xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 72d6a027d96b30c52d242ce162021efcecfe2bb9)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60 
61 #include <sys/dsched.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74 
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 	 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 	 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 	 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99 
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
104 
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 #ifdef	INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118     "Panic if attempting to switch lwkt's while mastering cpusync");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121     "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123     "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125     "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127     "Number of preempted threads.");
128 #ifdef	INVARIANTS
129 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
130 	&token_contention_count, 0, "spinning due to token contention");
131 #endif
132 static int fairq_enable = 1;
133 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
134 	&fairq_enable, 0, "Turn on fairq priority accumulators");
135 static int lwkt_spin_loops = 10;
136 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
137 	&lwkt_spin_loops, 0, "");
138 static int lwkt_spin_delay = 1;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW,
140 	&lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto");
141 static int lwkt_spin_method = 1;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW,
143 	&lwkt_spin_method, 0, "LWKT scheduler behavior when contended");
144 static int lwkt_spin_fatal = 0;	/* disabled */
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
146 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
147 static int preempt_enable = 1;
148 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
149 	&preempt_enable, 0, "Enable preemption");
150 
151 static __cachealign int lwkt_cseq_rindex;
152 static __cachealign int lwkt_cseq_windex;
153 
154 /*
155  * These helper procedures handle the runq, they can only be called from
156  * within a critical section.
157  *
158  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
159  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
160  * instead of 'mycpu' when referencing the globaldata structure.   Once
161  * SMP live enqueuing and dequeueing only occurs on the current cpu.
162  */
163 static __inline
164 void
165 _lwkt_dequeue(thread_t td)
166 {
167     if (td->td_flags & TDF_RUNQ) {
168 	struct globaldata *gd = td->td_gd;
169 
170 	td->td_flags &= ~TDF_RUNQ;
171 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
172 	gd->gd_fairq_total_pri -= td->td_pri;
173 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
174 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
175     }
176 }
177 
178 /*
179  * Priority enqueue.
180  *
181  * NOTE: There are a limited number of lwkt threads runnable since user
182  *	 processes only schedule one at a time per cpu.
183  */
184 static __inline
185 void
186 _lwkt_enqueue(thread_t td)
187 {
188     thread_t xtd;
189 
190     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
191 	struct globaldata *gd = td->td_gd;
192 
193 	td->td_flags |= TDF_RUNQ;
194 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 	if (xtd == NULL) {
196 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 		atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
198 	} else {
199 		while (xtd && xtd->td_pri > td->td_pri)
200 			xtd = TAILQ_NEXT(xtd, td_threadq);
201 		if (xtd)
202 			TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
203 		else
204 			TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
205 	}
206 	gd->gd_fairq_total_pri += td->td_pri;
207     }
208 }
209 
210 static __boolean_t
211 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
212 {
213 	struct thread *td = (struct thread *)obj;
214 
215 	td->td_kstack = NULL;
216 	td->td_kstack_size = 0;
217 	td->td_flags = TDF_ALLOCATED_THREAD;
218 	return (1);
219 }
220 
221 static void
222 _lwkt_thread_dtor(void *obj, void *privdata)
223 {
224 	struct thread *td = (struct thread *)obj;
225 
226 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
227 	    ("_lwkt_thread_dtor: not allocated from objcache"));
228 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
229 		td->td_kstack_size > 0,
230 	    ("_lwkt_thread_dtor: corrupted stack"));
231 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
232 }
233 
234 /*
235  * Initialize the lwkt s/system.
236  */
237 void
238 lwkt_init(void)
239 {
240     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
241     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
242 			NULL, CACHE_NTHREADS/2,
243 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
244 }
245 
246 /*
247  * Schedule a thread to run.  As the current thread we can always safely
248  * schedule ourselves, and a shortcut procedure is provided for that
249  * function.
250  *
251  * (non-blocking, self contained on a per cpu basis)
252  */
253 void
254 lwkt_schedule_self(thread_t td)
255 {
256     crit_enter_quick(td);
257     KASSERT(td != &td->td_gd->gd_idlethread,
258 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
259     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
260     _lwkt_enqueue(td);
261     crit_exit_quick(td);
262 }
263 
264 /*
265  * Deschedule a thread.
266  *
267  * (non-blocking, self contained on a per cpu basis)
268  */
269 void
270 lwkt_deschedule_self(thread_t td)
271 {
272     crit_enter_quick(td);
273     _lwkt_dequeue(td);
274     crit_exit_quick(td);
275 }
276 
277 /*
278  * LWKTs operate on a per-cpu basis
279  *
280  * WARNING!  Called from early boot, 'mycpu' may not work yet.
281  */
282 void
283 lwkt_gdinit(struct globaldata *gd)
284 {
285     TAILQ_INIT(&gd->gd_tdrunq);
286     TAILQ_INIT(&gd->gd_tdallq);
287 }
288 
289 /*
290  * Create a new thread.  The thread must be associated with a process context
291  * or LWKT start address before it can be scheduled.  If the target cpu is
292  * -1 the thread will be created on the current cpu.
293  *
294  * If you intend to create a thread without a process context this function
295  * does everything except load the startup and switcher function.
296  */
297 thread_t
298 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
299 {
300     globaldata_t gd = mycpu;
301     void *stack;
302 
303     /*
304      * If static thread storage is not supplied allocate a thread.  Reuse
305      * a cached free thread if possible.  gd_freetd is used to keep an exiting
306      * thread intact through the exit.
307      */
308     if (td == NULL) {
309 	crit_enter_gd(gd);
310 	if ((td = gd->gd_freetd) != NULL) {
311 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
312 				      TDF_RUNQ)) == 0);
313 	    gd->gd_freetd = NULL;
314 	} else {
315 	    td = objcache_get(thread_cache, M_WAITOK);
316 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
317 				      TDF_RUNQ)) == 0);
318 	}
319 	crit_exit_gd(gd);
320     	KASSERT((td->td_flags &
321 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
322 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
323     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
324     }
325 
326     /*
327      * Try to reuse cached stack.
328      */
329     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
330 	if (flags & TDF_ALLOCATED_STACK) {
331 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
332 	    stack = NULL;
333 	}
334     }
335     if (stack == NULL) {
336 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
337 	flags |= TDF_ALLOCATED_STACK;
338     }
339     if (cpu < 0)
340 	lwkt_init_thread(td, stack, stksize, flags, gd);
341     else
342 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
343     return(td);
344 }
345 
346 /*
347  * Initialize a preexisting thread structure.  This function is used by
348  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
349  *
350  * All threads start out in a critical section at a priority of
351  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
352  * appropriate.  This function may send an IPI message when the
353  * requested cpu is not the current cpu and consequently gd_tdallq may
354  * not be initialized synchronously from the point of view of the originating
355  * cpu.
356  *
357  * NOTE! we have to be careful in regards to creating threads for other cpus
358  * if SMP has not yet been activated.
359  */
360 #ifdef SMP
361 
362 static void
363 lwkt_init_thread_remote(void *arg)
364 {
365     thread_t td = arg;
366 
367     /*
368      * Protected by critical section held by IPI dispatch
369      */
370     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
371 }
372 
373 #endif
374 
375 /*
376  * lwkt core thread structural initialization.
377  *
378  * NOTE: All threads are initialized as mpsafe threads.
379  */
380 void
381 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
382 		struct globaldata *gd)
383 {
384     globaldata_t mygd = mycpu;
385 
386     bzero(td, sizeof(struct thread));
387     td->td_kstack = stack;
388     td->td_kstack_size = stksize;
389     td->td_flags = flags;
390     td->td_gd = gd;
391     td->td_pri = TDPRI_KERN_DAEMON;
392     td->td_critcount = 1;
393     td->td_toks_stop = &td->td_toks_base;
394     if (lwkt_use_spin_port)
395 	lwkt_initport_spin(&td->td_msgport);
396     else
397 	lwkt_initport_thread(&td->td_msgport, td);
398     pmap_init_thread(td);
399 #ifdef SMP
400     /*
401      * Normally initializing a thread for a remote cpu requires sending an
402      * IPI.  However, the idlethread is setup before the other cpus are
403      * activated so we have to treat it as a special case.  XXX manipulation
404      * of gd_tdallq requires the BGL.
405      */
406     if (gd == mygd || td == &gd->gd_idlethread) {
407 	crit_enter_gd(mygd);
408 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
409 	crit_exit_gd(mygd);
410     } else {
411 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
412     }
413 #else
414     crit_enter_gd(mygd);
415     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
416     crit_exit_gd(mygd);
417 #endif
418 
419     dsched_new_thread(td);
420 }
421 
422 void
423 lwkt_set_comm(thread_t td, const char *ctl, ...)
424 {
425     __va_list va;
426 
427     __va_start(va, ctl);
428     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
429     __va_end(va);
430     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
431 }
432 
433 void
434 lwkt_hold(thread_t td)
435 {
436     atomic_add_int(&td->td_refs, 1);
437 }
438 
439 void
440 lwkt_rele(thread_t td)
441 {
442     KKASSERT(td->td_refs > 0);
443     atomic_add_int(&td->td_refs, -1);
444 }
445 
446 void
447 lwkt_wait_free(thread_t td)
448 {
449     while (td->td_refs)
450 	tsleep(td, 0, "tdreap", hz);
451 }
452 
453 void
454 lwkt_free_thread(thread_t td)
455 {
456     KKASSERT(td->td_refs == 0);
457     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
458     if (td->td_flags & TDF_ALLOCATED_THREAD) {
459     	objcache_put(thread_cache, td);
460     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
461 	/* client-allocated struct with internally allocated stack */
462 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
463 	    ("lwkt_free_thread: corrupted stack"));
464 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
465 	td->td_kstack = NULL;
466 	td->td_kstack_size = 0;
467     }
468     KTR_LOG(ctxsw_deadtd, td);
469 }
470 
471 
472 /*
473  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
474  * switch to the idlethread.  Switching must occur within a critical
475  * section to avoid races with the scheduling queue.
476  *
477  * We always have full control over our cpu's run queue.  Other cpus
478  * that wish to manipulate our queue must use the cpu_*msg() calls to
479  * talk to our cpu, so a critical section is all that is needed and
480  * the result is very, very fast thread switching.
481  *
482  * The LWKT scheduler uses a fixed priority model and round-robins at
483  * each priority level.  User process scheduling is a totally
484  * different beast and LWKT priorities should not be confused with
485  * user process priorities.
486  *
487  * Note that the td_switch() function cannot do anything that requires
488  * the MP lock since the MP lock will have already been setup for
489  * the target thread (not the current thread).  It's nice to have a scheduler
490  * that does not need the MP lock to work because it allows us to do some
491  * really cool high-performance MP lock optimizations.
492  *
493  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
494  * is not called by the current thread in the preemption case, only when
495  * the preempting thread blocks (in order to return to the original thread).
496  */
497 void
498 lwkt_switch(void)
499 {
500     globaldata_t gd = mycpu;
501     thread_t td = gd->gd_curthread;
502     thread_t ntd;
503     thread_t xtd;
504     int spinning = lwkt_spin_loops;	/* loops before HLTing */
505     int reqflags;
506     int cseq;
507     int oseq;
508     int fatal_count;
509 
510     /*
511      * Switching from within a 'fast' (non thread switched) interrupt or IPI
512      * is illegal.  However, we may have to do it anyway if we hit a fatal
513      * kernel trap or we have paniced.
514      *
515      * If this case occurs save and restore the interrupt nesting level.
516      */
517     if (gd->gd_intr_nesting_level) {
518 	int savegdnest;
519 	int savegdtrap;
520 
521 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
522 	    panic("lwkt_switch: Attempt to switch from a "
523 		  "a fast interrupt, ipi, or hard code section, "
524 		  "td %p\n",
525 		  td);
526 	} else {
527 	    savegdnest = gd->gd_intr_nesting_level;
528 	    savegdtrap = gd->gd_trap_nesting_level;
529 	    gd->gd_intr_nesting_level = 0;
530 	    gd->gd_trap_nesting_level = 0;
531 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
532 		td->td_flags |= TDF_PANICWARN;
533 		kprintf("Warning: thread switch from interrupt, IPI, "
534 			"or hard code section.\n"
535 			"thread %p (%s)\n", td, td->td_comm);
536 		print_backtrace(-1);
537 	    }
538 	    lwkt_switch();
539 	    gd->gd_intr_nesting_level = savegdnest;
540 	    gd->gd_trap_nesting_level = savegdtrap;
541 	    return;
542 	}
543     }
544 
545     /*
546      * Passive release (used to transition from user to kernel mode
547      * when we block or switch rather then when we enter the kernel).
548      * This function is NOT called if we are switching into a preemption
549      * or returning from a preemption.  Typically this causes us to lose
550      * our current process designation (if we have one) and become a true
551      * LWKT thread, and may also hand the current process designation to
552      * another process and schedule thread.
553      */
554     if (td->td_release)
555 	    td->td_release(td);
556 
557     crit_enter_gd(gd);
558     if (TD_TOKS_HELD(td))
559 	    lwkt_relalltokens(td);
560 
561     /*
562      * We had better not be holding any spin locks, but don't get into an
563      * endless panic loop.
564      */
565     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
566 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
567 	     gd->gd_spinlocks_wr));
568 
569 
570 #ifdef SMP
571 #ifdef	INVARIANTS
572     if (td->td_cscount) {
573 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
574 		td);
575 	if (panic_on_cscount)
576 	    panic("switching while mastering cpusync");
577     }
578 #endif
579 #endif
580 
581     /*
582      * If we had preempted another thread on this cpu, resume the preempted
583      * thread.  This occurs transparently, whether the preempted thread
584      * was scheduled or not (it may have been preempted after descheduling
585      * itself).
586      *
587      * We have to setup the MP lock for the original thread after backing
588      * out the adjustment that was made to curthread when the original
589      * was preempted.
590      */
591     if ((ntd = td->td_preempted) != NULL) {
592 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
593 	ntd->td_flags |= TDF_PREEMPT_DONE;
594 
595 	/*
596 	 * The interrupt may have woken a thread up, we need to properly
597 	 * set the reschedule flag if the originally interrupted thread is
598 	 * at a lower priority.
599 	 */
600 	if (TAILQ_FIRST(&gd->gd_tdrunq) &&
601 	    TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
602 	    need_lwkt_resched();
603 	}
604 	/* YYY release mp lock on switchback if original doesn't need it */
605 	goto havethread_preempted;
606     }
607 
608     /*
609      * Implement round-robin fairq with priority insertion.  The priority
610      * insertion is handled by _lwkt_enqueue()
611      *
612      * We have to adjust the MP lock for the target thread.  If we
613      * need the MP lock and cannot obtain it we try to locate a
614      * thread that does not need the MP lock.  If we cannot, we spin
615      * instead of HLT.
616      *
617      * A similar issue exists for the tokens held by the target thread.
618      * If we cannot obtain ownership of the tokens we cannot immediately
619      * schedule the thread.
620      */
621     for (;;) {
622 	/*
623 	 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request)
624 	 * and set RQF_WAKEUP (prevent unnecessary IPIs from being
625 	 * received).
626 	 */
627 	for (;;) {
628 	    reqflags = gd->gd_reqflags;
629 	    if (atomic_cmpset_int(&gd->gd_reqflags, reqflags,
630 				  (reqflags & ~RQF_AST_LWKT_RESCHED) |
631 				  RQF_WAKEUP)) {
632 		break;
633 	    }
634 	}
635 
636 	/*
637 	 * Hotpath - pull the head of the run queue and attempt to schedule
638 	 * it.  Fairq exhaustion moves the task to the end of the list.  If
639 	 * no threads are runnable we switch to the idle thread.
640 	 */
641 	for (;;) {
642 	    ntd = TAILQ_FIRST(&gd->gd_tdrunq);
643 
644 	    if (ntd == NULL) {
645 		/*
646 		 * Runq is empty, switch to idle and clear RQF_WAKEUP
647 		 * to allow it to halt.
648 		 */
649 		ntd = &gd->gd_idlethread;
650 #ifdef SMP
651 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
652 		    ASSERT_NO_TOKENS_HELD(ntd);
653 #endif
654 		cpu_time.cp_msg[0] = 0;
655 		cpu_time.cp_stallpc = 0;
656 		atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
657 		goto haveidle;
658 	    }
659 
660 	    if (ntd->td_fairq_accum >= 0)
661 		    break;
662 
663 	    splz_check();
664 	    lwkt_fairq_accumulate(gd, ntd);
665 	    TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
666 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
667 	}
668 
669 	/*
670 	 * Hotpath - schedule ntd.  Leaves RQF_WAKEUP set to prevent
671 	 *	     unwanted decontention IPIs.
672 	 *
673 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
674 	 *	     always succeeds.
675 	 */
676 	if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
677 	    goto havethread;
678 
679 	/*
680 	 * Coldpath (SMP only since tokens always succeed on UP)
681 	 *
682 	 * We had some contention on the thread we wanted to schedule.
683 	 * What we do now is try to find a thread that we can schedule
684 	 * in its stead until decontention reschedules on our cpu.
685 	 *
686 	 * The coldpath scan does NOT rearrange threads in the run list
687 	 * and it also ignores the accumulator.
688 	 *
689 	 * We do not immediately schedule a user priority thread, instead
690 	 * we record it in xtd and continue looking for kernel threads.
691 	 * A cpu can only have one user priority thread (normally) so just
692 	 * record the first one.
693 	 *
694 	 * NOTE: This scan will also include threads whos fairq's were
695 	 *	 accumulated in the first loop.
696 	 */
697 	++token_contention_count;
698 	xtd = NULL;
699 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
700 	    /*
701 	     * Try to switch to this thread.  If the thread is running at
702 	     * user priority we clear WAKEUP to allow decontention IPIs
703 	     * (since this thread is simply running until the one we wanted
704 	     * decontends), and we make sure that LWKT_RESCHED is not set.
705 	     *
706 	     * Otherwise for kernel threads we leave WAKEUP set to avoid
707 	     * unnecessary decontention IPIs.
708 	     */
709 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
710 		if (xtd == NULL)
711 		    xtd = ntd;
712 		continue;
713 	    }
714 
715 	    /*
716 	     * Do not let the fairq get too negative.  Even though we are
717 	     * ignoring it atm once the scheduler decontends a very negative
718 	     * thread will get moved to the end of the queue.
719 	     */
720 	    if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) {
721 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
722 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
723 		goto havethread;
724 	    }
725 
726 	    /*
727 	     * Well fubar, this thread is contended as well, loop
728 	     */
729 	    /* */
730 	}
731 
732 	/*
733 	 * We exhausted the run list but we may have recorded a user
734 	 * thread to try.  We have three choices based on
735 	 * lwkt.decontention_method.
736 	 *
737 	 * (0) Atomically clear RQF_WAKEUP in order to receive decontention
738 	 *     IPIs (to interrupt the user process) and test
739 	 *     RQF_AST_LWKT_RESCHED at the same time.
740 	 *
741 	 *     This results in significant decontention IPI traffic but may
742 	 *     be more responsive.
743 	 *
744 	 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI.
745 	 *     An automatic LWKT reschedule will occur on the next hardclock
746 	 *     (typically 100hz).
747 	 *
748 	 *     This results in no decontention IPI traffic but may be less
749 	 *     responsive.  This is the default.
750 	 *
751 	 * (2) Refuse to schedule the user process at this time.
752 	 *
753 	 *     This is highly experimental and should not be used under
754 	 *     normal circumstances.  This can cause a user process to
755 	 *     get starved out in situations where kernel threads are
756 	 *     fighting each other for tokens.
757 	 */
758 	if (xtd) {
759 	    ntd = xtd;
760 
761 	    switch(lwkt_spin_method) {
762 	    case 0:
763 		for (;;) {
764 		    reqflags = gd->gd_reqflags;
765 		    if (atomic_cmpset_int(&gd->gd_reqflags,
766 					  reqflags,
767 					  reqflags & ~RQF_WAKEUP)) {
768 			break;
769 		    }
770 		}
771 		break;
772 	    case 1:
773 		reqflags = gd->gd_reqflags;
774 		break;
775 	    default:
776 		goto skip;
777 		break;
778 	    }
779 	    if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 &&
780 		(TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
781 	    ) {
782 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
783 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
784 		goto havethread;
785 	    }
786 
787 skip:
788 	    /*
789 	     * Make sure RQF_WAKEUP is set if we failed to schedule the
790 	     * user thread to prevent the idle thread from halting.
791 	     */
792 	    atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP);
793 	}
794 
795 	/*
796 	 * We exhausted the run list, meaning that all runnable threads
797 	 * are contended.
798 	 */
799 	cpu_pause();
800 	ntd = &gd->gd_idlethread;
801 #ifdef SMP
802 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
803 	    ASSERT_NO_TOKENS_HELD(ntd);
804 	/* contention case, do not clear contention mask */
805 #endif
806 
807 	/*
808 	 * Ok, we might want to spin a few times as some tokens are held for
809 	 * very short periods of time and IPI overhead is 1uS or worse
810 	 * (meaning it is usually better to spin).  Regardless we have to
811 	 * call splz_check() to be sure to service any interrupts blocked
812 	 * by our critical section, otherwise we could livelock e.g. IPIs.
813 	 *
814 	 * The IPI mechanic is really a last resort.  In nearly all other
815 	 * cases RQF_WAKEUP is left set to prevent decontention IPIs.
816 	 *
817 	 * When we decide not to spin we clear RQF_WAKEUP and switch to
818 	 * the idle thread.  Clearing RQF_WEAKEUP allows the idle thread
819 	 * to halt and decontended tokens will issue an IPI to us.  The
820 	 * idle thread will check for pending reschedules already set
821 	 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have
822 	 * to here.
823 	 */
824 	if (spinning <= 0) {
825 	    atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
826 	    goto haveidle;
827 	}
828 	--spinning;
829 
830 	/*
831 	 * When spinning a delay is required both to avoid livelocks from
832 	 * token order reversals (a thread may be trying to acquire multiple
833 	 * tokens), and also to reduce cpu cache management traffic.
834 	 *
835 	 * In order to scale to a large number of CPUs we use a time slot
836 	 * resequencer to force contending cpus into non-contending
837 	 * time-slots.  The scheduler may still contend with the lock holder
838 	 * but will not (generally) contend with all the other cpus trying
839 	 * trying to get the same token.
840 	 *
841 	 * The resequencer uses a FIFO counter mechanic.  The owner of the
842 	 * rindex at the head of the FIFO is allowed to pull itself off
843 	 * the FIFO and fetchadd is used to enter into the FIFO.  This bit
844 	 * of code is VERY cache friendly and forces all spinning schedulers
845 	 * into their own time slots.
846 	 *
847 	 * This code has been tested to 48-cpus and caps the cache
848 	 * contention load at ~1uS intervals regardless of the number of
849 	 * cpus.  Scaling beyond 64 cpus might require additional smarts
850 	 * (such as separate FIFOs for specific token cases).
851 	 *
852 	 * WARNING!  We can't call splz_check() or anything else here as
853 	 *	     it could cause a deadlock.
854 	 */
855 #ifdef __amd64__
856 	if ((read_rflags() & PSL_I) == 0) {
857 		cpu_enable_intr();
858 		panic("lwkt_switch() called with interrupts disabled");
859 	}
860 #endif
861 	cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
862 	fatal_count = lwkt_spin_fatal;
863 	while ((oseq = lwkt_cseq_rindex) != cseq) {
864 	    cpu_ccfence();
865 #if !defined(_KERNEL_VIRTUAL)
866 	    if (cpu_mi_feature & CPU_MI_MONITOR) {
867 		cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
868 	    } else
869 #endif
870 	    {
871 		DELAY(1);
872 		cpu_lfence();
873 	    }
874 	    if (fatal_count && --fatal_count == 0)
875 		panic("lwkt_switch: fatal spin wait");
876 	}
877 	cseq = lwkt_spin_delay;	/* don't trust the system operator */
878 	cpu_ccfence();
879 	if (cseq < 1)
880 	    cseq = 1;
881 	if (cseq > 1000)
882 	    cseq = 1000;
883 	DELAY(cseq);
884 	atomic_add_int(&lwkt_cseq_rindex, 1);
885 	splz_check();
886 	/* highest level for(;;) loop */
887     }
888 
889 havethread:
890     /*
891      * We must always decrement td_fairq_accum on non-idle threads just
892      * in case a thread never gets a tick due to being in a continuous
893      * critical section.  The page-zeroing code does this, for example.
894      *
895      * If the thread we came up with is a higher or equal priority verses
896      * the thread at the head of the queue we move our thread to the
897      * front.  This way we can always check the front of the queue.
898      *
899      * Clear gd_idle_repeat when doing a normal switch to a non-idle
900      * thread.
901      */
902     ++gd->gd_cnt.v_swtch;
903     --ntd->td_fairq_accum;
904     ntd->td_wmesg = NULL;
905     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
906     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
907 	TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
908 	TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
909     }
910     gd->gd_idle_repeat = 0;
911 
912 havethread_preempted:
913     /*
914      * If the new target does not need the MP lock and we are holding it,
915      * release the MP lock.  If the new target requires the MP lock we have
916      * already acquired it for the target.
917      */
918     ;
919 haveidle:
920     KASSERT(ntd->td_critcount,
921 	    ("priority problem in lwkt_switch %d %d",
922 	    td->td_critcount, ntd->td_critcount));
923 
924     if (td != ntd) {
925 	++switch_count;
926 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
927 	td->td_switch(ntd);
928     }
929     /* NOTE: current cpu may have changed after switch */
930     crit_exit_quick(td);
931 }
932 
933 /*
934  * Request that the target thread preempt the current thread.  Preemption
935  * only works under a specific set of conditions:
936  *
937  *	- We are not preempting ourselves
938  *	- The target thread is owned by the current cpu
939  *	- We are not currently being preempted
940  *	- The target is not currently being preempted
941  *	- We are not holding any spin locks
942  *	- The target thread is not holding any tokens
943  *	- We are able to satisfy the target's MP lock requirements (if any).
944  *
945  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
946  * this is called via lwkt_schedule() through the td_preemptable callback.
947  * critcount is the managed critical priority that we should ignore in order
948  * to determine whether preemption is possible (aka usually just the crit
949  * priority of lwkt_schedule() itself).
950  *
951  * XXX at the moment we run the target thread in a critical section during
952  * the preemption in order to prevent the target from taking interrupts
953  * that *WE* can't.  Preemption is strictly limited to interrupt threads
954  * and interrupt-like threads, outside of a critical section, and the
955  * preempted source thread will be resumed the instant the target blocks
956  * whether or not the source is scheduled (i.e. preemption is supposed to
957  * be as transparent as possible).
958  */
959 void
960 lwkt_preempt(thread_t ntd, int critcount)
961 {
962     struct globaldata *gd = mycpu;
963     thread_t td;
964     int save_gd_intr_nesting_level;
965 
966     /*
967      * The caller has put us in a critical section.  We can only preempt
968      * if the caller of the caller was not in a critical section (basically
969      * a local interrupt), as determined by the 'critcount' parameter.  We
970      * also can't preempt if the caller is holding any spinlocks (even if
971      * he isn't in a critical section).  This also handles the tokens test.
972      *
973      * YYY The target thread must be in a critical section (else it must
974      * inherit our critical section?  I dunno yet).
975      *
976      * Set need_lwkt_resched() unconditionally for now YYY.
977      */
978     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
979 
980     if (preempt_enable == 0) {
981 	++preempt_miss;
982 	return;
983     }
984 
985     td = gd->gd_curthread;
986     if (ntd->td_pri <= td->td_pri) {
987 	++preempt_miss;
988 	return;
989     }
990     if (td->td_critcount > critcount) {
991 	++preempt_miss;
992 	need_lwkt_resched();
993 	return;
994     }
995 #ifdef SMP
996     if (ntd->td_gd != gd) {
997 	++preempt_miss;
998 	need_lwkt_resched();
999 	return;
1000     }
1001 #endif
1002     /*
1003      * We don't have to check spinlocks here as they will also bump
1004      * td_critcount.
1005      *
1006      * Do not try to preempt if the target thread is holding any tokens.
1007      * We could try to acquire the tokens but this case is so rare there
1008      * is no need to support it.
1009      */
1010     KKASSERT(gd->gd_spinlocks_wr == 0);
1011 
1012     if (TD_TOKS_HELD(ntd)) {
1013 	++preempt_miss;
1014 	need_lwkt_resched();
1015 	return;
1016     }
1017     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1018 	++preempt_weird;
1019 	need_lwkt_resched();
1020 	return;
1021     }
1022     if (ntd->td_preempted) {
1023 	++preempt_hit;
1024 	need_lwkt_resched();
1025 	return;
1026     }
1027 
1028     /*
1029      * Since we are able to preempt the current thread, there is no need to
1030      * call need_lwkt_resched().
1031      *
1032      * We must temporarily clear gd_intr_nesting_level around the switch
1033      * since switchouts from the target thread are allowed (they will just
1034      * return to our thread), and since the target thread has its own stack.
1035      */
1036     ++preempt_hit;
1037     ntd->td_preempted = td;
1038     td->td_flags |= TDF_PREEMPT_LOCK;
1039     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1040     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1041     gd->gd_intr_nesting_level = 0;
1042     td->td_switch(ntd);
1043     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1044 
1045     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1046     ntd->td_preempted = NULL;
1047     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1048 }
1049 
1050 /*
1051  * Conditionally call splz() if gd_reqflags indicates work is pending.
1052  * This will work inside a critical section but not inside a hard code
1053  * section.
1054  *
1055  * (self contained on a per cpu basis)
1056  */
1057 void
1058 splz_check(void)
1059 {
1060     globaldata_t gd = mycpu;
1061     thread_t td = gd->gd_curthread;
1062 
1063     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1064 	gd->gd_intr_nesting_level == 0 &&
1065 	td->td_nest_count < 2)
1066     {
1067 	splz();
1068     }
1069 }
1070 
1071 /*
1072  * This version is integrated into crit_exit, reqflags has already
1073  * been tested but td_critcount has not.
1074  *
1075  * We only want to execute the splz() on the 1->0 transition of
1076  * critcount and not in a hard code section or if too deeply nested.
1077  */
1078 void
1079 lwkt_maybe_splz(thread_t td)
1080 {
1081     globaldata_t gd = td->td_gd;
1082 
1083     if (td->td_critcount == 0 &&
1084 	gd->gd_intr_nesting_level == 0 &&
1085 	td->td_nest_count < 2)
1086     {
1087 	splz();
1088     }
1089 }
1090 
1091 /*
1092  * This function is used to negotiate a passive release of the current
1093  * process/lwp designation with the user scheduler, allowing the user
1094  * scheduler to schedule another user thread.  The related kernel thread
1095  * (curthread) continues running in the released state.
1096  */
1097 void
1098 lwkt_passive_release(struct thread *td)
1099 {
1100     struct lwp *lp = td->td_lwp;
1101 
1102     td->td_release = NULL;
1103     lwkt_setpri_self(TDPRI_KERN_USER);
1104     lp->lwp_proc->p_usched->release_curproc(lp);
1105 }
1106 
1107 
1108 /*
1109  * This implements a normal yield.  This routine is virtually a nop if
1110  * there is nothing to yield to but it will always run any pending interrupts
1111  * if called from a critical section.
1112  *
1113  * This yield is designed for kernel threads without a user context.
1114  *
1115  * (self contained on a per cpu basis)
1116  */
1117 void
1118 lwkt_yield(void)
1119 {
1120     globaldata_t gd = mycpu;
1121     thread_t td = gd->gd_curthread;
1122     thread_t xtd;
1123 
1124     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1125 	splz();
1126     if (td->td_fairq_accum < 0) {
1127 	lwkt_schedule_self(curthread);
1128 	lwkt_switch();
1129     } else {
1130 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1131 	if (xtd && xtd->td_pri > td->td_pri) {
1132 	    lwkt_schedule_self(curthread);
1133 	    lwkt_switch();
1134 	}
1135     }
1136 }
1137 
1138 /*
1139  * This yield is designed for kernel threads with a user context.
1140  *
1141  * The kernel acting on behalf of the user is potentially cpu-bound,
1142  * this function will efficiently allow other threads to run and also
1143  * switch to other processes by releasing.
1144  *
1145  * The lwkt_user_yield() function is designed to have very low overhead
1146  * if no yield is determined to be needed.
1147  */
1148 void
1149 lwkt_user_yield(void)
1150 {
1151     globaldata_t gd = mycpu;
1152     thread_t td = gd->gd_curthread;
1153 
1154     /*
1155      * Always run any pending interrupts in case we are in a critical
1156      * section.
1157      */
1158     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1159 	splz();
1160 
1161     /*
1162      * Switch (which forces a release) if another kernel thread needs
1163      * the cpu, if userland wants us to resched, or if our kernel
1164      * quantum has run out.
1165      */
1166     if (lwkt_resched_wanted() ||
1167 	user_resched_wanted() ||
1168 	td->td_fairq_accum < 0)
1169     {
1170 	lwkt_switch();
1171     }
1172 
1173 #if 0
1174     /*
1175      * Reacquire the current process if we are released.
1176      *
1177      * XXX not implemented atm.  The kernel may be holding locks and such,
1178      *     so we want the thread to continue to receive cpu.
1179      */
1180     if (td->td_release == NULL && lp) {
1181 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1182 	td->td_release = lwkt_passive_release;
1183 	lwkt_setpri_self(TDPRI_USER_NORM);
1184     }
1185 #endif
1186 }
1187 
1188 /*
1189  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1190  * deal with threads that might be blocked on a wait queue.
1191  *
1192  * We have a little helper inline function which does additional work after
1193  * the thread has been enqueued, including dealing with preemption and
1194  * setting need_lwkt_resched() (which prevents the kernel from returning
1195  * to userland until it has processed higher priority threads).
1196  *
1197  * It is possible for this routine to be called after a failed _enqueue
1198  * (due to the target thread migrating, sleeping, or otherwise blocked).
1199  * We have to check that the thread is actually on the run queue!
1200  *
1201  * reschedok is an optimized constant propagated from lwkt_schedule() or
1202  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1203  * reschedule to be requested if the target thread has a higher priority.
1204  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1205  * be 0, prevented undesired reschedules.
1206  */
1207 static __inline
1208 void
1209 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1210 {
1211     thread_t otd;
1212 
1213     if (ntd->td_flags & TDF_RUNQ) {
1214 	if (ntd->td_preemptable && reschedok) {
1215 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1216 	} else if (reschedok) {
1217 	    otd = curthread;
1218 	    if (ntd->td_pri > otd->td_pri)
1219 		need_lwkt_resched();
1220 	}
1221 
1222 	/*
1223 	 * Give the thread a little fair share scheduler bump if it
1224 	 * has been asleep for a while.  This is primarily to avoid
1225 	 * a degenerate case for interrupt threads where accumulator
1226 	 * crosses into negative territory unnecessarily.
1227 	 */
1228 	if (ntd->td_fairq_lticks != ticks) {
1229 	    ntd->td_fairq_lticks = ticks;
1230 	    ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1231 	    if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1232 		    ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1233 	}
1234     }
1235 }
1236 
1237 static __inline
1238 void
1239 _lwkt_schedule(thread_t td, int reschedok)
1240 {
1241     globaldata_t mygd = mycpu;
1242 
1243     KASSERT(td != &td->td_gd->gd_idlethread,
1244 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1245     crit_enter_gd(mygd);
1246     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1247     if (td == mygd->gd_curthread) {
1248 	_lwkt_enqueue(td);
1249     } else {
1250 	/*
1251 	 * If we own the thread, there is no race (since we are in a
1252 	 * critical section).  If we do not own the thread there might
1253 	 * be a race but the target cpu will deal with it.
1254 	 */
1255 #ifdef SMP
1256 	if (td->td_gd == mygd) {
1257 	    _lwkt_enqueue(td);
1258 	    _lwkt_schedule_post(mygd, td, 1, reschedok);
1259 	} else {
1260 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1261 	}
1262 #else
1263 	_lwkt_enqueue(td);
1264 	_lwkt_schedule_post(mygd, td, 1, reschedok);
1265 #endif
1266     }
1267     crit_exit_gd(mygd);
1268 }
1269 
1270 void
1271 lwkt_schedule(thread_t td)
1272 {
1273     _lwkt_schedule(td, 1);
1274 }
1275 
1276 void
1277 lwkt_schedule_noresched(thread_t td)
1278 {
1279     _lwkt_schedule(td, 0);
1280 }
1281 
1282 #ifdef SMP
1283 
1284 /*
1285  * When scheduled remotely if frame != NULL the IPIQ is being
1286  * run via doreti or an interrupt then preemption can be allowed.
1287  *
1288  * To allow preemption we have to drop the critical section so only
1289  * one is present in _lwkt_schedule_post.
1290  */
1291 static void
1292 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1293 {
1294     thread_t td = curthread;
1295     thread_t ntd = arg;
1296 
1297     if (frame && ntd->td_preemptable) {
1298 	crit_exit_noyield(td);
1299 	_lwkt_schedule(ntd, 1);
1300 	crit_enter_quick(td);
1301     } else {
1302 	_lwkt_schedule(ntd, 1);
1303     }
1304 }
1305 
1306 /*
1307  * Thread migration using a 'Pull' method.  The thread may or may not be
1308  * the current thread.  It MUST be descheduled and in a stable state.
1309  * lwkt_giveaway() must be called on the cpu owning the thread.
1310  *
1311  * At any point after lwkt_giveaway() is called, the target cpu may
1312  * 'pull' the thread by calling lwkt_acquire().
1313  *
1314  * We have to make sure the thread is not sitting on a per-cpu tsleep
1315  * queue or it will blow up when it moves to another cpu.
1316  *
1317  * MPSAFE - must be called under very specific conditions.
1318  */
1319 void
1320 lwkt_giveaway(thread_t td)
1321 {
1322     globaldata_t gd = mycpu;
1323 
1324     crit_enter_gd(gd);
1325     if (td->td_flags & TDF_TSLEEPQ)
1326 	tsleep_remove(td);
1327     KKASSERT(td->td_gd == gd);
1328     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1329     td->td_flags |= TDF_MIGRATING;
1330     crit_exit_gd(gd);
1331 }
1332 
1333 void
1334 lwkt_acquire(thread_t td)
1335 {
1336     globaldata_t gd;
1337     globaldata_t mygd;
1338 
1339     KKASSERT(td->td_flags & TDF_MIGRATING);
1340     gd = td->td_gd;
1341     mygd = mycpu;
1342     if (gd != mycpu) {
1343 	cpu_lfence();
1344 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1345 	crit_enter_gd(mygd);
1346 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1347 #ifdef SMP
1348 	    lwkt_process_ipiq();
1349 #endif
1350 	    cpu_lfence();
1351 	}
1352 	cpu_mfence();
1353 	td->td_gd = mygd;
1354 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1355 	td->td_flags &= ~TDF_MIGRATING;
1356 	crit_exit_gd(mygd);
1357     } else {
1358 	crit_enter_gd(mygd);
1359 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1360 	td->td_flags &= ~TDF_MIGRATING;
1361 	crit_exit_gd(mygd);
1362     }
1363 }
1364 
1365 #endif
1366 
1367 /*
1368  * Generic deschedule.  Descheduling threads other then your own should be
1369  * done only in carefully controlled circumstances.  Descheduling is
1370  * asynchronous.
1371  *
1372  * This function may block if the cpu has run out of messages.
1373  */
1374 void
1375 lwkt_deschedule(thread_t td)
1376 {
1377     crit_enter();
1378 #ifdef SMP
1379     if (td == curthread) {
1380 	_lwkt_dequeue(td);
1381     } else {
1382 	if (td->td_gd == mycpu) {
1383 	    _lwkt_dequeue(td);
1384 	} else {
1385 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1386 	}
1387     }
1388 #else
1389     _lwkt_dequeue(td);
1390 #endif
1391     crit_exit();
1392 }
1393 
1394 /*
1395  * Set the target thread's priority.  This routine does not automatically
1396  * switch to a higher priority thread, LWKT threads are not designed for
1397  * continuous priority changes.  Yield if you want to switch.
1398  */
1399 void
1400 lwkt_setpri(thread_t td, int pri)
1401 {
1402     KKASSERT(td->td_gd == mycpu);
1403     if (td->td_pri != pri) {
1404 	KKASSERT(pri >= 0);
1405 	crit_enter();
1406 	if (td->td_flags & TDF_RUNQ) {
1407 	    _lwkt_dequeue(td);
1408 	    td->td_pri = pri;
1409 	    _lwkt_enqueue(td);
1410 	} else {
1411 	    td->td_pri = pri;
1412 	}
1413 	crit_exit();
1414     }
1415 }
1416 
1417 /*
1418  * Set the initial priority for a thread prior to it being scheduled for
1419  * the first time.  The thread MUST NOT be scheduled before or during
1420  * this call.  The thread may be assigned to a cpu other then the current
1421  * cpu.
1422  *
1423  * Typically used after a thread has been created with TDF_STOPPREQ,
1424  * and before the thread is initially scheduled.
1425  */
1426 void
1427 lwkt_setpri_initial(thread_t td, int pri)
1428 {
1429     KKASSERT(pri >= 0);
1430     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1431     td->td_pri = pri;
1432 }
1433 
1434 void
1435 lwkt_setpri_self(int pri)
1436 {
1437     thread_t td = curthread;
1438 
1439     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1440     crit_enter();
1441     if (td->td_flags & TDF_RUNQ) {
1442 	_lwkt_dequeue(td);
1443 	td->td_pri = pri;
1444 	_lwkt_enqueue(td);
1445     } else {
1446 	td->td_pri = pri;
1447     }
1448     crit_exit();
1449 }
1450 
1451 /*
1452  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1453  *
1454  * Example: two competing threads, same priority N.  decrement by (2*N)
1455  * increment by N*8, each thread will get 4 ticks.
1456  */
1457 void
1458 lwkt_fairq_schedulerclock(thread_t td)
1459 {
1460     globaldata_t gd;
1461 
1462     if (fairq_enable) {
1463 	while (td) {
1464 	    gd = td->td_gd;
1465 	    if (td != &gd->gd_idlethread) {
1466 		td->td_fairq_accum -= gd->gd_fairq_total_pri;
1467 		if (td->td_fairq_accum < -TDFAIRQ_MAX(gd))
1468 			td->td_fairq_accum = -TDFAIRQ_MAX(gd);
1469 		if (td->td_fairq_accum < 0)
1470 			need_lwkt_resched();
1471 		td->td_fairq_lticks = ticks;
1472 	    }
1473 	    td = td->td_preempted;
1474 	}
1475     }
1476 }
1477 
1478 static void
1479 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1480 {
1481 	td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1482 	if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1483 		td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1484 }
1485 
1486 /*
1487  * Migrate the current thread to the specified cpu.
1488  *
1489  * This is accomplished by descheduling ourselves from the current cpu,
1490  * moving our thread to the tdallq of the target cpu, IPI messaging the
1491  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1492  * races while the thread is being migrated.
1493  *
1494  * We must be sure to remove ourselves from the current cpu's tsleepq
1495  * before potentially moving to another queue.  The thread can be on
1496  * a tsleepq due to a left-over tsleep_interlock().
1497  */
1498 #ifdef SMP
1499 static void lwkt_setcpu_remote(void *arg);
1500 #endif
1501 
1502 void
1503 lwkt_setcpu_self(globaldata_t rgd)
1504 {
1505 #ifdef SMP
1506     thread_t td = curthread;
1507 
1508     if (td->td_gd != rgd) {
1509 	crit_enter_quick(td);
1510 	if (td->td_flags & TDF_TSLEEPQ)
1511 	    tsleep_remove(td);
1512 	td->td_flags |= TDF_MIGRATING;
1513 	lwkt_deschedule_self(td);
1514 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1515 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1516 	lwkt_switch();
1517 	/* we are now on the target cpu */
1518 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1519 	crit_exit_quick(td);
1520     }
1521 #endif
1522 }
1523 
1524 void
1525 lwkt_migratecpu(int cpuid)
1526 {
1527 #ifdef SMP
1528 	globaldata_t rgd;
1529 
1530 	rgd = globaldata_find(cpuid);
1531 	lwkt_setcpu_self(rgd);
1532 #endif
1533 }
1534 
1535 /*
1536  * Remote IPI for cpu migration (called while in a critical section so we
1537  * do not have to enter another one).  The thread has already been moved to
1538  * our cpu's allq, but we must wait for the thread to be completely switched
1539  * out on the originating cpu before we schedule it on ours or the stack
1540  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1541  * change to main memory.
1542  *
1543  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1544  * against wakeups.  It is best if this interface is used only when there
1545  * are no pending events that might try to schedule the thread.
1546  */
1547 #ifdef SMP
1548 static void
1549 lwkt_setcpu_remote(void *arg)
1550 {
1551     thread_t td = arg;
1552     globaldata_t gd = mycpu;
1553 
1554     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1555 #ifdef SMP
1556 	lwkt_process_ipiq();
1557 #endif
1558 	cpu_lfence();
1559 	cpu_pause();
1560     }
1561     td->td_gd = gd;
1562     cpu_mfence();
1563     td->td_flags &= ~TDF_MIGRATING;
1564     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1565     _lwkt_enqueue(td);
1566 }
1567 #endif
1568 
1569 struct lwp *
1570 lwkt_preempted_proc(void)
1571 {
1572     thread_t td = curthread;
1573     while (td->td_preempted)
1574 	td = td->td_preempted;
1575     return(td->td_lwp);
1576 }
1577 
1578 /*
1579  * Create a kernel process/thread/whatever.  It shares it's address space
1580  * with proc0 - ie: kernel only.
1581  *
1582  * NOTE!  By default new threads are created with the MP lock held.  A
1583  * thread which does not require the MP lock should release it by calling
1584  * rel_mplock() at the start of the new thread.
1585  */
1586 int
1587 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1588 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1589 {
1590     thread_t td;
1591     __va_list ap;
1592 
1593     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1594 			   tdflags);
1595     if (tdp)
1596 	*tdp = td;
1597     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1598 
1599     /*
1600      * Set up arg0 for 'ps' etc
1601      */
1602     __va_start(ap, fmt);
1603     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1604     __va_end(ap);
1605 
1606     /*
1607      * Schedule the thread to run
1608      */
1609     if ((td->td_flags & TDF_STOPREQ) == 0)
1610 	lwkt_schedule(td);
1611     else
1612 	td->td_flags &= ~TDF_STOPREQ;
1613     return 0;
1614 }
1615 
1616 /*
1617  * Destroy an LWKT thread.   Warning!  This function is not called when
1618  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1619  * uses a different reaping mechanism.
1620  */
1621 void
1622 lwkt_exit(void)
1623 {
1624     thread_t td = curthread;
1625     thread_t std;
1626     globaldata_t gd;
1627 
1628     /*
1629      * Do any cleanup that might block here
1630      */
1631     if (td->td_flags & TDF_VERBOSE)
1632 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1633     caps_exit(td);
1634     biosched_done(td);
1635     dsched_exit_thread(td);
1636 
1637     /*
1638      * Get us into a critical section to interlock gd_freetd and loop
1639      * until we can get it freed.
1640      *
1641      * We have to cache the current td in gd_freetd because objcache_put()ing
1642      * it would rip it out from under us while our thread is still active.
1643      */
1644     gd = mycpu;
1645     crit_enter_quick(td);
1646     while ((std = gd->gd_freetd) != NULL) {
1647 	KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1648 	gd->gd_freetd = NULL;
1649 	objcache_put(thread_cache, std);
1650     }
1651 
1652     /*
1653      * Remove thread resources from kernel lists and deschedule us for
1654      * the last time.  We cannot block after this point or we may end
1655      * up with a stale td on the tsleepq.
1656      */
1657     if (td->td_flags & TDF_TSLEEPQ)
1658 	tsleep_remove(td);
1659     lwkt_deschedule_self(td);
1660     lwkt_remove_tdallq(td);
1661     KKASSERT(td->td_refs == 0);
1662 
1663     /*
1664      * Final cleanup
1665      */
1666     KKASSERT(gd->gd_freetd == NULL);
1667     if (td->td_flags & TDF_ALLOCATED_THREAD)
1668 	gd->gd_freetd = td;
1669     cpu_thread_exit();
1670 }
1671 
1672 void
1673 lwkt_remove_tdallq(thread_t td)
1674 {
1675     KKASSERT(td->td_gd == mycpu);
1676     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1677 }
1678 
1679 /*
1680  * Code reduction and branch prediction improvements.  Call/return
1681  * overhead on modern cpus often degenerates into 0 cycles due to
1682  * the cpu's branch prediction hardware and return pc cache.  We
1683  * can take advantage of this by not inlining medium-complexity
1684  * functions and we can also reduce the branch prediction impact
1685  * by collapsing perfectly predictable branches into a single
1686  * procedure instead of duplicating it.
1687  *
1688  * Is any of this noticeable?  Probably not, so I'll take the
1689  * smaller code size.
1690  */
1691 void
1692 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1693 {
1694     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1695 }
1696 
1697 void
1698 crit_panic(void)
1699 {
1700     thread_t td = curthread;
1701     int lcrit = td->td_critcount;
1702 
1703     td->td_critcount = 0;
1704     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1705     /* NOT REACHED */
1706 }
1707 
1708 #ifdef SMP
1709 
1710 /*
1711  * Called from debugger/panic on cpus which have been stopped.  We must still
1712  * process the IPIQ while stopped, even if we were stopped while in a critical
1713  * section (XXX).
1714  *
1715  * If we are dumping also try to process any pending interrupts.  This may
1716  * or may not work depending on the state of the cpu at the point it was
1717  * stopped.
1718  */
1719 void
1720 lwkt_smp_stopped(void)
1721 {
1722     globaldata_t gd = mycpu;
1723 
1724     crit_enter_gd(gd);
1725     if (dumping) {
1726 	lwkt_process_ipiq();
1727 	splz();
1728     } else {
1729 	lwkt_process_ipiq();
1730     }
1731     crit_exit_gd(gd);
1732 }
1733 
1734 #endif
1735