xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision c9e3d8f96688a159959b1af2d4fef14b744173e3)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #if !defined(KTR_CTXSW)
75 #define KTR_CTXSW KTR_ALL
76 #endif
77 KTR_INFO_MASTER(ctxsw);
78 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "sw  %p > %p", 2 * sizeof(struct thread *));
79 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "pre %p > %p", 2 * sizeof(struct thread *));
80 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "new_td %p %s", sizeof (struct thread *) +
81 	 sizeof(char *));
82 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "dead_td %p", sizeof (struct thread *));
83 
84 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
85 
86 #ifdef	INVARIANTS
87 static int panic_on_cscount = 0;
88 #endif
89 static __int64_t switch_count = 0;
90 static __int64_t preempt_hit = 0;
91 static __int64_t preempt_miss = 0;
92 static __int64_t preempt_weird = 0;
93 static __int64_t token_contention_count __debugvar = 0;
94 static int lwkt_use_spin_port;
95 static struct objcache *thread_cache;
96 
97 #ifdef SMP
98 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
99 #endif
100 
101 extern void cpu_heavy_restore(void);
102 extern void cpu_lwkt_restore(void);
103 extern void cpu_kthread_restore(void);
104 extern void cpu_idle_restore(void);
105 
106 #ifdef __x86_64__
107 
108 static int
109 jg_tos_ok(struct thread *td)
110 {
111 	void *tos;
112 	int tos_ok;
113 
114 	if (td == NULL) {
115 		return 1;
116 	}
117 	KKASSERT(td->td_sp != NULL);
118 	tos = ((void **)td->td_sp)[0];
119 	tos_ok = 0;
120 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
121 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
122 		tos_ok = 1;
123 	}
124 	return tos_ok;
125 }
126 
127 #endif
128 
129 /*
130  * We can make all thread ports use the spin backend instead of the thread
131  * backend.  This should only be set to debug the spin backend.
132  */
133 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
134 
135 #ifdef	INVARIANTS
136 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
137 #endif
138 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
139 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
140 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
141 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
142 #ifdef	INVARIANTS
143 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
144 	&token_contention_count, 0, "spinning due to token contention");
145 #endif
146 
147 /*
148  * These helper procedures handle the runq, they can only be called from
149  * within a critical section.
150  *
151  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
152  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
153  * instead of 'mycpu' when referencing the globaldata structure.   Once
154  * SMP live enqueuing and dequeueing only occurs on the current cpu.
155  */
156 static __inline
157 void
158 _lwkt_dequeue(thread_t td)
159 {
160     if (td->td_flags & TDF_RUNQ) {
161 	int nq = td->td_pri & TDPRI_MASK;
162 	struct globaldata *gd = td->td_gd;
163 
164 	td->td_flags &= ~TDF_RUNQ;
165 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
166 	/* runqmask is passively cleaned up by the switcher */
167     }
168 }
169 
170 static __inline
171 void
172 _lwkt_enqueue(thread_t td)
173 {
174     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
175 	int nq = td->td_pri & TDPRI_MASK;
176 	struct globaldata *gd = td->td_gd;
177 
178 	td->td_flags |= TDF_RUNQ;
179 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
180 	gd->gd_runqmask |= 1 << nq;
181     }
182 }
183 
184 static __boolean_t
185 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
186 {
187 	struct thread *td = (struct thread *)obj;
188 
189 	td->td_kstack = NULL;
190 	td->td_kstack_size = 0;
191 	td->td_flags = TDF_ALLOCATED_THREAD;
192 	return (1);
193 }
194 
195 static void
196 _lwkt_thread_dtor(void *obj, void *privdata)
197 {
198 	struct thread *td = (struct thread *)obj;
199 
200 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
201 	    ("_lwkt_thread_dtor: not allocated from objcache"));
202 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
203 		td->td_kstack_size > 0,
204 	    ("_lwkt_thread_dtor: corrupted stack"));
205 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
206 }
207 
208 /*
209  * Initialize the lwkt s/system.
210  */
211 void
212 lwkt_init(void)
213 {
214     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
215     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
216 			NULL, CACHE_NTHREADS/2,
217 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
218 }
219 
220 /*
221  * Schedule a thread to run.  As the current thread we can always safely
222  * schedule ourselves, and a shortcut procedure is provided for that
223  * function.
224  *
225  * (non-blocking, self contained on a per cpu basis)
226  */
227 void
228 lwkt_schedule_self(thread_t td)
229 {
230     crit_enter_quick(td);
231     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
232     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
233     _lwkt_enqueue(td);
234     crit_exit_quick(td);
235 }
236 
237 /*
238  * Deschedule a thread.
239  *
240  * (non-blocking, self contained on a per cpu basis)
241  */
242 void
243 lwkt_deschedule_self(thread_t td)
244 {
245     crit_enter_quick(td);
246     _lwkt_dequeue(td);
247     crit_exit_quick(td);
248 }
249 
250 /*
251  * LWKTs operate on a per-cpu basis
252  *
253  * WARNING!  Called from early boot, 'mycpu' may not work yet.
254  */
255 void
256 lwkt_gdinit(struct globaldata *gd)
257 {
258     int i;
259 
260     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
261 	TAILQ_INIT(&gd->gd_tdrunq[i]);
262     gd->gd_runqmask = 0;
263     TAILQ_INIT(&gd->gd_tdallq);
264 }
265 
266 /*
267  * Create a new thread.  The thread must be associated with a process context
268  * or LWKT start address before it can be scheduled.  If the target cpu is
269  * -1 the thread will be created on the current cpu.
270  *
271  * If you intend to create a thread without a process context this function
272  * does everything except load the startup and switcher function.
273  */
274 thread_t
275 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
276 {
277     globaldata_t gd = mycpu;
278     void *stack;
279 
280     /*
281      * If static thread storage is not supplied allocate a thread.  Reuse
282      * a cached free thread if possible.  gd_freetd is used to keep an exiting
283      * thread intact through the exit.
284      */
285     if (td == NULL) {
286 	if ((td = gd->gd_freetd) != NULL)
287 	    gd->gd_freetd = NULL;
288 	else
289 	    td = objcache_get(thread_cache, M_WAITOK);
290     	KASSERT((td->td_flags &
291 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
292 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
293     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
294     }
295 
296     /*
297      * Try to reuse cached stack.
298      */
299     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
300 	if (flags & TDF_ALLOCATED_STACK) {
301 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
302 	    stack = NULL;
303 	}
304     }
305     if (stack == NULL) {
306 	stack = (void *)kmem_alloc(&kernel_map, stksize);
307 	flags |= TDF_ALLOCATED_STACK;
308     }
309     if (cpu < 0)
310 	lwkt_init_thread(td, stack, stksize, flags, gd);
311     else
312 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
313     return(td);
314 }
315 
316 /*
317  * Initialize a preexisting thread structure.  This function is used by
318  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
319  *
320  * All threads start out in a critical section at a priority of
321  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
322  * appropriate.  This function may send an IPI message when the
323  * requested cpu is not the current cpu and consequently gd_tdallq may
324  * not be initialized synchronously from the point of view of the originating
325  * cpu.
326  *
327  * NOTE! we have to be careful in regards to creating threads for other cpus
328  * if SMP has not yet been activated.
329  */
330 #ifdef SMP
331 
332 static void
333 lwkt_init_thread_remote(void *arg)
334 {
335     thread_t td = arg;
336 
337     /*
338      * Protected by critical section held by IPI dispatch
339      */
340     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
341 }
342 
343 #endif
344 
345 void
346 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
347 		struct globaldata *gd)
348 {
349     globaldata_t mygd = mycpu;
350 
351     bzero(td, sizeof(struct thread));
352     td->td_kstack = stack;
353     td->td_kstack_size = stksize;
354     td->td_flags = flags;
355     td->td_gd = gd;
356     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
357 #ifdef SMP
358     if ((flags & TDF_MPSAFE) == 0)
359 	td->td_mpcount = 1;
360 #endif
361     if (lwkt_use_spin_port)
362 	lwkt_initport_spin(&td->td_msgport);
363     else
364 	lwkt_initport_thread(&td->td_msgport, td);
365     pmap_init_thread(td);
366 #ifdef SMP
367     /*
368      * Normally initializing a thread for a remote cpu requires sending an
369      * IPI.  However, the idlethread is setup before the other cpus are
370      * activated so we have to treat it as a special case.  XXX manipulation
371      * of gd_tdallq requires the BGL.
372      */
373     if (gd == mygd || td == &gd->gd_idlethread) {
374 	crit_enter_gd(mygd);
375 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
376 	crit_exit_gd(mygd);
377     } else {
378 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
379     }
380 #else
381     crit_enter_gd(mygd);
382     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
383     crit_exit_gd(mygd);
384 #endif
385 
386     dsched_new_thread(td);
387 }
388 
389 void
390 lwkt_set_comm(thread_t td, const char *ctl, ...)
391 {
392     __va_list va;
393 
394     __va_start(va, ctl);
395     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
396     __va_end(va);
397     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
398 }
399 
400 void
401 lwkt_hold(thread_t td)
402 {
403     ++td->td_refs;
404 }
405 
406 void
407 lwkt_rele(thread_t td)
408 {
409     KKASSERT(td->td_refs > 0);
410     --td->td_refs;
411 }
412 
413 void
414 lwkt_wait_free(thread_t td)
415 {
416     while (td->td_refs)
417 	tsleep(td, 0, "tdreap", hz);
418 }
419 
420 void
421 lwkt_free_thread(thread_t td)
422 {
423     KASSERT((td->td_flags & TDF_RUNNING) == 0,
424 	("lwkt_free_thread: did not exit! %p", td));
425 
426     if (td->td_flags & TDF_ALLOCATED_THREAD) {
427     	objcache_put(thread_cache, td);
428     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
429 	/* client-allocated struct with internally allocated stack */
430 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
431 	    ("lwkt_free_thread: corrupted stack"));
432 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
433 	td->td_kstack = NULL;
434 	td->td_kstack_size = 0;
435     }
436     KTR_LOG(ctxsw_deadtd, td);
437 }
438 
439 
440 /*
441  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
442  * switch to the idlethread.  Switching must occur within a critical
443  * section to avoid races with the scheduling queue.
444  *
445  * We always have full control over our cpu's run queue.  Other cpus
446  * that wish to manipulate our queue must use the cpu_*msg() calls to
447  * talk to our cpu, so a critical section is all that is needed and
448  * the result is very, very fast thread switching.
449  *
450  * The LWKT scheduler uses a fixed priority model and round-robins at
451  * each priority level.  User process scheduling is a totally
452  * different beast and LWKT priorities should not be confused with
453  * user process priorities.
454  *
455  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
456  * cleans it up.  Note that the td_switch() function cannot do anything that
457  * requires the MP lock since the MP lock will have already been setup for
458  * the target thread (not the current thread).  It's nice to have a scheduler
459  * that does not need the MP lock to work because it allows us to do some
460  * really cool high-performance MP lock optimizations.
461  *
462  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
463  * is not called by the current thread in the preemption case, only when
464  * the preempting thread blocks (in order to return to the original thread).
465  */
466 void
467 lwkt_switch(void)
468 {
469     globaldata_t gd = mycpu;
470     thread_t td = gd->gd_curthread;
471     thread_t ntd;
472 #ifdef SMP
473     int mpheld;
474 #endif
475 
476     /*
477      * Switching from within a 'fast' (non thread switched) interrupt or IPI
478      * is illegal.  However, we may have to do it anyway if we hit a fatal
479      * kernel trap or we have paniced.
480      *
481      * If this case occurs save and restore the interrupt nesting level.
482      */
483     if (gd->gd_intr_nesting_level) {
484 	int savegdnest;
485 	int savegdtrap;
486 
487 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
488 	    panic("lwkt_switch: cannot switch from within "
489 		  "a fast interrupt, yet, td %p\n", td);
490 	} else {
491 	    savegdnest = gd->gd_intr_nesting_level;
492 	    savegdtrap = gd->gd_trap_nesting_level;
493 	    gd->gd_intr_nesting_level = 0;
494 	    gd->gd_trap_nesting_level = 0;
495 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
496 		td->td_flags |= TDF_PANICWARN;
497 		kprintf("Warning: thread switch from interrupt or IPI, "
498 			"thread %p (%s)\n", td, td->td_comm);
499 		print_backtrace(-1);
500 	    }
501 	    lwkt_switch();
502 	    gd->gd_intr_nesting_level = savegdnest;
503 	    gd->gd_trap_nesting_level = savegdtrap;
504 	    return;
505 	}
506     }
507 
508     /*
509      * Passive release (used to transition from user to kernel mode
510      * when we block or switch rather then when we enter the kernel).
511      * This function is NOT called if we are switching into a preemption
512      * or returning from a preemption.  Typically this causes us to lose
513      * our current process designation (if we have one) and become a true
514      * LWKT thread, and may also hand the current process designation to
515      * another process and schedule thread.
516      */
517     if (td->td_release)
518 	    td->td_release(td);
519 
520     crit_enter_gd(gd);
521     if (td->td_toks)
522 	    lwkt_relalltokens(td);
523 
524     /*
525      * We had better not be holding any spin locks, but don't get into an
526      * endless panic loop.
527      */
528     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
529 	    ("lwkt_switch: still holding a shared spinlock %p!",
530 	     gd->gd_spinlock_rd));
531     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
532 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
533 	     gd->gd_spinlocks_wr));
534 
535 
536 #ifdef SMP
537     /*
538      * td_mpcount cannot be used to determine if we currently hold the
539      * MP lock because get_mplock() will increment it prior to attempting
540      * to get the lock, and switch out if it can't.  Our ownership of
541      * the actual lock will remain stable while we are in a critical section
542      * (but, of course, another cpu may own or release the lock so the
543      * actual value of mp_lock is not stable).
544      */
545     mpheld = MP_LOCK_HELD();
546 #ifdef	INVARIANTS
547     if (td->td_cscount) {
548 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
549 		td);
550 	if (panic_on_cscount)
551 	    panic("switching while mastering cpusync");
552     }
553 #endif
554 #endif
555     if ((ntd = td->td_preempted) != NULL) {
556 	/*
557 	 * We had preempted another thread on this cpu, resume the preempted
558 	 * thread.  This occurs transparently, whether the preempted thread
559 	 * was scheduled or not (it may have been preempted after descheduling
560 	 * itself).
561 	 *
562 	 * We have to setup the MP lock for the original thread after backing
563 	 * out the adjustment that was made to curthread when the original
564 	 * was preempted.
565 	 */
566 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
567 #ifdef SMP
568 	if (ntd->td_mpcount && mpheld == 0) {
569 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
570 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
571 	}
572 	if (ntd->td_mpcount) {
573 	    td->td_mpcount -= ntd->td_mpcount;
574 	    KKASSERT(td->td_mpcount >= 0);
575 	}
576 #endif
577 	ntd->td_flags |= TDF_PREEMPT_DONE;
578 
579 	/*
580 	 * The interrupt may have woken a thread up, we need to properly
581 	 * set the reschedule flag if the originally interrupted thread is
582 	 * at a lower priority.
583 	 */
584 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
585 	    need_lwkt_resched();
586 	/* YYY release mp lock on switchback if original doesn't need it */
587     } else {
588 	/*
589 	 * Priority queue / round-robin at each priority.  Note that user
590 	 * processes run at a fixed, low priority and the user process
591 	 * scheduler deals with interactions between user processes
592 	 * by scheduling and descheduling them from the LWKT queue as
593 	 * necessary.
594 	 *
595 	 * We have to adjust the MP lock for the target thread.  If we
596 	 * need the MP lock and cannot obtain it we try to locate a
597 	 * thread that does not need the MP lock.  If we cannot, we spin
598 	 * instead of HLT.
599 	 *
600 	 * A similar issue exists for the tokens held by the target thread.
601 	 * If we cannot obtain ownership of the tokens we cannot immediately
602 	 * schedule the thread.
603 	 */
604 
605 	/*
606 	 * If an LWKT reschedule was requested, well that is what we are
607 	 * doing now so clear it.
608 	 */
609 	clear_lwkt_resched();
610 again:
611 	if (gd->gd_runqmask) {
612 	    int nq = bsrl(gd->gd_runqmask);
613 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
614 		gd->gd_runqmask &= ~(1 << nq);
615 		goto again;
616 	    }
617 #ifdef SMP
618 	    /*
619 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
620 	     *
621 	     * If the target needs the MP lock and we couldn't get it,
622 	     * or if the target is holding tokens and we could not
623 	     * gain ownership of the tokens, continue looking for a
624 	     * thread to schedule and spin instead of HLT if we can't.
625 	     *
626 	     * NOTE: the mpheld variable invalid after this conditional, it
627 	     * can change due to both cpu_try_mplock() returning success
628 	     * AND interactions in lwkt_getalltokens() due to the fact that
629 	     * we are trying to check the mpcount of a thread other then
630 	     * the current thread.  Because of this, if the current thread
631 	     * is not holding td_mpcount, an IPI indirectly run via
632 	     * lwkt_getalltokens() can obtain and release the MP lock and
633 	     * cause the core MP lock to be released.
634 	     */
635 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
636 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
637 	    ) {
638 		u_int32_t rqmask = gd->gd_runqmask;
639 
640 		mpheld = MP_LOCK_HELD();
641 		ntd = NULL;
642 		while (rqmask) {
643 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
644 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
645 			    /* spinning due to MP lock being held */
646 			    continue;
647 			}
648 
649 			/*
650 			 * mpheld state invalid after getalltokens call returns
651 			 * failure, but the variable is only needed for
652 			 * the loop.
653 			 */
654 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
655 			    /* spinning due to token contention */
656 #ifdef	INVARIANTS
657 			    ++token_contention_count;
658 #endif
659 			    mpheld = MP_LOCK_HELD();
660 			    continue;
661 			}
662 			break;
663 		    }
664 		    if (ntd)
665 			break;
666 		    rqmask &= ~(1 << nq);
667 		    nq = bsrl(rqmask);
668 
669 		    /*
670 		     * We have two choices. We can either refuse to run a
671 		     * user thread when a kernel thread needs the MP lock
672 		     * but could not get it, or we can allow it to run but
673 		     * then expect an IPI (hopefully) later on to force a
674 		     * reschedule when the MP lock might become available.
675 		     */
676 		    if (nq < TDPRI_KERN_LPSCHED) {
677 			break;	/* for now refuse to run */
678 #if 0
679 			if (chain_mplock == 0)
680 				break;
681 			/* continue loop, allow user threads to be scheduled */
682 #endif
683 		    }
684 		}
685 
686 		/*
687 		 * Case where a (kernel) thread needed the MP lock and could
688 		 * not get one, and we may or may not have found another
689 		 * thread which does not need the MP lock to run while
690 		 * we wait (ntd).
691 		 */
692 		if (ntd == NULL) {
693 		    ntd = &gd->gd_idlethread;
694 		    ntd->td_flags |= TDF_IDLE_NOHLT;
695 		    set_mplock_contention_mask(gd);
696 		    cpu_mplock_contested();
697 		    goto using_idle_thread;
698 		} else {
699 		    clr_mplock_contention_mask(gd);
700 		    ++gd->gd_cnt.v_swtch;
701 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
702 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
703 		}
704 	    } else {
705 		clr_mplock_contention_mask(gd);
706 		++gd->gd_cnt.v_swtch;
707 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
708 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
709 	    }
710 #else
711 	    /*
712 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
713 	     * worry about tokens or the BGL.  However, we still have
714 	     * to call lwkt_getalltokens() in order to properly detect
715 	     * stale tokens.  This call cannot fail for a UP build!
716 	     */
717 	    lwkt_getalltokens(ntd);
718 	    ++gd->gd_cnt.v_swtch;
719 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
720 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
721 #endif
722 	} else {
723 	    /*
724 	     * We have nothing to run but only let the idle loop halt
725 	     * the cpu if there are no pending interrupts.
726 	     */
727 	    ntd = &gd->gd_idlethread;
728 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
729 		ntd->td_flags |= TDF_IDLE_NOHLT;
730 #ifdef SMP
731 using_idle_thread:
732 	    /*
733 	     * The idle thread should not be holding the MP lock unless we
734 	     * are trapping in the kernel or in a panic.  Since we select the
735 	     * idle thread unconditionally when no other thread is available,
736 	     * if the MP lock is desired during a panic or kernel trap, we
737 	     * have to loop in the scheduler until we get it.
738 	     */
739 	    if (ntd->td_mpcount) {
740 		mpheld = MP_LOCK_HELD();
741 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
742 		    panic("Idle thread %p was holding the BGL!", ntd);
743 		if (mpheld == 0)
744 		    goto again;
745 	    }
746 #endif
747 	}
748     }
749     KASSERT(ntd->td_pri >= TDPRI_CRIT,
750 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
751 
752     /*
753      * Do the actual switch.  If the new target does not need the MP lock
754      * and we are holding it, release the MP lock.  If the new target requires
755      * the MP lock we have already acquired it for the target.
756      */
757 #ifdef SMP
758     if (ntd->td_mpcount == 0 ) {
759 	if (MP_LOCK_HELD())
760 	    cpu_rel_mplock();
761     } else {
762 	ASSERT_MP_LOCK_HELD(ntd);
763     }
764 #endif
765     if (td != ntd) {
766 	++switch_count;
767 #ifdef __x86_64__
768     {
769 	int tos_ok __debugvar = jg_tos_ok(ntd);
770 	KKASSERT(tos_ok);
771     }
772 #endif
773 	KTR_LOG(ctxsw_sw, td, ntd);
774 	td->td_switch(ntd);
775     }
776     /* NOTE: current cpu may have changed after switch */
777     crit_exit_quick(td);
778 }
779 
780 /*
781  * Request that the target thread preempt the current thread.  Preemption
782  * only works under a specific set of conditions:
783  *
784  *	- We are not preempting ourselves
785  *	- The target thread is owned by the current cpu
786  *	- We are not currently being preempted
787  *	- The target is not currently being preempted
788  *	- We are not holding any spin locks
789  *	- The target thread is not holding any tokens
790  *	- We are able to satisfy the target's MP lock requirements (if any).
791  *
792  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
793  * this is called via lwkt_schedule() through the td_preemptable callback.
794  * critpri is the managed critical priority that we should ignore in order
795  * to determine whether preemption is possible (aka usually just the crit
796  * priority of lwkt_schedule() itself).
797  *
798  * XXX at the moment we run the target thread in a critical section during
799  * the preemption in order to prevent the target from taking interrupts
800  * that *WE* can't.  Preemption is strictly limited to interrupt threads
801  * and interrupt-like threads, outside of a critical section, and the
802  * preempted source thread will be resumed the instant the target blocks
803  * whether or not the source is scheduled (i.e. preemption is supposed to
804  * be as transparent as possible).
805  *
806  * The target thread inherits our MP count (added to its own) for the
807  * duration of the preemption in order to preserve the atomicy of the
808  * MP lock during the preemption.  Therefore, any preempting targets must be
809  * careful in regards to MP assertions.  Note that the MP count may be
810  * out of sync with the physical mp_lock, but we do not have to preserve
811  * the original ownership of the lock if it was out of synch (that is, we
812  * can leave it synchronized on return).
813  */
814 void
815 lwkt_preempt(thread_t ntd, int critpri)
816 {
817     struct globaldata *gd = mycpu;
818     thread_t td;
819 #ifdef SMP
820     int mpheld;
821     int savecnt;
822 #endif
823 
824     /*
825      * The caller has put us in a critical section.  We can only preempt
826      * if the caller of the caller was not in a critical section (basically
827      * a local interrupt), as determined by the 'critpri' parameter.  We
828      * also can't preempt if the caller is holding any spinlocks (even if
829      * he isn't in a critical section).  This also handles the tokens test.
830      *
831      * YYY The target thread must be in a critical section (else it must
832      * inherit our critical section?  I dunno yet).
833      *
834      * Set need_lwkt_resched() unconditionally for now YYY.
835      */
836     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
837 
838     td = gd->gd_curthread;
839     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
840 	++preempt_miss;
841 	return;
842     }
843     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
844 	++preempt_miss;
845 	need_lwkt_resched();
846 	return;
847     }
848 #ifdef SMP
849     if (ntd->td_gd != gd) {
850 	++preempt_miss;
851 	need_lwkt_resched();
852 	return;
853     }
854 #endif
855     /*
856      * Take the easy way out and do not preempt if we are holding
857      * any spinlocks.  We could test whether the thread(s) being
858      * preempted interlock against the target thread's tokens and whether
859      * we can get all the target thread's tokens, but this situation
860      * should not occur very often so its easier to simply not preempt.
861      * Also, plain spinlocks are impossible to figure out at this point so
862      * just don't preempt.
863      *
864      * Do not try to preempt if the target thread is holding any tokens.
865      * We could try to acquire the tokens but this case is so rare there
866      * is no need to support it.
867      */
868     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
869 	++preempt_miss;
870 	need_lwkt_resched();
871 	return;
872     }
873     if (ntd->td_toks) {
874 	++preempt_miss;
875 	need_lwkt_resched();
876 	return;
877     }
878     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
879 	++preempt_weird;
880 	need_lwkt_resched();
881 	return;
882     }
883     if (ntd->td_preempted) {
884 	++preempt_hit;
885 	need_lwkt_resched();
886 	return;
887     }
888 #ifdef SMP
889     /*
890      * note: an interrupt might have occured just as we were transitioning
891      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
892      * (non-zero) but not actually synchronized with the actual state of the
893      * lock.  We can use it to imply an MP lock requirement for the
894      * preemption but we cannot use it to test whether we hold the MP lock
895      * or not.
896      */
897     savecnt = td->td_mpcount;
898     mpheld = MP_LOCK_HELD();
899     ntd->td_mpcount += td->td_mpcount;
900     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
901 	ntd->td_mpcount -= td->td_mpcount;
902 	++preempt_miss;
903 	need_lwkt_resched();
904 	return;
905     }
906 #endif
907 
908     /*
909      * Since we are able to preempt the current thread, there is no need to
910      * call need_lwkt_resched().
911      */
912     ++preempt_hit;
913     ntd->td_preempted = td;
914     td->td_flags |= TDF_PREEMPT_LOCK;
915     KTR_LOG(ctxsw_pre, td, ntd);
916     td->td_switch(ntd);
917 
918     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
919 #ifdef SMP
920     KKASSERT(savecnt == td->td_mpcount);
921     mpheld = MP_LOCK_HELD();
922     if (mpheld && td->td_mpcount == 0)
923 	cpu_rel_mplock();
924     else if (mpheld == 0 && td->td_mpcount)
925 	panic("lwkt_preempt(): MP lock was not held through");
926 #endif
927     ntd->td_preempted = NULL;
928     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
929 }
930 
931 /*
932  * Conditionally call splz() if gd_reqflags indicates work is pending.
933  *
934  * td_nest_count prevents deep nesting via splz() or doreti() which
935  * might otherwise blow out the kernel stack.  Note that except for
936  * this special case, we MUST call splz() here to handle any
937  * pending ints, particularly after we switch, or we might accidently
938  * halt the cpu with interrupts pending.
939  *
940  * (self contained on a per cpu basis)
941  */
942 void
943 splz_check(void)
944 {
945     globaldata_t gd = mycpu;
946     thread_t td = gd->gd_curthread;
947 
948     if (gd->gd_reqflags && td->td_nest_count < 2)
949 	splz();
950 }
951 
952 /*
953  * This implements a normal yield which will yield to equal priority
954  * threads as well as higher priority threads.  Note that gd_reqflags
955  * tests will be handled by the crit_exit() call in lwkt_switch().
956  *
957  * (self contained on a per cpu basis)
958  */
959 void
960 lwkt_yield(void)
961 {
962     lwkt_schedule_self(curthread);
963     lwkt_switch();
964 }
965 
966 /*
967  * This function is used along with the lwkt_passive_recover() inline
968  * by the trap code to negotiate a passive release of the current
969  * process/lwp designation with the user scheduler.
970  */
971 void
972 lwkt_passive_release(struct thread *td)
973 {
974     struct lwp *lp = td->td_lwp;
975 
976     td->td_release = NULL;
977     lwkt_setpri_self(TDPRI_KERN_USER);
978     lp->lwp_proc->p_usched->release_curproc(lp);
979 }
980 
981 /*
982  * Make a kernel thread act as if it were in user mode with regards
983  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
984  * loops which may be potentially cpu-bound can call lwkt_user_yield().
985  *
986  * The lwkt_user_yield() function is designed to have very low overhead
987  * if no yield is determined to be needed.
988  */
989 void
990 lwkt_user_yield(void)
991 {
992     thread_t td = curthread;
993     struct lwp *lp = td->td_lwp;
994 
995 #ifdef SMP
996     /*
997      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
998      * kernel can prevent other cpus from servicing interrupt threads
999      * which still require the MP lock (which is a lot of them).  This
1000      * has a chaining effect since if the interrupt is blocked, so is
1001      * the event, so normal scheduling will not pick up on the problem.
1002      */
1003     if (mp_lock_contention_mask && td->td_mpcount) {
1004 	yield_mplock(td);
1005     }
1006 #endif
1007 
1008     /*
1009      * Another kernel thread wants the cpu
1010      */
1011     if (lwkt_resched_wanted())
1012 	lwkt_switch();
1013 
1014     /*
1015      * If the user scheduler has asynchronously determined that the current
1016      * process (when running in user mode) needs to lose the cpu then make
1017      * sure we are released.
1018      */
1019     if (user_resched_wanted()) {
1020 	if (td->td_release)
1021 	    td->td_release(td);
1022     }
1023 
1024     /*
1025      * If we are released reduce our priority
1026      */
1027     if (td->td_release == NULL) {
1028 	if (lwkt_check_resched(td) > 0)
1029 		lwkt_switch();
1030 	if (lp) {
1031 		lp->lwp_proc->p_usched->acquire_curproc(lp);
1032 		td->td_release = lwkt_passive_release;
1033 		lwkt_setpri_self(TDPRI_USER_NORM);
1034 	}
1035     }
1036 }
1037 
1038 /*
1039  * Return 0 if no runnable threads are pending at the same or higher
1040  * priority as the passed thread.
1041  *
1042  * Return 1 if runnable threads are pending at the same priority.
1043  *
1044  * Return 2 if runnable threads are pending at a higher priority.
1045  */
1046 int
1047 lwkt_check_resched(thread_t td)
1048 {
1049 	int pri = td->td_pri & TDPRI_MASK;
1050 
1051 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1052 		return(2);
1053 	if (TAILQ_NEXT(td, td_threadq))
1054 		return(1);
1055 	return(0);
1056 }
1057 
1058 /*
1059  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1060  * deal with threads that might be blocked on a wait queue.
1061  *
1062  * We have a little helper inline function which does additional work after
1063  * the thread has been enqueued, including dealing with preemption and
1064  * setting need_lwkt_resched() (which prevents the kernel from returning
1065  * to userland until it has processed higher priority threads).
1066  *
1067  * It is possible for this routine to be called after a failed _enqueue
1068  * (due to the target thread migrating, sleeping, or otherwise blocked).
1069  * We have to check that the thread is actually on the run queue!
1070  *
1071  * reschedok is an optimized constant propagated from lwkt_schedule() or
1072  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1073  * reschedule to be requested if the target thread has a higher priority.
1074  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1075  * be 0, prevented undesired reschedules.
1076  */
1077 static __inline
1078 void
1079 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1080 {
1081     thread_t otd;
1082 
1083     if (ntd->td_flags & TDF_RUNQ) {
1084 	if (ntd->td_preemptable && reschedok) {
1085 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1086 	} else if (reschedok) {
1087 	    otd = curthread;
1088 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1089 		need_lwkt_resched();
1090 	}
1091     }
1092 }
1093 
1094 static __inline
1095 void
1096 _lwkt_schedule(thread_t td, int reschedok)
1097 {
1098     globaldata_t mygd = mycpu;
1099 
1100     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1101     crit_enter_gd(mygd);
1102     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1103     if (td == mygd->gd_curthread) {
1104 	_lwkt_enqueue(td);
1105     } else {
1106 	/*
1107 	 * If we own the thread, there is no race (since we are in a
1108 	 * critical section).  If we do not own the thread there might
1109 	 * be a race but the target cpu will deal with it.
1110 	 */
1111 #ifdef SMP
1112 	if (td->td_gd == mygd) {
1113 	    _lwkt_enqueue(td);
1114 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1115 	} else {
1116 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1117 	}
1118 #else
1119 	_lwkt_enqueue(td);
1120 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1121 #endif
1122     }
1123     crit_exit_gd(mygd);
1124 }
1125 
1126 void
1127 lwkt_schedule(thread_t td)
1128 {
1129     _lwkt_schedule(td, 1);
1130 }
1131 
1132 void
1133 lwkt_schedule_noresched(thread_t td)
1134 {
1135     _lwkt_schedule(td, 0);
1136 }
1137 
1138 #ifdef SMP
1139 
1140 /*
1141  * When scheduled remotely if frame != NULL the IPIQ is being
1142  * run via doreti or an interrupt then preemption can be allowed.
1143  *
1144  * To allow preemption we have to drop the critical section so only
1145  * one is present in _lwkt_schedule_post.
1146  */
1147 static void
1148 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1149 {
1150     thread_t td = curthread;
1151     thread_t ntd = arg;
1152 
1153     if (frame && ntd->td_preemptable) {
1154 	crit_exit_noyield(td);
1155 	_lwkt_schedule(ntd, 1);
1156 	crit_enter_quick(td);
1157     } else {
1158 	_lwkt_schedule(ntd, 1);
1159     }
1160 }
1161 
1162 /*
1163  * Thread migration using a 'Pull' method.  The thread may or may not be
1164  * the current thread.  It MUST be descheduled and in a stable state.
1165  * lwkt_giveaway() must be called on the cpu owning the thread.
1166  *
1167  * At any point after lwkt_giveaway() is called, the target cpu may
1168  * 'pull' the thread by calling lwkt_acquire().
1169  *
1170  * We have to make sure the thread is not sitting on a per-cpu tsleep
1171  * queue or it will blow up when it moves to another cpu.
1172  *
1173  * MPSAFE - must be called under very specific conditions.
1174  */
1175 void
1176 lwkt_giveaway(thread_t td)
1177 {
1178     globaldata_t gd = mycpu;
1179 
1180     crit_enter_gd(gd);
1181     if (td->td_flags & TDF_TSLEEPQ)
1182 	tsleep_remove(td);
1183     KKASSERT(td->td_gd == gd);
1184     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1185     td->td_flags |= TDF_MIGRATING;
1186     crit_exit_gd(gd);
1187 }
1188 
1189 void
1190 lwkt_acquire(thread_t td)
1191 {
1192     globaldata_t gd;
1193     globaldata_t mygd;
1194 
1195     KKASSERT(td->td_flags & TDF_MIGRATING);
1196     gd = td->td_gd;
1197     mygd = mycpu;
1198     if (gd != mycpu) {
1199 	cpu_lfence();
1200 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1201 	crit_enter_gd(mygd);
1202 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1203 #ifdef SMP
1204 	    lwkt_process_ipiq();
1205 #endif
1206 	    cpu_lfence();
1207 	}
1208 	td->td_gd = mygd;
1209 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1210 	td->td_flags &= ~TDF_MIGRATING;
1211 	crit_exit_gd(mygd);
1212     } else {
1213 	crit_enter_gd(mygd);
1214 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1215 	td->td_flags &= ~TDF_MIGRATING;
1216 	crit_exit_gd(mygd);
1217     }
1218 }
1219 
1220 #endif
1221 
1222 /*
1223  * Generic deschedule.  Descheduling threads other then your own should be
1224  * done only in carefully controlled circumstances.  Descheduling is
1225  * asynchronous.
1226  *
1227  * This function may block if the cpu has run out of messages.
1228  */
1229 void
1230 lwkt_deschedule(thread_t td)
1231 {
1232     crit_enter();
1233 #ifdef SMP
1234     if (td == curthread) {
1235 	_lwkt_dequeue(td);
1236     } else {
1237 	if (td->td_gd == mycpu) {
1238 	    _lwkt_dequeue(td);
1239 	} else {
1240 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1241 	}
1242     }
1243 #else
1244     _lwkt_dequeue(td);
1245 #endif
1246     crit_exit();
1247 }
1248 
1249 /*
1250  * Set the target thread's priority.  This routine does not automatically
1251  * switch to a higher priority thread, LWKT threads are not designed for
1252  * continuous priority changes.  Yield if you want to switch.
1253  *
1254  * We have to retain the critical section count which uses the high bits
1255  * of the td_pri field.  The specified priority may also indicate zero or
1256  * more critical sections by adding TDPRI_CRIT*N.
1257  *
1258  * Note that we requeue the thread whether it winds up on a different runq
1259  * or not.  uio_yield() depends on this and the routine is not normally
1260  * called with the same priority otherwise.
1261  */
1262 void
1263 lwkt_setpri(thread_t td, int pri)
1264 {
1265     KKASSERT(pri >= 0);
1266     KKASSERT(td->td_gd == mycpu);
1267     crit_enter();
1268     if (td->td_flags & TDF_RUNQ) {
1269 	_lwkt_dequeue(td);
1270 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1271 	_lwkt_enqueue(td);
1272     } else {
1273 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1274     }
1275     crit_exit();
1276 }
1277 
1278 /*
1279  * Set the initial priority for a thread prior to it being scheduled for
1280  * the first time.  The thread MUST NOT be scheduled before or during
1281  * this call.  The thread may be assigned to a cpu other then the current
1282  * cpu.
1283  *
1284  * Typically used after a thread has been created with TDF_STOPPREQ,
1285  * and before the thread is initially scheduled.
1286  */
1287 void
1288 lwkt_setpri_initial(thread_t td, int pri)
1289 {
1290     KKASSERT(pri >= 0);
1291     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1292     td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1293 }
1294 
1295 void
1296 lwkt_setpri_self(int pri)
1297 {
1298     thread_t td = curthread;
1299 
1300     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1301     crit_enter();
1302     if (td->td_flags & TDF_RUNQ) {
1303 	_lwkt_dequeue(td);
1304 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1305 	_lwkt_enqueue(td);
1306     } else {
1307 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1308     }
1309     crit_exit();
1310 }
1311 
1312 /*
1313  * Migrate the current thread to the specified cpu.
1314  *
1315  * This is accomplished by descheduling ourselves from the current cpu,
1316  * moving our thread to the tdallq of the target cpu, IPI messaging the
1317  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1318  * races while the thread is being migrated.
1319  *
1320  * We must be sure to remove ourselves from the current cpu's tsleepq
1321  * before potentially moving to another queue.  The thread can be on
1322  * a tsleepq due to a left-over tsleep_interlock().
1323  */
1324 #ifdef SMP
1325 static void lwkt_setcpu_remote(void *arg);
1326 #endif
1327 
1328 void
1329 lwkt_setcpu_self(globaldata_t rgd)
1330 {
1331 #ifdef SMP
1332     thread_t td = curthread;
1333 
1334     if (td->td_gd != rgd) {
1335 	crit_enter_quick(td);
1336 	if (td->td_flags & TDF_TSLEEPQ)
1337 	    tsleep_remove(td);
1338 	td->td_flags |= TDF_MIGRATING;
1339 	lwkt_deschedule_self(td);
1340 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1341 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1342 	lwkt_switch();
1343 	/* we are now on the target cpu */
1344 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1345 	crit_exit_quick(td);
1346     }
1347 #endif
1348 }
1349 
1350 void
1351 lwkt_migratecpu(int cpuid)
1352 {
1353 #ifdef SMP
1354 	globaldata_t rgd;
1355 
1356 	rgd = globaldata_find(cpuid);
1357 	lwkt_setcpu_self(rgd);
1358 #endif
1359 }
1360 
1361 /*
1362  * Remote IPI for cpu migration (called while in a critical section so we
1363  * do not have to enter another one).  The thread has already been moved to
1364  * our cpu's allq, but we must wait for the thread to be completely switched
1365  * out on the originating cpu before we schedule it on ours or the stack
1366  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1367  * change to main memory.
1368  *
1369  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1370  * against wakeups.  It is best if this interface is used only when there
1371  * are no pending events that might try to schedule the thread.
1372  */
1373 #ifdef SMP
1374 static void
1375 lwkt_setcpu_remote(void *arg)
1376 {
1377     thread_t td = arg;
1378     globaldata_t gd = mycpu;
1379 
1380     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1381 #ifdef SMP
1382 	lwkt_process_ipiq();
1383 #endif
1384 	cpu_lfence();
1385     }
1386     td->td_gd = gd;
1387     cpu_sfence();
1388     td->td_flags &= ~TDF_MIGRATING;
1389     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1390     _lwkt_enqueue(td);
1391 }
1392 #endif
1393 
1394 struct lwp *
1395 lwkt_preempted_proc(void)
1396 {
1397     thread_t td = curthread;
1398     while (td->td_preempted)
1399 	td = td->td_preempted;
1400     return(td->td_lwp);
1401 }
1402 
1403 /*
1404  * Create a kernel process/thread/whatever.  It shares it's address space
1405  * with proc0 - ie: kernel only.
1406  *
1407  * NOTE!  By default new threads are created with the MP lock held.  A
1408  * thread which does not require the MP lock should release it by calling
1409  * rel_mplock() at the start of the new thread.
1410  */
1411 int
1412 lwkt_create(void (*func)(void *), void *arg,
1413     struct thread **tdp, thread_t template, int tdflags, int cpu,
1414     const char *fmt, ...)
1415 {
1416     thread_t td;
1417     __va_list ap;
1418 
1419     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1420 			   tdflags);
1421     if (tdp)
1422 	*tdp = td;
1423     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1424 
1425     /*
1426      * Set up arg0 for 'ps' etc
1427      */
1428     __va_start(ap, fmt);
1429     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1430     __va_end(ap);
1431 
1432     /*
1433      * Schedule the thread to run
1434      */
1435     if ((td->td_flags & TDF_STOPREQ) == 0)
1436 	lwkt_schedule(td);
1437     else
1438 	td->td_flags &= ~TDF_STOPREQ;
1439     return 0;
1440 }
1441 
1442 /*
1443  * Destroy an LWKT thread.   Warning!  This function is not called when
1444  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1445  * uses a different reaping mechanism.
1446  */
1447 void
1448 lwkt_exit(void)
1449 {
1450     thread_t td = curthread;
1451     thread_t std;
1452     globaldata_t gd;
1453 
1454     if (td->td_flags & TDF_VERBOSE)
1455 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1456     caps_exit(td);
1457 
1458     /*
1459      * Get us into a critical section to interlock gd_freetd and loop
1460      * until we can get it freed.
1461      *
1462      * We have to cache the current td in gd_freetd because objcache_put()ing
1463      * it would rip it out from under us while our thread is still active.
1464      */
1465     gd = mycpu;
1466     crit_enter_quick(td);
1467     while ((std = gd->gd_freetd) != NULL) {
1468 	gd->gd_freetd = NULL;
1469 	objcache_put(thread_cache, std);
1470     }
1471 
1472     /*
1473      * Remove thread resources from kernel lists and deschedule us for
1474      * the last time.
1475      */
1476     if (td->td_flags & TDF_TSLEEPQ)
1477 	tsleep_remove(td);
1478     biosched_done(td);
1479     dsched_exit_thread(td);
1480     lwkt_deschedule_self(td);
1481     lwkt_remove_tdallq(td);
1482     if (td->td_flags & TDF_ALLOCATED_THREAD)
1483 	gd->gd_freetd = td;
1484     cpu_thread_exit();
1485 }
1486 
1487 void
1488 lwkt_remove_tdallq(thread_t td)
1489 {
1490     KKASSERT(td->td_gd == mycpu);
1491     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1492 }
1493 
1494 void
1495 crit_panic(void)
1496 {
1497     thread_t td = curthread;
1498     int lpri = td->td_pri;
1499 
1500     td->td_pri = 0;
1501     panic("td_pri is/would-go negative! %p %d", td, lpri);
1502 }
1503 
1504 #ifdef SMP
1505 
1506 /*
1507  * Called from debugger/panic on cpus which have been stopped.  We must still
1508  * process the IPIQ while stopped, even if we were stopped while in a critical
1509  * section (XXX).
1510  *
1511  * If we are dumping also try to process any pending interrupts.  This may
1512  * or may not work depending on the state of the cpu at the point it was
1513  * stopped.
1514  */
1515 void
1516 lwkt_smp_stopped(void)
1517 {
1518     globaldata_t gd = mycpu;
1519 
1520     crit_enter_gd(gd);
1521     if (dumping) {
1522 	lwkt_process_ipiq();
1523 	splz();
1524     } else {
1525 	lwkt_process_ipiq();
1526     }
1527     crit_exit_gd(gd);
1528 }
1529 
1530 #endif
1531