 599 * was scheduled or not (it may have been preempted after descheduling 600 * itself). 601 * 602 * We have to setup the MP lock for the original thread after backing 603 * out the adjustment that was made to curthread when the original 604 * was preempted. 605 */ 606 if ((ntd = td->td_preempted) != NULL) { 607 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 608 #ifdef SMP 609 if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) { 610 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d", 611 td, ntd, td->td_mpcount, ntd->td_mpcount + ntd->td_xpcount); 612 } 613 td->td_xpcount = 0; 614 #endif 615 ntd->td_flags |= TDF_PREEMPT_DONE; 616 617 /* 618 * The interrupt may have woken a thread up, we need to properly 619 * set the reschedule flag if the originally interrupted thread is 620 * at a lower priority. 621 */ 622 if (TAILQ_FIRST(&gd->gd_tdrunq) && 623 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) { 624 need_lwkt_resched(); 625 } 626 /* YYY release mp lock on switchback if original doesn't need it */ 627 goto havethread_preempted; 628 } 629 630 /* 631 * Implement round-robin fairq with priority insertion. The priority 632 * insertion is handled by _lwkt_enqueue() 633 * 634 * We have to adjust the MP lock for the target thread. If we 635 * need the MP lock and cannot obtain it we try to locate a 636 * thread that does not need the MP lock. If we cannot, we spin 637 * instead of HLT. 638 * 639 * A similar issue exists for the tokens held by the target thread. 640 * If we cannot obtain ownership of the tokens we cannot immediately 641 * schedule the thread. 642 */ 643 for (;;) { 644 clear_lwkt_resched(); 645 didaccumulate = 0; 646 ntd = TAILQ_FIRST(&gd->gd_tdrunq); 647 648 /* 649 * Hotpath if we can get all necessary resources. 650 * 651 * If nothing is runnable switch to the idle thread 652 */ 653 if (ntd == NULL) { 654 ntd = &gd->gd_idlethread; 655 if (gd->gd_reqflags & RQF_IDLECHECK_MASK) 656 ntd->td_flags |= TDF_IDLE_NOHLT; 657 #ifdef SMP 658 KKASSERT(ntd->td_xpcount == 0); 659 if (ntd->td_mpcount) { 660 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 661 panic("Idle thread %p was holding the BGL!", ntd); 662 if (mpheld == 0) { 663 set_cpu_contention_mask(gd); 664 handle_cpu_contention_mask(); 665 cpu_try_mplock(); 666 mpheld = MP_LOCK_HELD(gd); 667 cpu_pause(); 668 continue; 669 } 670 } 671 clr_cpu_contention_mask(gd); 672 #endif 673 cpu_time.cp_msg[0] = 0; 674 cpu_time.cp_stallpc = 0; 675 goto haveidle; 676 } 677 678 /* 679 * Hotpath schedule 680 * 681 * NOTE: For UP there is no mplock and lwkt_getalltokens() 682 * always succeeds. 683 */ 684 if (ntd->td_fairq_accum >= 0 && 685 #ifdef SMP 686 (ntd->td_mpcount + ntd->td_xpcount == 0 || 687 mpheld || cpu_try_mplock()) && 688 #endif 689 (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr)) 690 ) { 691 #ifdef SMP 692 clr_cpu_contention_mask(gd); 693 #endif 694 goto havethread; 695 } 696 697 lmsg = NULL; 698 laddr = NULL; 699 700 #ifdef SMP 701 if (ntd->td_fairq_accum >= 0) 702 set_cpu_contention_mask(gd); 703 /* Reload mpheld (it become stale after mplock/token ops) */ 704 mpheld = MP_LOCK_HELD(gd); 705 if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) { 706 lmsg = "mplock"; 707 laddr = ntd->td_mplock_stallpc; 708 } 709 #endif 710 711 /* 712 * Coldpath - unable to schedule ntd, continue looking for threads 713 * to schedule. This is only allowed of the (presumably) kernel 714 * thread exhausted its fair share. A kernel thread stuck on 715 * resources does not currently allow a user thread to get in 716 * front of it. 717 */ 718 #ifdef SMP 719 nquserok = ((ntd->td_pri < TDPRI_KERN_LPSCHED) || 720 (ntd->td_fairq_accum < 0)); 721 #else 722 nquserok = 1; 723 #endif 724 nlast = NULL; 725 726 for (;;) { 727 /* 728 * If the fair-share scheduler ran out ntd gets moved to the 729 * end and its accumulator will be bumped, if it didn't we 730 * maintain the same queue position. 731 * 732 * nlast keeps track of the last element prior to any moves. 733 */ 734 if (ntd->td_fairq_accum < 0) { 735 lwkt_fairq_accumulate(gd, ntd); 736 didaccumulate = 1; 737 738 /* 739 * Move to end 740 */ 741 xtd = TAILQ_NEXT(ntd, td_threadq); 742 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 743 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq); 744 745 /* 746 * Set terminal element (nlast) 747 */ 748 if (nlast == NULL) { 749 nlast = ntd; 750 if (xtd == NULL) 751 xtd = ntd; 752 } 753 ntd = xtd; 754 } else { 755 ntd = TAILQ_NEXT(ntd, td_threadq); 756 } 757 758 /* 759 * If we exhausted the run list switch to the idle thread. 760 * Since one or more threads had resource acquisition issues 761 * we do not allow the idle thread to halt. 762 * 763 * NOTE: nlast can be NULL. 764 */ 765 if (ntd == nlast) { 766 cpu_pause(); 767 ntd = &gd->gd_idlethread; 768 ntd->td_flags |= TDF_IDLE_NOHLT; 769 #ifdef SMP 770 KKASSERT(ntd->td_xpcount == 0); 771 if (ntd->td_mpcount) { 772 mpheld = MP_LOCK_HELD(gd); 773 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 774 panic("Idle thread %p was holding the BGL!", ntd); 775 if (mpheld == 0) { 776 set_cpu_contention_mask(gd); 777 handle_cpu_contention_mask(); 778 cpu_try_mplock(); 779 mpheld = MP_LOCK_HELD(gd); 780 cpu_pause(); 781 break; /* try again from the top, almost */ 782 } 783 } 784 #endif 785 786 /* 787 * If fairq accumulations occured we do not schedule the 788 * idle thread. This will cause us to try again from 789 * the (almost) top. 790 */ 791 if (didaccumulate) 792 break; /* try again from the top, almost */ 793 if (lmsg) 794 strlcpy(cpu_time.cp_msg, lmsg, sizeof(cpu_time.cp_msg)); 795 cpu_time.cp_stallpc = (uintptr_t)laddr; 796 goto haveidle; 797 } 798 799 /* 800 * Try to switch to this thread. 801 * 802 * NOTE: For UP there is no mplock and lwkt_getalltokens() 803 * always succeeds. 804 */ 805 if ((ntd->td_pri >= TDPRI_KERN_LPSCHED || nquserok || 806 user_pri_sched) && ntd->td_fairq_accum >= 0 && 807 #ifdef SMP 808 (ntd->td_mpcount + ntd->td_xpcount == 0 || 809 mpheld || cpu_try_mplock()) && 810 #endif 811 (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr)) 812 ) { 813 #ifdef SMP 814 clr_cpu_contention_mask(gd); 815 #endif 816 goto havethread; 817 } 818 #ifdef SMP 819 if (ntd->td_fairq_accum >= 0) 820 set_cpu_contention_mask(gd); 821 /* 822 * Reload mpheld (it become stale after mplock/token ops). 823 */ 824 mpheld = MP_LOCK_HELD(gd); 825 if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) { 826 lmsg = "mplock"; 827 laddr = ntd->td_mplock_stallpc; 828 } 829 if (ntd->td_pri >= TDPRI_KERN_LPSCHED && ntd->td_fairq_accum >= 0) 830 nquserok = 0; 831 #endif 832 } 833 834 /* 835 * All threads exhausted but we can loop due to a negative 836 * accumulator. 837 * 838 * While we are looping in the scheduler be sure to service 839 * any interrupts which were made pending due to our critical 840 * section, otherwise we could livelock (e.g.) IPIs. 841 * 842 * NOTE: splz can enter and exit the mplock so mpheld is 843 * stale after this call. 844 */ 845 splz_check(); 846 847 #ifdef SMP 848 /* 849 * Our mplock can be cached and cause other cpus to livelock 850 * if we loop due to e.g. not being able to acquire tokens. 851 */ 852 if (MP_LOCK_HELD(gd)) 853 cpu_rel_mplock(gd->gd_cpuid); 854 mpheld = 0; 855 #endif 856 } 857 858 /* 859 * Do the actual switch. WARNING: mpheld is stale here. 860 * 861 * We must always decrement td_fairq_accum on non-idle threads just 862 * in case a thread never gets a tick due to being in a continuous 863 * critical section. The page-zeroing code does that. 864 * 865 * If the thread we came up with is a higher or equal priority verses 866 * the thread at the head of the queue we move our thread to the 867 * front. This way we can always check the front of the queue. 868 */ 869 havethread: 870 ++gd->gd_cnt.v_swtch; 871 --ntd->td_fairq_accum; 872 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 873 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) { 874 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 875 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq); 876 } 877 havethread_preempted: 878 ; 879 /* 880 * If the new target does not need the MP lock and we are holding it, 881 * release the MP lock. If the new target requires the MP lock we have 882 * already acquired it for the target. 883 * 884 * WARNING: mpheld is stale here. 885 */ 886 haveidle: 887 KASSERT(ntd->td_critcount, 888 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri)); 889 #ifdef SMP 890 if (ntd->td_mpcount + ntd->td_xpcount == 0 ) { 891 if (MP_LOCK_HELD(gd)) 892 cpu_rel_mplock(gd->gd_cpuid); 893 } else { 894 ASSERT_MP_LOCK_HELD(ntd); 895 } 896 #endif 897 if (td != ntd) { 898 ++switch_count; 899 #ifdef __x86_64__ 900 { 901 int tos_ok __debugvar = jg_tos_ok(ntd); 902 KKASSERT(tos_ok); 903 } 904 #endif 905 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd); 906 td->td_switch(ntd); 907 } 908 /* NOTE: current cpu may have changed after switch */ 909 crit_exit_quick(td); 910 } 911 912 /* 913 * Request that the target thread preempt the current thread. Preemption 914 * only works under a specific set of conditions: 915 * 916 * - We are not preempting ourselves 917 * - The target thread is owned by the current cpu 918 * - We are not currently being preempted 919 * - The target is not currently being preempted 920 * - We are not holding any spin locks 921 * - The target thread is not holding any tokens 922 * - We are able to satisfy the target's MP lock requirements (if any). 923 * 924 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 925 * this is called via lwkt_schedule() through the td_preemptable callback. 926 * critcount is the managed critical priority that we should ignore in order 927 * to determine whether preemption is possible (aka usually just the crit 928 * priority of lwkt_schedule() itself). 929 * 930 * XXX at the moment we run the target thread in a critical section during 931 * the preemption in order to prevent the target from taking interrupts 932 * that *WE* can't. Preemption is strictly limited to interrupt threads 933 * and interrupt-like threads, outside of a critical section, and the 934 * preempted source thread will be resumed the instant the target blocks 935 * whether or not the source is scheduled (i.e. preemption is supposed to 936 * be as transparent as possible). 937 * 938 * The target thread inherits our MP count (added to its own) for the 939 * duration of the preemption in order to preserve the atomicy of the 940 * MP lock during the preemption. Therefore, any preempting targets must be 941 * careful in regards to MP assertions. Note that the MP count may be 942 * out of sync with the physical mp_lock, but we do not have to preserve 943 * the original ownership of the lock if it was out of synch (that is, we 944 * can leave it synchronized on return). 945 */ 946 void 947 lwkt_preempt(thread_t ntd, int critcount) 948 { 949 struct globaldata *gd = mycpu; 950 thread_t td; 951 #ifdef SMP 952 int mpheld; 953 int savecnt; 954 #endif 955 956 /* 957 * The caller has put us in a critical section. We can only preempt 958 * if the caller of the caller was not in a critical section (basically 959 * a local interrupt), as determined by the 'critcount' parameter. We 960 * also can't preempt if the caller is holding any spinlocks (even if 961 * he isn't in a critical section). This also handles the tokens test. 962 * 963 * YYY The target thread must be in a critical section (else it must 964 * inherit our critical section? I dunno yet). 965 * 966 * Set need_lwkt_resched() unconditionally for now YYY. 967 */ 968 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri)); 969 970 if (preempt_enable == 0) { 971 ++preempt_miss; 972 return; 973 } 974 975 td = gd->gd_curthread; 976 if (ntd->td_pri <= td->td_pri) { 977 ++preempt_miss; 978 return; 979 } 980 if (td->td_critcount > critcount) { 981 ++preempt_miss; 982 need_lwkt_resched(); 983 return; 984 } 985 #ifdef SMP 986 if (ntd->td_gd != gd) { 987 ++preempt_miss; 988 need_lwkt_resched(); 989 return; 990 } 991 #endif 992 /* 993 * We don't have to check spinlocks here as they will also bump 994 * td_critcount. 995 * 996 * Do not try to preempt if the target thread is holding any tokens. 997 * We could try to acquire the tokens but this case is so rare there 998 * is no need to support it. 999 */ 1000 KKASSERT(gd->gd_spinlocks_wr == 0); 1001 1002 if (TD_TOKS_HELD(ntd)) { 1003 ++preempt_miss; 1004 need_lwkt_resched(); 1005 return; 1006 } 1007 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 1008 ++preempt_weird; 1009 need_lwkt_resched(); 1010 return; 1011 } 1012 if (ntd->td_preempted) { 1013 ++preempt_hit; 1014 need_lwkt_resched(); 1015 return; 1016 } 1017 #ifdef SMP 1018 /* 1019 * NOTE: An interrupt might have occured just as we were transitioning 1020 * to or from the MP lock. In this case td_mpcount will be pre-disposed 1021 * (non-zero) but not actually synchronized with the mp_lock itself. 1022 * We can use it to imply an MP lock requirement for the preemption but 1023 * we cannot use it to test whether we hold the MP lock or not. 1024 */ 1025 savecnt = td->td_mpcount; 1026 mpheld = MP_LOCK_HELD(gd); 1027 ntd->td_xpcount = td->td_mpcount + td->td_xpcount; 1028 if (mpheld == 0 && ntd->td_mpcount + ntd->td_xpcount && !cpu_try_mplock()) { 1029 ntd->td_xpcount = 0; 1030 ++preempt_miss; 1031 need_lwkt_resched(); 1032 return; 1033 } 1034 #endif 1035 1036 /* 1037 * Since we are able to preempt the current thread, there is no need to 1038 * call need_lwkt_resched(). 1039 */ 1040 ++preempt_hit; 1041 ntd->td_preempted = td; 1042 td->td_flags |= TDF_PREEMPT_LOCK; 1043 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd); 1044 td->td_switch(ntd); 1045 1046 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 1047 #ifdef SMP 1048 KKASSERT(savecnt == td->td_mpcount); 1049 mpheld = MP_LOCK_HELD(gd); 1050 if (mpheld && td->td_mpcount == 0) 1051 cpu_rel_mplock(gd->gd_cpuid); 1052 else if (mpheld == 0 && td->td_mpcount + td->td_xpcount) 1053 panic("lwkt_preempt(): MP lock was not held through"); 1054 #endif 1055 ntd->td_preempted = NULL; 1056 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 1057 } 1058 1059 /* 1060 * Conditionally call splz() if gd_reqflags indicates work is pending. 1061 * This will work inside a critical section but not inside a hard code 1062 * section. 1063 * 1064 * (self contained on a per cpu basis) 1065 */ 1066 void 1067 splz_check(void) 1068 { 1069 globaldata_t gd = mycpu; 1070 thread_t td = gd->gd_curthread; 1071 1072 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && 1073 gd->gd_intr_nesting_level == 0 && 1074 td->td_nest_count < 2) 1075 { 1076 splz(); 1077 } 1078 } 1079 1080 /* 1081 * This version is integrated into crit_exit, reqflags has already 1082 * been tested but td_critcount has not. 1083 * 1084 * We only want to execute the splz() on the 1->0 transition of 1085 * critcount and not in a hard code section or if too deeply nested. 1086 */ 1087 void 1088 lwkt_maybe_splz(thread_t td) 1089 { 1090 globaldata_t gd = td->td_gd; 1091 1092 if (td->td_critcount == 0 && 1093 gd->gd_intr_nesting_level == 0 && 1094 td->td_nest_count < 2) 1095 { 1096 splz(); 1097 } 1098 } 1099 1100 /* 1101 * This function is used to negotiate a passive release of the current 1102 * process/lwp designation with the user scheduler, allowing the user 1103 * scheduler to schedule another user thread. The related kernel thread 1104 * (curthread) continues running in the released state. 1105 */ 1106 void 1107 lwkt_passive_release(struct thread *td) 1108 { 1109 struct lwp *lp = td->td_lwp; 1110 1111 td->td_release = NULL; 1112 lwkt_setpri_self(TDPRI_KERN_USER); 1113 lp->lwp_proc->p_usched->release_curproc(lp); 1114 } 1115 1116 1117 /* 1118 * This implements a normal yield. This routine is virtually a nop if 1119 * there is nothing to yield to but it will always run any pending interrupts 1120 * if called from a critical section. 1121 * 1122 * This yield is designed for kernel threads without a user context. 1123 * 1124 * (self contained on a per cpu basis) 1125 */ 1126 void 1127 lwkt_yield(void) 1128 { 1129 globaldata_t gd = mycpu; 1130 thread_t td = gd->gd_curthread; 1131 thread_t xtd; 1132 1133 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1134 splz(); 1135 if (td->td_fairq_accum < 0) { 1136 lwkt_schedule_self(curthread); 1137 lwkt_switch(); 1138 } else { 1139 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 1140 if (xtd && xtd->td_pri > td->td_pri) { 1141 lwkt_schedule_self(curthread); 1142 lwkt_switch(); 1143 } 1144 } 1145 } 1146 1147 /* 1148 * This yield is designed for kernel threads with a user context. 1149 * 1150 * The kernel acting on behalf of the user is potentially cpu-bound, 1151 * this function will efficiently allow other threads to run and also 1152 * switch to other processes by releasing. 1153 * 1154 * The lwkt_user_yield() function is designed to have very low overhead 1155 * if no yield is determined to be needed. 1156 */ 1157 void 1158 lwkt_user_yield(void) 1159 { 1160 globaldata_t gd = mycpu; 1161 thread_t td = gd->gd_curthread; 1162 1163 /* 1164 * Always run any pending interrupts in case we are in a critical 1165 * section. 1166 */ 1167 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1168 splz(); 1169 1170 #ifdef SMP 1171 /* 1172 * XXX SEVERE TEMPORARY HACK. A cpu-bound operation running in the 1173 * kernel can prevent other cpus from servicing interrupt threads 1174 * which still require the MP lock (which is a lot of them). This 1175 * has a chaining effect since if the interrupt is blocked, so is 1176 * the event, so normal scheduling will not pick up on the problem. 1177 */ 1178 if (cpu_contention_mask && td->td_mpcount + td->td_xpcount) { 1179 yield_mplock(td); 1180 } 1181 #endif 1182 1183 /* 1184 * Switch (which forces a release) if another kernel thread needs 1185 * the cpu, if userland wants us to resched, or if our kernel 1186 * quantum has run out. 1187 */ 1188 if (lwkt_resched_wanted() || 1189 user_resched_wanted() || 1190 td->td_fairq_accum < 0) 1191 { 1192 lwkt_switch(); 1193 } 1194 1195 #if 0 1196 /* 1197 * Reacquire the current process if we are released. 1198 * 1199 * XXX not implemented atm. The kernel may be holding locks and such, 1200 * so we want the thread to continue to receive cpu. 1201 */ 1202 if (td->td_release == NULL && lp) { 1203 lp->lwp_proc->p_usched->acquire_curproc(lp); 1204 td->td_release = lwkt_passive_release; 1205 lwkt_setpri_self(TDPRI_USER_NORM); 1206 } 1207 #endif 1208 } 1209 1210 /* 1211 * Generic schedule. Possibly schedule threads belonging to other cpus and 1212 * deal with threads that might be blocked on a wait queue. 1213 * 1214 * We have a little helper inline function which does additional work after 1215 * the thread has been enqueued, including dealing with preemption and 1216 * setting need_lwkt_resched() (which prevents the kernel from returning 1217 * to userland until it has processed higher priority threads). 1218 * 1219 * It is possible for this routine to be called after a failed _enqueue 1220 * (due to the target thread migrating, sleeping, or otherwise blocked). 1221 * We have to check that the thread is actually on the run queue! 1222 * 1223 * reschedok is an optimized constant propagated from lwkt_schedule() or 1224 * lwkt_schedule_noresched(). By default it is non-zero, causing a 1225 * reschedule to be requested if the target thread has a higher priority. 1226 * The port messaging code will set MSG_NORESCHED and cause reschedok to 1227 * be 0, prevented undesired reschedules. 1228 */ 1229 static __inline 1230 void 1231 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok) 1232 { 1233 thread_t otd; 1234 1235 if (ntd->td_flags & TDF_RUNQ) { 1236 if (ntd->td_preemptable && reschedok) { 1237 ntd->td_preemptable(ntd, ccount); /* YYY +token */ 1238 } else if (reschedok) { 1239 otd = curthread; 1240 if (ntd->td_pri > otd->td_pri) 1241 need_lwkt_resched(); 1242 } 1243 1244 /* 1245 * Give the thread a little fair share scheduler bump if it 1246 * has been asleep for a while. This is primarily to avoid 1247 * a degenerate case for interrupt threads where accumulator 1248 * crosses into negative territory unnecessarily. 1249 */ 1250 if (ntd->td_fairq_lticks != ticks) { 1251 ntd->td_fairq_lticks = ticks; 1252 ntd->td_fairq_accum += gd->gd_fairq_total_pri; 1253 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd)) 1254 ntd->td_fairq_accum = TDFAIRQ_MAX(gd); 1255 } 1256 } 1257 } 1258 1259 static __inline 1260 void 1261 _lwkt_schedule(thread_t td, int reschedok) 1262 { 1263 globaldata_t mygd = mycpu; 1264 1265 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 1266 crit_enter_gd(mygd); 1267 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1268 if (td == mygd->gd_curthread) { 1269 _lwkt_enqueue(td); 1270 } else { 1271 /* 1272 * If we own the thread, there is no race (since we are in a 1273 * critical section). If we do not own the thread there might 1274 * be a race but the target cpu will deal with it. 1275 */ 1276 #ifdef SMP 1277 if (td->td_gd == mygd) { 1278 _lwkt_enqueue(td); 1279 _lwkt_schedule_post(mygd, td, 1, reschedok); 1280 } else { 1281 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0); 1282 } 1283 #else 1284 _lwkt_enqueue(td); 1285 _lwkt_schedule_post(mygd, td, 1, reschedok); 1286 #endif 1287 } 1288 crit_exit_gd(mygd); 1289 } 1290 1291 void 1292 lwkt_schedule(thread_t td) 1293 { 1294 _lwkt_schedule(td, 1); 1295 } 1296 1297 void 1298 lwkt_schedule_noresched(thread_t td) 1299 { 1300 _lwkt_schedule(td, 0); 1301 } 1302 1303 #ifdef SMP 1304 1305 /* 1306 * When scheduled remotely if frame != NULL the IPIQ is being 1307 * run via doreti or an interrupt then preemption can be allowed. 1308 * 1309 * To allow preemption we have to drop the critical section so only 1310 * one is present in _lwkt_schedule_post. 1311 */ 1312 static void 1313 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame) 1314 { 1315 thread_t td = curthread; 1316 thread_t ntd = arg; 1317 1318 if (frame && ntd->td_preemptable) { 1319 crit_exit_noyield(td); 1320 _lwkt_schedule(ntd, 1); 1321 crit_enter_quick(td); 1322 } else { 1323 _lwkt_schedule(ntd, 1); 1324 } 1325 } 1326 1327 /* 1328 * Thread migration using a 'Pull' method. The thread may or may not be 1329 * the current thread. It MUST be descheduled and in a stable state. 1330 * lwkt_giveaway() must be called on the cpu owning the thread. 1331 * 1332 * At any point after lwkt_giveaway() is called, the target cpu may 1333 * 'pull' the thread by calling lwkt_acquire(). 1334 * 1335 * We have to make sure the thread is not sitting on a per-cpu tsleep 1336 * queue or it will blow up when it moves to another cpu. 1337 * 1338 * MPSAFE - must be called under very specific conditions. 1339 */ 1340 void 1341 lwkt_giveaway(thread_t td) 1342 { 1343 globaldata_t gd = mycpu; 1344 1345 crit_enter_gd(gd); 1346 if (td->td_flags & TDF_TSLEEPQ) 1347 tsleep_remove(td); 1348 KKASSERT(td->td_gd == gd); 1349 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1350 td->td_flags |= TDF_MIGRATING; 1351 crit_exit_gd(gd); 1352 } 1353 1354 void 1355 lwkt_acquire(thread_t td) 1356 { 1357 globaldata_t gd; 1358 globaldata_t mygd; 1359 1360 KKASSERT(td->td_flags & TDF_MIGRATING); 1361 gd = td->td_gd; 1362 mygd = mycpu; 1363 if (gd != mycpu) { 1364 cpu_lfence(); 1365 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1366 crit_enter_gd(mygd); 1367 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1368 #ifdef SMP 1369 lwkt_process_ipiq(); 1370 #endif 1371 cpu_lfence(); 1372 } 1373 cpu_mfence(); 1374 td->td_gd = mygd; 1375 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1376 td->td_flags &= ~TDF_MIGRATING; 1377 crit_exit_gd(mygd); 1378 } else { 1379 crit_enter_gd(mygd); 1380 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1381 td->td_flags &= ~TDF_MIGRATING; 1382 crit_exit_gd(mygd); 1383 } 1384 } 1385 1386 #endif 1387 1388 /* 1389 * Generic deschedule. Descheduling threads other then your own should be 1390 * done only in carefully controlled circumstances. Descheduling is 1391 * asynchronous. 1392 * 1393 * This function may block if the cpu has run out of messages. 1394 */ 1395 void 1396 lwkt_deschedule(thread_t td) 1397 { 1398 crit_enter(); 1399 #ifdef SMP 1400 if (td == curthread) { 1401 _lwkt_dequeue(td); 1402 } else { 1403 if (td->td_gd == mycpu) { 1404 _lwkt_dequeue(td); 1405 } else { 1406 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td); 1407 } 1408 } 1409 #else 1410 _lwkt_dequeue(td); 1411 #endif 1412 crit_exit(); 1413 } 1414 1415 /* 1416 * Set the target thread's priority. This routine does not automatically 1417 * switch to a higher priority thread, LWKT threads are not designed for 1418 * continuous priority changes. Yield if you want to switch. 1419 */ 1420 void 1421 lwkt_setpri(thread_t td, int pri) 1422 { 1423 KKASSERT(td->td_gd == mycpu); 1424 if (td->td_pri != pri) { 1425 KKASSERT(pri >= 0); 1426 crit_enter(); 1427 if (td->td_flags & TDF_RUNQ) { 1428 _lwkt_dequeue(td); 1429 td->td_pri = pri; 1430 _lwkt_enqueue(td); 1431 } else { 1432 td->td_pri = pri; 1433 } 1434 crit_exit(); 1435 } 1436 } 1437 1438 /* 1439 * Set the initial priority for a thread prior to it being scheduled for 1440 * the first time. The thread MUST NOT be scheduled before or during 1441 * this call. The thread may be assigned to a cpu other then the current 1442 * cpu. 1443 * 1444 * Typically used after a thread has been created with TDF_STOPPREQ, 1445 * and before the thread is initially scheduled. 1446 */ 1447 void 1448 lwkt_setpri_initial(thread_t td, int pri) 1449 { 1450 KKASSERT(pri >= 0); 1451 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1452 td->td_pri = pri; 1453 } 1454 1455 void 1456 lwkt_setpri_self(int pri) 1457 { 1458 thread_t td = curthread; 1459 1460 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1461 crit_enter(); 1462 if (td->td_flags & TDF_RUNQ) { 1463 _lwkt_dequeue(td); 1464 td->td_pri = pri; 1465 _lwkt_enqueue(td); 1466 } else { 1467 td->td_pri = pri; 1468 } 1469 crit_exit(); 1470 } 1471 1472 /* 1473 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle. 1474 * 1475 * Example: two competing threads, same priority N. decrement by (2*N) 1476 * increment by N*8, each thread will get 4 ticks. 1477 */ 1478 void 1479 lwkt_fairq_schedulerclock(thread_t td) 1480 { 1481 if (fairq_enable) { 1482 while (td) { 1483 if (td != &td->td_gd->gd_idlethread) { 1484 td->td_fairq_accum -= td->td_gd->gd_fairq_total_pri; 1485 if (td->td_fairq_accum < -TDFAIRQ_MAX(td->td_gd)) 1486 td->td_fairq_accum = -TDFAIRQ_MAX(td->td_gd); 1487 if (td->td_fairq_accum < 0) 1488 need_lwkt_resched(); 1489 td->td_fairq_lticks = ticks; 1490 } 1491 td = td->td_preempted; 1492 } 1493 } 1494 } 1495 1496 static void 1497 lwkt_fairq_accumulate(globaldata_t gd, thread_t td) 1498 { 1499 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE; 1500 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd)) 1501 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd); 1502 } 1503 1504 /* 1505 * Migrate the current thread to the specified cpu. 1506 * 1507 * This is accomplished by descheduling ourselves from the current cpu, 1508 * moving our thread to the tdallq of the target cpu, IPI messaging the 1509 * target cpu, and switching out. TDF_MIGRATING prevents scheduling 1510 * races while the thread is being migrated. 1511 * 1512 * We must be sure to remove ourselves from the current cpu's tsleepq 1513 * before potentially moving to another queue. The thread can be on 1514 * a tsleepq due to a left-over tsleep_interlock(). 1515 */ 1516 #ifdef SMP 1517 static void lwkt_setcpu_remote(void *arg); 1518 #endif 1519 1520 void 1521 lwkt_setcpu_self(globaldata_t rgd) 1522 { 1523 #ifdef SMP 1524 thread_t td = curthread; 1525 1526 if (td->td_gd != rgd) { 1527 crit_enter_quick(td); 1528 if (td->td_flags & TDF_TSLEEPQ) 1529 tsleep_remove(td); 1530 td->td_flags |= TDF_MIGRATING; 1531 lwkt_deschedule_self(td); 1532 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1533 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td); 1534 lwkt_switch(); 1535 /* we are now on the target cpu */ 1536 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); 1537 crit_exit_quick(td); 1538 } 1539 #endif 1540 } 1541 1542 void 1543 lwkt_migratecpu(int cpuid) 1544 { 1545 #ifdef SMP 1546 globaldata_t rgd; 1547 1548 rgd = globaldata_find(cpuid); 1549 lwkt_setcpu_self(rgd); 1550 #endif 1551 } 1552 1553 /* 1554 * Remote IPI for cpu migration (called while in a critical section so we 1555 * do not have to enter another one). The thread has already been moved to 1556 * our cpu's allq, but we must wait for the thread to be completely switched 1557 * out on the originating cpu before we schedule it on ours or the stack 1558 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD 1559 * change to main memory. 1560 * 1561 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races 1562 * against wakeups. It is best if this interface is used only when there 1563 * are no pending events that might try to schedule the thread. 1564 */ 1565 #ifdef SMP 1566 static void 1567 lwkt_setcpu_remote(void *arg) 1568 { 1569 thread_t td = arg; 1570 globaldata_t gd = mycpu; 1571 1572 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1573 #ifdef SMP 1574 lwkt_process_ipiq(); 1575 #endif 1576 cpu_lfence(); 1577 cpu_pause(); 1578 } 1579 td->td_gd = gd; 1580 cpu_mfence(); 1581 td->td_flags &= ~TDF_MIGRATING; 1582 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1583 _lwkt_enqueue(td); 1584 } 1585 #endif 1586 1587 struct lwp * 1588 lwkt_preempted_proc(void) 1589 { 1590 thread_t td = curthread; 1591 while (td->td_preempted) 1592 td = td->td_preempted; 1593 return(td->td_lwp); 1594 } 1595 1596 /* 1597 * Create a kernel process/thread/whatever. It shares it's address space 1598 * with proc0 - ie: kernel only. 1599 * 1600 * NOTE! By default new threads are created with the MP lock held. A 1601 * thread which does not require the MP lock should release it by calling 1602 * rel_mplock() at the start of the new thread. 1603 */ 1604 int 1605 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp, 1606 thread_t template, int tdflags, int cpu, const char *fmt, ...) 1607 { 1608 thread_t td; 1609 __va_list ap; 1610 1611 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu, 1612 tdflags); 1613 if (tdp) 1614 *tdp = td; 1615 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1616 1617 /* 1618 * Set up arg0 for 'ps' etc 1619 */ 1620 __va_start(ap, fmt); 1621 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1622 __va_end(ap); 1623 1624 /* 1625 * Schedule the thread to run 1626 */ 1627 if ((td->td_flags & TDF_STOPREQ) == 0) 1628 lwkt_schedule(td); 1629 else 1630 td->td_flags &= ~TDF_STOPREQ; 1631 return 0; 1632 } 1633 1634 /* 1635 * Destroy an LWKT thread. Warning! This function is not called when 1636 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1637 * uses a different reaping mechanism. 1638 */ 1639 void 1640 lwkt_exit(void) 1641 { 1642 thread_t td = curthread; 1643 thread_t std; 1644 globaldata_t gd; 1645 1646 if (td->td_flags & TDF_VERBOSE) 1647 kprintf("kthread %p %s has exited\n", td, td->td_comm); 1648 caps_exit(td); 1649 1650 /* 1651 * Get us into a critical section to interlock gd_freetd and loop 1652 * until we can get it freed. 1653 * 1654 * We have to cache the current td in gd_freetd because objcache_put()ing 1655 * it would rip it out from under us while our thread is still active. 1656 */ 1657 gd = mycpu; 1658 crit_enter_quick(td); 1659 while ((std = gd->gd_freetd) != NULL) { 1660 gd->gd_freetd = NULL; 1661 objcache_put(thread_cache, std); 1662 } 1663 1664 /* 1665 * Remove thread resources from kernel lists and deschedule us for 1666 * the last time. 1667 */ 1668 if (td->td_flags & TDF_TSLEEPQ) 1669 tsleep_remove(td); 1670 biosched_done(td); 1671 dsched_exit_thread(td); 1672 lwkt_deschedule_self(td); 1673 lwkt_remove_tdallq(td); 1674 if (td->td_flags & TDF_ALLOCATED_THREAD) 1675 gd->gd_freetd = td; 1676 cpu_thread_exit(); 1677 } 1678 1679 void 1680 lwkt_remove_tdallq(thread_t td) 1681 { 1682 KKASSERT(td->td_gd == mycpu); 1683 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1684 } 1685 1686 /* 1687 * Code reduction and branch prediction improvements. Call/return 1688 * overhead on modern cpus often degenerates into 0 cycles due to 1689 * the cpu's branch prediction hardware and return pc cache. We 1690 * can take advantage of this by not inlining medium-complexity 1691 * functions and we can also reduce the branch prediction impact 1692 * by collapsing perfectly predictable branches into a single 1693 * procedure instead of duplicating it. 1694 * 1695 * Is any of this noticeable? Probably not, so I'll take the 1696 * smaller code size. 1697 */ 1698 void 1699 crit_exit_wrapper(__DEBUG_CRIT_ARG__) 1700 { 1701 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__); 1702 } 1703 1704 void 1705 crit_panic(void) 1706 { 1707 thread_t td = curthread; 1708 int lcrit = td->td_critcount; 1709 1710 td->td_critcount = 0; 1711 panic("td_critcount is/would-go negative! %p %d", td, lcrit); 1712 /* NOT REACHED */ 1713 } 1714 1715 #ifdef SMP 1716 1717 /* 1718 * Called from debugger/panic on cpus which have been stopped. We must still 1719 * process the IPIQ while stopped, even if we were stopped while in a critical 1720 * section (XXX). 1721 * 1722 * If we are dumping also try to process any pending interrupts. This may 1723 * or may not work depending on the state of the cpu at the point it was 1724 * stopped. 1725 */ 1726 void 1727 lwkt_smp_stopped(void) 1728 { 1729 globaldata_t gd = mycpu; 1730 1731 crit_enter_gd(gd); 1732 if (dumping) { 1733 lwkt_process_ipiq(); 1734 splz(); 1735 } else { 1736 lwkt_process_ipiq(); 1737 } 1738 crit_exit_gd(gd); 1739 } 1740 1741 #endif 1742