xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision c5541aee854b0d32586182b733a9ea4d4c92168b)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.58 2004/03/30 19:14:11 dillon Exp $
27  */
28 
29 /*
30  * Each cpu in a system has its own self-contained light weight kernel
31  * thread scheduler, which means that generally speaking we only need
32  * to use a critical section to avoid problems.  Foreign thread
33  * scheduling is queued via (async) IPIs.
34  */
35 
36 #ifdef _KERNEL
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/rtprio.h>
43 #include <sys/queue.h>
44 #include <sys/thread2.h>
45 #include <sys/sysctl.h>
46 #include <sys/kthread.h>
47 #include <machine/cpu.h>
48 #include <sys/lock.h>
49 #include <sys/caps.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_zone.h>
60 
61 #include <machine/stdarg.h>
62 #include <machine/ipl.h>
63 #include <machine/smp.h>
64 
65 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
66 
67 #else
68 
69 #include <sys/stdint.h>
70 #include <libcaps/thread.h>
71 #include <sys/thread.h>
72 #include <sys/msgport.h>
73 #include <sys/errno.h>
74 #include <libcaps/globaldata.h>
75 #include <sys/thread2.h>
76 #include <sys/msgport2.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
80 #include <machine/cpufunc.h>
81 #include <machine/lock.h>
82 
83 #endif
84 
85 static int untimely_switch = 0;
86 #ifdef	INVARIANTS
87 static int panic_on_cscount = 0;
88 #endif
89 static __int64_t switch_count = 0;
90 static __int64_t preempt_hit = 0;
91 static __int64_t preempt_miss = 0;
92 static __int64_t preempt_weird = 0;
93 
94 #ifdef _KERNEL
95 
96 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
97 #ifdef	INVARIANTS
98 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
99 #endif
100 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
102 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
103 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
104 
105 #endif
106 
107 /*
108  * These helper procedures handle the runq, they can only be called from
109  * within a critical section.
110  *
111  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
112  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
113  * instead of 'mycpu' when referencing the globaldata structure.   Once
114  * SMP live enqueuing and dequeueing only occurs on the current cpu.
115  */
116 static __inline
117 void
118 _lwkt_dequeue(thread_t td)
119 {
120     if (td->td_flags & TDF_RUNQ) {
121 	int nq = td->td_pri & TDPRI_MASK;
122 	struct globaldata *gd = td->td_gd;
123 
124 	td->td_flags &= ~TDF_RUNQ;
125 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
126 	/* runqmask is passively cleaned up by the switcher */
127     }
128 }
129 
130 static __inline
131 void
132 _lwkt_enqueue(thread_t td)
133 {
134     if ((td->td_flags & TDF_RUNQ) == 0) {
135 	int nq = td->td_pri & TDPRI_MASK;
136 	struct globaldata *gd = td->td_gd;
137 
138 	td->td_flags |= TDF_RUNQ;
139 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
140 	gd->gd_runqmask |= 1 << nq;
141     }
142 }
143 
144 #ifdef _KERNEL
145 
146 /*
147  * LWKTs operate on a per-cpu basis
148  *
149  * WARNING!  Called from early boot, 'mycpu' may not work yet.
150  */
151 void
152 lwkt_gdinit(struct globaldata *gd)
153 {
154     int i;
155 
156     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
157 	TAILQ_INIT(&gd->gd_tdrunq[i]);
158     gd->gd_runqmask = 0;
159     TAILQ_INIT(&gd->gd_tdallq);
160 }
161 
162 #endif /* _KERNEL */
163 
164 /*
165  * Initialize a thread wait structure prior to first use.
166  *
167  * NOTE!  called from low level boot code, we cannot do anything fancy!
168  */
169 void
170 lwkt_wait_init(lwkt_wait_t w)
171 {
172     lwkt_token_init(&w->wa_token);
173     TAILQ_INIT(&w->wa_waitq);
174     w->wa_gen = 0;
175     w->wa_count = 0;
176 }
177 
178 /*
179  * Create a new thread.  The thread must be associated with a process context
180  * or LWKT start address before it can be scheduled.  If the target cpu is
181  * -1 the thread will be created on the current cpu.
182  *
183  * If you intend to create a thread without a process context this function
184  * does everything except load the startup and switcher function.
185  */
186 thread_t
187 lwkt_alloc_thread(struct thread *td, int cpu)
188 {
189     void *stack;
190     int flags = 0;
191 
192     if (td == NULL) {
193 	crit_enter();
194 	if (mycpu->gd_tdfreecount > 0) {
195 	    --mycpu->gd_tdfreecount;
196 	    td = TAILQ_FIRST(&mycpu->gd_tdfreeq);
197 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
198 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
199 	    TAILQ_REMOVE(&mycpu->gd_tdfreeq, td, td_threadq);
200 	    crit_exit();
201 	    stack = td->td_kstack;
202 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
203 	} else {
204 	    crit_exit();
205 #ifdef _KERNEL
206 	    td = zalloc(thread_zone);
207 #else
208 	    td = malloc(sizeof(struct thread));
209 #endif
210 	    td->td_kstack = NULL;
211 	    flags |= TDF_ALLOCATED_THREAD;
212 	}
213     }
214     if ((stack = td->td_kstack) == NULL) {
215 #ifdef _KERNEL
216 	stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
217 #else
218 	stack = libcaps_alloc_stack(THREAD_STACK);
219 #endif
220 	flags |= TDF_ALLOCATED_STACK;
221     }
222     if (cpu < 0)
223 	lwkt_init_thread(td, stack, flags, mycpu);
224     else
225 	lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
226     return(td);
227 }
228 
229 #ifdef _KERNEL
230 
231 /*
232  * Initialize a preexisting thread structure.  This function is used by
233  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
234  *
235  * All threads start out in a critical section at a priority of
236  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
237  * appropriate.  This function may send an IPI message when the
238  * requested cpu is not the current cpu and consequently gd_tdallq may
239  * not be initialized synchronously from the point of view of the originating
240  * cpu.
241  *
242  * NOTE! we have to be careful in regards to creating threads for other cpus
243  * if SMP has not yet been activated.
244  */
245 #ifdef SMP
246 
247 static void
248 lwkt_init_thread_remote(void *arg)
249 {
250     thread_t td = arg;
251 
252     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
253 }
254 
255 #endif
256 
257 void
258 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
259 {
260     bzero(td, sizeof(struct thread));
261     td->td_kstack = stack;
262     td->td_flags |= flags;
263     td->td_gd = gd;
264     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
265     lwkt_initport(&td->td_msgport, td);
266     pmap_init_thread(td);
267 #ifdef SMP
268     if (gd == mycpu) {
269 	crit_enter();
270 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
271 	crit_exit();
272     } else {
273 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
274     }
275 #else
276     crit_enter();
277     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
278     crit_exit();
279 #endif
280 }
281 
282 #endif /* _KERNEL */
283 
284 void
285 lwkt_set_comm(thread_t td, const char *ctl, ...)
286 {
287     __va_list va;
288 
289     __va_start(va, ctl);
290     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
291     __va_end(va);
292 }
293 
294 void
295 lwkt_hold(thread_t td)
296 {
297     ++td->td_refs;
298 }
299 
300 void
301 lwkt_rele(thread_t td)
302 {
303     KKASSERT(td->td_refs > 0);
304     --td->td_refs;
305 }
306 
307 #ifdef _KERNEL
308 
309 void
310 lwkt_wait_free(thread_t td)
311 {
312     while (td->td_refs)
313 	tsleep(td, 0, "tdreap", hz);
314 }
315 
316 #endif
317 
318 void
319 lwkt_free_thread(thread_t td)
320 {
321     struct globaldata *gd = mycpu;
322 
323     KASSERT((td->td_flags & TDF_RUNNING) == 0,
324 	("lwkt_free_thread: did not exit! %p", td));
325 
326     crit_enter();
327     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
328     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
329 	(td->td_flags & TDF_ALLOCATED_THREAD)
330     ) {
331 	++gd->gd_tdfreecount;
332 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
333 	crit_exit();
334     } else {
335 	crit_exit();
336 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
337 #ifdef _KERNEL
338 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
339 #else
340 	    libcaps_free_stack(td->td_kstack, THREAD_STACK);
341 #endif
342 	    /* gd invalid */
343 	    td->td_kstack = NULL;
344 	}
345 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
346 #ifdef _KERNEL
347 	    zfree(thread_zone, td);
348 #else
349 	    free(td);
350 #endif
351 	}
352     }
353 }
354 
355 
356 /*
357  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
358  * switch to the idlethread.  Switching must occur within a critical
359  * section to avoid races with the scheduling queue.
360  *
361  * We always have full control over our cpu's run queue.  Other cpus
362  * that wish to manipulate our queue must use the cpu_*msg() calls to
363  * talk to our cpu, so a critical section is all that is needed and
364  * the result is very, very fast thread switching.
365  *
366  * The LWKT scheduler uses a fixed priority model and round-robins at
367  * each priority level.  User process scheduling is a totally
368  * different beast and LWKT priorities should not be confused with
369  * user process priorities.
370  *
371  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
372  * cleans it up.  Note that the td_switch() function cannot do anything that
373  * requires the MP lock since the MP lock will have already been setup for
374  * the target thread (not the current thread).  It's nice to have a scheduler
375  * that does not need the MP lock to work because it allows us to do some
376  * really cool high-performance MP lock optimizations.
377  */
378 
379 void
380 lwkt_switch(void)
381 {
382     globaldata_t gd;
383     thread_t td = curthread;
384     thread_t ntd;
385 #ifdef SMP
386     int mpheld;
387 #endif
388 
389     /*
390      * Switching from within a 'fast' (non thread switched) interrupt is
391      * illegal.
392      */
393     if (mycpu->gd_intr_nesting_level && panicstr == NULL) {
394 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet\n");
395     }
396 
397     /*
398      * Passive release (used to transition from user to kernel mode
399      * when we block or switch rather then when we enter the kernel).
400      * This function is NOT called if we are switching into a preemption
401      * or returning from a preemption.  Typically this causes us to lose
402      * our current process designation (if we have one) and become a true
403      * LWKT thread, and may also hand the current process designation to
404      * another process and schedule thread.
405      */
406     if (td->td_release)
407 	    td->td_release(td);
408 
409     crit_enter();
410     ++switch_count;
411 
412 #ifdef SMP
413     /*
414      * td_mpcount cannot be used to determine if we currently hold the
415      * MP lock because get_mplock() will increment it prior to attempting
416      * to get the lock, and switch out if it can't.  Our ownership of
417      * the actual lock will remain stable while we are in a critical section
418      * (but, of course, another cpu may own or release the lock so the
419      * actual value of mp_lock is not stable).
420      */
421     mpheld = MP_LOCK_HELD();
422 #ifdef	INVARIANTS
423     if (td->td_cscount) {
424 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
425 		td);
426 	if (panic_on_cscount)
427 	    panic("switching while mastering cpusync");
428     }
429 #endif
430 #endif
431     if ((ntd = td->td_preempted) != NULL) {
432 	/*
433 	 * We had preempted another thread on this cpu, resume the preempted
434 	 * thread.  This occurs transparently, whether the preempted thread
435 	 * was scheduled or not (it may have been preempted after descheduling
436 	 * itself).
437 	 *
438 	 * We have to setup the MP lock for the original thread after backing
439 	 * out the adjustment that was made to curthread when the original
440 	 * was preempted.
441 	 */
442 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
443 #ifdef SMP
444 	if (ntd->td_mpcount && mpheld == 0) {
445 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d\n",
446 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
447 	}
448 	if (ntd->td_mpcount) {
449 	    td->td_mpcount -= ntd->td_mpcount;
450 	    KKASSERT(td->td_mpcount >= 0);
451 	}
452 #endif
453 	ntd->td_flags |= TDF_PREEMPT_DONE;
454 	/* YYY release mp lock on switchback if original doesn't need it */
455     } else {
456 	/*
457 	 * Priority queue / round-robin at each priority.  Note that user
458 	 * processes run at a fixed, low priority and the user process
459 	 * scheduler deals with interactions between user processes
460 	 * by scheduling and descheduling them from the LWKT queue as
461 	 * necessary.
462 	 *
463 	 * We have to adjust the MP lock for the target thread.  If we
464 	 * need the MP lock and cannot obtain it we try to locate a
465 	 * thread that does not need the MP lock.  If we cannot, we spin
466 	 * instead of HLT.
467 	 *
468 	 * A similar issue exists for the tokens held by the target thread.
469 	 * If we cannot obtain ownership of the tokens we cannot immediately
470 	 * schedule the thread.
471 	 */
472 
473 	/*
474 	 * We are switching threads.  If there are any pending requests for
475 	 * tokens we can satisfy all of them here.
476 	 */
477 	gd = mycpu;
478 #ifdef SMP
479 	if (gd->gd_tokreqbase)
480 		lwkt_drain_token_requests();
481 #endif
482 
483 again:
484 	if (gd->gd_runqmask) {
485 	    int nq = bsrl(gd->gd_runqmask);
486 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
487 		gd->gd_runqmask &= ~(1 << nq);
488 		goto again;
489 	    }
490 #ifdef SMP
491 	    /*
492 	     * If the target needs the MP lock and we couldn't get it,
493 	     * or if the target is holding tokens and we could not
494 	     * gain ownership of the tokens, continue looking for a
495 	     * thread to schedule and spin instead of HLT if we can't.
496 	     */
497 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
498 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
499 	    ) {
500 		u_int32_t rqmask = gd->gd_runqmask;
501 		while (rqmask) {
502 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
503 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
504 			    continue;
505 			mpheld = MP_LOCK_HELD();
506 			if (ntd->td_toks && !lwkt_chktokens(ntd))
507 			    continue;
508 			break;
509 		    }
510 		    if (ntd)
511 			break;
512 		    rqmask &= ~(1 << nq);
513 		    nq = bsrl(rqmask);
514 		}
515 		if (ntd == NULL) {
516 		    ntd = &gd->gd_idlethread;
517 		    ntd->td_flags |= TDF_IDLE_NOHLT;
518 		} else {
519 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
520 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
521 		}
522 	    } else {
523 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
524 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
525 	    }
526 #else
527 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
528 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
529 #endif
530 	} else {
531 	    /*
532 	     * We have nothing to run but only let the idle loop halt
533 	     * the cpu if there are no pending interrupts.
534 	     */
535 	    ntd = &gd->gd_idlethread;
536 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
537 		ntd->td_flags |= TDF_IDLE_NOHLT;
538 	}
539     }
540     KASSERT(ntd->td_pri >= TDPRI_CRIT,
541 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
542 
543     /*
544      * Do the actual switch.  If the new target does not need the MP lock
545      * and we are holding it, release the MP lock.  If the new target requires
546      * the MP lock we have already acquired it for the target.
547      */
548 #ifdef SMP
549     if (ntd->td_mpcount == 0 ) {
550 	if (MP_LOCK_HELD())
551 	    cpu_rel_mplock();
552     } else {
553 	ASSERT_MP_LOCK_HELD();
554     }
555 #endif
556     if (td != ntd) {
557 	td->td_switch(ntd);
558     }
559 
560     crit_exit();
561 }
562 
563 /*
564  * Request that the target thread preempt the current thread.  Preemption
565  * only works under a specific set of conditions:
566  *
567  *	- We are not preempting ourselves
568  *	- The target thread is owned by the current cpu
569  *	- We are not currently being preempted
570  *	- The target is not currently being preempted
571  *	- We are able to satisfy the target's MP lock requirements (if any).
572  *
573  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
574  * this is called via lwkt_schedule() through the td_preemptable callback.
575  * critpri is the managed critical priority that we should ignore in order
576  * to determine whether preemption is possible (aka usually just the crit
577  * priority of lwkt_schedule() itself).
578  *
579  * XXX at the moment we run the target thread in a critical section during
580  * the preemption in order to prevent the target from taking interrupts
581  * that *WE* can't.  Preemption is strictly limited to interrupt threads
582  * and interrupt-like threads, outside of a critical section, and the
583  * preempted source thread will be resumed the instant the target blocks
584  * whether or not the source is scheduled (i.e. preemption is supposed to
585  * be as transparent as possible).
586  *
587  * The target thread inherits our MP count (added to its own) for the
588  * duration of the preemption in order to preserve the atomicy of the
589  * MP lock during the preemption.  Therefore, any preempting targets must be
590  * careful in regards to MP assertions.  Note that the MP count may be
591  * out of sync with the physical mp_lock, but we do not have to preserve
592  * the original ownership of the lock if it was out of synch (that is, we
593  * can leave it synchronized on return).
594  */
595 void
596 lwkt_preempt(thread_t ntd, int critpri)
597 {
598     struct globaldata *gd = mycpu;
599     thread_t td;
600 #ifdef SMP
601     int mpheld;
602     int savecnt;
603 #endif
604 
605     /*
606      * The caller has put us in a critical section.  We can only preempt
607      * if the caller of the caller was not in a critical section (basically
608      * a local interrupt), as determined by the 'critpri' parameter.
609      *
610      * YYY The target thread must be in a critical section (else it must
611      * inherit our critical section?  I dunno yet).
612      *
613      * Any tokens held by the target may not be held by thread(s) being
614      * preempted.  We take the easy way out and do not preempt if
615      * the target is holding tokens.
616      *
617      * Set need_lwkt_resched() unconditionally for now YYY.
618      */
619     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
620 
621     td = gd->gd_curthread;
622     need_lwkt_resched();
623     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
624 	++preempt_miss;
625 	return;
626     }
627     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
628 	++preempt_miss;
629 	return;
630     }
631 #ifdef SMP
632     if (ntd->td_gd != gd) {
633 	++preempt_miss;
634 	return;
635     }
636 #endif
637     /*
638      * Take the easy way out and do not preempt if the target is holding
639      * one or more tokens.  We could test whether the thread(s) being
640      * preempted interlock against the target thread's tokens and whether
641      * we can get all the target thread's tokens, but this situation
642      * should not occur very often so its easier to simply not preempt.
643      */
644     if (ntd->td_toks != NULL) {
645 	++preempt_miss;
646 	return;
647     }
648     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
649 	++preempt_weird;
650 	return;
651     }
652     if (ntd->td_preempted) {
653 	++preempt_hit;
654 	return;
655     }
656 #ifdef SMP
657     /*
658      * note: an interrupt might have occured just as we were transitioning
659      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
660      * (non-zero) but not actually synchronized with the actual state of the
661      * lock.  We can use it to imply an MP lock requirement for the
662      * preemption but we cannot use it to test whether we hold the MP lock
663      * or not.
664      */
665     savecnt = td->td_mpcount;
666     mpheld = MP_LOCK_HELD();
667     ntd->td_mpcount += td->td_mpcount;
668     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
669 	ntd->td_mpcount -= td->td_mpcount;
670 	++preempt_miss;
671 	return;
672     }
673 #endif
674 
675     ++preempt_hit;
676     ntd->td_preempted = td;
677     td->td_flags |= TDF_PREEMPT_LOCK;
678     td->td_switch(ntd);
679     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
680 #ifdef SMP
681     KKASSERT(savecnt == td->td_mpcount);
682     mpheld = MP_LOCK_HELD();
683     if (mpheld && td->td_mpcount == 0)
684 	cpu_rel_mplock();
685     else if (mpheld == 0 && td->td_mpcount)
686 	panic("lwkt_preempt(): MP lock was not held through");
687 #endif
688     ntd->td_preempted = NULL;
689     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
690 }
691 
692 /*
693  * Yield our thread while higher priority threads are pending.  This is
694  * typically called when we leave a critical section but it can be safely
695  * called while we are in a critical section.
696  *
697  * This function will not generally yield to equal priority threads but it
698  * can occur as a side effect.  Note that lwkt_switch() is called from
699  * inside the critical section to prevent its own crit_exit() from reentering
700  * lwkt_yield_quick().
701  *
702  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
703  * came along but was blocked and made pending.
704  *
705  * (self contained on a per cpu basis)
706  */
707 void
708 lwkt_yield_quick(void)
709 {
710     globaldata_t gd = mycpu;
711     thread_t td = gd->gd_curthread;
712 
713     /*
714      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
715      * it with a non-zero cpl then we might not wind up calling splz after
716      * a task switch when the critical section is exited even though the
717      * new task could accept the interrupt.
718      *
719      * XXX from crit_exit() only called after last crit section is released.
720      * If called directly will run splz() even if in a critical section.
721      *
722      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
723      * except for this special case, we MUST call splz() here to handle any
724      * pending ints, particularly after we switch, or we might accidently
725      * halt the cpu with interrupts pending.
726      */
727     if (gd->gd_reqflags && td->td_nest_count < 2)
728 	splz();
729 
730     /*
731      * YYY enabling will cause wakeup() to task-switch, which really
732      * confused the old 4.x code.  This is a good way to simulate
733      * preemption and MP without actually doing preemption or MP, because a
734      * lot of code assumes that wakeup() does not block.
735      */
736     if (untimely_switch && td->td_nest_count == 0 &&
737 	gd->gd_intr_nesting_level == 0
738     ) {
739 	crit_enter();
740 	/*
741 	 * YYY temporary hacks until we disassociate the userland scheduler
742 	 * from the LWKT scheduler.
743 	 */
744 	if (td->td_flags & TDF_RUNQ) {
745 	    lwkt_switch();		/* will not reenter yield function */
746 	} else {
747 	    lwkt_schedule_self();	/* make sure we are scheduled */
748 	    lwkt_switch();		/* will not reenter yield function */
749 	    lwkt_deschedule_self();	/* make sure we are descheduled */
750 	}
751 	crit_exit_noyield(td);
752     }
753 }
754 
755 /*
756  * This implements a normal yield which, unlike _quick, will yield to equal
757  * priority threads as well.  Note that gd_reqflags tests will be handled by
758  * the crit_exit() call in lwkt_switch().
759  *
760  * (self contained on a per cpu basis)
761  */
762 void
763 lwkt_yield(void)
764 {
765     lwkt_schedule_self();
766     lwkt_switch();
767 }
768 
769 /*
770  * Schedule a thread to run.  As the current thread we can always safely
771  * schedule ourselves, and a shortcut procedure is provided for that
772  * function.
773  *
774  * (non-blocking, self contained on a per cpu basis)
775  */
776 void
777 lwkt_schedule_self(void)
778 {
779     thread_t td = curthread;
780 
781     crit_enter_quick(td);
782     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
783     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
784     _lwkt_enqueue(td);
785 #ifdef _KERNEL
786     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
787 	panic("SCHED SELF PANIC");
788 #endif
789     crit_exit_quick(td);
790 }
791 
792 /*
793  * Generic schedule.  Possibly schedule threads belonging to other cpus and
794  * deal with threads that might be blocked on a wait queue.
795  *
796  * We have a little helper inline function which does additional work after
797  * the thread has been enqueued, including dealing with preemption and
798  * setting need_lwkt_resched() (which prevents the kernel from returning
799  * to userland until it has processed higher priority threads).
800  */
801 static __inline
802 void
803 _lwkt_schedule_post(thread_t ntd, int cpri)
804 {
805     if (ntd->td_preemptable) {
806 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
807     } else {
808 	if ((ntd->td_flags & TDF_NORESCHED) == 0) {
809 	    if ((ntd->td_pri & TDPRI_MASK) >= TDPRI_KERN_USER)
810 		need_lwkt_resched();
811 	}
812     }
813 }
814 
815 void
816 lwkt_schedule(thread_t td)
817 {
818 #ifdef	INVARIANTS
819     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
820     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
821 	&& td->td_proc->p_stat == SSLEEP
822     ) {
823 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
824 	    curthread,
825 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
826 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
827 	    td,
828 	    td->td_proc ? curthread->td_proc->p_pid : -1,
829 	    td->td_proc ? curthread->td_proc->p_stat : -1
830 	);
831 	panic("SCHED PANIC");
832     }
833 #endif
834     crit_enter();
835     if (td == curthread) {
836 	_lwkt_enqueue(td);
837     } else {
838 	lwkt_wait_t w;
839 
840 	/*
841 	 * If the thread is on a wait list we have to send our scheduling
842 	 * request to the owner of the wait structure.  Otherwise we send
843 	 * the scheduling request to the cpu owning the thread.  Races
844 	 * are ok, the target will forward the message as necessary (the
845 	 * message may chase the thread around before it finally gets
846 	 * acted upon).
847 	 *
848 	 * (remember, wait structures use stable storage)
849 	 *
850 	 * NOTE: tokens no longer enter a critical section, so we only need
851 	 * to account for the crit_enter() above when calling
852 	 * _lwkt_schedule_post().
853 	 */
854 	if ((w = td->td_wait) != NULL) {
855 	    lwkt_tokref wref;
856 
857 	    if (lwkt_trytoken(&wref, &w->wa_token)) {
858 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
859 		--w->wa_count;
860 		td->td_wait = NULL;
861 #ifdef SMP
862 		if (td->td_gd == mycpu) {
863 		    _lwkt_enqueue(td);
864 		    _lwkt_schedule_post(td, TDPRI_CRIT);
865 		} else {
866 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
867 		}
868 #else
869 		_lwkt_enqueue(td);
870 		_lwkt_schedule_post(td, TDPRI_CRIT);
871 #endif
872 		lwkt_reltoken(&wref);
873 	    } else {
874 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
875 	    }
876 	} else {
877 	    /*
878 	     * If the wait structure is NULL and we own the thread, there
879 	     * is no race (since we are in a critical section).  If we
880 	     * do not own the thread there might be a race but the
881 	     * target cpu will deal with it.
882 	     */
883 #ifdef SMP
884 	    if (td->td_gd == mycpu) {
885 		_lwkt_enqueue(td);
886 		_lwkt_schedule_post(td, TDPRI_CRIT);
887 	    } else {
888 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
889 	    }
890 #else
891 	    _lwkt_enqueue(td);
892 	    _lwkt_schedule_post(td, TDPRI_CRIT);
893 #endif
894 	}
895     }
896     crit_exit();
897 }
898 
899 /*
900  * Managed acquisition.  This code assumes that the MP lock is held for
901  * the tdallq operation and that the thread has been descheduled from its
902  * original cpu.  We also have to wait for the thread to be entirely switched
903  * out on its original cpu (this is usually fast enough that we never loop)
904  * since the LWKT system does not have to hold the MP lock while switching
905  * and the target may have released it before switching.
906  */
907 void
908 lwkt_acquire(thread_t td)
909 {
910     struct globaldata *gd;
911 
912     gd = td->td_gd;
913     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
914     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
915 	;
916     if (gd != mycpu) {
917 	crit_enter();
918 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
919 	gd = mycpu;
920 	td->td_gd = gd;
921 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); /* protected by BGL */
922 	crit_exit();
923     }
924 }
925 
926 /*
927  * Deschedule a thread.
928  *
929  * (non-blocking, self contained on a per cpu basis)
930  */
931 void
932 lwkt_deschedule_self(void)
933 {
934     thread_t td = curthread;
935 
936     crit_enter();
937     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
938     _lwkt_dequeue(td);
939     crit_exit();
940 }
941 
942 /*
943  * Generic deschedule.  Descheduling threads other then your own should be
944  * done only in carefully controlled circumstances.  Descheduling is
945  * asynchronous.
946  *
947  * This function may block if the cpu has run out of messages.
948  */
949 void
950 lwkt_deschedule(thread_t td)
951 {
952     crit_enter();
953     if (td == curthread) {
954 	_lwkt_dequeue(td);
955     } else {
956 	if (td->td_gd == mycpu) {
957 	    _lwkt_dequeue(td);
958 	} else {
959 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
960 	}
961     }
962     crit_exit();
963 }
964 
965 /*
966  * Set the target thread's priority.  This routine does not automatically
967  * switch to a higher priority thread, LWKT threads are not designed for
968  * continuous priority changes.  Yield if you want to switch.
969  *
970  * We have to retain the critical section count which uses the high bits
971  * of the td_pri field.  The specified priority may also indicate zero or
972  * more critical sections by adding TDPRI_CRIT*N.
973  *
974  * Note that we requeue the thread whether it winds up on a different runq
975  * or not.  uio_yield() depends on this and the routine is not normally
976  * called with the same priority otherwise.
977  */
978 void
979 lwkt_setpri(thread_t td, int pri)
980 {
981     KKASSERT(pri >= 0);
982     KKASSERT(td->td_gd == mycpu);
983     crit_enter();
984     if (td->td_flags & TDF_RUNQ) {
985 	_lwkt_dequeue(td);
986 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
987 	_lwkt_enqueue(td);
988     } else {
989 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
990     }
991     crit_exit();
992 }
993 
994 void
995 lwkt_setpri_self(int pri)
996 {
997     thread_t td = curthread;
998 
999     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1000     crit_enter();
1001     if (td->td_flags & TDF_RUNQ) {
1002 	_lwkt_dequeue(td);
1003 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1004 	_lwkt_enqueue(td);
1005     } else {
1006 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1007     }
1008     crit_exit();
1009 }
1010 
1011 struct proc *
1012 lwkt_preempted_proc(void)
1013 {
1014     thread_t td = curthread;
1015     while (td->td_preempted)
1016 	td = td->td_preempted;
1017     return(td->td_proc);
1018 }
1019 
1020 /*
1021  * Block on the specified wait queue until signaled.  A generation number
1022  * must be supplied to interlock the wait queue.  The function will
1023  * return immediately if the generation number does not match the wait
1024  * structure's generation number.
1025  */
1026 void
1027 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1028 {
1029     thread_t td = curthread;
1030     lwkt_tokref ilock;
1031 
1032     lwkt_gettoken(&ilock, &w->wa_token);
1033     crit_enter();
1034     if (w->wa_gen == *gen) {
1035 	_lwkt_dequeue(td);
1036 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1037 	++w->wa_count;
1038 	td->td_wait = w;
1039 	td->td_wmesg = wmesg;
1040     again:
1041 	lwkt_switch();
1042 	if (td->td_wmesg != NULL) {
1043 	    _lwkt_dequeue(td);
1044 	    goto again;
1045 	}
1046     }
1047     crit_exit();
1048     *gen = w->wa_gen;
1049     lwkt_reltoken(&ilock);
1050 }
1051 
1052 /*
1053  * Signal a wait queue.  We gain ownership of the wait queue in order to
1054  * signal it.  Once a thread is removed from the wait queue we have to
1055  * deal with the cpu owning the thread.
1056  *
1057  * Note: alternatively we could message the target cpu owning the wait
1058  * queue.  YYY implement as sysctl.
1059  */
1060 void
1061 lwkt_signal(lwkt_wait_t w, int count)
1062 {
1063     thread_t td;
1064     lwkt_tokref ilock;
1065 
1066     lwkt_gettoken(&ilock, &w->wa_token);
1067     ++w->wa_gen;
1068     crit_enter();
1069     if (count < 0)
1070 	count = w->wa_count;
1071     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1072 	--count;
1073 	--w->wa_count;
1074 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1075 	td->td_wait = NULL;
1076 	td->td_wmesg = NULL;
1077 	if (td->td_gd == mycpu) {
1078 	    _lwkt_enqueue(td);
1079 	} else {
1080 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1081 	}
1082     }
1083     crit_exit();
1084     lwkt_reltoken(&ilock);
1085 }
1086 
1087 /*
1088  * Create a kernel process/thread/whatever.  It shares it's address space
1089  * with proc0 - ie: kernel only.
1090  *
1091  * NOTE!  By default new threads are created with the MP lock held.  A
1092  * thread which does not require the MP lock should release it by calling
1093  * rel_mplock() at the start of the new thread.
1094  */
1095 int
1096 lwkt_create(void (*func)(void *), void *arg,
1097     struct thread **tdp, thread_t template, int tdflags, int cpu,
1098     const char *fmt, ...)
1099 {
1100     thread_t td;
1101     __va_list ap;
1102 
1103     td = lwkt_alloc_thread(template, cpu);
1104     if (tdp)
1105 	*tdp = td;
1106     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1107     td->td_flags |= TDF_VERBOSE | tdflags;
1108 #ifdef SMP
1109     td->td_mpcount = 1;
1110 #endif
1111 
1112     /*
1113      * Set up arg0 for 'ps' etc
1114      */
1115     __va_start(ap, fmt);
1116     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1117     __va_end(ap);
1118 
1119     /*
1120      * Schedule the thread to run
1121      */
1122     if ((td->td_flags & TDF_STOPREQ) == 0)
1123 	lwkt_schedule(td);
1124     else
1125 	td->td_flags &= ~TDF_STOPREQ;
1126     return 0;
1127 }
1128 
1129 /*
1130  * kthread_* is specific to the kernel and is not needed by userland.
1131  */
1132 #ifdef _KERNEL
1133 
1134 /*
1135  * Destroy an LWKT thread.   Warning!  This function is not called when
1136  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1137  * uses a different reaping mechanism.
1138  */
1139 void
1140 lwkt_exit(void)
1141 {
1142     thread_t td = curthread;
1143 
1144     if (td->td_flags & TDF_VERBOSE)
1145 	printf("kthread %p %s has exited\n", td, td->td_comm);
1146     caps_exit(td);
1147     crit_enter();
1148     lwkt_deschedule_self();
1149     ++mycpu->gd_tdfreecount;
1150     TAILQ_INSERT_TAIL(&mycpu->gd_tdfreeq, td, td_threadq);
1151     cpu_thread_exit();
1152 }
1153 
1154 /*
1155  * Create a kernel process/thread/whatever.  It shares it's address space
1156  * with proc0 - ie: kernel only.  5.x compatible.
1157  *
1158  * NOTE!  By default kthreads are created with the MP lock held.  A
1159  * thread which does not require the MP lock should release it by calling
1160  * rel_mplock() at the start of the new thread.
1161  */
1162 int
1163 kthread_create(void (*func)(void *), void *arg,
1164     struct thread **tdp, const char *fmt, ...)
1165 {
1166     thread_t td;
1167     __va_list ap;
1168 
1169     td = lwkt_alloc_thread(NULL, -1);
1170     if (tdp)
1171 	*tdp = td;
1172     cpu_set_thread_handler(td, kthread_exit, func, arg);
1173     td->td_flags |= TDF_VERBOSE;
1174 #ifdef SMP
1175     td->td_mpcount = 1;
1176 #endif
1177 
1178     /*
1179      * Set up arg0 for 'ps' etc
1180      */
1181     __va_start(ap, fmt);
1182     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1183     __va_end(ap);
1184 
1185     /*
1186      * Schedule the thread to run
1187      */
1188     lwkt_schedule(td);
1189     return 0;
1190 }
1191 
1192 /*
1193  * Destroy an LWKT thread.   Warning!  This function is not called when
1194  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1195  * uses a different reaping mechanism.
1196  *
1197  * XXX duplicates lwkt_exit()
1198  */
1199 void
1200 kthread_exit(void)
1201 {
1202     lwkt_exit();
1203 }
1204 
1205 #endif /* _KERNEL */
1206 
1207 void
1208 crit_panic(void)
1209 {
1210     thread_t td = curthread;
1211     int lpri = td->td_pri;
1212 
1213     td->td_pri = 0;
1214     panic("td_pri is/would-go negative! %p %d", td, lpri);
1215 }
1216 
1217