1 /* 2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Each cpu in a system has its own self-contained light weight kernel 37 * thread scheduler, which means that generally speaking we only need 38 * to use a critical section to avoid problems. Foreign thread 39 * scheduling is queued via (async) IPIs. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/rtprio.h> 47 #include <sys/kinfo.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 #include <machine/cpu.h> 52 #include <sys/lock.h> 53 #include <sys/caps.h> 54 #include <sys/spinlock.h> 55 #include <sys/ktr.h> 56 57 #include <sys/thread2.h> 58 #include <sys/spinlock2.h> 59 #include <sys/mplock2.h> 60 61 #include <sys/dsched.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_pager.h> 70 #include <vm/vm_extern.h> 71 72 #include <machine/stdarg.h> 73 #include <machine/smp.h> 74 75 #if !defined(KTR_CTXSW) 76 #define KTR_CTXSW KTR_ALL 77 #endif 78 KTR_INFO_MASTER(ctxsw); 79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", 80 sizeof(int) + sizeof(struct thread *)); 81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", 82 sizeof(int) + sizeof(struct thread *)); 83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", 84 sizeof (struct thread *) + sizeof(char *)); 85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *)); 86 87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads"); 88 89 #ifdef INVARIANTS 90 static int panic_on_cscount = 0; 91 #endif 92 static __int64_t switch_count = 0; 93 static __int64_t preempt_hit = 0; 94 static __int64_t preempt_miss = 0; 95 static __int64_t preempt_weird = 0; 96 static __int64_t token_contention_count __debugvar = 0; 97 static int lwkt_use_spin_port; 98 static struct objcache *thread_cache; 99 100 #ifdef SMP 101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame); 102 #endif 103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td); 104 105 extern void cpu_heavy_restore(void); 106 extern void cpu_lwkt_restore(void); 107 extern void cpu_kthread_restore(void); 108 extern void cpu_idle_restore(void); 109 110 /* 111 * We can make all thread ports use the spin backend instead of the thread 112 * backend. This should only be set to debug the spin backend. 113 */ 114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port); 115 116 #ifdef INVARIANTS 117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, 118 "Panic if attempting to switch lwkt's while mastering cpusync"); 119 #endif 120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, 121 "Number of switched threads"); 122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 123 "Successful preemption events"); 124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 125 "Failed preemption events"); 126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, 127 "Number of preempted threads."); 128 #ifdef INVARIANTS 129 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW, 130 &token_contention_count, 0, "spinning due to token contention"); 131 #endif 132 static int fairq_enable = 1; 133 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, 134 &fairq_enable, 0, "Turn on fairq priority accumulators"); 135 static int lwkt_spin_loops = 10; 136 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW, 137 &lwkt_spin_loops, 0, ""); 138 static int lwkt_spin_delay = 1; 139 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW, 140 &lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto"); 141 static int lwkt_spin_method = 1; 142 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW, 143 &lwkt_spin_method, 0, "LWKT scheduler behavior when contended"); 144 static int lwkt_spin_fatal = 0; /* disabled */ 145 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW, 146 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic"); 147 static int preempt_enable = 1; 148 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, 149 &preempt_enable, 0, "Enable preemption"); 150 151 static __cachealign int lwkt_cseq_rindex; 152 static __cachealign int lwkt_cseq_windex; 153 154 /* 155 * These helper procedures handle the runq, they can only be called from 156 * within a critical section. 157 * 158 * WARNING! Prior to SMP being brought up it is possible to enqueue and 159 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 160 * instead of 'mycpu' when referencing the globaldata structure. Once 161 * SMP live enqueuing and dequeueing only occurs on the current cpu. 162 */ 163 static __inline 164 void 165 _lwkt_dequeue(thread_t td) 166 { 167 if (td->td_flags & TDF_RUNQ) { 168 struct globaldata *gd = td->td_gd; 169 170 td->td_flags &= ~TDF_RUNQ; 171 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 172 gd->gd_fairq_total_pri -= td->td_pri; 173 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL) 174 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING); 175 } 176 } 177 178 /* 179 * Priority enqueue. 180 * 181 * NOTE: There are a limited number of lwkt threads runnable since user 182 * processes only schedule one at a time per cpu. 183 */ 184 static __inline 185 void 186 _lwkt_enqueue(thread_t td) 187 { 188 thread_t xtd; 189 190 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) { 191 struct globaldata *gd = td->td_gd; 192 193 td->td_flags |= TDF_RUNQ; 194 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 195 if (xtd == NULL) { 196 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 197 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING); 198 } else { 199 while (xtd && xtd->td_pri > td->td_pri) 200 xtd = TAILQ_NEXT(xtd, td_threadq); 201 if (xtd) 202 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 203 else 204 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 205 } 206 gd->gd_fairq_total_pri += td->td_pri; 207 } 208 } 209 210 static __boolean_t 211 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags) 212 { 213 struct thread *td = (struct thread *)obj; 214 215 td->td_kstack = NULL; 216 td->td_kstack_size = 0; 217 td->td_flags = TDF_ALLOCATED_THREAD; 218 return (1); 219 } 220 221 static void 222 _lwkt_thread_dtor(void *obj, void *privdata) 223 { 224 struct thread *td = (struct thread *)obj; 225 226 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD, 227 ("_lwkt_thread_dtor: not allocated from objcache")); 228 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack && 229 td->td_kstack_size > 0, 230 ("_lwkt_thread_dtor: corrupted stack")); 231 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 232 } 233 234 /* 235 * Initialize the lwkt s/system. 236 */ 237 void 238 lwkt_init(void) 239 { 240 /* An objcache has 2 magazines per CPU so divide cache size by 2. */ 241 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread), 242 NULL, CACHE_NTHREADS/2, 243 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL); 244 } 245 246 /* 247 * Schedule a thread to run. As the current thread we can always safely 248 * schedule ourselves, and a shortcut procedure is provided for that 249 * function. 250 * 251 * (non-blocking, self contained on a per cpu basis) 252 */ 253 void 254 lwkt_schedule_self(thread_t td) 255 { 256 crit_enter_quick(td); 257 KASSERT(td != &td->td_gd->gd_idlethread, 258 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 259 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 260 _lwkt_enqueue(td); 261 crit_exit_quick(td); 262 } 263 264 /* 265 * Deschedule a thread. 266 * 267 * (non-blocking, self contained on a per cpu basis) 268 */ 269 void 270 lwkt_deschedule_self(thread_t td) 271 { 272 crit_enter_quick(td); 273 _lwkt_dequeue(td); 274 crit_exit_quick(td); 275 } 276 277 /* 278 * LWKTs operate on a per-cpu basis 279 * 280 * WARNING! Called from early boot, 'mycpu' may not work yet. 281 */ 282 void 283 lwkt_gdinit(struct globaldata *gd) 284 { 285 TAILQ_INIT(&gd->gd_tdrunq); 286 TAILQ_INIT(&gd->gd_tdallq); 287 } 288 289 /* 290 * Create a new thread. The thread must be associated with a process context 291 * or LWKT start address before it can be scheduled. If the target cpu is 292 * -1 the thread will be created on the current cpu. 293 * 294 * If you intend to create a thread without a process context this function 295 * does everything except load the startup and switcher function. 296 */ 297 thread_t 298 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags) 299 { 300 globaldata_t gd = mycpu; 301 void *stack; 302 303 /* 304 * If static thread storage is not supplied allocate a thread. Reuse 305 * a cached free thread if possible. gd_freetd is used to keep an exiting 306 * thread intact through the exit. 307 */ 308 if (td == NULL) { 309 crit_enter_gd(gd); 310 if ((td = gd->gd_freetd) != NULL) { 311 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 312 TDF_RUNQ)) == 0); 313 gd->gd_freetd = NULL; 314 } else { 315 td = objcache_get(thread_cache, M_WAITOK); 316 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 317 TDF_RUNQ)) == 0); 318 } 319 crit_exit_gd(gd); 320 KASSERT((td->td_flags & 321 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD, 322 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags)); 323 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK); 324 } 325 326 /* 327 * Try to reuse cached stack. 328 */ 329 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 330 if (flags & TDF_ALLOCATED_STACK) { 331 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size); 332 stack = NULL; 333 } 334 } 335 if (stack == NULL) { 336 stack = (void *)kmem_alloc_stack(&kernel_map, stksize); 337 flags |= TDF_ALLOCATED_STACK; 338 } 339 if (cpu < 0) 340 lwkt_init_thread(td, stack, stksize, flags, gd); 341 else 342 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 343 return(td); 344 } 345 346 /* 347 * Initialize a preexisting thread structure. This function is used by 348 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 349 * 350 * All threads start out in a critical section at a priority of 351 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 352 * appropriate. This function may send an IPI message when the 353 * requested cpu is not the current cpu and consequently gd_tdallq may 354 * not be initialized synchronously from the point of view of the originating 355 * cpu. 356 * 357 * NOTE! we have to be careful in regards to creating threads for other cpus 358 * if SMP has not yet been activated. 359 */ 360 #ifdef SMP 361 362 static void 363 lwkt_init_thread_remote(void *arg) 364 { 365 thread_t td = arg; 366 367 /* 368 * Protected by critical section held by IPI dispatch 369 */ 370 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 371 } 372 373 #endif 374 375 /* 376 * lwkt core thread structural initialization. 377 * 378 * NOTE: All threads are initialized as mpsafe threads. 379 */ 380 void 381 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 382 struct globaldata *gd) 383 { 384 globaldata_t mygd = mycpu; 385 386 bzero(td, sizeof(struct thread)); 387 td->td_kstack = stack; 388 td->td_kstack_size = stksize; 389 td->td_flags = flags; 390 td->td_gd = gd; 391 td->td_pri = TDPRI_KERN_DAEMON; 392 td->td_critcount = 1; 393 td->td_toks_stop = &td->td_toks_base; 394 if (lwkt_use_spin_port) 395 lwkt_initport_spin(&td->td_msgport); 396 else 397 lwkt_initport_thread(&td->td_msgport, td); 398 pmap_init_thread(td); 399 #ifdef SMP 400 /* 401 * Normally initializing a thread for a remote cpu requires sending an 402 * IPI. However, the idlethread is setup before the other cpus are 403 * activated so we have to treat it as a special case. XXX manipulation 404 * of gd_tdallq requires the BGL. 405 */ 406 if (gd == mygd || td == &gd->gd_idlethread) { 407 crit_enter_gd(mygd); 408 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 409 crit_exit_gd(mygd); 410 } else { 411 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 412 } 413 #else 414 crit_enter_gd(mygd); 415 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 416 crit_exit_gd(mygd); 417 #endif 418 419 dsched_new_thread(td); 420 } 421 422 void 423 lwkt_set_comm(thread_t td, const char *ctl, ...) 424 { 425 __va_list va; 426 427 __va_start(va, ctl); 428 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 429 __va_end(va); 430 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]); 431 } 432 433 void 434 lwkt_hold(thread_t td) 435 { 436 atomic_add_int(&td->td_refs, 1); 437 } 438 439 void 440 lwkt_rele(thread_t td) 441 { 442 KKASSERT(td->td_refs > 0); 443 atomic_add_int(&td->td_refs, -1); 444 } 445 446 void 447 lwkt_wait_free(thread_t td) 448 { 449 while (td->td_refs) 450 tsleep(td, 0, "tdreap", hz); 451 } 452 453 void 454 lwkt_free_thread(thread_t td) 455 { 456 KKASSERT(td->td_refs == 0); 457 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0); 458 if (td->td_flags & TDF_ALLOCATED_THREAD) { 459 objcache_put(thread_cache, td); 460 } else if (td->td_flags & TDF_ALLOCATED_STACK) { 461 /* client-allocated struct with internally allocated stack */ 462 KASSERT(td->td_kstack && td->td_kstack_size > 0, 463 ("lwkt_free_thread: corrupted stack")); 464 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 465 td->td_kstack = NULL; 466 td->td_kstack_size = 0; 467 } 468 KTR_LOG(ctxsw_deadtd, td); 469 } 470 471 472 /* 473 * Switch to the next runnable lwkt. If no LWKTs are runnable then 474 * switch to the idlethread. Switching must occur within a critical 475 * section to avoid races with the scheduling queue. 476 * 477 * We always have full control over our cpu's run queue. Other cpus 478 * that wish to manipulate our queue must use the cpu_*msg() calls to 479 * talk to our cpu, so a critical section is all that is needed and 480 * the result is very, very fast thread switching. 481 * 482 * The LWKT scheduler uses a fixed priority model and round-robins at 483 * each priority level. User process scheduling is a totally 484 * different beast and LWKT priorities should not be confused with 485 * user process priorities. 486 * 487 * Note that the td_switch() function cannot do anything that requires 488 * the MP lock since the MP lock will have already been setup for 489 * the target thread (not the current thread). It's nice to have a scheduler 490 * that does not need the MP lock to work because it allows us to do some 491 * really cool high-performance MP lock optimizations. 492 * 493 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch() 494 * is not called by the current thread in the preemption case, only when 495 * the preempting thread blocks (in order to return to the original thread). 496 */ 497 void 498 lwkt_switch(void) 499 { 500 globaldata_t gd = mycpu; 501 thread_t td = gd->gd_curthread; 502 thread_t ntd; 503 thread_t xtd; 504 int spinning = lwkt_spin_loops; /* loops before HLTing */ 505 int reqflags; 506 int cseq; 507 int oseq; 508 int fatal_count; 509 510 /* 511 * Switching from within a 'fast' (non thread switched) interrupt or IPI 512 * is illegal. However, we may have to do it anyway if we hit a fatal 513 * kernel trap or we have paniced. 514 * 515 * If this case occurs save and restore the interrupt nesting level. 516 */ 517 if (gd->gd_intr_nesting_level) { 518 int savegdnest; 519 int savegdtrap; 520 521 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) { 522 panic("lwkt_switch: Attempt to switch from a " 523 "a fast interrupt, ipi, or hard code section, " 524 "td %p\n", 525 td); 526 } else { 527 savegdnest = gd->gd_intr_nesting_level; 528 savegdtrap = gd->gd_trap_nesting_level; 529 gd->gd_intr_nesting_level = 0; 530 gd->gd_trap_nesting_level = 0; 531 if ((td->td_flags & TDF_PANICWARN) == 0) { 532 td->td_flags |= TDF_PANICWARN; 533 kprintf("Warning: thread switch from interrupt, IPI, " 534 "or hard code section.\n" 535 "thread %p (%s)\n", td, td->td_comm); 536 print_backtrace(-1); 537 } 538 lwkt_switch(); 539 gd->gd_intr_nesting_level = savegdnest; 540 gd->gd_trap_nesting_level = savegdtrap; 541 return; 542 } 543 } 544 545 /* 546 * Passive release (used to transition from user to kernel mode 547 * when we block or switch rather then when we enter the kernel). 548 * This function is NOT called if we are switching into a preemption 549 * or returning from a preemption. Typically this causes us to lose 550 * our current process designation (if we have one) and become a true 551 * LWKT thread, and may also hand the current process designation to 552 * another process and schedule thread. 553 */ 554 if (td->td_release) 555 td->td_release(td); 556 557 crit_enter_gd(gd); 558 if (TD_TOKS_HELD(td)) 559 lwkt_relalltokens(td); 560 561 /* 562 * We had better not be holding any spin locks, but don't get into an 563 * endless panic loop. 564 */ 565 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 566 ("lwkt_switch: still holding %d exclusive spinlocks!", 567 gd->gd_spinlocks_wr)); 568 569 570 #ifdef SMP 571 #ifdef INVARIANTS 572 if (td->td_cscount) { 573 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 574 td); 575 if (panic_on_cscount) 576 panic("switching while mastering cpusync"); 577 } 578 #endif 579 #endif 580 581 /* 582 * If we had preempted another thread on this cpu, resume the preempted 583 * thread. This occurs transparently, whether the preempted thread 584 * was scheduled or not (it may have been preempted after descheduling 585 * itself). 586 * 587 * We have to setup the MP lock for the original thread after backing 588 * out the adjustment that was made to curthread when the original 589 * was preempted. 590 */ 591 if ((ntd = td->td_preempted) != NULL) { 592 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 593 ntd->td_flags |= TDF_PREEMPT_DONE; 594 595 /* 596 * The interrupt may have woken a thread up, we need to properly 597 * set the reschedule flag if the originally interrupted thread is 598 * at a lower priority. 599 */ 600 if (TAILQ_FIRST(&gd->gd_tdrunq) && 601 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) { 602 need_lwkt_resched(); 603 } 604 /* YYY release mp lock on switchback if original doesn't need it */ 605 goto havethread_preempted; 606 } 607 608 /* 609 * Implement round-robin fairq with priority insertion. The priority 610 * insertion is handled by _lwkt_enqueue() 611 * 612 * We have to adjust the MP lock for the target thread. If we 613 * need the MP lock and cannot obtain it we try to locate a 614 * thread that does not need the MP lock. If we cannot, we spin 615 * instead of HLT. 616 * 617 * A similar issue exists for the tokens held by the target thread. 618 * If we cannot obtain ownership of the tokens we cannot immediately 619 * schedule the thread. 620 */ 621 for (;;) { 622 /* 623 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request) 624 * and set RQF_WAKEUP (prevent unnecessary IPIs from being 625 * received). 626 */ 627 for (;;) { 628 reqflags = gd->gd_reqflags; 629 if (atomic_cmpset_int(&gd->gd_reqflags, reqflags, 630 (reqflags & ~RQF_AST_LWKT_RESCHED) | 631 RQF_WAKEUP)) { 632 break; 633 } 634 } 635 636 /* 637 * Hotpath - pull the head of the run queue and attempt to schedule 638 * it. Fairq exhaustion moves the task to the end of the list. If 639 * no threads are runnable we switch to the idle thread. 640 */ 641 for (;;) { 642 ntd = TAILQ_FIRST(&gd->gd_tdrunq); 643 644 if (ntd == NULL) { 645 /* 646 * Runq is empty, switch to idle and clear RQF_WAKEUP 647 * to allow it to halt. 648 */ 649 ntd = &gd->gd_idlethread; 650 #ifdef SMP 651 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 652 ASSERT_NO_TOKENS_HELD(ntd); 653 #endif 654 cpu_time.cp_msg[0] = 0; 655 cpu_time.cp_stallpc = 0; 656 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 657 goto haveidle; 658 } 659 660 if (ntd->td_fairq_accum >= 0) 661 break; 662 663 splz_check(); 664 lwkt_fairq_accumulate(gd, ntd); 665 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 666 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq); 667 } 668 669 /* 670 * Hotpath - schedule ntd. Leaves RQF_WAKEUP set to prevent 671 * unwanted decontention IPIs. 672 * 673 * NOTE: For UP there is no mplock and lwkt_getalltokens() 674 * always succeeds. 675 */ 676 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 677 goto havethread; 678 679 /* 680 * Coldpath (SMP only since tokens always succeed on UP) 681 * 682 * We had some contention on the thread we wanted to schedule. 683 * What we do now is try to find a thread that we can schedule 684 * in its stead until decontention reschedules on our cpu. 685 * 686 * The coldpath scan does NOT rearrange threads in the run list 687 * and it also ignores the accumulator. 688 * 689 * We do not immediately schedule a user priority thread, instead 690 * we record it in xtd and continue looking for kernel threads. 691 * A cpu can only have one user priority thread (normally) so just 692 * record the first one. 693 * 694 * NOTE: This scan will also include threads whos fairq's were 695 * accumulated in the first loop. 696 */ 697 ++token_contention_count; 698 xtd = NULL; 699 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) { 700 /* 701 * Try to switch to this thread. If the thread is running at 702 * user priority we clear WAKEUP to allow decontention IPIs 703 * (since this thread is simply running until the one we wanted 704 * decontends), and we make sure that LWKT_RESCHED is not set. 705 * 706 * Otherwise for kernel threads we leave WAKEUP set to avoid 707 * unnecessary decontention IPIs. 708 */ 709 if (ntd->td_pri < TDPRI_KERN_LPSCHED) { 710 if (xtd == NULL) 711 xtd = ntd; 712 continue; 713 } 714 715 /* 716 * Do not let the fairq get too negative. Even though we are 717 * ignoring it atm once the scheduler decontends a very negative 718 * thread will get moved to the end of the queue. 719 */ 720 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) { 721 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 722 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 723 goto havethread; 724 } 725 726 /* 727 * Well fubar, this thread is contended as well, loop 728 */ 729 /* */ 730 } 731 732 /* 733 * We exhausted the run list but we may have recorded a user 734 * thread to try. We have three choices based on 735 * lwkt.decontention_method. 736 * 737 * (0) Atomically clear RQF_WAKEUP in order to receive decontention 738 * IPIs (to interrupt the user process) and test 739 * RQF_AST_LWKT_RESCHED at the same time. 740 * 741 * This results in significant decontention IPI traffic but may 742 * be more responsive. 743 * 744 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI. 745 * An automatic LWKT reschedule will occur on the next hardclock 746 * (typically 100hz). 747 * 748 * This results in no decontention IPI traffic but may be less 749 * responsive. This is the default. 750 * 751 * (2) Refuse to schedule the user process at this time. 752 * 753 * This is highly experimental and should not be used under 754 * normal circumstances. This can cause a user process to 755 * get starved out in situations where kernel threads are 756 * fighting each other for tokens. 757 */ 758 if (xtd) { 759 ntd = xtd; 760 761 switch(lwkt_spin_method) { 762 case 0: 763 for (;;) { 764 reqflags = gd->gd_reqflags; 765 if (atomic_cmpset_int(&gd->gd_reqflags, 766 reqflags, 767 reqflags & ~RQF_WAKEUP)) { 768 break; 769 } 770 } 771 break; 772 case 1: 773 reqflags = gd->gd_reqflags; 774 break; 775 default: 776 goto skip; 777 break; 778 } 779 if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 && 780 (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 781 ) { 782 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 783 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 784 goto havethread; 785 } 786 787 skip: 788 /* 789 * Make sure RQF_WAKEUP is set if we failed to schedule the 790 * user thread to prevent the idle thread from halting. 791 */ 792 atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP); 793 } 794 795 /* 796 * We exhausted the run list, meaning that all runnable threads 797 * are contended. 798 */ 799 cpu_pause(); 800 ntd = &gd->gd_idlethread; 801 #ifdef SMP 802 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 803 ASSERT_NO_TOKENS_HELD(ntd); 804 /* contention case, do not clear contention mask */ 805 #endif 806 807 /* 808 * Ok, we might want to spin a few times as some tokens are held for 809 * very short periods of time and IPI overhead is 1uS or worse 810 * (meaning it is usually better to spin). Regardless we have to 811 * call splz_check() to be sure to service any interrupts blocked 812 * by our critical section, otherwise we could livelock e.g. IPIs. 813 * 814 * The IPI mechanic is really a last resort. In nearly all other 815 * cases RQF_WAKEUP is left set to prevent decontention IPIs. 816 * 817 * When we decide not to spin we clear RQF_WAKEUP and switch to 818 * the idle thread. Clearing RQF_WEAKEUP allows the idle thread 819 * to halt and decontended tokens will issue an IPI to us. The 820 * idle thread will check for pending reschedules already set 821 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have 822 * to here. 823 */ 824 if (spinning <= 0) { 825 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 826 goto haveidle; 827 } 828 --spinning; 829 830 /* 831 * When spinning a delay is required both to avoid livelocks from 832 * token order reversals (a thread may be trying to acquire multiple 833 * tokens), and also to reduce cpu cache management traffic. 834 * 835 * In order to scale to a large number of CPUs we use a time slot 836 * resequencer to force contending cpus into non-contending 837 * time-slots. The scheduler may still contend with the lock holder 838 * but will not (generally) contend with all the other cpus trying 839 * trying to get the same token. 840 * 841 * The resequencer uses a FIFO counter mechanic. The owner of the 842 * rindex at the head of the FIFO is allowed to pull itself off 843 * the FIFO and fetchadd is used to enter into the FIFO. This bit 844 * of code is VERY cache friendly and forces all spinning schedulers 845 * into their own time slots. 846 * 847 * This code has been tested to 48-cpus and caps the cache 848 * contention load at ~1uS intervals regardless of the number of 849 * cpus. Scaling beyond 64 cpus might require additional smarts 850 * (such as separate FIFOs for specific token cases). 851 * 852 * WARNING! We can't call splz_check() or anything else here as 853 * it could cause a deadlock. 854 */ 855 #ifdef __amd64__ 856 if ((read_rflags() & PSL_I) == 0) { 857 cpu_enable_intr(); 858 panic("lwkt_switch() called with interrupts disabled"); 859 } 860 #endif 861 cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1); 862 fatal_count = lwkt_spin_fatal; 863 while ((oseq = lwkt_cseq_rindex) != cseq) { 864 cpu_ccfence(); 865 #if !defined(_KERNEL_VIRTUAL) 866 if (cpu_mi_feature & CPU_MI_MONITOR) { 867 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq); 868 } else 869 #endif 870 { 871 DELAY(1); 872 cpu_lfence(); 873 } 874 if (fatal_count && --fatal_count == 0) 875 panic("lwkt_switch: fatal spin wait"); 876 } 877 cseq = lwkt_spin_delay; /* don't trust the system operator */ 878 cpu_ccfence(); 879 if (cseq < 1) 880 cseq = 1; 881 if (cseq > 1000) 882 cseq = 1000; 883 DELAY(cseq); 884 atomic_add_int(&lwkt_cseq_rindex, 1); 885 splz_check(); 886 /* highest level for(;;) loop */ 887 } 888 889 havethread: 890 /* 891 * We must always decrement td_fairq_accum on non-idle threads just 892 * in case a thread never gets a tick due to being in a continuous 893 * critical section. The page-zeroing code does this, for example. 894 * 895 * If the thread we came up with is a higher or equal priority verses 896 * the thread at the head of the queue we move our thread to the 897 * front. This way we can always check the front of the queue. 898 * 899 * Clear gd_idle_repeat when doing a normal switch to a non-idle 900 * thread. 901 */ 902 ++gd->gd_cnt.v_swtch; 903 --ntd->td_fairq_accum; 904 ntd->td_wmesg = NULL; 905 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 906 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) { 907 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 908 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq); 909 } 910 gd->gd_idle_repeat = 0; 911 912 havethread_preempted: 913 /* 914 * If the new target does not need the MP lock and we are holding it, 915 * release the MP lock. If the new target requires the MP lock we have 916 * already acquired it for the target. 917 */ 918 ; 919 haveidle: 920 KASSERT(ntd->td_critcount, 921 ("priority problem in lwkt_switch %d %d", 922 td->td_critcount, ntd->td_critcount)); 923 924 if (td != ntd) { 925 ++switch_count; 926 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd); 927 td->td_switch(ntd); 928 } 929 /* NOTE: current cpu may have changed after switch */ 930 crit_exit_quick(td); 931 } 932 933 /* 934 * Request that the target thread preempt the current thread. Preemption 935 * only works under a specific set of conditions: 936 * 937 * - We are not preempting ourselves 938 * - The target thread is owned by the current cpu 939 * - We are not currently being preempted 940 * - The target is not currently being preempted 941 * - We are not holding any spin locks 942 * - The target thread is not holding any tokens 943 * - We are able to satisfy the target's MP lock requirements (if any). 944 * 945 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 946 * this is called via lwkt_schedule() through the td_preemptable callback. 947 * critcount is the managed critical priority that we should ignore in order 948 * to determine whether preemption is possible (aka usually just the crit 949 * priority of lwkt_schedule() itself). 950 * 951 * XXX at the moment we run the target thread in a critical section during 952 * the preemption in order to prevent the target from taking interrupts 953 * that *WE* can't. Preemption is strictly limited to interrupt threads 954 * and interrupt-like threads, outside of a critical section, and the 955 * preempted source thread will be resumed the instant the target blocks 956 * whether or not the source is scheduled (i.e. preemption is supposed to 957 * be as transparent as possible). 958 */ 959 void 960 lwkt_preempt(thread_t ntd, int critcount) 961 { 962 struct globaldata *gd = mycpu; 963 thread_t td; 964 int save_gd_intr_nesting_level; 965 966 /* 967 * The caller has put us in a critical section. We can only preempt 968 * if the caller of the caller was not in a critical section (basically 969 * a local interrupt), as determined by the 'critcount' parameter. We 970 * also can't preempt if the caller is holding any spinlocks (even if 971 * he isn't in a critical section). This also handles the tokens test. 972 * 973 * YYY The target thread must be in a critical section (else it must 974 * inherit our critical section? I dunno yet). 975 * 976 * Set need_lwkt_resched() unconditionally for now YYY. 977 */ 978 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri)); 979 980 if (preempt_enable == 0) { 981 ++preempt_miss; 982 return; 983 } 984 985 td = gd->gd_curthread; 986 if (ntd->td_pri <= td->td_pri) { 987 ++preempt_miss; 988 return; 989 } 990 if (td->td_critcount > critcount) { 991 ++preempt_miss; 992 need_lwkt_resched(); 993 return; 994 } 995 #ifdef SMP 996 if (ntd->td_gd != gd) { 997 ++preempt_miss; 998 need_lwkt_resched(); 999 return; 1000 } 1001 #endif 1002 /* 1003 * We don't have to check spinlocks here as they will also bump 1004 * td_critcount. 1005 * 1006 * Do not try to preempt if the target thread is holding any tokens. 1007 * We could try to acquire the tokens but this case is so rare there 1008 * is no need to support it. 1009 */ 1010 KKASSERT(gd->gd_spinlocks_wr == 0); 1011 1012 if (TD_TOKS_HELD(ntd)) { 1013 ++preempt_miss; 1014 need_lwkt_resched(); 1015 return; 1016 } 1017 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 1018 ++preempt_weird; 1019 need_lwkt_resched(); 1020 return; 1021 } 1022 if (ntd->td_preempted) { 1023 ++preempt_hit; 1024 need_lwkt_resched(); 1025 return; 1026 } 1027 1028 /* 1029 * Since we are able to preempt the current thread, there is no need to 1030 * call need_lwkt_resched(). 1031 * 1032 * We must temporarily clear gd_intr_nesting_level around the switch 1033 * since switchouts from the target thread are allowed (they will just 1034 * return to our thread), and since the target thread has its own stack. 1035 */ 1036 ++preempt_hit; 1037 ntd->td_preempted = td; 1038 td->td_flags |= TDF_PREEMPT_LOCK; 1039 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd); 1040 save_gd_intr_nesting_level = gd->gd_intr_nesting_level; 1041 gd->gd_intr_nesting_level = 0; 1042 td->td_switch(ntd); 1043 gd->gd_intr_nesting_level = save_gd_intr_nesting_level; 1044 1045 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 1046 ntd->td_preempted = NULL; 1047 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 1048 } 1049 1050 /* 1051 * Conditionally call splz() if gd_reqflags indicates work is pending. 1052 * This will work inside a critical section but not inside a hard code 1053 * section. 1054 * 1055 * (self contained on a per cpu basis) 1056 */ 1057 void 1058 splz_check(void) 1059 { 1060 globaldata_t gd = mycpu; 1061 thread_t td = gd->gd_curthread; 1062 1063 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && 1064 gd->gd_intr_nesting_level == 0 && 1065 td->td_nest_count < 2) 1066 { 1067 splz(); 1068 } 1069 } 1070 1071 /* 1072 * This version is integrated into crit_exit, reqflags has already 1073 * been tested but td_critcount has not. 1074 * 1075 * We only want to execute the splz() on the 1->0 transition of 1076 * critcount and not in a hard code section or if too deeply nested. 1077 */ 1078 void 1079 lwkt_maybe_splz(thread_t td) 1080 { 1081 globaldata_t gd = td->td_gd; 1082 1083 if (td->td_critcount == 0 && 1084 gd->gd_intr_nesting_level == 0 && 1085 td->td_nest_count < 2) 1086 { 1087 splz(); 1088 } 1089 } 1090 1091 /* 1092 * This function is used to negotiate a passive release of the current 1093 * process/lwp designation with the user scheduler, allowing the user 1094 * scheduler to schedule another user thread. The related kernel thread 1095 * (curthread) continues running in the released state. 1096 */ 1097 void 1098 lwkt_passive_release(struct thread *td) 1099 { 1100 struct lwp *lp = td->td_lwp; 1101 1102 td->td_release = NULL; 1103 lwkt_setpri_self(TDPRI_KERN_USER); 1104 lp->lwp_proc->p_usched->release_curproc(lp); 1105 } 1106 1107 1108 /* 1109 * This implements a normal yield. This routine is virtually a nop if 1110 * there is nothing to yield to but it will always run any pending interrupts 1111 * if called from a critical section. 1112 * 1113 * This yield is designed for kernel threads without a user context. 1114 * 1115 * (self contained on a per cpu basis) 1116 */ 1117 void 1118 lwkt_yield(void) 1119 { 1120 globaldata_t gd = mycpu; 1121 thread_t td = gd->gd_curthread; 1122 thread_t xtd; 1123 1124 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1125 splz(); 1126 if (td->td_fairq_accum < 0) { 1127 lwkt_schedule_self(curthread); 1128 lwkt_switch(); 1129 } else { 1130 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 1131 if (xtd && xtd->td_pri > td->td_pri) { 1132 lwkt_schedule_self(curthread); 1133 lwkt_switch(); 1134 } 1135 } 1136 } 1137 1138 /* 1139 * This yield is designed for kernel threads with a user context. 1140 * 1141 * The kernel acting on behalf of the user is potentially cpu-bound, 1142 * this function will efficiently allow other threads to run and also 1143 * switch to other processes by releasing. 1144 * 1145 * The lwkt_user_yield() function is designed to have very low overhead 1146 * if no yield is determined to be needed. 1147 */ 1148 void 1149 lwkt_user_yield(void) 1150 { 1151 globaldata_t gd = mycpu; 1152 thread_t td = gd->gd_curthread; 1153 1154 /* 1155 * Always run any pending interrupts in case we are in a critical 1156 * section. 1157 */ 1158 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1159 splz(); 1160 1161 /* 1162 * Switch (which forces a release) if another kernel thread needs 1163 * the cpu, if userland wants us to resched, or if our kernel 1164 * quantum has run out. 1165 */ 1166 if (lwkt_resched_wanted() || 1167 user_resched_wanted() || 1168 td->td_fairq_accum < 0) 1169 { 1170 lwkt_switch(); 1171 } 1172 1173 #if 0 1174 /* 1175 * Reacquire the current process if we are released. 1176 * 1177 * XXX not implemented atm. The kernel may be holding locks and such, 1178 * so we want the thread to continue to receive cpu. 1179 */ 1180 if (td->td_release == NULL && lp) { 1181 lp->lwp_proc->p_usched->acquire_curproc(lp); 1182 td->td_release = lwkt_passive_release; 1183 lwkt_setpri_self(TDPRI_USER_NORM); 1184 } 1185 #endif 1186 } 1187 1188 /* 1189 * Generic schedule. Possibly schedule threads belonging to other cpus and 1190 * deal with threads that might be blocked on a wait queue. 1191 * 1192 * We have a little helper inline function which does additional work after 1193 * the thread has been enqueued, including dealing with preemption and 1194 * setting need_lwkt_resched() (which prevents the kernel from returning 1195 * to userland until it has processed higher priority threads). 1196 * 1197 * It is possible for this routine to be called after a failed _enqueue 1198 * (due to the target thread migrating, sleeping, or otherwise blocked). 1199 * We have to check that the thread is actually on the run queue! 1200 * 1201 * reschedok is an optimized constant propagated from lwkt_schedule() or 1202 * lwkt_schedule_noresched(). By default it is non-zero, causing a 1203 * reschedule to be requested if the target thread has a higher priority. 1204 * The port messaging code will set MSG_NORESCHED and cause reschedok to 1205 * be 0, prevented undesired reschedules. 1206 */ 1207 static __inline 1208 void 1209 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok) 1210 { 1211 thread_t otd; 1212 1213 if (ntd->td_flags & TDF_RUNQ) { 1214 if (ntd->td_preemptable && reschedok) { 1215 ntd->td_preemptable(ntd, ccount); /* YYY +token */ 1216 } else if (reschedok) { 1217 otd = curthread; 1218 if (ntd->td_pri > otd->td_pri) 1219 need_lwkt_resched(); 1220 } 1221 1222 /* 1223 * Give the thread a little fair share scheduler bump if it 1224 * has been asleep for a while. This is primarily to avoid 1225 * a degenerate case for interrupt threads where accumulator 1226 * crosses into negative territory unnecessarily. 1227 */ 1228 if (ntd->td_fairq_lticks != ticks) { 1229 ntd->td_fairq_lticks = ticks; 1230 ntd->td_fairq_accum += gd->gd_fairq_total_pri; 1231 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd)) 1232 ntd->td_fairq_accum = TDFAIRQ_MAX(gd); 1233 } 1234 } 1235 } 1236 1237 static __inline 1238 void 1239 _lwkt_schedule(thread_t td, int reschedok) 1240 { 1241 globaldata_t mygd = mycpu; 1242 1243 KASSERT(td != &td->td_gd->gd_idlethread, 1244 ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 1245 crit_enter_gd(mygd); 1246 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1247 if (td == mygd->gd_curthread) { 1248 _lwkt_enqueue(td); 1249 } else { 1250 /* 1251 * If we own the thread, there is no race (since we are in a 1252 * critical section). If we do not own the thread there might 1253 * be a race but the target cpu will deal with it. 1254 */ 1255 #ifdef SMP 1256 if (td->td_gd == mygd) { 1257 _lwkt_enqueue(td); 1258 _lwkt_schedule_post(mygd, td, 1, reschedok); 1259 } else { 1260 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0); 1261 } 1262 #else 1263 _lwkt_enqueue(td); 1264 _lwkt_schedule_post(mygd, td, 1, reschedok); 1265 #endif 1266 } 1267 crit_exit_gd(mygd); 1268 } 1269 1270 void 1271 lwkt_schedule(thread_t td) 1272 { 1273 _lwkt_schedule(td, 1); 1274 } 1275 1276 void 1277 lwkt_schedule_noresched(thread_t td) 1278 { 1279 _lwkt_schedule(td, 0); 1280 } 1281 1282 #ifdef SMP 1283 1284 /* 1285 * When scheduled remotely if frame != NULL the IPIQ is being 1286 * run via doreti or an interrupt then preemption can be allowed. 1287 * 1288 * To allow preemption we have to drop the critical section so only 1289 * one is present in _lwkt_schedule_post. 1290 */ 1291 static void 1292 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame) 1293 { 1294 thread_t td = curthread; 1295 thread_t ntd = arg; 1296 1297 if (frame && ntd->td_preemptable) { 1298 crit_exit_noyield(td); 1299 _lwkt_schedule(ntd, 1); 1300 crit_enter_quick(td); 1301 } else { 1302 _lwkt_schedule(ntd, 1); 1303 } 1304 } 1305 1306 /* 1307 * Thread migration using a 'Pull' method. The thread may or may not be 1308 * the current thread. It MUST be descheduled and in a stable state. 1309 * lwkt_giveaway() must be called on the cpu owning the thread. 1310 * 1311 * At any point after lwkt_giveaway() is called, the target cpu may 1312 * 'pull' the thread by calling lwkt_acquire(). 1313 * 1314 * We have to make sure the thread is not sitting on a per-cpu tsleep 1315 * queue or it will blow up when it moves to another cpu. 1316 * 1317 * MPSAFE - must be called under very specific conditions. 1318 */ 1319 void 1320 lwkt_giveaway(thread_t td) 1321 { 1322 globaldata_t gd = mycpu; 1323 1324 crit_enter_gd(gd); 1325 if (td->td_flags & TDF_TSLEEPQ) 1326 tsleep_remove(td); 1327 KKASSERT(td->td_gd == gd); 1328 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1329 td->td_flags |= TDF_MIGRATING; 1330 crit_exit_gd(gd); 1331 } 1332 1333 void 1334 lwkt_acquire(thread_t td) 1335 { 1336 globaldata_t gd; 1337 globaldata_t mygd; 1338 1339 KKASSERT(td->td_flags & TDF_MIGRATING); 1340 gd = td->td_gd; 1341 mygd = mycpu; 1342 if (gd != mycpu) { 1343 cpu_lfence(); 1344 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1345 crit_enter_gd(mygd); 1346 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1347 #ifdef SMP 1348 lwkt_process_ipiq(); 1349 #endif 1350 cpu_lfence(); 1351 } 1352 cpu_mfence(); 1353 td->td_gd = mygd; 1354 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1355 td->td_flags &= ~TDF_MIGRATING; 1356 crit_exit_gd(mygd); 1357 } else { 1358 crit_enter_gd(mygd); 1359 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1360 td->td_flags &= ~TDF_MIGRATING; 1361 crit_exit_gd(mygd); 1362 } 1363 } 1364 1365 #endif 1366 1367 /* 1368 * Generic deschedule. Descheduling threads other then your own should be 1369 * done only in carefully controlled circumstances. Descheduling is 1370 * asynchronous. 1371 * 1372 * This function may block if the cpu has run out of messages. 1373 */ 1374 void 1375 lwkt_deschedule(thread_t td) 1376 { 1377 crit_enter(); 1378 #ifdef SMP 1379 if (td == curthread) { 1380 _lwkt_dequeue(td); 1381 } else { 1382 if (td->td_gd == mycpu) { 1383 _lwkt_dequeue(td); 1384 } else { 1385 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td); 1386 } 1387 } 1388 #else 1389 _lwkt_dequeue(td); 1390 #endif 1391 crit_exit(); 1392 } 1393 1394 /* 1395 * Set the target thread's priority. This routine does not automatically 1396 * switch to a higher priority thread, LWKT threads are not designed for 1397 * continuous priority changes. Yield if you want to switch. 1398 */ 1399 void 1400 lwkt_setpri(thread_t td, int pri) 1401 { 1402 KKASSERT(td->td_gd == mycpu); 1403 if (td->td_pri != pri) { 1404 KKASSERT(pri >= 0); 1405 crit_enter(); 1406 if (td->td_flags & TDF_RUNQ) { 1407 _lwkt_dequeue(td); 1408 td->td_pri = pri; 1409 _lwkt_enqueue(td); 1410 } else { 1411 td->td_pri = pri; 1412 } 1413 crit_exit(); 1414 } 1415 } 1416 1417 /* 1418 * Set the initial priority for a thread prior to it being scheduled for 1419 * the first time. The thread MUST NOT be scheduled before or during 1420 * this call. The thread may be assigned to a cpu other then the current 1421 * cpu. 1422 * 1423 * Typically used after a thread has been created with TDF_STOPPREQ, 1424 * and before the thread is initially scheduled. 1425 */ 1426 void 1427 lwkt_setpri_initial(thread_t td, int pri) 1428 { 1429 KKASSERT(pri >= 0); 1430 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1431 td->td_pri = pri; 1432 } 1433 1434 void 1435 lwkt_setpri_self(int pri) 1436 { 1437 thread_t td = curthread; 1438 1439 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1440 crit_enter(); 1441 if (td->td_flags & TDF_RUNQ) { 1442 _lwkt_dequeue(td); 1443 td->td_pri = pri; 1444 _lwkt_enqueue(td); 1445 } else { 1446 td->td_pri = pri; 1447 } 1448 crit_exit(); 1449 } 1450 1451 /* 1452 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle. 1453 * 1454 * Example: two competing threads, same priority N. decrement by (2*N) 1455 * increment by N*8, each thread will get 4 ticks. 1456 */ 1457 void 1458 lwkt_fairq_schedulerclock(thread_t td) 1459 { 1460 globaldata_t gd; 1461 1462 if (fairq_enable) { 1463 while (td) { 1464 gd = td->td_gd; 1465 if (td != &gd->gd_idlethread) { 1466 td->td_fairq_accum -= gd->gd_fairq_total_pri; 1467 if (td->td_fairq_accum < -TDFAIRQ_MAX(gd)) 1468 td->td_fairq_accum = -TDFAIRQ_MAX(gd); 1469 if (td->td_fairq_accum < 0) 1470 need_lwkt_resched(); 1471 td->td_fairq_lticks = ticks; 1472 } 1473 td = td->td_preempted; 1474 } 1475 } 1476 } 1477 1478 static void 1479 lwkt_fairq_accumulate(globaldata_t gd, thread_t td) 1480 { 1481 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE; 1482 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd)) 1483 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd); 1484 } 1485 1486 /* 1487 * Migrate the current thread to the specified cpu. 1488 * 1489 * This is accomplished by descheduling ourselves from the current cpu, 1490 * moving our thread to the tdallq of the target cpu, IPI messaging the 1491 * target cpu, and switching out. TDF_MIGRATING prevents scheduling 1492 * races while the thread is being migrated. 1493 * 1494 * We must be sure to remove ourselves from the current cpu's tsleepq 1495 * before potentially moving to another queue. The thread can be on 1496 * a tsleepq due to a left-over tsleep_interlock(). 1497 */ 1498 #ifdef SMP 1499 static void lwkt_setcpu_remote(void *arg); 1500 #endif 1501 1502 void 1503 lwkt_setcpu_self(globaldata_t rgd) 1504 { 1505 #ifdef SMP 1506 thread_t td = curthread; 1507 1508 if (td->td_gd != rgd) { 1509 crit_enter_quick(td); 1510 if (td->td_flags & TDF_TSLEEPQ) 1511 tsleep_remove(td); 1512 td->td_flags |= TDF_MIGRATING; 1513 lwkt_deschedule_self(td); 1514 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1515 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td); 1516 lwkt_switch(); 1517 /* we are now on the target cpu */ 1518 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); 1519 crit_exit_quick(td); 1520 } 1521 #endif 1522 } 1523 1524 void 1525 lwkt_migratecpu(int cpuid) 1526 { 1527 #ifdef SMP 1528 globaldata_t rgd; 1529 1530 rgd = globaldata_find(cpuid); 1531 lwkt_setcpu_self(rgd); 1532 #endif 1533 } 1534 1535 /* 1536 * Remote IPI for cpu migration (called while in a critical section so we 1537 * do not have to enter another one). The thread has already been moved to 1538 * our cpu's allq, but we must wait for the thread to be completely switched 1539 * out on the originating cpu before we schedule it on ours or the stack 1540 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD 1541 * change to main memory. 1542 * 1543 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races 1544 * against wakeups. It is best if this interface is used only when there 1545 * are no pending events that might try to schedule the thread. 1546 */ 1547 #ifdef SMP 1548 static void 1549 lwkt_setcpu_remote(void *arg) 1550 { 1551 thread_t td = arg; 1552 globaldata_t gd = mycpu; 1553 1554 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1555 #ifdef SMP 1556 lwkt_process_ipiq(); 1557 #endif 1558 cpu_lfence(); 1559 cpu_pause(); 1560 } 1561 td->td_gd = gd; 1562 cpu_mfence(); 1563 td->td_flags &= ~TDF_MIGRATING; 1564 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1565 _lwkt_enqueue(td); 1566 } 1567 #endif 1568 1569 struct lwp * 1570 lwkt_preempted_proc(void) 1571 { 1572 thread_t td = curthread; 1573 while (td->td_preempted) 1574 td = td->td_preempted; 1575 return(td->td_lwp); 1576 } 1577 1578 /* 1579 * Create a kernel process/thread/whatever. It shares it's address space 1580 * with proc0 - ie: kernel only. 1581 * 1582 * NOTE! By default new threads are created with the MP lock held. A 1583 * thread which does not require the MP lock should release it by calling 1584 * rel_mplock() at the start of the new thread. 1585 */ 1586 int 1587 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp, 1588 thread_t template, int tdflags, int cpu, const char *fmt, ...) 1589 { 1590 thread_t td; 1591 __va_list ap; 1592 1593 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu, 1594 tdflags); 1595 if (tdp) 1596 *tdp = td; 1597 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1598 1599 /* 1600 * Set up arg0 for 'ps' etc 1601 */ 1602 __va_start(ap, fmt); 1603 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1604 __va_end(ap); 1605 1606 /* 1607 * Schedule the thread to run 1608 */ 1609 if ((td->td_flags & TDF_STOPREQ) == 0) 1610 lwkt_schedule(td); 1611 else 1612 td->td_flags &= ~TDF_STOPREQ; 1613 return 0; 1614 } 1615 1616 /* 1617 * Destroy an LWKT thread. Warning! This function is not called when 1618 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1619 * uses a different reaping mechanism. 1620 */ 1621 void 1622 lwkt_exit(void) 1623 { 1624 thread_t td = curthread; 1625 thread_t std; 1626 globaldata_t gd; 1627 1628 /* 1629 * Do any cleanup that might block here 1630 */ 1631 if (td->td_flags & TDF_VERBOSE) 1632 kprintf("kthread %p %s has exited\n", td, td->td_comm); 1633 caps_exit(td); 1634 biosched_done(td); 1635 dsched_exit_thread(td); 1636 1637 /* 1638 * Get us into a critical section to interlock gd_freetd and loop 1639 * until we can get it freed. 1640 * 1641 * We have to cache the current td in gd_freetd because objcache_put()ing 1642 * it would rip it out from under us while our thread is still active. 1643 */ 1644 gd = mycpu; 1645 crit_enter_quick(td); 1646 while ((std = gd->gd_freetd) != NULL) { 1647 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1648 gd->gd_freetd = NULL; 1649 objcache_put(thread_cache, std); 1650 } 1651 1652 /* 1653 * Remove thread resources from kernel lists and deschedule us for 1654 * the last time. We cannot block after this point or we may end 1655 * up with a stale td on the tsleepq. 1656 */ 1657 if (td->td_flags & TDF_TSLEEPQ) 1658 tsleep_remove(td); 1659 lwkt_deschedule_self(td); 1660 lwkt_remove_tdallq(td); 1661 KKASSERT(td->td_refs == 0); 1662 1663 /* 1664 * Final cleanup 1665 */ 1666 KKASSERT(gd->gd_freetd == NULL); 1667 if (td->td_flags & TDF_ALLOCATED_THREAD) 1668 gd->gd_freetd = td; 1669 cpu_thread_exit(); 1670 } 1671 1672 void 1673 lwkt_remove_tdallq(thread_t td) 1674 { 1675 KKASSERT(td->td_gd == mycpu); 1676 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1677 } 1678 1679 /* 1680 * Code reduction and branch prediction improvements. Call/return 1681 * overhead on modern cpus often degenerates into 0 cycles due to 1682 * the cpu's branch prediction hardware and return pc cache. We 1683 * can take advantage of this by not inlining medium-complexity 1684 * functions and we can also reduce the branch prediction impact 1685 * by collapsing perfectly predictable branches into a single 1686 * procedure instead of duplicating it. 1687 * 1688 * Is any of this noticeable? Probably not, so I'll take the 1689 * smaller code size. 1690 */ 1691 void 1692 crit_exit_wrapper(__DEBUG_CRIT_ARG__) 1693 { 1694 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__); 1695 } 1696 1697 void 1698 crit_panic(void) 1699 { 1700 thread_t td = curthread; 1701 int lcrit = td->td_critcount; 1702 1703 td->td_critcount = 0; 1704 panic("td_critcount is/would-go negative! %p %d", td, lcrit); 1705 /* NOT REACHED */ 1706 } 1707 1708 #ifdef SMP 1709 1710 /* 1711 * Called from debugger/panic on cpus which have been stopped. We must still 1712 * process the IPIQ while stopped, even if we were stopped while in a critical 1713 * section (XXX). 1714 * 1715 * If we are dumping also try to process any pending interrupts. This may 1716 * or may not work depending on the state of the cpu at the point it was 1717 * stopped. 1718 */ 1719 void 1720 lwkt_smp_stopped(void) 1721 { 1722 globaldata_t gd = mycpu; 1723 1724 crit_enter_gd(gd); 1725 if (dumping) { 1726 lwkt_process_ipiq(); 1727 splz(); 1728 } else { 1729 lwkt_process_ipiq(); 1730 } 1731 crit_exit_gd(gd); 1732 } 1733 1734 #endif 1735