1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.74 2005/06/03 23:57:32 dillon Exp $ 35 */ 36 37 /* 38 * Each cpu in a system has its own self-contained light weight kernel 39 * thread scheduler, which means that generally speaking we only need 40 * to use a critical section to avoid problems. Foreign thread 41 * scheduling is queued via (async) IPIs. 42 */ 43 44 #ifdef _KERNEL 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/rtprio.h> 51 #include <sys/queue.h> 52 #include <sys/thread2.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 #include <machine/cpu.h> 56 #include <sys/lock.h> 57 #include <sys/caps.h> 58 59 #include <vm/vm.h> 60 #include <vm/vm_param.h> 61 #include <vm/vm_kern.h> 62 #include <vm/vm_object.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_pager.h> 66 #include <vm/vm_extern.h> 67 #include <vm/vm_zone.h> 68 69 #include <machine/stdarg.h> 70 #include <machine/ipl.h> 71 #include <machine/smp.h> 72 73 #else 74 75 #include <sys/stdint.h> 76 #include <libcaps/thread.h> 77 #include <sys/thread.h> 78 #include <sys/msgport.h> 79 #include <sys/errno.h> 80 #include <libcaps/globaldata.h> 81 #include <machine/cpufunc.h> 82 #include <sys/thread2.h> 83 #include <sys/msgport2.h> 84 #include <stdio.h> 85 #include <stdlib.h> 86 #include <string.h> 87 #include <machine/lock.h> 88 #include <machine/atomic.h> 89 #include <machine/cpu.h> 90 91 #endif 92 93 static int untimely_switch = 0; 94 #ifdef INVARIANTS 95 static int panic_on_cscount = 0; 96 #endif 97 static __int64_t switch_count = 0; 98 static __int64_t preempt_hit = 0; 99 static __int64_t preempt_miss = 0; 100 static __int64_t preempt_weird = 0; 101 102 #ifdef _KERNEL 103 104 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, ""); 105 #ifdef INVARIANTS 106 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, ""); 107 #endif 108 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, ""); 109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, ""); 110 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, ""); 111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, ""); 112 113 #endif 114 115 /* 116 * These helper procedures handle the runq, they can only be called from 117 * within a critical section. 118 * 119 * WARNING! Prior to SMP being brought up it is possible to enqueue and 120 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 121 * instead of 'mycpu' when referencing the globaldata structure. Once 122 * SMP live enqueuing and dequeueing only occurs on the current cpu. 123 */ 124 static __inline 125 void 126 _lwkt_dequeue(thread_t td) 127 { 128 if (td->td_flags & TDF_RUNQ) { 129 int nq = td->td_pri & TDPRI_MASK; 130 struct globaldata *gd = td->td_gd; 131 132 td->td_flags &= ~TDF_RUNQ; 133 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq); 134 /* runqmask is passively cleaned up by the switcher */ 135 } 136 } 137 138 static __inline 139 void 140 _lwkt_enqueue(thread_t td) 141 { 142 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) { 143 int nq = td->td_pri & TDPRI_MASK; 144 struct globaldata *gd = td->td_gd; 145 146 td->td_flags |= TDF_RUNQ; 147 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq); 148 gd->gd_runqmask |= 1 << nq; 149 } 150 } 151 152 /* 153 * Schedule a thread to run. As the current thread we can always safely 154 * schedule ourselves, and a shortcut procedure is provided for that 155 * function. 156 * 157 * (non-blocking, self contained on a per cpu basis) 158 */ 159 void 160 lwkt_schedule_self(thread_t td) 161 { 162 crit_enter_quick(td); 163 KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!")); 164 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 165 _lwkt_enqueue(td); 166 #ifdef _KERNEL 167 if (td->td_proc && td->td_proc->p_stat == SSLEEP) 168 panic("SCHED SELF PANIC"); 169 #endif 170 crit_exit_quick(td); 171 } 172 173 /* 174 * Deschedule a thread. 175 * 176 * (non-blocking, self contained on a per cpu basis) 177 */ 178 void 179 lwkt_deschedule_self(thread_t td) 180 { 181 crit_enter_quick(td); 182 KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!")); 183 _lwkt_dequeue(td); 184 crit_exit_quick(td); 185 } 186 187 #ifdef _KERNEL 188 189 /* 190 * LWKTs operate on a per-cpu basis 191 * 192 * WARNING! Called from early boot, 'mycpu' may not work yet. 193 */ 194 void 195 lwkt_gdinit(struct globaldata *gd) 196 { 197 int i; 198 199 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i) 200 TAILQ_INIT(&gd->gd_tdrunq[i]); 201 gd->gd_runqmask = 0; 202 TAILQ_INIT(&gd->gd_tdallq); 203 } 204 205 #endif /* _KERNEL */ 206 207 /* 208 * Initialize a thread wait structure prior to first use. 209 * 210 * NOTE! called from low level boot code, we cannot do anything fancy! 211 */ 212 void 213 lwkt_wait_init(lwkt_wait_t w) 214 { 215 lwkt_token_init(&w->wa_token); 216 TAILQ_INIT(&w->wa_waitq); 217 w->wa_gen = 0; 218 w->wa_count = 0; 219 } 220 221 /* 222 * Create a new thread. The thread must be associated with a process context 223 * or LWKT start address before it can be scheduled. If the target cpu is 224 * -1 the thread will be created on the current cpu. 225 * 226 * If you intend to create a thread without a process context this function 227 * does everything except load the startup and switcher function. 228 */ 229 thread_t 230 lwkt_alloc_thread(struct thread *td, int stksize, int cpu) 231 { 232 void *stack; 233 int flags = 0; 234 globaldata_t gd = mycpu; 235 236 if (td == NULL) { 237 crit_enter_gd(gd); 238 if (gd->gd_tdfreecount > 0) { 239 --gd->gd_tdfreecount; 240 td = TAILQ_FIRST(&gd->gd_tdfreeq); 241 KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0, 242 ("lwkt_alloc_thread: unexpected NULL or corrupted td")); 243 TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq); 244 crit_exit_gd(gd); 245 flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD); 246 } else { 247 crit_exit_gd(gd); 248 #ifdef _KERNEL 249 td = zalloc(thread_zone); 250 #else 251 td = malloc(sizeof(struct thread)); 252 #endif 253 td->td_kstack = NULL; 254 td->td_kstack_size = 0; 255 flags |= TDF_ALLOCATED_THREAD; 256 } 257 } 258 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 259 if (flags & TDF_ALLOCATED_STACK) { 260 #ifdef _KERNEL 261 kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size); 262 #else 263 libcaps_free_stack(stack, td->td_kstack_size); 264 #endif 265 stack = NULL; 266 } 267 } 268 if (stack == NULL) { 269 #ifdef _KERNEL 270 stack = (void *)kmem_alloc(kernel_map, stksize); 271 #else 272 stack = libcaps_alloc_stack(stksize); 273 #endif 274 flags |= TDF_ALLOCATED_STACK; 275 } 276 if (cpu < 0) 277 lwkt_init_thread(td, stack, stksize, flags, mycpu); 278 else 279 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 280 return(td); 281 } 282 283 #ifdef _KERNEL 284 285 /* 286 * Initialize a preexisting thread structure. This function is used by 287 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 288 * 289 * All threads start out in a critical section at a priority of 290 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 291 * appropriate. This function may send an IPI message when the 292 * requested cpu is not the current cpu and consequently gd_tdallq may 293 * not be initialized synchronously from the point of view of the originating 294 * cpu. 295 * 296 * NOTE! we have to be careful in regards to creating threads for other cpus 297 * if SMP has not yet been activated. 298 */ 299 #ifdef SMP 300 301 static void 302 lwkt_init_thread_remote(void *arg) 303 { 304 thread_t td = arg; 305 306 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 307 } 308 309 #endif 310 311 void 312 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 313 struct globaldata *gd) 314 { 315 globaldata_t mygd = mycpu; 316 317 bzero(td, sizeof(struct thread)); 318 td->td_kstack = stack; 319 td->td_kstack_size = stksize; 320 td->td_flags |= flags; 321 td->td_gd = gd; 322 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT; 323 lwkt_initport(&td->td_msgport, td); 324 pmap_init_thread(td); 325 #ifdef SMP 326 /* 327 * Normally initializing a thread for a remote cpu requires sending an 328 * IPI. However, the idlethread is setup before the other cpus are 329 * activated so we have to treat it as a special case. XXX manipulation 330 * of gd_tdallq requires the BGL. 331 */ 332 if (gd == mygd || td == &gd->gd_idlethread) { 333 crit_enter_gd(mygd); 334 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 335 crit_exit_gd(mygd); 336 } else { 337 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 338 } 339 #else 340 crit_enter_gd(mygd); 341 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 342 crit_exit_gd(mygd); 343 #endif 344 } 345 346 #endif /* _KERNEL */ 347 348 void 349 lwkt_set_comm(thread_t td, const char *ctl, ...) 350 { 351 __va_list va; 352 353 __va_start(va, ctl); 354 vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 355 __va_end(va); 356 } 357 358 void 359 lwkt_hold(thread_t td) 360 { 361 ++td->td_refs; 362 } 363 364 void 365 lwkt_rele(thread_t td) 366 { 367 KKASSERT(td->td_refs > 0); 368 --td->td_refs; 369 } 370 371 #ifdef _KERNEL 372 373 void 374 lwkt_wait_free(thread_t td) 375 { 376 while (td->td_refs) 377 tsleep(td, 0, "tdreap", hz); 378 } 379 380 #endif 381 382 void 383 lwkt_free_thread(thread_t td) 384 { 385 struct globaldata *gd = mycpu; 386 387 KASSERT((td->td_flags & TDF_RUNNING) == 0, 388 ("lwkt_free_thread: did not exit! %p", td)); 389 390 crit_enter_gd(gd); 391 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 392 if (gd->gd_tdfreecount < CACHE_NTHREADS && 393 (td->td_flags & TDF_ALLOCATED_THREAD) 394 ) { 395 ++gd->gd_tdfreecount; 396 TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq); 397 crit_exit_gd(gd); 398 } else { 399 crit_exit_gd(gd); 400 if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) { 401 #ifdef _KERNEL 402 kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 403 #else 404 libcaps_free_stack(td->td_kstack, td->td_kstack_size); 405 #endif 406 /* gd invalid */ 407 td->td_kstack = NULL; 408 td->td_kstack_size = 0; 409 } 410 if (td->td_flags & TDF_ALLOCATED_THREAD) { 411 #ifdef _KERNEL 412 zfree(thread_zone, td); 413 #else 414 free(td); 415 #endif 416 } 417 } 418 } 419 420 421 /* 422 * Switch to the next runnable lwkt. If no LWKTs are runnable then 423 * switch to the idlethread. Switching must occur within a critical 424 * section to avoid races with the scheduling queue. 425 * 426 * We always have full control over our cpu's run queue. Other cpus 427 * that wish to manipulate our queue must use the cpu_*msg() calls to 428 * talk to our cpu, so a critical section is all that is needed and 429 * the result is very, very fast thread switching. 430 * 431 * The LWKT scheduler uses a fixed priority model and round-robins at 432 * each priority level. User process scheduling is a totally 433 * different beast and LWKT priorities should not be confused with 434 * user process priorities. 435 * 436 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch() 437 * cleans it up. Note that the td_switch() function cannot do anything that 438 * requires the MP lock since the MP lock will have already been setup for 439 * the target thread (not the current thread). It's nice to have a scheduler 440 * that does not need the MP lock to work because it allows us to do some 441 * really cool high-performance MP lock optimizations. 442 */ 443 444 void 445 lwkt_switch(void) 446 { 447 globaldata_t gd = mycpu; 448 thread_t td = gd->gd_curthread; 449 thread_t ntd; 450 #ifdef SMP 451 int mpheld; 452 #endif 453 454 /* 455 * Switching from within a 'fast' (non thread switched) interrupt is 456 * illegal. 457 */ 458 if (gd->gd_intr_nesting_level && panicstr == NULL) { 459 panic("lwkt_switch: cannot switch from within a fast interrupt, yet, td %p\n", td); 460 } 461 462 /* 463 * Passive release (used to transition from user to kernel mode 464 * when we block or switch rather then when we enter the kernel). 465 * This function is NOT called if we are switching into a preemption 466 * or returning from a preemption. Typically this causes us to lose 467 * our current process designation (if we have one) and become a true 468 * LWKT thread, and may also hand the current process designation to 469 * another process and schedule thread. 470 */ 471 if (td->td_release) 472 td->td_release(td); 473 474 crit_enter_gd(gd); 475 476 #ifdef SMP 477 /* 478 * td_mpcount cannot be used to determine if we currently hold the 479 * MP lock because get_mplock() will increment it prior to attempting 480 * to get the lock, and switch out if it can't. Our ownership of 481 * the actual lock will remain stable while we are in a critical section 482 * (but, of course, another cpu may own or release the lock so the 483 * actual value of mp_lock is not stable). 484 */ 485 mpheld = MP_LOCK_HELD(); 486 #ifdef INVARIANTS 487 if (td->td_cscount) { 488 printf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 489 td); 490 if (panic_on_cscount) 491 panic("switching while mastering cpusync"); 492 } 493 #endif 494 #endif 495 if ((ntd = td->td_preempted) != NULL) { 496 /* 497 * We had preempted another thread on this cpu, resume the preempted 498 * thread. This occurs transparently, whether the preempted thread 499 * was scheduled or not (it may have been preempted after descheduling 500 * itself). 501 * 502 * We have to setup the MP lock for the original thread after backing 503 * out the adjustment that was made to curthread when the original 504 * was preempted. 505 */ 506 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 507 #ifdef SMP 508 if (ntd->td_mpcount && mpheld == 0) { 509 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d", 510 td, ntd, td->td_mpcount, ntd->td_mpcount); 511 } 512 if (ntd->td_mpcount) { 513 td->td_mpcount -= ntd->td_mpcount; 514 KKASSERT(td->td_mpcount >= 0); 515 } 516 #endif 517 ntd->td_flags |= TDF_PREEMPT_DONE; 518 519 /* 520 * XXX. The interrupt may have woken a thread up, we need to properly 521 * set the reschedule flag if the originally interrupted thread is at 522 * a lower priority. 523 */ 524 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1) 525 need_lwkt_resched(); 526 /* YYY release mp lock on switchback if original doesn't need it */ 527 } else { 528 /* 529 * Priority queue / round-robin at each priority. Note that user 530 * processes run at a fixed, low priority and the user process 531 * scheduler deals with interactions between user processes 532 * by scheduling and descheduling them from the LWKT queue as 533 * necessary. 534 * 535 * We have to adjust the MP lock for the target thread. If we 536 * need the MP lock and cannot obtain it we try to locate a 537 * thread that does not need the MP lock. If we cannot, we spin 538 * instead of HLT. 539 * 540 * A similar issue exists for the tokens held by the target thread. 541 * If we cannot obtain ownership of the tokens we cannot immediately 542 * schedule the thread. 543 */ 544 545 /* 546 * We are switching threads. If there are any pending requests for 547 * tokens we can satisfy all of them here. 548 */ 549 #ifdef SMP 550 if (gd->gd_tokreqbase) 551 lwkt_drain_token_requests(); 552 #endif 553 554 /* 555 * If an LWKT reschedule was requested, well that is what we are 556 * doing now so clear it. 557 */ 558 clear_lwkt_resched(); 559 again: 560 if (gd->gd_runqmask) { 561 int nq = bsrl(gd->gd_runqmask); 562 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) { 563 gd->gd_runqmask &= ~(1 << nq); 564 goto again; 565 } 566 #ifdef SMP 567 /* 568 * If the target needs the MP lock and we couldn't get it, 569 * or if the target is holding tokens and we could not 570 * gain ownership of the tokens, continue looking for a 571 * thread to schedule and spin instead of HLT if we can't. 572 */ 573 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) || 574 (ntd->td_toks && lwkt_chktokens(ntd) == 0) 575 ) { 576 u_int32_t rqmask = gd->gd_runqmask; 577 while (rqmask) { 578 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) { 579 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) 580 continue; 581 mpheld = MP_LOCK_HELD(); 582 if (ntd->td_toks && !lwkt_chktokens(ntd)) 583 continue; 584 break; 585 } 586 if (ntd) 587 break; 588 rqmask &= ~(1 << nq); 589 nq = bsrl(rqmask); 590 } 591 if (ntd == NULL) { 592 ntd = &gd->gd_idlethread; 593 ntd->td_flags |= TDF_IDLE_NOHLT; 594 } else { 595 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 596 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 597 } 598 } else { 599 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 600 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 601 } 602 #else 603 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 604 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 605 #endif 606 } else { 607 /* 608 * We have nothing to run but only let the idle loop halt 609 * the cpu if there are no pending interrupts. 610 */ 611 ntd = &gd->gd_idlethread; 612 if (gd->gd_reqflags & RQF_IDLECHECK_MASK) 613 ntd->td_flags |= TDF_IDLE_NOHLT; 614 } 615 } 616 KASSERT(ntd->td_pri >= TDPRI_CRIT, 617 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri)); 618 619 /* 620 * Do the actual switch. If the new target does not need the MP lock 621 * and we are holding it, release the MP lock. If the new target requires 622 * the MP lock we have already acquired it for the target. 623 */ 624 #ifdef SMP 625 if (ntd->td_mpcount == 0 ) { 626 if (MP_LOCK_HELD()) 627 cpu_rel_mplock(); 628 } else { 629 ASSERT_MP_LOCK_HELD(); 630 } 631 #endif 632 if (td != ntd) { 633 ++switch_count; 634 td->td_switch(ntd); 635 } 636 /* NOTE: current cpu may have changed after switch */ 637 crit_exit_quick(td); 638 } 639 640 /* 641 * Request that the target thread preempt the current thread. Preemption 642 * only works under a specific set of conditions: 643 * 644 * - We are not preempting ourselves 645 * - The target thread is owned by the current cpu 646 * - We are not currently being preempted 647 * - The target is not currently being preempted 648 * - We are able to satisfy the target's MP lock requirements (if any). 649 * 650 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 651 * this is called via lwkt_schedule() through the td_preemptable callback. 652 * critpri is the managed critical priority that we should ignore in order 653 * to determine whether preemption is possible (aka usually just the crit 654 * priority of lwkt_schedule() itself). 655 * 656 * XXX at the moment we run the target thread in a critical section during 657 * the preemption in order to prevent the target from taking interrupts 658 * that *WE* can't. Preemption is strictly limited to interrupt threads 659 * and interrupt-like threads, outside of a critical section, and the 660 * preempted source thread will be resumed the instant the target blocks 661 * whether or not the source is scheduled (i.e. preemption is supposed to 662 * be as transparent as possible). 663 * 664 * The target thread inherits our MP count (added to its own) for the 665 * duration of the preemption in order to preserve the atomicy of the 666 * MP lock during the preemption. Therefore, any preempting targets must be 667 * careful in regards to MP assertions. Note that the MP count may be 668 * out of sync with the physical mp_lock, but we do not have to preserve 669 * the original ownership of the lock if it was out of synch (that is, we 670 * can leave it synchronized on return). 671 */ 672 void 673 lwkt_preempt(thread_t ntd, int critpri) 674 { 675 struct globaldata *gd = mycpu; 676 thread_t td; 677 #ifdef SMP 678 int mpheld; 679 int savecnt; 680 #endif 681 682 /* 683 * The caller has put us in a critical section. We can only preempt 684 * if the caller of the caller was not in a critical section (basically 685 * a local interrupt), as determined by the 'critpri' parameter. 686 * 687 * YYY The target thread must be in a critical section (else it must 688 * inherit our critical section? I dunno yet). 689 * 690 * Any tokens held by the target may not be held by thread(s) being 691 * preempted. We take the easy way out and do not preempt if 692 * the target is holding tokens. 693 * 694 * Set need_lwkt_resched() unconditionally for now YYY. 695 */ 696 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri)); 697 698 td = gd->gd_curthread; 699 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) { 700 ++preempt_miss; 701 return; 702 } 703 if ((td->td_pri & ~TDPRI_MASK) > critpri) { 704 ++preempt_miss; 705 need_lwkt_resched(); 706 return; 707 } 708 #ifdef SMP 709 if (ntd->td_gd != gd) { 710 ++preempt_miss; 711 need_lwkt_resched(); 712 return; 713 } 714 #endif 715 /* 716 * Take the easy way out and do not preempt if the target is holding 717 * one or more tokens. We could test whether the thread(s) being 718 * preempted interlock against the target thread's tokens and whether 719 * we can get all the target thread's tokens, but this situation 720 * should not occur very often so its easier to simply not preempt. 721 */ 722 if (ntd->td_toks != NULL) { 723 ++preempt_miss; 724 need_lwkt_resched(); 725 return; 726 } 727 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 728 ++preempt_weird; 729 need_lwkt_resched(); 730 return; 731 } 732 if (ntd->td_preempted) { 733 ++preempt_hit; 734 need_lwkt_resched(); 735 return; 736 } 737 #ifdef SMP 738 /* 739 * note: an interrupt might have occured just as we were transitioning 740 * to or from the MP lock. In this case td_mpcount will be pre-disposed 741 * (non-zero) but not actually synchronized with the actual state of the 742 * lock. We can use it to imply an MP lock requirement for the 743 * preemption but we cannot use it to test whether we hold the MP lock 744 * or not. 745 */ 746 savecnt = td->td_mpcount; 747 mpheld = MP_LOCK_HELD(); 748 ntd->td_mpcount += td->td_mpcount; 749 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) { 750 ntd->td_mpcount -= td->td_mpcount; 751 ++preempt_miss; 752 need_lwkt_resched(); 753 return; 754 } 755 #endif 756 757 /* 758 * Since we are able to preempt the current thread, there is no need to 759 * call need_lwkt_resched(). 760 */ 761 ++preempt_hit; 762 ntd->td_preempted = td; 763 td->td_flags |= TDF_PREEMPT_LOCK; 764 td->td_switch(ntd); 765 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 766 #ifdef SMP 767 KKASSERT(savecnt == td->td_mpcount); 768 mpheld = MP_LOCK_HELD(); 769 if (mpheld && td->td_mpcount == 0) 770 cpu_rel_mplock(); 771 else if (mpheld == 0 && td->td_mpcount) 772 panic("lwkt_preempt(): MP lock was not held through"); 773 #endif 774 ntd->td_preempted = NULL; 775 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 776 } 777 778 /* 779 * Yield our thread while higher priority threads are pending. This is 780 * typically called when we leave a critical section but it can be safely 781 * called while we are in a critical section. 782 * 783 * This function will not generally yield to equal priority threads but it 784 * can occur as a side effect. Note that lwkt_switch() is called from 785 * inside the critical section to prevent its own crit_exit() from reentering 786 * lwkt_yield_quick(). 787 * 788 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint 789 * came along but was blocked and made pending. 790 * 791 * (self contained on a per cpu basis) 792 */ 793 void 794 lwkt_yield_quick(void) 795 { 796 globaldata_t gd = mycpu; 797 thread_t td = gd->gd_curthread; 798 799 /* 800 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear 801 * it with a non-zero cpl then we might not wind up calling splz after 802 * a task switch when the critical section is exited even though the 803 * new task could accept the interrupt. 804 * 805 * XXX from crit_exit() only called after last crit section is released. 806 * If called directly will run splz() even if in a critical section. 807 * 808 * td_nest_count prevent deep nesting via splz() or doreti(). Note that 809 * except for this special case, we MUST call splz() here to handle any 810 * pending ints, particularly after we switch, or we might accidently 811 * halt the cpu with interrupts pending. 812 */ 813 if (gd->gd_reqflags && td->td_nest_count < 2) 814 splz(); 815 816 /* 817 * YYY enabling will cause wakeup() to task-switch, which really 818 * confused the old 4.x code. This is a good way to simulate 819 * preemption and MP without actually doing preemption or MP, because a 820 * lot of code assumes that wakeup() does not block. 821 */ 822 if (untimely_switch && td->td_nest_count == 0 && 823 gd->gd_intr_nesting_level == 0 824 ) { 825 crit_enter_quick(td); 826 /* 827 * YYY temporary hacks until we disassociate the userland scheduler 828 * from the LWKT scheduler. 829 */ 830 if (td->td_flags & TDF_RUNQ) { 831 lwkt_switch(); /* will not reenter yield function */ 832 } else { 833 lwkt_schedule_self(td); /* make sure we are scheduled */ 834 lwkt_switch(); /* will not reenter yield function */ 835 lwkt_deschedule_self(td); /* make sure we are descheduled */ 836 } 837 crit_exit_noyield(td); 838 } 839 } 840 841 /* 842 * This implements a normal yield which, unlike _quick, will yield to equal 843 * priority threads as well. Note that gd_reqflags tests will be handled by 844 * the crit_exit() call in lwkt_switch(). 845 * 846 * (self contained on a per cpu basis) 847 */ 848 void 849 lwkt_yield(void) 850 { 851 lwkt_schedule_self(curthread); 852 lwkt_switch(); 853 } 854 855 /* 856 * Generic schedule. Possibly schedule threads belonging to other cpus and 857 * deal with threads that might be blocked on a wait queue. 858 * 859 * We have a little helper inline function which does additional work after 860 * the thread has been enqueued, including dealing with preemption and 861 * setting need_lwkt_resched() (which prevents the kernel from returning 862 * to userland until it has processed higher priority threads). 863 */ 864 static __inline 865 void 866 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri) 867 { 868 if (ntd->td_preemptable) { 869 ntd->td_preemptable(ntd, cpri); /* YYY +token */ 870 } else if ((ntd->td_flags & TDF_NORESCHED) == 0 && 871 (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK) 872 ) { 873 need_lwkt_resched(); 874 } 875 } 876 877 void 878 lwkt_schedule(thread_t td) 879 { 880 globaldata_t mygd = mycpu; 881 882 #ifdef INVARIANTS 883 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 884 if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc 885 && td->td_proc->p_stat == SSLEEP 886 ) { 887 printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n", 888 curthread, 889 curthread->td_proc ? curthread->td_proc->p_pid : -1, 890 curthread->td_proc ? curthread->td_proc->p_stat : -1, 891 td, 892 td->td_proc ? curthread->td_proc->p_pid : -1, 893 td->td_proc ? curthread->td_proc->p_stat : -1 894 ); 895 panic("SCHED PANIC"); 896 } 897 #endif 898 crit_enter_gd(mygd); 899 if (td == mygd->gd_curthread) { 900 _lwkt_enqueue(td); 901 } else { 902 lwkt_wait_t w; 903 904 /* 905 * If the thread is on a wait list we have to send our scheduling 906 * request to the owner of the wait structure. Otherwise we send 907 * the scheduling request to the cpu owning the thread. Races 908 * are ok, the target will forward the message as necessary (the 909 * message may chase the thread around before it finally gets 910 * acted upon). 911 * 912 * (remember, wait structures use stable storage) 913 * 914 * NOTE: tokens no longer enter a critical section, so we only need 915 * to account for the crit_enter() above when calling 916 * _lwkt_schedule_post(). 917 */ 918 if ((w = td->td_wait) != NULL) { 919 lwkt_tokref wref; 920 921 if (lwkt_trytoken(&wref, &w->wa_token)) { 922 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq); 923 --w->wa_count; 924 td->td_wait = NULL; 925 #ifdef SMP 926 if (td->td_gd == mygd) { 927 _lwkt_enqueue(td); 928 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 929 } else { 930 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 931 } 932 #else 933 _lwkt_enqueue(td); 934 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 935 #endif 936 lwkt_reltoken(&wref); 937 } else { 938 lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td); 939 } 940 } else { 941 /* 942 * If the wait structure is NULL and we own the thread, there 943 * is no race (since we are in a critical section). If we 944 * do not own the thread there might be a race but the 945 * target cpu will deal with it. 946 */ 947 #ifdef SMP 948 if (td->td_gd == mygd) { 949 _lwkt_enqueue(td); 950 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 951 } else { 952 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 953 } 954 #else 955 _lwkt_enqueue(td); 956 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 957 #endif 958 } 959 } 960 crit_exit_gd(mygd); 961 } 962 963 /* 964 * Managed acquisition. This code assumes that the MP lock is held for 965 * the tdallq operation and that the thread has been descheduled from its 966 * original cpu. We also have to wait for the thread to be entirely switched 967 * out on its original cpu (this is usually fast enough that we never loop) 968 * since the LWKT system does not have to hold the MP lock while switching 969 * and the target may have released it before switching. 970 */ 971 void 972 lwkt_acquire(thread_t td) 973 { 974 globaldata_t gd; 975 globaldata_t mygd; 976 977 gd = td->td_gd; 978 mygd = mycpu; 979 cpu_lfence(); 980 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 981 while (td->td_flags & TDF_RUNNING) /* XXX spin */ 982 cpu_lfence(); 983 if (gd != mygd) { 984 crit_enter_gd(mygd); 985 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); /* protected by BGL */ 986 td->td_gd = mygd; 987 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */ 988 crit_exit_gd(mygd); 989 } 990 } 991 992 /* 993 * Generic deschedule. Descheduling threads other then your own should be 994 * done only in carefully controlled circumstances. Descheduling is 995 * asynchronous. 996 * 997 * This function may block if the cpu has run out of messages. 998 */ 999 void 1000 lwkt_deschedule(thread_t td) 1001 { 1002 crit_enter(); 1003 if (td == curthread) { 1004 _lwkt_dequeue(td); 1005 } else { 1006 if (td->td_gd == mycpu) { 1007 _lwkt_dequeue(td); 1008 } else { 1009 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td); 1010 } 1011 } 1012 crit_exit(); 1013 } 1014 1015 /* 1016 * Set the target thread's priority. This routine does not automatically 1017 * switch to a higher priority thread, LWKT threads are not designed for 1018 * continuous priority changes. Yield if you want to switch. 1019 * 1020 * We have to retain the critical section count which uses the high bits 1021 * of the td_pri field. The specified priority may also indicate zero or 1022 * more critical sections by adding TDPRI_CRIT*N. 1023 * 1024 * Note that we requeue the thread whether it winds up on a different runq 1025 * or not. uio_yield() depends on this and the routine is not normally 1026 * called with the same priority otherwise. 1027 */ 1028 void 1029 lwkt_setpri(thread_t td, int pri) 1030 { 1031 KKASSERT(pri >= 0); 1032 KKASSERT(td->td_gd == mycpu); 1033 crit_enter(); 1034 if (td->td_flags & TDF_RUNQ) { 1035 _lwkt_dequeue(td); 1036 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1037 _lwkt_enqueue(td); 1038 } else { 1039 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1040 } 1041 crit_exit(); 1042 } 1043 1044 void 1045 lwkt_setpri_self(int pri) 1046 { 1047 thread_t td = curthread; 1048 1049 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1050 crit_enter(); 1051 if (td->td_flags & TDF_RUNQ) { 1052 _lwkt_dequeue(td); 1053 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1054 _lwkt_enqueue(td); 1055 } else { 1056 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1057 } 1058 crit_exit(); 1059 } 1060 1061 /* 1062 * Determine if there is a runnable thread at a higher priority then 1063 * the current thread. lwkt_setpri() does not check this automatically. 1064 * Return 1 if there is, 0 if there isn't. 1065 * 1066 * Example: if bit 31 of runqmask is set and the current thread is priority 1067 * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff. 1068 * 1069 * If nq reaches 31 the shift operation will overflow to 0 and we will wind 1070 * up comparing against 0xffffffff, a comparison that will always be false. 1071 */ 1072 int 1073 lwkt_checkpri_self(void) 1074 { 1075 globaldata_t gd = mycpu; 1076 thread_t td = gd->gd_curthread; 1077 int nq = td->td_pri & TDPRI_MASK; 1078 1079 while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) { 1080 if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1])) 1081 return(1); 1082 ++nq; 1083 } 1084 return(0); 1085 } 1086 1087 /* 1088 * Migrate the current thread to the specified cpu. The BGL must be held 1089 * (for the gd_tdallq manipulation XXX). This is accomplished by 1090 * descheduling ourselves from the current cpu, moving our thread to the 1091 * tdallq of the target cpu, IPI messaging the target cpu, and switching out. 1092 * TDF_MIGRATING prevents scheduling races while the thread is being migrated. 1093 */ 1094 #ifdef SMP 1095 static void lwkt_setcpu_remote(void *arg); 1096 #endif 1097 1098 void 1099 lwkt_setcpu_self(globaldata_t rgd) 1100 { 1101 #ifdef SMP 1102 thread_t td = curthread; 1103 1104 if (td->td_gd != rgd) { 1105 crit_enter_quick(td); 1106 td->td_flags |= TDF_MIGRATING; 1107 lwkt_deschedule_self(td); 1108 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */ 1109 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */ 1110 lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td); 1111 lwkt_switch(); 1112 /* we are now on the target cpu */ 1113 crit_exit_quick(td); 1114 } 1115 #endif 1116 } 1117 1118 /* 1119 * Remote IPI for cpu migration (called while in a critical section so we 1120 * do not have to enter another one). The thread has already been moved to 1121 * our cpu's allq, but we must wait for the thread to be completely switched 1122 * out on the originating cpu before we schedule it on ours or the stack 1123 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD 1124 * change to main memory. 1125 * 1126 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races 1127 * against wakeups. It is best if this interface is used only when there 1128 * are no pending events that might try to schedule the thread. 1129 */ 1130 #ifdef SMP 1131 static void 1132 lwkt_setcpu_remote(void *arg) 1133 { 1134 thread_t td = arg; 1135 globaldata_t gd = mycpu; 1136 1137 while (td->td_flags & TDF_RUNNING) 1138 cpu_lfence(); 1139 td->td_gd = gd; 1140 cpu_sfence(); 1141 td->td_flags &= ~TDF_MIGRATING; 1142 _lwkt_enqueue(td); 1143 } 1144 #endif 1145 1146 struct proc * 1147 lwkt_preempted_proc(void) 1148 { 1149 thread_t td = curthread; 1150 while (td->td_preempted) 1151 td = td->td_preempted; 1152 return(td->td_proc); 1153 } 1154 1155 /* 1156 * Block on the specified wait queue until signaled. A generation number 1157 * must be supplied to interlock the wait queue. The function will 1158 * return immediately if the generation number does not match the wait 1159 * structure's generation number. 1160 */ 1161 void 1162 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen) 1163 { 1164 thread_t td = curthread; 1165 lwkt_tokref ilock; 1166 1167 lwkt_gettoken(&ilock, &w->wa_token); 1168 crit_enter(); 1169 if (w->wa_gen == *gen) { 1170 _lwkt_dequeue(td); 1171 TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq); 1172 ++w->wa_count; 1173 td->td_wait = w; 1174 td->td_wmesg = wmesg; 1175 again: 1176 lwkt_switch(); 1177 if (td->td_wmesg != NULL) { 1178 _lwkt_dequeue(td); 1179 goto again; 1180 } 1181 } 1182 crit_exit(); 1183 *gen = w->wa_gen; 1184 lwkt_reltoken(&ilock); 1185 } 1186 1187 /* 1188 * Signal a wait queue. We gain ownership of the wait queue in order to 1189 * signal it. Once a thread is removed from the wait queue we have to 1190 * deal with the cpu owning the thread. 1191 * 1192 * Note: alternatively we could message the target cpu owning the wait 1193 * queue. YYY implement as sysctl. 1194 */ 1195 void 1196 lwkt_signal(lwkt_wait_t w, int count) 1197 { 1198 thread_t td; 1199 lwkt_tokref ilock; 1200 1201 lwkt_gettoken(&ilock, &w->wa_token); 1202 ++w->wa_gen; 1203 crit_enter(); 1204 if (count < 0) 1205 count = w->wa_count; 1206 while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) { 1207 --count; 1208 --w->wa_count; 1209 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq); 1210 td->td_wait = NULL; 1211 td->td_wmesg = NULL; 1212 if (td->td_gd == mycpu) { 1213 _lwkt_enqueue(td); 1214 } else { 1215 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 1216 } 1217 } 1218 crit_exit(); 1219 lwkt_reltoken(&ilock); 1220 } 1221 1222 /* 1223 * Create a kernel process/thread/whatever. It shares it's address space 1224 * with proc0 - ie: kernel only. 1225 * 1226 * NOTE! By default new threads are created with the MP lock held. A 1227 * thread which does not require the MP lock should release it by calling 1228 * rel_mplock() at the start of the new thread. 1229 */ 1230 int 1231 lwkt_create(void (*func)(void *), void *arg, 1232 struct thread **tdp, thread_t template, int tdflags, int cpu, 1233 const char *fmt, ...) 1234 { 1235 thread_t td; 1236 __va_list ap; 1237 1238 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu); 1239 if (tdp) 1240 *tdp = td; 1241 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1242 td->td_flags |= TDF_VERBOSE | tdflags; 1243 #ifdef SMP 1244 td->td_mpcount = 1; 1245 #endif 1246 1247 /* 1248 * Set up arg0 for 'ps' etc 1249 */ 1250 __va_start(ap, fmt); 1251 vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1252 __va_end(ap); 1253 1254 /* 1255 * Schedule the thread to run 1256 */ 1257 if ((td->td_flags & TDF_STOPREQ) == 0) 1258 lwkt_schedule(td); 1259 else 1260 td->td_flags &= ~TDF_STOPREQ; 1261 return 0; 1262 } 1263 1264 /* 1265 * kthread_* is specific to the kernel and is not needed by userland. 1266 */ 1267 #ifdef _KERNEL 1268 1269 /* 1270 * Destroy an LWKT thread. Warning! This function is not called when 1271 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1272 * uses a different reaping mechanism. 1273 */ 1274 void 1275 lwkt_exit(void) 1276 { 1277 thread_t td = curthread; 1278 globaldata_t gd; 1279 1280 if (td->td_flags & TDF_VERBOSE) 1281 printf("kthread %p %s has exited\n", td, td->td_comm); 1282 caps_exit(td); 1283 crit_enter_quick(td); 1284 lwkt_deschedule_self(td); 1285 gd = mycpu; 1286 KKASSERT(gd == td->td_gd); 1287 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1288 if (td->td_flags & TDF_ALLOCATED_THREAD) { 1289 ++gd->gd_tdfreecount; 1290 TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq); 1291 } 1292 cpu_thread_exit(); 1293 } 1294 1295 #endif /* _KERNEL */ 1296 1297 void 1298 crit_panic(void) 1299 { 1300 thread_t td = curthread; 1301 int lpri = td->td_pri; 1302 1303 td->td_pri = 0; 1304 panic("td_pri is/would-go negative! %p %d", td, lpri); 1305 } 1306 1307