xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 5b991541a99aa38e5ca17ac8e6abee49bd57ac56)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60 
61 #include <sys/dsched.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74 
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 	 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 	 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 	 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99 
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
104 
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 #ifdef	INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
118 #endif
119 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
121 	    "Successful preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
123 	    "Failed preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
125 #ifdef	INVARIANTS
126 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
127 	&token_contention_count, 0, "spinning due to token contention");
128 #endif
129 static int fairq_enable = 1;
130 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, &fairq_enable, 0, "");
131 static int user_pri_sched = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, user_pri_sched, CTLFLAG_RW, &user_pri_sched, 0, "");
133 static int preempt_enable = 1;
134 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, &preempt_enable, 0, "");
135 
136 
137 /*
138  * These helper procedures handle the runq, they can only be called from
139  * within a critical section.
140  *
141  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
142  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
143  * instead of 'mycpu' when referencing the globaldata structure.   Once
144  * SMP live enqueuing and dequeueing only occurs on the current cpu.
145  */
146 static __inline
147 void
148 _lwkt_dequeue(thread_t td)
149 {
150     if (td->td_flags & TDF_RUNQ) {
151 	struct globaldata *gd = td->td_gd;
152 
153 	td->td_flags &= ~TDF_RUNQ;
154 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
155 	gd->gd_fairq_total_pri -= td->td_pri;
156 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
157 		atomic_clear_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
158     }
159 }
160 
161 /*
162  * Priority enqueue.
163  *
164  * NOTE: There are a limited number of lwkt threads runnable since user
165  *	 processes only schedule one at a time per cpu.
166  */
167 static __inline
168 void
169 _lwkt_enqueue(thread_t td)
170 {
171     thread_t xtd;
172 
173     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
174 	struct globaldata *gd = td->td_gd;
175 
176 	td->td_flags |= TDF_RUNQ;
177 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
178 	if (xtd == NULL) {
179 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
180 		atomic_set_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
181 	} else {
182 		while (xtd && xtd->td_pri > td->td_pri)
183 			xtd = TAILQ_NEXT(xtd, td_threadq);
184 		if (xtd)
185 			TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
186 		else
187 			TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
188 	}
189 	gd->gd_fairq_total_pri += td->td_pri;
190     }
191 }
192 
193 static __boolean_t
194 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
195 {
196 	struct thread *td = (struct thread *)obj;
197 
198 	td->td_kstack = NULL;
199 	td->td_kstack_size = 0;
200 	td->td_flags = TDF_ALLOCATED_THREAD;
201 	return (1);
202 }
203 
204 static void
205 _lwkt_thread_dtor(void *obj, void *privdata)
206 {
207 	struct thread *td = (struct thread *)obj;
208 
209 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
210 	    ("_lwkt_thread_dtor: not allocated from objcache"));
211 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
212 		td->td_kstack_size > 0,
213 	    ("_lwkt_thread_dtor: corrupted stack"));
214 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
215 }
216 
217 /*
218  * Initialize the lwkt s/system.
219  */
220 void
221 lwkt_init(void)
222 {
223     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
224     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
225 			NULL, CACHE_NTHREADS/2,
226 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
227 }
228 
229 /*
230  * Schedule a thread to run.  As the current thread we can always safely
231  * schedule ourselves, and a shortcut procedure is provided for that
232  * function.
233  *
234  * (non-blocking, self contained on a per cpu basis)
235  */
236 void
237 lwkt_schedule_self(thread_t td)
238 {
239     crit_enter_quick(td);
240     KASSERT(td != &td->td_gd->gd_idlethread,
241 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
242     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
243     _lwkt_enqueue(td);
244     crit_exit_quick(td);
245 }
246 
247 /*
248  * Deschedule a thread.
249  *
250  * (non-blocking, self contained on a per cpu basis)
251  */
252 void
253 lwkt_deschedule_self(thread_t td)
254 {
255     crit_enter_quick(td);
256     _lwkt_dequeue(td);
257     crit_exit_quick(td);
258 }
259 
260 /*
261  * LWKTs operate on a per-cpu basis
262  *
263  * WARNING!  Called from early boot, 'mycpu' may not work yet.
264  */
265 void
266 lwkt_gdinit(struct globaldata *gd)
267 {
268     TAILQ_INIT(&gd->gd_tdrunq);
269     TAILQ_INIT(&gd->gd_tdallq);
270 }
271 
272 /*
273  * Create a new thread.  The thread must be associated with a process context
274  * or LWKT start address before it can be scheduled.  If the target cpu is
275  * -1 the thread will be created on the current cpu.
276  *
277  * If you intend to create a thread without a process context this function
278  * does everything except load the startup and switcher function.
279  */
280 thread_t
281 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
282 {
283     globaldata_t gd = mycpu;
284     void *stack;
285 
286     /*
287      * If static thread storage is not supplied allocate a thread.  Reuse
288      * a cached free thread if possible.  gd_freetd is used to keep an exiting
289      * thread intact through the exit.
290      */
291     if (td == NULL) {
292 	crit_enter_gd(gd);
293 	if ((td = gd->gd_freetd) != NULL) {
294 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
295 				      TDF_RUNQ)) == 0);
296 	    gd->gd_freetd = NULL;
297 	} else {
298 	    td = objcache_get(thread_cache, M_WAITOK);
299 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
300 				      TDF_RUNQ)) == 0);
301 	}
302 	crit_exit_gd(gd);
303     	KASSERT((td->td_flags &
304 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
305 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
306     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
307     }
308 
309     /*
310      * Try to reuse cached stack.
311      */
312     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
313 	if (flags & TDF_ALLOCATED_STACK) {
314 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
315 	    stack = NULL;
316 	}
317     }
318     if (stack == NULL) {
319 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
320 	flags |= TDF_ALLOCATED_STACK;
321     }
322     if (cpu < 0)
323 	lwkt_init_thread(td, stack, stksize, flags, gd);
324     else
325 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
326     return(td);
327 }
328 
329 /*
330  * Initialize a preexisting thread structure.  This function is used by
331  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
332  *
333  * All threads start out in a critical section at a priority of
334  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
335  * appropriate.  This function may send an IPI message when the
336  * requested cpu is not the current cpu and consequently gd_tdallq may
337  * not be initialized synchronously from the point of view of the originating
338  * cpu.
339  *
340  * NOTE! we have to be careful in regards to creating threads for other cpus
341  * if SMP has not yet been activated.
342  */
343 #ifdef SMP
344 
345 static void
346 lwkt_init_thread_remote(void *arg)
347 {
348     thread_t td = arg;
349 
350     /*
351      * Protected by critical section held by IPI dispatch
352      */
353     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
354 }
355 
356 #endif
357 
358 /*
359  * lwkt core thread structural initialization.
360  *
361  * NOTE: All threads are initialized as mpsafe threads.
362  */
363 void
364 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
365 		struct globaldata *gd)
366 {
367     globaldata_t mygd = mycpu;
368 
369     bzero(td, sizeof(struct thread));
370     td->td_kstack = stack;
371     td->td_kstack_size = stksize;
372     td->td_flags = flags;
373     td->td_gd = gd;
374     td->td_pri = TDPRI_KERN_DAEMON;
375     td->td_critcount = 1;
376     td->td_toks_stop = &td->td_toks_base;
377     if (lwkt_use_spin_port)
378 	lwkt_initport_spin(&td->td_msgport);
379     else
380 	lwkt_initport_thread(&td->td_msgport, td);
381     pmap_init_thread(td);
382 #ifdef SMP
383     /*
384      * Normally initializing a thread for a remote cpu requires sending an
385      * IPI.  However, the idlethread is setup before the other cpus are
386      * activated so we have to treat it as a special case.  XXX manipulation
387      * of gd_tdallq requires the BGL.
388      */
389     if (gd == mygd || td == &gd->gd_idlethread) {
390 	crit_enter_gd(mygd);
391 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
392 	crit_exit_gd(mygd);
393     } else {
394 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
395     }
396 #else
397     crit_enter_gd(mygd);
398     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
399     crit_exit_gd(mygd);
400 #endif
401 
402     dsched_new_thread(td);
403 }
404 
405 void
406 lwkt_set_comm(thread_t td, const char *ctl, ...)
407 {
408     __va_list va;
409 
410     __va_start(va, ctl);
411     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
412     __va_end(va);
413     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
414 }
415 
416 void
417 lwkt_hold(thread_t td)
418 {
419     ++td->td_refs;
420 }
421 
422 void
423 lwkt_rele(thread_t td)
424 {
425     KKASSERT(td->td_refs > 0);
426     --td->td_refs;
427 }
428 
429 void
430 lwkt_wait_free(thread_t td)
431 {
432     while (td->td_refs)
433 	tsleep(td, 0, "tdreap", hz);
434 }
435 
436 void
437 lwkt_free_thread(thread_t td)
438 {
439     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
440     if (td->td_flags & TDF_ALLOCATED_THREAD) {
441     	objcache_put(thread_cache, td);
442     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
443 	/* client-allocated struct with internally allocated stack */
444 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
445 	    ("lwkt_free_thread: corrupted stack"));
446 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
447 	td->td_kstack = NULL;
448 	td->td_kstack_size = 0;
449     }
450     KTR_LOG(ctxsw_deadtd, td);
451 }
452 
453 
454 /*
455  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
456  * switch to the idlethread.  Switching must occur within a critical
457  * section to avoid races with the scheduling queue.
458  *
459  * We always have full control over our cpu's run queue.  Other cpus
460  * that wish to manipulate our queue must use the cpu_*msg() calls to
461  * talk to our cpu, so a critical section is all that is needed and
462  * the result is very, very fast thread switching.
463  *
464  * The LWKT scheduler uses a fixed priority model and round-robins at
465  * each priority level.  User process scheduling is a totally
466  * different beast and LWKT priorities should not be confused with
467  * user process priorities.
468  *
469  * The MP lock may be out of sync with the thread's td_mpcount + td_xpcount.
470  * lwkt_switch() cleans it up.
471  *
472  * Note that the td_switch() function cannot do anything that requires
473  * the MP lock since the MP lock will have already been setup for
474  * the target thread (not the current thread).  It's nice to have a scheduler
475  * that does not need the MP lock to work because it allows us to do some
476  * really cool high-performance MP lock optimizations.
477  *
478  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
479  * is not called by the current thread in the preemption case, only when
480  * the preempting thread blocks (in order to return to the original thread).
481  */
482 void
483 lwkt_switch(void)
484 {
485     globaldata_t gd = mycpu;
486     thread_t td = gd->gd_curthread;
487     thread_t ntd;
488     thread_t xtd;
489     thread_t nlast;
490     int nquserok;
491 #ifdef SMP
492     int mpheld;
493 #endif
494     int didaccumulate;
495     const char *lmsg;	/* diagnostic - 'systat -pv 1' */
496     const void *laddr;
497 
498     /*
499      * Switching from within a 'fast' (non thread switched) interrupt or IPI
500      * is illegal.  However, we may have to do it anyway if we hit a fatal
501      * kernel trap or we have paniced.
502      *
503      * If this case occurs save and restore the interrupt nesting level.
504      */
505     if (gd->gd_intr_nesting_level) {
506 	int savegdnest;
507 	int savegdtrap;
508 
509 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
510 	    panic("lwkt_switch: Attempt to switch from a "
511 		  "a fast interrupt, ipi, or hard code section, "
512 		  "td %p\n",
513 		  td);
514 	} else {
515 	    savegdnest = gd->gd_intr_nesting_level;
516 	    savegdtrap = gd->gd_trap_nesting_level;
517 	    gd->gd_intr_nesting_level = 0;
518 	    gd->gd_trap_nesting_level = 0;
519 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
520 		td->td_flags |= TDF_PANICWARN;
521 		kprintf("Warning: thread switch from interrupt, IPI, "
522 			"or hard code section.\n"
523 			"thread %p (%s)\n", td, td->td_comm);
524 		print_backtrace(-1);
525 	    }
526 	    lwkt_switch();
527 	    gd->gd_intr_nesting_level = savegdnest;
528 	    gd->gd_trap_nesting_level = savegdtrap;
529 	    return;
530 	}
531     }
532 
533     /*
534      * Passive release (used to transition from user to kernel mode
535      * when we block or switch rather then when we enter the kernel).
536      * This function is NOT called if we are switching into a preemption
537      * or returning from a preemption.  Typically this causes us to lose
538      * our current process designation (if we have one) and become a true
539      * LWKT thread, and may also hand the current process designation to
540      * another process and schedule thread.
541      */
542     if (td->td_release)
543 	    td->td_release(td);
544 
545     crit_enter_gd(gd);
546     if (TD_TOKS_HELD(td))
547 	    lwkt_relalltokens(td);
548 
549     /*
550      * We had better not be holding any spin locks, but don't get into an
551      * endless panic loop.
552      */
553     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
554 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
555 	     gd->gd_spinlocks_wr));
556 
557 
558 #ifdef SMP
559     /*
560      * td_mpcount + td_xpcount cannot be used to determine if we currently
561      * hold the MP lock because get_mplock() will increment it prior to
562      * attempting to get the lock, and switch out if it can't.  Our
563      * ownership of the actual lock will remain stable while we are
564      * in a critical section, and once we actually acquire the underlying
565      * lock as long as the count is greater than 0.
566      */
567     mpheld = MP_LOCK_HELD(gd);
568 #ifdef	INVARIANTS
569     if (td->td_cscount) {
570 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
571 		td);
572 	if (panic_on_cscount)
573 	    panic("switching while mastering cpusync");
574     }
575 #endif
576 #endif
577 
578     /*
579      * If we had preempted another thread on this cpu, resume the preempted
580      * thread.  This occurs transparently, whether the preempted thread
581      * was scheduled or not (it may have been preempted after descheduling
582      * itself).
583      *
584      * We have to setup the MP lock for the original thread after backing
585      * out the adjustment that was made to curthread when the original
586      * was preempted.
587      */
588     if ((ntd = td->td_preempted) != NULL) {
589 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
590 #ifdef SMP
591 	if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) {
592 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
593 	       td, ntd, td->td_mpcount, ntd->td_mpcount + ntd->td_xpcount);
594 	}
595 	td->td_xpcount = 0;
596 #endif
597 	ntd->td_flags |= TDF_PREEMPT_DONE;
598 
599 	/*
600 	 * The interrupt may have woken a thread up, we need to properly
601 	 * set the reschedule flag if the originally interrupted thread is
602 	 * at a lower priority.
603 	 */
604 	if (TAILQ_FIRST(&gd->gd_tdrunq) &&
605 	    TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
606 	    need_lwkt_resched();
607 	}
608 	/* YYY release mp lock on switchback if original doesn't need it */
609 	goto havethread_preempted;
610     }
611 
612     /*
613      * Implement round-robin fairq with priority insertion.  The priority
614      * insertion is handled by _lwkt_enqueue()
615      *
616      * We have to adjust the MP lock for the target thread.  If we
617      * need the MP lock and cannot obtain it we try to locate a
618      * thread that does not need the MP lock.  If we cannot, we spin
619      * instead of HLT.
620      *
621      * A similar issue exists for the tokens held by the target thread.
622      * If we cannot obtain ownership of the tokens we cannot immediately
623      * schedule the thread.
624      */
625     for (;;) {
626 	clear_lwkt_resched();
627 	didaccumulate = 0;
628 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
629 
630 	/*
631 	 * Hotpath if we can get all necessary resources.
632 	 *
633 	 * If nothing is runnable switch to the idle thread
634 	 */
635 	if (ntd == NULL) {
636 	    ntd = &gd->gd_idlethread;
637 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
638 		    ntd->td_flags |= TDF_IDLE_NOHLT;
639 #ifdef SMP
640 	    KKASSERT(ntd->td_xpcount == 0);
641 	    if (ntd->td_mpcount) {
642 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
643 		    panic("Idle thread %p was holding the BGL!", ntd);
644 		if (mpheld == 0) {
645 		    set_cpu_contention_mask(gd);
646 		    handle_cpu_contention_mask();
647 		    cpu_try_mplock();
648 		    mpheld = MP_LOCK_HELD(gd);
649 		    cpu_pause();
650 		    continue;
651 		}
652 	    }
653 	    clr_cpu_contention_mask(gd);
654 #endif
655 	    cpu_time.cp_msg[0] = 0;
656 	    cpu_time.cp_stallpc = 0;
657 	    goto haveidle;
658 	}
659 
660 	/*
661 	 * Hotpath schedule
662 	 *
663 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
664 	 *	     always succeeds.
665 	 */
666 	if (ntd->td_fairq_accum >= 0 &&
667 #ifdef SMP
668 	    (ntd->td_mpcount + ntd->td_xpcount == 0 ||
669 	     mpheld || cpu_try_mplock()) &&
670 #endif
671 	    (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
672 	) {
673 #ifdef SMP
674 	    clr_cpu_contention_mask(gd);
675 #endif
676 	    goto havethread;
677 	}
678 
679 	lmsg = NULL;
680 	laddr = NULL;
681 
682 #ifdef SMP
683 	if (ntd->td_fairq_accum >= 0)
684 		set_cpu_contention_mask(gd);
685 	/* Reload mpheld (it become stale after mplock/token ops) */
686 	mpheld = MP_LOCK_HELD(gd);
687 	if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) {
688 	    lmsg = "mplock";
689 	    laddr = ntd->td_mplock_stallpc;
690 	}
691 #endif
692 
693 	/*
694 	 * Coldpath - unable to schedule ntd, continue looking for threads
695 	 * to schedule.  This is only allowed of the (presumably) kernel
696 	 * thread exhausted its fair share.  A kernel thread stuck on
697 	 * resources does not currently allow a user thread to get in
698 	 * front of it.
699 	 */
700 #ifdef SMP
701 	nquserok = ((ntd->td_pri < TDPRI_KERN_LPSCHED) ||
702 		    (ntd->td_fairq_accum < 0));
703 #else
704 	nquserok = 1;
705 #endif
706 	nlast = NULL;
707 
708 	for (;;) {
709 	    /*
710 	     * If the fair-share scheduler ran out ntd gets moved to the
711 	     * end and its accumulator will be bumped, if it didn't we
712 	     * maintain the same queue position.
713 	     *
714 	     * nlast keeps track of the last element prior to any moves.
715 	     */
716 	    if (ntd->td_fairq_accum < 0) {
717 		lwkt_fairq_accumulate(gd, ntd);
718 		didaccumulate = 1;
719 
720 		/*
721 		 * Move to end
722 		 */
723 		xtd = TAILQ_NEXT(ntd, td_threadq);
724 		TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
725 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
726 
727 		/*
728 		 * Set terminal element (nlast)
729 		 */
730 		if (nlast == NULL) {
731 		    nlast = ntd;
732 		    if (xtd == NULL)
733 			xtd = ntd;
734 		}
735 		ntd = xtd;
736 	    } else {
737 		ntd = TAILQ_NEXT(ntd, td_threadq);
738 	    }
739 
740 	    /*
741 	     * If we exhausted the run list switch to the idle thread.
742 	     * Since one or more threads had resource acquisition issues
743 	     * we do not allow the idle thread to halt.
744 	     *
745 	     * NOTE: nlast can be NULL.
746 	     */
747 	    if (ntd == nlast) {
748 		cpu_pause();
749 		ntd = &gd->gd_idlethread;
750 		ntd->td_flags |= TDF_IDLE_NOHLT;
751 #ifdef SMP
752 		KKASSERT(ntd->td_xpcount == 0);
753 		if (ntd->td_mpcount) {
754 		    mpheld = MP_LOCK_HELD(gd);
755 		    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
756 			panic("Idle thread %p was holding the BGL!", ntd);
757 		    if (mpheld == 0) {
758 			set_cpu_contention_mask(gd);
759 			handle_cpu_contention_mask();
760 			cpu_try_mplock();
761 			mpheld = MP_LOCK_HELD(gd);
762 			cpu_pause();
763 			break;		/* try again from the top, almost */
764 		    }
765 		}
766 #endif
767 
768 		/*
769 		 * If fairq accumulations occured we do not schedule the
770 		 * idle thread.  This will cause us to try again from
771 		 * the (almost) top.
772 		 */
773 		if (didaccumulate)
774 			break;		/* try again from the top, almost */
775 		if (lmsg)
776 		    strlcpy(cpu_time.cp_msg, lmsg, sizeof(cpu_time.cp_msg));
777 		cpu_time.cp_stallpc = (uintptr_t)laddr;
778 		goto haveidle;
779 	    }
780 
781 	    /*
782 	     * Try to switch to this thread.
783 	     *
784 	     * NOTE: For UP there is no mplock and lwkt_getalltokens()
785 	     *	     always succeeds.
786 	     */
787 	    if ((ntd->td_pri >= TDPRI_KERN_LPSCHED || nquserok ||
788 		user_pri_sched) && ntd->td_fairq_accum >= 0 &&
789 #ifdef SMP
790 		(ntd->td_mpcount + ntd->td_xpcount == 0 ||
791 		 mpheld || cpu_try_mplock()) &&
792 #endif
793 		(!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
794 	    ) {
795 #ifdef SMP
796 		    clr_cpu_contention_mask(gd);
797 #endif
798 		    goto havethread;
799 	    }
800 #ifdef SMP
801 	    if (ntd->td_fairq_accum >= 0)
802 		    set_cpu_contention_mask(gd);
803 	    /*
804 	     * Reload mpheld (it become stale after mplock/token ops).
805 	     */
806 	    mpheld = MP_LOCK_HELD(gd);
807 	    if (ntd->td_mpcount + ntd->td_xpcount && mpheld == 0) {
808 		lmsg = "mplock";
809 		laddr = ntd->td_mplock_stallpc;
810 	    }
811 	    if (ntd->td_pri >= TDPRI_KERN_LPSCHED && ntd->td_fairq_accum >= 0)
812 		nquserok = 0;
813 #endif
814 	}
815 
816 	/*
817 	 * All threads exhausted but we can loop due to a negative
818 	 * accumulator.
819 	 *
820 	 * While we are looping in the scheduler be sure to service
821 	 * any interrupts which were made pending due to our critical
822 	 * section, otherwise we could livelock (e.g.) IPIs.
823 	 *
824 	 * NOTE: splz can enter and exit the mplock so mpheld is
825 	 * stale after this call.
826 	 */
827 	splz_check();
828 
829 #ifdef SMP
830 	/*
831 	 * Our mplock can be cached and cause other cpus to livelock
832 	 * if we loop due to e.g. not being able to acquire tokens.
833 	 */
834 	if (MP_LOCK_HELD(gd))
835 	    cpu_rel_mplock(gd->gd_cpuid);
836 	mpheld = 0;
837 #endif
838     }
839 
840     /*
841      * Do the actual switch.  WARNING: mpheld is stale here.
842      *
843      * We must always decrement td_fairq_accum on non-idle threads just
844      * in case a thread never gets a tick due to being in a continuous
845      * critical section.  The page-zeroing code does that.
846      *
847      * If the thread we came up with is a higher or equal priority verses
848      * the thread at the head of the queue we move our thread to the
849      * front.  This way we can always check the front of the queue.
850      */
851 havethread:
852     ++gd->gd_cnt.v_swtch;
853     --ntd->td_fairq_accum;
854     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
855     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
856 	TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
857 	TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
858     }
859 havethread_preempted:
860     ;
861     /*
862      * If the new target does not need the MP lock and we are holding it,
863      * release the MP lock.  If the new target requires the MP lock we have
864      * already acquired it for the target.
865      *
866      * WARNING: mpheld is stale here.
867      */
868 haveidle:
869     KASSERT(ntd->td_critcount,
870 	    ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
871 #ifdef SMP
872     if (ntd->td_mpcount + ntd->td_xpcount == 0 ) {
873 	if (MP_LOCK_HELD(gd))
874 	    cpu_rel_mplock(gd->gd_cpuid);
875     } else {
876 	ASSERT_MP_LOCK_HELD(ntd);
877     }
878 #endif
879     if (td != ntd) {
880 	++switch_count;
881 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
882 	td->td_switch(ntd);
883     }
884     /* NOTE: current cpu may have changed after switch */
885     crit_exit_quick(td);
886 }
887 
888 /*
889  * Request that the target thread preempt the current thread.  Preemption
890  * only works under a specific set of conditions:
891  *
892  *	- We are not preempting ourselves
893  *	- The target thread is owned by the current cpu
894  *	- We are not currently being preempted
895  *	- The target is not currently being preempted
896  *	- We are not holding any spin locks
897  *	- The target thread is not holding any tokens
898  *	- We are able to satisfy the target's MP lock requirements (if any).
899  *
900  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
901  * this is called via lwkt_schedule() through the td_preemptable callback.
902  * critcount is the managed critical priority that we should ignore in order
903  * to determine whether preemption is possible (aka usually just the crit
904  * priority of lwkt_schedule() itself).
905  *
906  * XXX at the moment we run the target thread in a critical section during
907  * the preemption in order to prevent the target from taking interrupts
908  * that *WE* can't.  Preemption is strictly limited to interrupt threads
909  * and interrupt-like threads, outside of a critical section, and the
910  * preempted source thread will be resumed the instant the target blocks
911  * whether or not the source is scheduled (i.e. preemption is supposed to
912  * be as transparent as possible).
913  *
914  * The target thread inherits our MP count (added to its own) for the
915  * duration of the preemption in order to preserve the atomicy of the
916  * MP lock during the preemption.  Therefore, any preempting targets must be
917  * careful in regards to MP assertions.  Note that the MP count may be
918  * out of sync with the physical mp_lock, but we do not have to preserve
919  * the original ownership of the lock if it was out of synch (that is, we
920  * can leave it synchronized on return).
921  */
922 void
923 lwkt_preempt(thread_t ntd, int critcount)
924 {
925     struct globaldata *gd = mycpu;
926     thread_t td;
927 #ifdef SMP
928     int mpheld;
929     int savecnt;
930 #endif
931     int save_gd_intr_nesting_level;
932 
933     /*
934      * The caller has put us in a critical section.  We can only preempt
935      * if the caller of the caller was not in a critical section (basically
936      * a local interrupt), as determined by the 'critcount' parameter.  We
937      * also can't preempt if the caller is holding any spinlocks (even if
938      * he isn't in a critical section).  This also handles the tokens test.
939      *
940      * YYY The target thread must be in a critical section (else it must
941      * inherit our critical section?  I dunno yet).
942      *
943      * Set need_lwkt_resched() unconditionally for now YYY.
944      */
945     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
946 
947     if (preempt_enable == 0) {
948 	++preempt_miss;
949 	return;
950     }
951 
952     td = gd->gd_curthread;
953     if (ntd->td_pri <= td->td_pri) {
954 	++preempt_miss;
955 	return;
956     }
957     if (td->td_critcount > critcount) {
958 	++preempt_miss;
959 	need_lwkt_resched();
960 	return;
961     }
962 #ifdef SMP
963     if (ntd->td_gd != gd) {
964 	++preempt_miss;
965 	need_lwkt_resched();
966 	return;
967     }
968 #endif
969     /*
970      * We don't have to check spinlocks here as they will also bump
971      * td_critcount.
972      *
973      * Do not try to preempt if the target thread is holding any tokens.
974      * We could try to acquire the tokens but this case is so rare there
975      * is no need to support it.
976      */
977     KKASSERT(gd->gd_spinlocks_wr == 0);
978 
979     if (TD_TOKS_HELD(ntd)) {
980 	++preempt_miss;
981 	need_lwkt_resched();
982 	return;
983     }
984     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
985 	++preempt_weird;
986 	need_lwkt_resched();
987 	return;
988     }
989     if (ntd->td_preempted) {
990 	++preempt_hit;
991 	need_lwkt_resched();
992 	return;
993     }
994 #ifdef SMP
995     /*
996      * NOTE: An interrupt might have occured just as we were transitioning
997      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
998      * (non-zero) but not actually synchronized with the mp_lock itself.
999      * We can use it to imply an MP lock requirement for the preemption but
1000      * we cannot use it to test whether we hold the MP lock or not.
1001      */
1002     savecnt = td->td_mpcount;
1003     mpheld = MP_LOCK_HELD(gd);
1004     ntd->td_xpcount = td->td_mpcount + td->td_xpcount;
1005     if (mpheld == 0 && ntd->td_mpcount + ntd->td_xpcount && !cpu_try_mplock()) {
1006 	ntd->td_xpcount = 0;
1007 	++preempt_miss;
1008 	need_lwkt_resched();
1009 	return;
1010     }
1011 #endif
1012 
1013     /*
1014      * Since we are able to preempt the current thread, there is no need to
1015      * call need_lwkt_resched().
1016      *
1017      * We must temporarily clear gd_intr_nesting_level around the switch
1018      * since switchouts from the target thread are allowed (they will just
1019      * return to our thread), and since the target thread has its own stack.
1020      */
1021     ++preempt_hit;
1022     ntd->td_preempted = td;
1023     td->td_flags |= TDF_PREEMPT_LOCK;
1024     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1025     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1026     gd->gd_intr_nesting_level = 0;
1027     td->td_switch(ntd);
1028     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1029 
1030     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1031 #ifdef SMP
1032     KKASSERT(savecnt == td->td_mpcount);
1033     mpheld = MP_LOCK_HELD(gd);
1034     if (mpheld && td->td_mpcount == 0)
1035 	cpu_rel_mplock(gd->gd_cpuid);
1036     else if (mpheld == 0 && td->td_mpcount + td->td_xpcount)
1037 	panic("lwkt_preempt(): MP lock was not held through");
1038 #endif
1039     ntd->td_preempted = NULL;
1040     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1041 }
1042 
1043 /*
1044  * Conditionally call splz() if gd_reqflags indicates work is pending.
1045  * This will work inside a critical section but not inside a hard code
1046  * section.
1047  *
1048  * (self contained on a per cpu basis)
1049  */
1050 void
1051 splz_check(void)
1052 {
1053     globaldata_t gd = mycpu;
1054     thread_t td = gd->gd_curthread;
1055 
1056     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1057 	gd->gd_intr_nesting_level == 0 &&
1058 	td->td_nest_count < 2)
1059     {
1060 	splz();
1061     }
1062 }
1063 
1064 /*
1065  * This version is integrated into crit_exit, reqflags has already
1066  * been tested but td_critcount has not.
1067  *
1068  * We only want to execute the splz() on the 1->0 transition of
1069  * critcount and not in a hard code section or if too deeply nested.
1070  */
1071 void
1072 lwkt_maybe_splz(thread_t td)
1073 {
1074     globaldata_t gd = td->td_gd;
1075 
1076     if (td->td_critcount == 0 &&
1077 	gd->gd_intr_nesting_level == 0 &&
1078 	td->td_nest_count < 2)
1079     {
1080 	splz();
1081     }
1082 }
1083 
1084 /*
1085  * This function is used to negotiate a passive release of the current
1086  * process/lwp designation with the user scheduler, allowing the user
1087  * scheduler to schedule another user thread.  The related kernel thread
1088  * (curthread) continues running in the released state.
1089  */
1090 void
1091 lwkt_passive_release(struct thread *td)
1092 {
1093     struct lwp *lp = td->td_lwp;
1094 
1095     td->td_release = NULL;
1096     lwkt_setpri_self(TDPRI_KERN_USER);
1097     lp->lwp_proc->p_usched->release_curproc(lp);
1098 }
1099 
1100 
1101 /*
1102  * This implements a normal yield.  This routine is virtually a nop if
1103  * there is nothing to yield to but it will always run any pending interrupts
1104  * if called from a critical section.
1105  *
1106  * This yield is designed for kernel threads without a user context.
1107  *
1108  * (self contained on a per cpu basis)
1109  */
1110 void
1111 lwkt_yield(void)
1112 {
1113     globaldata_t gd = mycpu;
1114     thread_t td = gd->gd_curthread;
1115     thread_t xtd;
1116 
1117     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1118 	splz();
1119     if (td->td_fairq_accum < 0) {
1120 	lwkt_schedule_self(curthread);
1121 	lwkt_switch();
1122     } else {
1123 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1124 	if (xtd && xtd->td_pri > td->td_pri) {
1125 	    lwkt_schedule_self(curthread);
1126 	    lwkt_switch();
1127 	}
1128     }
1129 }
1130 
1131 /*
1132  * This yield is designed for kernel threads with a user context.
1133  *
1134  * The kernel acting on behalf of the user is potentially cpu-bound,
1135  * this function will efficiently allow other threads to run and also
1136  * switch to other processes by releasing.
1137  *
1138  * The lwkt_user_yield() function is designed to have very low overhead
1139  * if no yield is determined to be needed.
1140  */
1141 void
1142 lwkt_user_yield(void)
1143 {
1144     globaldata_t gd = mycpu;
1145     thread_t td = gd->gd_curthread;
1146 
1147     /*
1148      * Always run any pending interrupts in case we are in a critical
1149      * section.
1150      */
1151     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1152 	splz();
1153 
1154 #ifdef SMP
1155     /*
1156      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1157      * kernel can prevent other cpus from servicing interrupt threads
1158      * which still require the MP lock (which is a lot of them).  This
1159      * has a chaining effect since if the interrupt is blocked, so is
1160      * the event, so normal scheduling will not pick up on the problem.
1161      */
1162     if (cpu_contention_mask && td->td_mpcount + td->td_xpcount) {
1163 	yield_mplock(td);
1164     }
1165 #endif
1166 
1167     /*
1168      * Switch (which forces a release) if another kernel thread needs
1169      * the cpu, if userland wants us to resched, or if our kernel
1170      * quantum has run out.
1171      */
1172     if (lwkt_resched_wanted() ||
1173 	user_resched_wanted() ||
1174 	td->td_fairq_accum < 0)
1175     {
1176 	lwkt_switch();
1177     }
1178 
1179 #if 0
1180     /*
1181      * Reacquire the current process if we are released.
1182      *
1183      * XXX not implemented atm.  The kernel may be holding locks and such,
1184      *     so we want the thread to continue to receive cpu.
1185      */
1186     if (td->td_release == NULL && lp) {
1187 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1188 	td->td_release = lwkt_passive_release;
1189 	lwkt_setpri_self(TDPRI_USER_NORM);
1190     }
1191 #endif
1192 }
1193 
1194 /*
1195  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1196  * deal with threads that might be blocked on a wait queue.
1197  *
1198  * We have a little helper inline function which does additional work after
1199  * the thread has been enqueued, including dealing with preemption and
1200  * setting need_lwkt_resched() (which prevents the kernel from returning
1201  * to userland until it has processed higher priority threads).
1202  *
1203  * It is possible for this routine to be called after a failed _enqueue
1204  * (due to the target thread migrating, sleeping, or otherwise blocked).
1205  * We have to check that the thread is actually on the run queue!
1206  *
1207  * reschedok is an optimized constant propagated from lwkt_schedule() or
1208  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1209  * reschedule to be requested if the target thread has a higher priority.
1210  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1211  * be 0, prevented undesired reschedules.
1212  */
1213 static __inline
1214 void
1215 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1216 {
1217     thread_t otd;
1218 
1219     if (ntd->td_flags & TDF_RUNQ) {
1220 	if (ntd->td_preemptable && reschedok) {
1221 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1222 	} else if (reschedok) {
1223 	    otd = curthread;
1224 	    if (ntd->td_pri > otd->td_pri)
1225 		need_lwkt_resched();
1226 	}
1227 
1228 	/*
1229 	 * Give the thread a little fair share scheduler bump if it
1230 	 * has been asleep for a while.  This is primarily to avoid
1231 	 * a degenerate case for interrupt threads where accumulator
1232 	 * crosses into negative territory unnecessarily.
1233 	 */
1234 	if (ntd->td_fairq_lticks != ticks) {
1235 	    ntd->td_fairq_lticks = ticks;
1236 	    ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1237 	    if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1238 		    ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1239 	}
1240     }
1241 }
1242 
1243 static __inline
1244 void
1245 _lwkt_schedule(thread_t td, int reschedok)
1246 {
1247     globaldata_t mygd = mycpu;
1248 
1249     KASSERT(td != &td->td_gd->gd_idlethread,
1250 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1251     crit_enter_gd(mygd);
1252     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1253     if (td == mygd->gd_curthread) {
1254 	_lwkt_enqueue(td);
1255     } else {
1256 	/*
1257 	 * If we own the thread, there is no race (since we are in a
1258 	 * critical section).  If we do not own the thread there might
1259 	 * be a race but the target cpu will deal with it.
1260 	 */
1261 #ifdef SMP
1262 	if (td->td_gd == mygd) {
1263 	    _lwkt_enqueue(td);
1264 	    _lwkt_schedule_post(mygd, td, 1, reschedok);
1265 	} else {
1266 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1267 	}
1268 #else
1269 	_lwkt_enqueue(td);
1270 	_lwkt_schedule_post(mygd, td, 1, reschedok);
1271 #endif
1272     }
1273     crit_exit_gd(mygd);
1274 }
1275 
1276 void
1277 lwkt_schedule(thread_t td)
1278 {
1279     _lwkt_schedule(td, 1);
1280 }
1281 
1282 void
1283 lwkt_schedule_noresched(thread_t td)
1284 {
1285     _lwkt_schedule(td, 0);
1286 }
1287 
1288 #ifdef SMP
1289 
1290 /*
1291  * When scheduled remotely if frame != NULL the IPIQ is being
1292  * run via doreti or an interrupt then preemption can be allowed.
1293  *
1294  * To allow preemption we have to drop the critical section so only
1295  * one is present in _lwkt_schedule_post.
1296  */
1297 static void
1298 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1299 {
1300     thread_t td = curthread;
1301     thread_t ntd = arg;
1302 
1303     if (frame && ntd->td_preemptable) {
1304 	crit_exit_noyield(td);
1305 	_lwkt_schedule(ntd, 1);
1306 	crit_enter_quick(td);
1307     } else {
1308 	_lwkt_schedule(ntd, 1);
1309     }
1310 }
1311 
1312 /*
1313  * Thread migration using a 'Pull' method.  The thread may or may not be
1314  * the current thread.  It MUST be descheduled and in a stable state.
1315  * lwkt_giveaway() must be called on the cpu owning the thread.
1316  *
1317  * At any point after lwkt_giveaway() is called, the target cpu may
1318  * 'pull' the thread by calling lwkt_acquire().
1319  *
1320  * We have to make sure the thread is not sitting on a per-cpu tsleep
1321  * queue or it will blow up when it moves to another cpu.
1322  *
1323  * MPSAFE - must be called under very specific conditions.
1324  */
1325 void
1326 lwkt_giveaway(thread_t td)
1327 {
1328     globaldata_t gd = mycpu;
1329 
1330     crit_enter_gd(gd);
1331     if (td->td_flags & TDF_TSLEEPQ)
1332 	tsleep_remove(td);
1333     KKASSERT(td->td_gd == gd);
1334     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1335     td->td_flags |= TDF_MIGRATING;
1336     crit_exit_gd(gd);
1337 }
1338 
1339 void
1340 lwkt_acquire(thread_t td)
1341 {
1342     globaldata_t gd;
1343     globaldata_t mygd;
1344 
1345     KKASSERT(td->td_flags & TDF_MIGRATING);
1346     gd = td->td_gd;
1347     mygd = mycpu;
1348     if (gd != mycpu) {
1349 	cpu_lfence();
1350 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1351 	crit_enter_gd(mygd);
1352 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1353 #ifdef SMP
1354 	    lwkt_process_ipiq();
1355 #endif
1356 	    cpu_lfence();
1357 	}
1358 	cpu_mfence();
1359 	td->td_gd = mygd;
1360 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1361 	td->td_flags &= ~TDF_MIGRATING;
1362 	crit_exit_gd(mygd);
1363     } else {
1364 	crit_enter_gd(mygd);
1365 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1366 	td->td_flags &= ~TDF_MIGRATING;
1367 	crit_exit_gd(mygd);
1368     }
1369 }
1370 
1371 #endif
1372 
1373 /*
1374  * Generic deschedule.  Descheduling threads other then your own should be
1375  * done only in carefully controlled circumstances.  Descheduling is
1376  * asynchronous.
1377  *
1378  * This function may block if the cpu has run out of messages.
1379  */
1380 void
1381 lwkt_deschedule(thread_t td)
1382 {
1383     crit_enter();
1384 #ifdef SMP
1385     if (td == curthread) {
1386 	_lwkt_dequeue(td);
1387     } else {
1388 	if (td->td_gd == mycpu) {
1389 	    _lwkt_dequeue(td);
1390 	} else {
1391 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1392 	}
1393     }
1394 #else
1395     _lwkt_dequeue(td);
1396 #endif
1397     crit_exit();
1398 }
1399 
1400 /*
1401  * Set the target thread's priority.  This routine does not automatically
1402  * switch to a higher priority thread, LWKT threads are not designed for
1403  * continuous priority changes.  Yield if you want to switch.
1404  */
1405 void
1406 lwkt_setpri(thread_t td, int pri)
1407 {
1408     KKASSERT(td->td_gd == mycpu);
1409     if (td->td_pri != pri) {
1410 	KKASSERT(pri >= 0);
1411 	crit_enter();
1412 	if (td->td_flags & TDF_RUNQ) {
1413 	    _lwkt_dequeue(td);
1414 	    td->td_pri = pri;
1415 	    _lwkt_enqueue(td);
1416 	} else {
1417 	    td->td_pri = pri;
1418 	}
1419 	crit_exit();
1420     }
1421 }
1422 
1423 /*
1424  * Set the initial priority for a thread prior to it being scheduled for
1425  * the first time.  The thread MUST NOT be scheduled before or during
1426  * this call.  The thread may be assigned to a cpu other then the current
1427  * cpu.
1428  *
1429  * Typically used after a thread has been created with TDF_STOPPREQ,
1430  * and before the thread is initially scheduled.
1431  */
1432 void
1433 lwkt_setpri_initial(thread_t td, int pri)
1434 {
1435     KKASSERT(pri >= 0);
1436     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1437     td->td_pri = pri;
1438 }
1439 
1440 void
1441 lwkt_setpri_self(int pri)
1442 {
1443     thread_t td = curthread;
1444 
1445     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1446     crit_enter();
1447     if (td->td_flags & TDF_RUNQ) {
1448 	_lwkt_dequeue(td);
1449 	td->td_pri = pri;
1450 	_lwkt_enqueue(td);
1451     } else {
1452 	td->td_pri = pri;
1453     }
1454     crit_exit();
1455 }
1456 
1457 /*
1458  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1459  *
1460  * Example: two competing threads, same priority N.  decrement by (2*N)
1461  * increment by N*8, each thread will get 4 ticks.
1462  */
1463 void
1464 lwkt_fairq_schedulerclock(thread_t td)
1465 {
1466     if (fairq_enable) {
1467 	while (td) {
1468 	    if (td != &td->td_gd->gd_idlethread) {
1469 		td->td_fairq_accum -= td->td_gd->gd_fairq_total_pri;
1470 		if (td->td_fairq_accum < -TDFAIRQ_MAX(td->td_gd))
1471 			td->td_fairq_accum = -TDFAIRQ_MAX(td->td_gd);
1472 		if (td->td_fairq_accum < 0)
1473 			need_lwkt_resched();
1474 		td->td_fairq_lticks = ticks;
1475 	    }
1476 	    td = td->td_preempted;
1477 	}
1478     }
1479 }
1480 
1481 static void
1482 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1483 {
1484 	td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1485 	if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1486 		td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1487 }
1488 
1489 /*
1490  * Migrate the current thread to the specified cpu.
1491  *
1492  * This is accomplished by descheduling ourselves from the current cpu,
1493  * moving our thread to the tdallq of the target cpu, IPI messaging the
1494  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1495  * races while the thread is being migrated.
1496  *
1497  * We must be sure to remove ourselves from the current cpu's tsleepq
1498  * before potentially moving to another queue.  The thread can be on
1499  * a tsleepq due to a left-over tsleep_interlock().
1500  */
1501 #ifdef SMP
1502 static void lwkt_setcpu_remote(void *arg);
1503 #endif
1504 
1505 void
1506 lwkt_setcpu_self(globaldata_t rgd)
1507 {
1508 #ifdef SMP
1509     thread_t td = curthread;
1510 
1511     if (td->td_gd != rgd) {
1512 	crit_enter_quick(td);
1513 	if (td->td_flags & TDF_TSLEEPQ)
1514 	    tsleep_remove(td);
1515 	td->td_flags |= TDF_MIGRATING;
1516 	lwkt_deschedule_self(td);
1517 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1518 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1519 	lwkt_switch();
1520 	/* we are now on the target cpu */
1521 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1522 	crit_exit_quick(td);
1523     }
1524 #endif
1525 }
1526 
1527 void
1528 lwkt_migratecpu(int cpuid)
1529 {
1530 #ifdef SMP
1531 	globaldata_t rgd;
1532 
1533 	rgd = globaldata_find(cpuid);
1534 	lwkt_setcpu_self(rgd);
1535 #endif
1536 }
1537 
1538 /*
1539  * Remote IPI for cpu migration (called while in a critical section so we
1540  * do not have to enter another one).  The thread has already been moved to
1541  * our cpu's allq, but we must wait for the thread to be completely switched
1542  * out on the originating cpu before we schedule it on ours or the stack
1543  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1544  * change to main memory.
1545  *
1546  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1547  * against wakeups.  It is best if this interface is used only when there
1548  * are no pending events that might try to schedule the thread.
1549  */
1550 #ifdef SMP
1551 static void
1552 lwkt_setcpu_remote(void *arg)
1553 {
1554     thread_t td = arg;
1555     globaldata_t gd = mycpu;
1556 
1557     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1558 #ifdef SMP
1559 	lwkt_process_ipiq();
1560 #endif
1561 	cpu_lfence();
1562 	cpu_pause();
1563     }
1564     td->td_gd = gd;
1565     cpu_mfence();
1566     td->td_flags &= ~TDF_MIGRATING;
1567     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1568     _lwkt_enqueue(td);
1569 }
1570 #endif
1571 
1572 struct lwp *
1573 lwkt_preempted_proc(void)
1574 {
1575     thread_t td = curthread;
1576     while (td->td_preempted)
1577 	td = td->td_preempted;
1578     return(td->td_lwp);
1579 }
1580 
1581 /*
1582  * Create a kernel process/thread/whatever.  It shares it's address space
1583  * with proc0 - ie: kernel only.
1584  *
1585  * NOTE!  By default new threads are created with the MP lock held.  A
1586  * thread which does not require the MP lock should release it by calling
1587  * rel_mplock() at the start of the new thread.
1588  */
1589 int
1590 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1591 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1592 {
1593     thread_t td;
1594     __va_list ap;
1595 
1596     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1597 			   tdflags);
1598     if (tdp)
1599 	*tdp = td;
1600     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1601 
1602     /*
1603      * Set up arg0 for 'ps' etc
1604      */
1605     __va_start(ap, fmt);
1606     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1607     __va_end(ap);
1608 
1609     /*
1610      * Schedule the thread to run
1611      */
1612     if ((td->td_flags & TDF_STOPREQ) == 0)
1613 	lwkt_schedule(td);
1614     else
1615 	td->td_flags &= ~TDF_STOPREQ;
1616     return 0;
1617 }
1618 
1619 /*
1620  * Destroy an LWKT thread.   Warning!  This function is not called when
1621  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1622  * uses a different reaping mechanism.
1623  */
1624 void
1625 lwkt_exit(void)
1626 {
1627     thread_t td = curthread;
1628     thread_t std;
1629     globaldata_t gd;
1630 
1631     /*
1632      * Do any cleanup that might block here
1633      */
1634     if (td->td_flags & TDF_VERBOSE)
1635 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1636     caps_exit(td);
1637     biosched_done(td);
1638     dsched_exit_thread(td);
1639 
1640     /*
1641      * Get us into a critical section to interlock gd_freetd and loop
1642      * until we can get it freed.
1643      *
1644      * We have to cache the current td in gd_freetd because objcache_put()ing
1645      * it would rip it out from under us while our thread is still active.
1646      */
1647     gd = mycpu;
1648     crit_enter_quick(td);
1649     while ((std = gd->gd_freetd) != NULL) {
1650 	KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1651 	gd->gd_freetd = NULL;
1652 	objcache_put(thread_cache, std);
1653     }
1654 
1655     /*
1656      * Remove thread resources from kernel lists and deschedule us for
1657      * the last time.  We cannot block after this point or we may end
1658      * up with a stale td on the tsleepq.
1659      */
1660     if (td->td_flags & TDF_TSLEEPQ)
1661 	tsleep_remove(td);
1662     lwkt_deschedule_self(td);
1663     lwkt_remove_tdallq(td);
1664 
1665     /*
1666      * Final cleanup
1667      */
1668     KKASSERT(gd->gd_freetd == NULL);
1669     if (td->td_flags & TDF_ALLOCATED_THREAD)
1670 	gd->gd_freetd = td;
1671     cpu_thread_exit();
1672 }
1673 
1674 void
1675 lwkt_remove_tdallq(thread_t td)
1676 {
1677     KKASSERT(td->td_gd == mycpu);
1678     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1679 }
1680 
1681 /*
1682  * Code reduction and branch prediction improvements.  Call/return
1683  * overhead on modern cpus often degenerates into 0 cycles due to
1684  * the cpu's branch prediction hardware and return pc cache.  We
1685  * can take advantage of this by not inlining medium-complexity
1686  * functions and we can also reduce the branch prediction impact
1687  * by collapsing perfectly predictable branches into a single
1688  * procedure instead of duplicating it.
1689  *
1690  * Is any of this noticeable?  Probably not, so I'll take the
1691  * smaller code size.
1692  */
1693 void
1694 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1695 {
1696     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1697 }
1698 
1699 void
1700 crit_panic(void)
1701 {
1702     thread_t td = curthread;
1703     int lcrit = td->td_critcount;
1704 
1705     td->td_critcount = 0;
1706     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1707     /* NOT REACHED */
1708 }
1709 
1710 #ifdef SMP
1711 
1712 /*
1713  * Called from debugger/panic on cpus which have been stopped.  We must still
1714  * process the IPIQ while stopped, even if we were stopped while in a critical
1715  * section (XXX).
1716  *
1717  * If we are dumping also try to process any pending interrupts.  This may
1718  * or may not work depending on the state of the cpu at the point it was
1719  * stopped.
1720  */
1721 void
1722 lwkt_smp_stopped(void)
1723 {
1724     globaldata_t gd = mycpu;
1725 
1726     crit_enter_gd(gd);
1727     if (dumping) {
1728 	lwkt_process_ipiq();
1729 	splz();
1730     } else {
1731 	lwkt_process_ipiq();
1732     }
1733     crit_exit_gd(gd);
1734 }
1735 
1736 #endif
1737