xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 97fecd825dd1a70c628493b90a9b1b1724f151df)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 
73 
74 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
75 
76 #ifdef SMP
77 static int mplock_countx = 0;
78 #endif
79 static int untimely_switch = 0;
80 #ifdef	INVARIANTS
81 static int panic_on_cscount = 0;
82 #endif
83 static __int64_t switch_count = 0;
84 static __int64_t preempt_hit = 0;
85 static __int64_t preempt_miss = 0;
86 static __int64_t preempt_weird = 0;
87 static __int64_t token_contention_count = 0;
88 static __int64_t mplock_contention_count = 0;
89 static int lwkt_use_spin_port;
90 #ifdef SMP
91 static int chain_mplock = 0;
92 #endif
93 static struct objcache *thread_cache;
94 
95 volatile cpumask_t mp_lock_contention_mask;
96 
97 extern void cpu_heavy_restore(void);
98 extern void cpu_lwkt_restore(void);
99 extern void cpu_kthread_restore(void);
100 extern void cpu_idle_restore(void);
101 
102 #ifdef __amd64__
103 
104 static int
105 jg_tos_ok(struct thread *td)
106 {
107 	void *tos;
108 	int tos_ok;
109 
110 	if (td == NULL) {
111 		return 1;
112 	}
113 	KKASSERT(td->td_sp != NULL);
114 	tos = ((void **)td->td_sp)[0];
115 	tos_ok = 0;
116 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
117 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
118 		tos_ok = 1;
119 	}
120 	return tos_ok;
121 }
122 
123 #endif
124 
125 /*
126  * We can make all thread ports use the spin backend instead of the thread
127  * backend.  This should only be set to debug the spin backend.
128  */
129 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
130 
131 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
132 #ifdef	INVARIANTS
133 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
134 #endif
135 #ifdef SMP
136 SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
137 #endif
138 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
139 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
140 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
141 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
142 #ifdef	INVARIANTS
143 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
144 	&token_contention_count, 0, "spinning due to token contention");
145 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
146 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
147 #endif
148 
149 /*
150  * Kernel Trace
151  */
152 #if !defined(KTR_GIANT_CONTENTION)
153 #define KTR_GIANT_CONTENTION	KTR_ALL
154 #endif
155 
156 KTR_INFO_MASTER(giant);
157 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
158 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
159 
160 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
161 
162 /*
163  * These helper procedures handle the runq, they can only be called from
164  * within a critical section.
165  *
166  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
167  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
168  * instead of 'mycpu' when referencing the globaldata structure.   Once
169  * SMP live enqueuing and dequeueing only occurs on the current cpu.
170  */
171 static __inline
172 void
173 _lwkt_dequeue(thread_t td)
174 {
175     if (td->td_flags & TDF_RUNQ) {
176 	int nq = td->td_pri & TDPRI_MASK;
177 	struct globaldata *gd = td->td_gd;
178 
179 	td->td_flags &= ~TDF_RUNQ;
180 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
181 	/* runqmask is passively cleaned up by the switcher */
182     }
183 }
184 
185 static __inline
186 void
187 _lwkt_enqueue(thread_t td)
188 {
189     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
190 	int nq = td->td_pri & TDPRI_MASK;
191 	struct globaldata *gd = td->td_gd;
192 
193 	td->td_flags |= TDF_RUNQ;
194 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
195 	gd->gd_runqmask |= 1 << nq;
196     }
197 }
198 
199 static __boolean_t
200 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
201 {
202 	struct thread *td = (struct thread *)obj;
203 
204 	td->td_kstack = NULL;
205 	td->td_kstack_size = 0;
206 	td->td_flags = TDF_ALLOCATED_THREAD;
207 	return (1);
208 }
209 
210 static void
211 _lwkt_thread_dtor(void *obj, void *privdata)
212 {
213 	struct thread *td = (struct thread *)obj;
214 
215 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
216 	    ("_lwkt_thread_dtor: not allocated from objcache"));
217 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
218 		td->td_kstack_size > 0,
219 	    ("_lwkt_thread_dtor: corrupted stack"));
220 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
221 }
222 
223 /*
224  * Initialize the lwkt s/system.
225  */
226 void
227 lwkt_init(void)
228 {
229     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
230     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
231 			NULL, CACHE_NTHREADS/2,
232 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
233 }
234 
235 /*
236  * Schedule a thread to run.  As the current thread we can always safely
237  * schedule ourselves, and a shortcut procedure is provided for that
238  * function.
239  *
240  * (non-blocking, self contained on a per cpu basis)
241  */
242 void
243 lwkt_schedule_self(thread_t td)
244 {
245     crit_enter_quick(td);
246     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
247     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
248     _lwkt_enqueue(td);
249     crit_exit_quick(td);
250 }
251 
252 /*
253  * Deschedule a thread.
254  *
255  * (non-blocking, self contained on a per cpu basis)
256  */
257 void
258 lwkt_deschedule_self(thread_t td)
259 {
260     crit_enter_quick(td);
261     _lwkt_dequeue(td);
262     crit_exit_quick(td);
263 }
264 
265 /*
266  * LWKTs operate on a per-cpu basis
267  *
268  * WARNING!  Called from early boot, 'mycpu' may not work yet.
269  */
270 void
271 lwkt_gdinit(struct globaldata *gd)
272 {
273     int i;
274 
275     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
276 	TAILQ_INIT(&gd->gd_tdrunq[i]);
277     gd->gd_runqmask = 0;
278     TAILQ_INIT(&gd->gd_tdallq);
279 }
280 
281 /*
282  * Create a new thread.  The thread must be associated with a process context
283  * or LWKT start address before it can be scheduled.  If the target cpu is
284  * -1 the thread will be created on the current cpu.
285  *
286  * If you intend to create a thread without a process context this function
287  * does everything except load the startup and switcher function.
288  */
289 thread_t
290 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
291 {
292     globaldata_t gd = mycpu;
293     void *stack;
294 
295     /*
296      * If static thread storage is not supplied allocate a thread.  Reuse
297      * a cached free thread if possible.  gd_freetd is used to keep an exiting
298      * thread intact through the exit.
299      */
300     if (td == NULL) {
301 	if ((td = gd->gd_freetd) != NULL)
302 	    gd->gd_freetd = NULL;
303 	else
304 	    td = objcache_get(thread_cache, M_WAITOK);
305     	KASSERT((td->td_flags &
306 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
307 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
308     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
309     }
310 
311     /*
312      * Try to reuse cached stack.
313      */
314     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
315 	if (flags & TDF_ALLOCATED_STACK) {
316 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
317 	    stack = NULL;
318 	}
319     }
320     if (stack == NULL) {
321 	stack = (void *)kmem_alloc(&kernel_map, stksize);
322 	flags |= TDF_ALLOCATED_STACK;
323     }
324     if (cpu < 0)
325 	lwkt_init_thread(td, stack, stksize, flags, gd);
326     else
327 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
328     return(td);
329 }
330 
331 /*
332  * Initialize a preexisting thread structure.  This function is used by
333  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
334  *
335  * All threads start out in a critical section at a priority of
336  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
337  * appropriate.  This function may send an IPI message when the
338  * requested cpu is not the current cpu and consequently gd_tdallq may
339  * not be initialized synchronously from the point of view of the originating
340  * cpu.
341  *
342  * NOTE! we have to be careful in regards to creating threads for other cpus
343  * if SMP has not yet been activated.
344  */
345 #ifdef SMP
346 
347 static void
348 lwkt_init_thread_remote(void *arg)
349 {
350     thread_t td = arg;
351 
352     /*
353      * Protected by critical section held by IPI dispatch
354      */
355     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
356 }
357 
358 #endif
359 
360 void
361 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
362 		struct globaldata *gd)
363 {
364     globaldata_t mygd = mycpu;
365 
366     bzero(td, sizeof(struct thread));
367     td->td_kstack = stack;
368     td->td_kstack_size = stksize;
369     td->td_flags = flags;
370     td->td_gd = gd;
371     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
372 #ifdef SMP
373     if ((flags & TDF_MPSAFE) == 0)
374 	td->td_mpcount = 1;
375 #endif
376     if (lwkt_use_spin_port)
377 	lwkt_initport_spin(&td->td_msgport);
378     else
379 	lwkt_initport_thread(&td->td_msgport, td);
380     pmap_init_thread(td);
381 #ifdef SMP
382     /*
383      * Normally initializing a thread for a remote cpu requires sending an
384      * IPI.  However, the idlethread is setup before the other cpus are
385      * activated so we have to treat it as a special case.  XXX manipulation
386      * of gd_tdallq requires the BGL.
387      */
388     if (gd == mygd || td == &gd->gd_idlethread) {
389 	crit_enter_gd(mygd);
390 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
391 	crit_exit_gd(mygd);
392     } else {
393 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
394     }
395 #else
396     crit_enter_gd(mygd);
397     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
398     crit_exit_gd(mygd);
399 #endif
400 }
401 
402 void
403 lwkt_set_comm(thread_t td, const char *ctl, ...)
404 {
405     __va_list va;
406 
407     __va_start(va, ctl);
408     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
409     __va_end(va);
410 }
411 
412 void
413 lwkt_hold(thread_t td)
414 {
415     ++td->td_refs;
416 }
417 
418 void
419 lwkt_rele(thread_t td)
420 {
421     KKASSERT(td->td_refs > 0);
422     --td->td_refs;
423 }
424 
425 void
426 lwkt_wait_free(thread_t td)
427 {
428     while (td->td_refs)
429 	tsleep(td, 0, "tdreap", hz);
430 }
431 
432 void
433 lwkt_free_thread(thread_t td)
434 {
435     KASSERT((td->td_flags & TDF_RUNNING) == 0,
436 	("lwkt_free_thread: did not exit! %p", td));
437 
438     if (td->td_flags & TDF_ALLOCATED_THREAD) {
439     	objcache_put(thread_cache, td);
440     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
441 	/* client-allocated struct with internally allocated stack */
442 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
443 	    ("lwkt_free_thread: corrupted stack"));
444 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
445 	td->td_kstack = NULL;
446 	td->td_kstack_size = 0;
447     }
448 }
449 
450 
451 /*
452  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
453  * switch to the idlethread.  Switching must occur within a critical
454  * section to avoid races with the scheduling queue.
455  *
456  * We always have full control over our cpu's run queue.  Other cpus
457  * that wish to manipulate our queue must use the cpu_*msg() calls to
458  * talk to our cpu, so a critical section is all that is needed and
459  * the result is very, very fast thread switching.
460  *
461  * The LWKT scheduler uses a fixed priority model and round-robins at
462  * each priority level.  User process scheduling is a totally
463  * different beast and LWKT priorities should not be confused with
464  * user process priorities.
465  *
466  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
467  * cleans it up.  Note that the td_switch() function cannot do anything that
468  * requires the MP lock since the MP lock will have already been setup for
469  * the target thread (not the current thread).  It's nice to have a scheduler
470  * that does not need the MP lock to work because it allows us to do some
471  * really cool high-performance MP lock optimizations.
472  *
473  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
474  * is not called by the current thread in the preemption case, only when
475  * the preempting thread blocks (in order to return to the original thread).
476  */
477 void
478 lwkt_switch(void)
479 {
480     globaldata_t gd = mycpu;
481     thread_t td = gd->gd_curthread;
482     thread_t ntd;
483 #ifdef SMP
484     int mpheld;
485 #endif
486 
487     /*
488      * Switching from within a 'fast' (non thread switched) interrupt or IPI
489      * is illegal.  However, we may have to do it anyway if we hit a fatal
490      * kernel trap or we have paniced.
491      *
492      * If this case occurs save and restore the interrupt nesting level.
493      */
494     if (gd->gd_intr_nesting_level) {
495 	int savegdnest;
496 	int savegdtrap;
497 
498 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
499 	    panic("lwkt_switch: cannot switch from within "
500 		  "a fast interrupt, yet, td %p\n", td);
501 	} else {
502 	    savegdnest = gd->gd_intr_nesting_level;
503 	    savegdtrap = gd->gd_trap_nesting_level;
504 	    gd->gd_intr_nesting_level = 0;
505 	    gd->gd_trap_nesting_level = 0;
506 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
507 		td->td_flags |= TDF_PANICWARN;
508 		kprintf("Warning: thread switch from interrupt or IPI, "
509 			"thread %p (%s)\n", td, td->td_comm);
510 		print_backtrace();
511 	    }
512 	    lwkt_switch();
513 	    gd->gd_intr_nesting_level = savegdnest;
514 	    gd->gd_trap_nesting_level = savegdtrap;
515 	    return;
516 	}
517     }
518 
519     /*
520      * Passive release (used to transition from user to kernel mode
521      * when we block or switch rather then when we enter the kernel).
522      * This function is NOT called if we are switching into a preemption
523      * or returning from a preemption.  Typically this causes us to lose
524      * our current process designation (if we have one) and become a true
525      * LWKT thread, and may also hand the current process designation to
526      * another process and schedule thread.
527      */
528     if (td->td_release)
529 	    td->td_release(td);
530 
531     crit_enter_gd(gd);
532     if (td->td_toks)
533 	    lwkt_relalltokens(td);
534 
535     /*
536      * We had better not be holding any spin locks, but don't get into an
537      * endless panic loop.
538      */
539     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
540 	    ("lwkt_switch: still holding a shared spinlock %p!",
541 	     gd->gd_spinlock_rd));
542     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
543 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
544 	     gd->gd_spinlocks_wr));
545 
546 
547 #ifdef SMP
548     /*
549      * td_mpcount cannot be used to determine if we currently hold the
550      * MP lock because get_mplock() will increment it prior to attempting
551      * to get the lock, and switch out if it can't.  Our ownership of
552      * the actual lock will remain stable while we are in a critical section
553      * (but, of course, another cpu may own or release the lock so the
554      * actual value of mp_lock is not stable).
555      */
556     mpheld = MP_LOCK_HELD();
557 #ifdef	INVARIANTS
558     if (td->td_cscount) {
559 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
560 		td);
561 	if (panic_on_cscount)
562 	    panic("switching while mastering cpusync");
563     }
564 #endif
565 #endif
566     if ((ntd = td->td_preempted) != NULL) {
567 	/*
568 	 * We had preempted another thread on this cpu, resume the preempted
569 	 * thread.  This occurs transparently, whether the preempted thread
570 	 * was scheduled or not (it may have been preempted after descheduling
571 	 * itself).
572 	 *
573 	 * We have to setup the MP lock for the original thread after backing
574 	 * out the adjustment that was made to curthread when the original
575 	 * was preempted.
576 	 */
577 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
578 #ifdef SMP
579 	if (ntd->td_mpcount && mpheld == 0) {
580 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
581 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
582 	}
583 	if (ntd->td_mpcount) {
584 	    td->td_mpcount -= ntd->td_mpcount;
585 	    KKASSERT(td->td_mpcount >= 0);
586 	}
587 #endif
588 	ntd->td_flags |= TDF_PREEMPT_DONE;
589 
590 	/*
591 	 * The interrupt may have woken a thread up, we need to properly
592 	 * set the reschedule flag if the originally interrupted thread is
593 	 * at a lower priority.
594 	 */
595 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
596 	    need_lwkt_resched();
597 	/* YYY release mp lock on switchback if original doesn't need it */
598     } else {
599 	/*
600 	 * Priority queue / round-robin at each priority.  Note that user
601 	 * processes run at a fixed, low priority and the user process
602 	 * scheduler deals with interactions between user processes
603 	 * by scheduling and descheduling them from the LWKT queue as
604 	 * necessary.
605 	 *
606 	 * We have to adjust the MP lock for the target thread.  If we
607 	 * need the MP lock and cannot obtain it we try to locate a
608 	 * thread that does not need the MP lock.  If we cannot, we spin
609 	 * instead of HLT.
610 	 *
611 	 * A similar issue exists for the tokens held by the target thread.
612 	 * If we cannot obtain ownership of the tokens we cannot immediately
613 	 * schedule the thread.
614 	 */
615 
616 	/*
617 	 * If an LWKT reschedule was requested, well that is what we are
618 	 * doing now so clear it.
619 	 */
620 	clear_lwkt_resched();
621 again:
622 	if (gd->gd_runqmask) {
623 	    int nq = bsrl(gd->gd_runqmask);
624 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
625 		gd->gd_runqmask &= ~(1 << nq);
626 		goto again;
627 	    }
628 #ifdef SMP
629 	    /*
630 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
631 	     *
632 	     * If the target needs the MP lock and we couldn't get it,
633 	     * or if the target is holding tokens and we could not
634 	     * gain ownership of the tokens, continue looking for a
635 	     * thread to schedule and spin instead of HLT if we can't.
636 	     *
637 	     * NOTE: the mpheld variable invalid after this conditional, it
638 	     * can change due to both cpu_try_mplock() returning success
639 	     * AND interactions in lwkt_getalltokens() due to the fact that
640 	     * we are trying to check the mpcount of a thread other then
641 	     * the current thread.  Because of this, if the current thread
642 	     * is not holding td_mpcount, an IPI indirectly run via
643 	     * lwkt_getalltokens() can obtain and release the MP lock and
644 	     * cause the core MP lock to be released.
645 	     */
646 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
647 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
648 	    ) {
649 		u_int32_t rqmask = gd->gd_runqmask;
650 
651 		mpheld = MP_LOCK_HELD();
652 		ntd = NULL;
653 		while (rqmask) {
654 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
655 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
656 			    /* spinning due to MP lock being held */
657 #ifdef	INVARIANTS
658 			    ++mplock_contention_count;
659 #endif
660 			    /* mplock still not held, 'mpheld' still valid */
661 			    continue;
662 			}
663 
664 			/*
665 			 * mpheld state invalid after getalltokens call returns
666 			 * failure, but the variable is only needed for
667 			 * the loop.
668 			 */
669 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
670 			    /* spinning due to token contention */
671 #ifdef	INVARIANTS
672 			    ++token_contention_count;
673 #endif
674 			    mpheld = MP_LOCK_HELD();
675 			    continue;
676 			}
677 			break;
678 		    }
679 		    if (ntd)
680 			break;
681 		    rqmask &= ~(1 << nq);
682 		    nq = bsrl(rqmask);
683 
684 		    /*
685 		     * We have two choices. We can either refuse to run a
686 		     * user thread when a kernel thread needs the MP lock
687 		     * but could not get it, or we can allow it to run but
688 		     * then expect an IPI (hopefully) later on to force a
689 		     * reschedule when the MP lock might become available.
690 		     */
691 		    if (nq < TDPRI_KERN_LPSCHED) {
692 			if (chain_mplock == 0)
693 				break;
694 			atomic_set_int(&mp_lock_contention_mask,
695 				       gd->gd_cpumask);
696 			/* continue loop, allow user threads to be scheduled */
697 		    }
698 		}
699 		if (ntd == NULL) {
700 		    cpu_mplock_contested();
701 		    ntd = &gd->gd_idlethread;
702 		    ntd->td_flags |= TDF_IDLE_NOHLT;
703 		    goto using_idle_thread;
704 		} else {
705 		    ++gd->gd_cnt.v_swtch;
706 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
707 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
708 		}
709 	    } else {
710 		if (ntd->td_mpcount)
711 			++mplock_countx;
712 		++gd->gd_cnt.v_swtch;
713 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
715 	    }
716 #else
717 	    /*
718 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
719 	     * worry about tokens or the BGL.  However, we still have
720 	     * to call lwkt_getalltokens() in order to properly detect
721 	     * stale tokens.  This call cannot fail for a UP build!
722 	     */
723 	    lwkt_getalltokens(ntd);
724 	    ++gd->gd_cnt.v_swtch;
725 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
726 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
727 #endif
728 	} else {
729 	    /*
730 	     * We have nothing to run but only let the idle loop halt
731 	     * the cpu if there are no pending interrupts.
732 	     */
733 	    ntd = &gd->gd_idlethread;
734 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
735 		ntd->td_flags |= TDF_IDLE_NOHLT;
736 #ifdef SMP
737 using_idle_thread:
738 	    /*
739 	     * The idle thread should not be holding the MP lock unless we
740 	     * are trapping in the kernel or in a panic.  Since we select the
741 	     * idle thread unconditionally when no other thread is available,
742 	     * if the MP lock is desired during a panic or kernel trap, we
743 	     * have to loop in the scheduler until we get it.
744 	     */
745 	    if (ntd->td_mpcount) {
746 		mpheld = MP_LOCK_HELD();
747 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
748 		    panic("Idle thread %p was holding the BGL!", ntd);
749 		} else if (mpheld == 0) {
750 		    cpu_mplock_contested();
751 		    goto again;
752 		}
753 	    }
754 #endif
755 	}
756     }
757     KASSERT(ntd->td_pri >= TDPRI_CRIT,
758 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
759 
760     /*
761      * Do the actual switch.  If the new target does not need the MP lock
762      * and we are holding it, release the MP lock.  If the new target requires
763      * the MP lock we have already acquired it for the target.
764      */
765 #ifdef SMP
766     if (ntd->td_mpcount == 0 ) {
767 	if (MP_LOCK_HELD())
768 	    cpu_rel_mplock();
769     } else {
770 	ASSERT_MP_LOCK_HELD(ntd);
771     }
772 #endif
773     if (td != ntd) {
774 	++switch_count;
775 #ifdef __amd64__
776 	KKASSERT(jg_tos_ok(ntd));
777 #endif
778 	td->td_switch(ntd);
779     }
780     /* NOTE: current cpu may have changed after switch */
781     crit_exit_quick(td);
782 }
783 
784 /*
785  * Request that the target thread preempt the current thread.  Preemption
786  * only works under a specific set of conditions:
787  *
788  *	- We are not preempting ourselves
789  *	- The target thread is owned by the current cpu
790  *	- We are not currently being preempted
791  *	- The target is not currently being preempted
792  *	- We are not holding any spin locks
793  *	- The target thread is not holding any tokens
794  *	- We are able to satisfy the target's MP lock requirements (if any).
795  *
796  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
797  * this is called via lwkt_schedule() through the td_preemptable callback.
798  * critpri is the managed critical priority that we should ignore in order
799  * to determine whether preemption is possible (aka usually just the crit
800  * priority of lwkt_schedule() itself).
801  *
802  * XXX at the moment we run the target thread in a critical section during
803  * the preemption in order to prevent the target from taking interrupts
804  * that *WE* can't.  Preemption is strictly limited to interrupt threads
805  * and interrupt-like threads, outside of a critical section, and the
806  * preempted source thread will be resumed the instant the target blocks
807  * whether or not the source is scheduled (i.e. preemption is supposed to
808  * be as transparent as possible).
809  *
810  * The target thread inherits our MP count (added to its own) for the
811  * duration of the preemption in order to preserve the atomicy of the
812  * MP lock during the preemption.  Therefore, any preempting targets must be
813  * careful in regards to MP assertions.  Note that the MP count may be
814  * out of sync with the physical mp_lock, but we do not have to preserve
815  * the original ownership of the lock if it was out of synch (that is, we
816  * can leave it synchronized on return).
817  */
818 void
819 lwkt_preempt(thread_t ntd, int critpri)
820 {
821     struct globaldata *gd = mycpu;
822     thread_t td;
823 #ifdef SMP
824     int mpheld;
825     int savecnt;
826 #endif
827 
828     /*
829      * The caller has put us in a critical section.  We can only preempt
830      * if the caller of the caller was not in a critical section (basically
831      * a local interrupt), as determined by the 'critpri' parameter.  We
832      * also can't preempt if the caller is holding any spinlocks (even if
833      * he isn't in a critical section).  This also handles the tokens test.
834      *
835      * YYY The target thread must be in a critical section (else it must
836      * inherit our critical section?  I dunno yet).
837      *
838      * Set need_lwkt_resched() unconditionally for now YYY.
839      */
840     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
841 
842     td = gd->gd_curthread;
843     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
844 	++preempt_miss;
845 	return;
846     }
847     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
848 	++preempt_miss;
849 	need_lwkt_resched();
850 	return;
851     }
852 #ifdef SMP
853     if (ntd->td_gd != gd) {
854 	++preempt_miss;
855 	need_lwkt_resched();
856 	return;
857     }
858 #endif
859     /*
860      * Take the easy way out and do not preempt if we are holding
861      * any spinlocks.  We could test whether the thread(s) being
862      * preempted interlock against the target thread's tokens and whether
863      * we can get all the target thread's tokens, but this situation
864      * should not occur very often so its easier to simply not preempt.
865      * Also, plain spinlocks are impossible to figure out at this point so
866      * just don't preempt.
867      *
868      * Do not try to preempt if the target thread is holding any tokens.
869      * We could try to acquire the tokens but this case is so rare there
870      * is no need to support it.
871      */
872     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
873 	++preempt_miss;
874 	need_lwkt_resched();
875 	return;
876     }
877     if (ntd->td_toks) {
878 	++preempt_miss;
879 	need_lwkt_resched();
880 	return;
881     }
882     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
883 	++preempt_weird;
884 	need_lwkt_resched();
885 	return;
886     }
887     if (ntd->td_preempted) {
888 	++preempt_hit;
889 	need_lwkt_resched();
890 	return;
891     }
892 #ifdef SMP
893     /*
894      * note: an interrupt might have occured just as we were transitioning
895      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
896      * (non-zero) but not actually synchronized with the actual state of the
897      * lock.  We can use it to imply an MP lock requirement for the
898      * preemption but we cannot use it to test whether we hold the MP lock
899      * or not.
900      */
901     savecnt = td->td_mpcount;
902     mpheld = MP_LOCK_HELD();
903     ntd->td_mpcount += td->td_mpcount;
904     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
905 	ntd->td_mpcount -= td->td_mpcount;
906 	++preempt_miss;
907 	need_lwkt_resched();
908 	return;
909     }
910 #endif
911 
912     /*
913      * Since we are able to preempt the current thread, there is no need to
914      * call need_lwkt_resched().
915      */
916     ++preempt_hit;
917     ntd->td_preempted = td;
918     td->td_flags |= TDF_PREEMPT_LOCK;
919     td->td_switch(ntd);
920 
921     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
922 #ifdef SMP
923     KKASSERT(savecnt == td->td_mpcount);
924     mpheld = MP_LOCK_HELD();
925     if (mpheld && td->td_mpcount == 0)
926 	cpu_rel_mplock();
927     else if (mpheld == 0 && td->td_mpcount)
928 	panic("lwkt_preempt(): MP lock was not held through");
929 #endif
930     ntd->td_preempted = NULL;
931     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
932 }
933 
934 /*
935  * Yield our thread while higher priority threads are pending.  This is
936  * typically called when we leave a critical section but it can be safely
937  * called while we are in a critical section.
938  *
939  * This function will not generally yield to equal priority threads but it
940  * can occur as a side effect.  Note that lwkt_switch() is called from
941  * inside the critical section to prevent its own crit_exit() from reentering
942  * lwkt_yield_quick().
943  *
944  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
945  * came along but was blocked and made pending.
946  *
947  * (self contained on a per cpu basis)
948  */
949 void
950 lwkt_yield_quick(void)
951 {
952     globaldata_t gd = mycpu;
953     thread_t td = gd->gd_curthread;
954 
955     /*
956      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
957      * it with a non-zero cpl then we might not wind up calling splz after
958      * a task switch when the critical section is exited even though the
959      * new task could accept the interrupt.
960      *
961      * XXX from crit_exit() only called after last crit section is released.
962      * If called directly will run splz() even if in a critical section.
963      *
964      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
965      * except for this special case, we MUST call splz() here to handle any
966      * pending ints, particularly after we switch, or we might accidently
967      * halt the cpu with interrupts pending.
968      */
969     if (gd->gd_reqflags && td->td_nest_count < 2)
970 	splz();
971 
972     /*
973      * YYY enabling will cause wakeup() to task-switch, which really
974      * confused the old 4.x code.  This is a good way to simulate
975      * preemption and MP without actually doing preemption or MP, because a
976      * lot of code assumes that wakeup() does not block.
977      */
978     if (untimely_switch && td->td_nest_count == 0 &&
979 	gd->gd_intr_nesting_level == 0
980     ) {
981 	crit_enter_quick(td);
982 	/*
983 	 * YYY temporary hacks until we disassociate the userland scheduler
984 	 * from the LWKT scheduler.
985 	 */
986 	if (td->td_flags & TDF_RUNQ) {
987 	    lwkt_switch();		/* will not reenter yield function */
988 	} else {
989 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
990 	    lwkt_switch();		/* will not reenter yield function */
991 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
992 	}
993 	crit_exit_noyield(td);
994     }
995 }
996 
997 /*
998  * This implements a normal yield which, unlike _quick, will yield to equal
999  * priority threads as well.  Note that gd_reqflags tests will be handled by
1000  * the crit_exit() call in lwkt_switch().
1001  *
1002  * (self contained on a per cpu basis)
1003  */
1004 void
1005 lwkt_yield(void)
1006 {
1007     lwkt_schedule_self(curthread);
1008     lwkt_switch();
1009 }
1010 
1011 /*
1012  * This function is used along with the lwkt_passive_recover() inline
1013  * by the trap code to negotiate a passive release of the current
1014  * process/lwp designation with the user scheduler.
1015  */
1016 void
1017 lwkt_passive_release(struct thread *td)
1018 {
1019     struct lwp *lp = td->td_lwp;
1020 
1021     td->td_release = NULL;
1022     lwkt_setpri_self(TDPRI_KERN_USER);
1023     lp->lwp_proc->p_usched->release_curproc(lp);
1024 }
1025 
1026 /*
1027  * Make a kernel thread act as if it were in user mode with regards
1028  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
1029  * loops which may be potentially cpu-bound can call lwkt_user_yield().
1030  *
1031  * The lwkt_user_yield() function is designed to have very low overhead
1032  * if no yield is determined to be needed.
1033  */
1034 void
1035 lwkt_user_yield(void)
1036 {
1037     thread_t td = curthread;
1038     struct lwp *lp = td->td_lwp;
1039 
1040 #ifdef SMP
1041     /*
1042      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1043      * kernel can prevent other cpus from servicing interrupt threads
1044      * which still require the MP lock (which is a lot of them).  This
1045      * has a chaining effect since if the interrupt is blocked, so is
1046      * the event, so normal scheduling will not pick up on the problem.
1047      */
1048     if (mplock_countx && td->td_mpcount) {
1049 	int savecnt = td->td_mpcount;
1050 
1051 	td->td_mpcount = 1;
1052 	rel_mplock();
1053 	DELAY(10);
1054 	get_mplock();
1055 	td->td_mpcount = savecnt;
1056 	mplock_countx = 0;
1057     }
1058 #endif
1059 
1060     /*
1061      * Another kernel thread wants the cpu
1062      */
1063     if (lwkt_resched_wanted())
1064 	lwkt_switch();
1065 
1066     /*
1067      * If the user scheduler has asynchronously determined that the current
1068      * process (when running in user mode) needs to lose the cpu then make
1069      * sure we are released.
1070      */
1071     if (user_resched_wanted()) {
1072 	if (td->td_release)
1073 	    td->td_release(td);
1074     }
1075 
1076     /*
1077      * If we are released reduce our priority
1078      */
1079     if (td->td_release == NULL) {
1080 	if (lwkt_check_resched(td) > 0)
1081 		lwkt_switch();
1082 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1083 	td->td_release = lwkt_passive_release;
1084 	lwkt_setpri_self(TDPRI_USER_NORM);
1085     }
1086 }
1087 
1088 /*
1089  * Return 0 if no runnable threads are pending at the same or higher
1090  * priority as the passed thread.
1091  *
1092  * Return 1 if runnable threads are pending at the same priority.
1093  *
1094  * Return 2 if runnable threads are pending at a higher priority.
1095  */
1096 int
1097 lwkt_check_resched(thread_t td)
1098 {
1099 	int pri = td->td_pri & TDPRI_MASK;
1100 
1101 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1102 		return(2);
1103 	if (TAILQ_NEXT(td, td_threadq))
1104 		return(1);
1105 	return(0);
1106 }
1107 
1108 /*
1109  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1110  * deal with threads that might be blocked on a wait queue.
1111  *
1112  * We have a little helper inline function which does additional work after
1113  * the thread has been enqueued, including dealing with preemption and
1114  * setting need_lwkt_resched() (which prevents the kernel from returning
1115  * to userland until it has processed higher priority threads).
1116  *
1117  * It is possible for this routine to be called after a failed _enqueue
1118  * (due to the target thread migrating, sleeping, or otherwise blocked).
1119  * We have to check that the thread is actually on the run queue!
1120  *
1121  * reschedok is an optimized constant propagated from lwkt_schedule() or
1122  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1123  * reschedule to be requested if the target thread has a higher priority.
1124  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1125  * be 0, prevented undesired reschedules.
1126  */
1127 static __inline
1128 void
1129 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1130 {
1131     thread_t otd;
1132 
1133     if (ntd->td_flags & TDF_RUNQ) {
1134 	if (ntd->td_preemptable && reschedok) {
1135 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1136 	} else if (reschedok) {
1137 	    otd = curthread;
1138 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1139 		need_lwkt_resched();
1140 	}
1141     }
1142 }
1143 
1144 static __inline
1145 void
1146 _lwkt_schedule(thread_t td, int reschedok)
1147 {
1148     globaldata_t mygd = mycpu;
1149 
1150     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1151     crit_enter_gd(mygd);
1152     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1153     if (td == mygd->gd_curthread) {
1154 	_lwkt_enqueue(td);
1155     } else {
1156 	/*
1157 	 * If we own the thread, there is no race (since we are in a
1158 	 * critical section).  If we do not own the thread there might
1159 	 * be a race but the target cpu will deal with it.
1160 	 */
1161 #ifdef SMP
1162 	if (td->td_gd == mygd) {
1163 	    _lwkt_enqueue(td);
1164 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1165 	} else {
1166 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1167 	}
1168 #else
1169 	_lwkt_enqueue(td);
1170 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1171 #endif
1172     }
1173     crit_exit_gd(mygd);
1174 }
1175 
1176 void
1177 lwkt_schedule(thread_t td)
1178 {
1179     _lwkt_schedule(td, 1);
1180 }
1181 
1182 void
1183 lwkt_schedule_noresched(thread_t td)
1184 {
1185     _lwkt_schedule(td, 0);
1186 }
1187 
1188 #ifdef SMP
1189 
1190 /*
1191  * Thread migration using a 'Pull' method.  The thread may or may not be
1192  * the current thread.  It MUST be descheduled and in a stable state.
1193  * lwkt_giveaway() must be called on the cpu owning the thread.
1194  *
1195  * At any point after lwkt_giveaway() is called, the target cpu may
1196  * 'pull' the thread by calling lwkt_acquire().
1197  *
1198  * MPSAFE - must be called under very specific conditions.
1199  */
1200 void
1201 lwkt_giveaway(thread_t td)
1202 {
1203 	globaldata_t gd = mycpu;
1204 
1205 	crit_enter_gd(gd);
1206 	KKASSERT(td->td_gd == gd);
1207 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1208 	td->td_flags |= TDF_MIGRATING;
1209 	crit_exit_gd(gd);
1210 }
1211 
1212 void
1213 lwkt_acquire(thread_t td)
1214 {
1215     globaldata_t gd;
1216     globaldata_t mygd;
1217 
1218     KKASSERT(td->td_flags & TDF_MIGRATING);
1219     gd = td->td_gd;
1220     mygd = mycpu;
1221     if (gd != mycpu) {
1222 	cpu_lfence();
1223 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1224 	crit_enter_gd(mygd);
1225 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1226 #ifdef SMP
1227 	    lwkt_process_ipiq();
1228 #endif
1229 	    cpu_lfence();
1230 	}
1231 	td->td_gd = mygd;
1232 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1233 	td->td_flags &= ~TDF_MIGRATING;
1234 	crit_exit_gd(mygd);
1235     } else {
1236 	crit_enter_gd(mygd);
1237 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1238 	td->td_flags &= ~TDF_MIGRATING;
1239 	crit_exit_gd(mygd);
1240     }
1241 }
1242 
1243 #endif
1244 
1245 /*
1246  * Generic deschedule.  Descheduling threads other then your own should be
1247  * done only in carefully controlled circumstances.  Descheduling is
1248  * asynchronous.
1249  *
1250  * This function may block if the cpu has run out of messages.
1251  */
1252 void
1253 lwkt_deschedule(thread_t td)
1254 {
1255     crit_enter();
1256 #ifdef SMP
1257     if (td == curthread) {
1258 	_lwkt_dequeue(td);
1259     } else {
1260 	if (td->td_gd == mycpu) {
1261 	    _lwkt_dequeue(td);
1262 	} else {
1263 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1264 	}
1265     }
1266 #else
1267     _lwkt_dequeue(td);
1268 #endif
1269     crit_exit();
1270 }
1271 
1272 /*
1273  * Set the target thread's priority.  This routine does not automatically
1274  * switch to a higher priority thread, LWKT threads are not designed for
1275  * continuous priority changes.  Yield if you want to switch.
1276  *
1277  * We have to retain the critical section count which uses the high bits
1278  * of the td_pri field.  The specified priority may also indicate zero or
1279  * more critical sections by adding TDPRI_CRIT*N.
1280  *
1281  * Note that we requeue the thread whether it winds up on a different runq
1282  * or not.  uio_yield() depends on this and the routine is not normally
1283  * called with the same priority otherwise.
1284  */
1285 void
1286 lwkt_setpri(thread_t td, int pri)
1287 {
1288     KKASSERT(pri >= 0);
1289     KKASSERT(td->td_gd == mycpu);
1290     crit_enter();
1291     if (td->td_flags & TDF_RUNQ) {
1292 	_lwkt_dequeue(td);
1293 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1294 	_lwkt_enqueue(td);
1295     } else {
1296 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1297     }
1298     crit_exit();
1299 }
1300 
1301 void
1302 lwkt_setpri_self(int pri)
1303 {
1304     thread_t td = curthread;
1305 
1306     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1307     crit_enter();
1308     if (td->td_flags & TDF_RUNQ) {
1309 	_lwkt_dequeue(td);
1310 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1311 	_lwkt_enqueue(td);
1312     } else {
1313 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1314     }
1315     crit_exit();
1316 }
1317 
1318 /*
1319  * Migrate the current thread to the specified cpu.
1320  *
1321  * This is accomplished by descheduling ourselves from the current cpu,
1322  * moving our thread to the tdallq of the target cpu, IPI messaging the
1323  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1324  * races while the thread is being migrated.
1325  */
1326 #ifdef SMP
1327 static void lwkt_setcpu_remote(void *arg);
1328 #endif
1329 
1330 void
1331 lwkt_setcpu_self(globaldata_t rgd)
1332 {
1333 #ifdef SMP
1334     thread_t td = curthread;
1335 
1336     if (td->td_gd != rgd) {
1337 	crit_enter_quick(td);
1338 	td->td_flags |= TDF_MIGRATING;
1339 	lwkt_deschedule_self(td);
1340 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1341 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1342 	lwkt_switch();
1343 	/* we are now on the target cpu */
1344 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1345 	crit_exit_quick(td);
1346     }
1347 #endif
1348 }
1349 
1350 void
1351 lwkt_migratecpu(int cpuid)
1352 {
1353 #ifdef SMP
1354 	globaldata_t rgd;
1355 
1356 	rgd = globaldata_find(cpuid);
1357 	lwkt_setcpu_self(rgd);
1358 #endif
1359 }
1360 
1361 /*
1362  * Remote IPI for cpu migration (called while in a critical section so we
1363  * do not have to enter another one).  The thread has already been moved to
1364  * our cpu's allq, but we must wait for the thread to be completely switched
1365  * out on the originating cpu before we schedule it on ours or the stack
1366  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1367  * change to main memory.
1368  *
1369  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1370  * against wakeups.  It is best if this interface is used only when there
1371  * are no pending events that might try to schedule the thread.
1372  */
1373 #ifdef SMP
1374 static void
1375 lwkt_setcpu_remote(void *arg)
1376 {
1377     thread_t td = arg;
1378     globaldata_t gd = mycpu;
1379 
1380     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1381 #ifdef SMP
1382 	lwkt_process_ipiq();
1383 #endif
1384 	cpu_lfence();
1385     }
1386     td->td_gd = gd;
1387     cpu_sfence();
1388     td->td_flags &= ~TDF_MIGRATING;
1389     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1390     _lwkt_enqueue(td);
1391 }
1392 #endif
1393 
1394 struct lwp *
1395 lwkt_preempted_proc(void)
1396 {
1397     thread_t td = curthread;
1398     while (td->td_preempted)
1399 	td = td->td_preempted;
1400     return(td->td_lwp);
1401 }
1402 
1403 /*
1404  * Create a kernel process/thread/whatever.  It shares it's address space
1405  * with proc0 - ie: kernel only.
1406  *
1407  * NOTE!  By default new threads are created with the MP lock held.  A
1408  * thread which does not require the MP lock should release it by calling
1409  * rel_mplock() at the start of the new thread.
1410  */
1411 int
1412 lwkt_create(void (*func)(void *), void *arg,
1413     struct thread **tdp, thread_t template, int tdflags, int cpu,
1414     const char *fmt, ...)
1415 {
1416     thread_t td;
1417     __va_list ap;
1418 
1419     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1420 			   tdflags);
1421     if (tdp)
1422 	*tdp = td;
1423     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1424 
1425     /*
1426      * Set up arg0 for 'ps' etc
1427      */
1428     __va_start(ap, fmt);
1429     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1430     __va_end(ap);
1431 
1432     /*
1433      * Schedule the thread to run
1434      */
1435     if ((td->td_flags & TDF_STOPREQ) == 0)
1436 	lwkt_schedule(td);
1437     else
1438 	td->td_flags &= ~TDF_STOPREQ;
1439     return 0;
1440 }
1441 
1442 /*
1443  * Destroy an LWKT thread.   Warning!  This function is not called when
1444  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1445  * uses a different reaping mechanism.
1446  */
1447 void
1448 lwkt_exit(void)
1449 {
1450     thread_t td = curthread;
1451     thread_t std;
1452     globaldata_t gd;
1453 
1454     if (td->td_flags & TDF_VERBOSE)
1455 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1456     caps_exit(td);
1457 
1458     /*
1459      * Get us into a critical section to interlock gd_freetd and loop
1460      * until we can get it freed.
1461      *
1462      * We have to cache the current td in gd_freetd because objcache_put()ing
1463      * it would rip it out from under us while our thread is still active.
1464      */
1465     gd = mycpu;
1466     crit_enter_quick(td);
1467     while ((std = gd->gd_freetd) != NULL) {
1468 	gd->gd_freetd = NULL;
1469 	objcache_put(thread_cache, std);
1470     }
1471     lwkt_deschedule_self(td);
1472     lwkt_remove_tdallq(td);
1473     if (td->td_flags & TDF_ALLOCATED_THREAD)
1474 	gd->gd_freetd = td;
1475     cpu_thread_exit();
1476 }
1477 
1478 void
1479 lwkt_remove_tdallq(thread_t td)
1480 {
1481     KKASSERT(td->td_gd == mycpu);
1482     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1483 }
1484 
1485 void
1486 crit_panic(void)
1487 {
1488     thread_t td = curthread;
1489     int lpri = td->td_pri;
1490 
1491     td->td_pri = 0;
1492     panic("td_pri is/would-go negative! %p %d", td, lpri);
1493 }
1494 
1495 #ifdef SMP
1496 
1497 /*
1498  * Called from debugger/panic on cpus which have been stopped.  We must still
1499  * process the IPIQ while stopped, even if we were stopped while in a critical
1500  * section (XXX).
1501  *
1502  * If we are dumping also try to process any pending interrupts.  This may
1503  * or may not work depending on the state of the cpu at the point it was
1504  * stopped.
1505  */
1506 void
1507 lwkt_smp_stopped(void)
1508 {
1509     globaldata_t gd = mycpu;
1510 
1511     crit_enter_gd(gd);
1512     if (dumping) {
1513 	lwkt_process_ipiq();
1514 	splz();
1515     } else {
1516 	lwkt_process_ipiq();
1517     }
1518     crit_exit_gd(gd);
1519 }
1520 
1521 /*
1522  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1523  * get_mplock() has already incremented td_mpcount.  We must block and
1524  * not return until giant is held.
1525  *
1526  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1527  * reschedule the thread until it can obtain the giant lock for it.
1528  */
1529 void
1530 lwkt_mp_lock_contested(void)
1531 {
1532     ++mplock_countx;
1533     loggiant(beg);
1534     lwkt_switch();
1535     loggiant(end);
1536 }
1537 
1538 /*
1539  * The rel_mplock() code will call this function after releasing the
1540  * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1541  *
1542  * We then chain an IPI to a single other cpu potentially needing the
1543  * lock.  This is a bit heuristical and we can wind up with IPIs flying
1544  * all over the place.
1545  */
1546 static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1547 
1548 void
1549 lwkt_mp_lock_uncontested(void)
1550 {
1551     globaldata_t gd;
1552     globaldata_t dgd;
1553     cpumask_t mask;
1554     cpumask_t tmpmask;
1555     int cpuid;
1556 
1557     if (chain_mplock) {
1558 	gd = mycpu;
1559 	atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1560 	mask = mp_lock_contention_mask;
1561 	tmpmask = ~((1 << gd->gd_cpuid) - 1);
1562 
1563 	if (mask) {
1564 	    if (mask & tmpmask)
1565 		    cpuid = bsfl(mask & tmpmask);
1566 	    else
1567 		    cpuid = bsfl(mask);
1568 	    atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1569 	    dgd = globaldata_find(cpuid);
1570 	    lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1571 	}
1572     }
1573 }
1574 
1575 /*
1576  * The idea is for this IPI to interrupt a potentially lower priority
1577  * thread, such as a user thread, to allow the scheduler to reschedule
1578  * a higher priority kernel thread that needs the MP lock.
1579  *
1580  * For now we set the LWKT reschedule flag which generates an AST in
1581  * doreti, though theoretically it is also possible to possibly preempt
1582  * here if the underlying thread was operating in user mode.  Nah.
1583  */
1584 static void
1585 lwkt_mp_lock_uncontested_remote(void *arg __unused)
1586 {
1587 	need_lwkt_resched();
1588 }
1589 
1590 #endif
1591