xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 53e987cee557d989dbf172d8a3c2ade9ea6fc46f)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.71 2005/04/13 04:02:08 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68 
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72 
73 #else
74 
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 #include <machine/atomic.h>
89 #include <machine/cpu.h>
90 
91 #endif
92 
93 static int untimely_switch = 0;
94 #ifdef	INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101 
102 #ifdef _KERNEL
103 
104 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
105 #ifdef	INVARIANTS
106 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
107 #endif
108 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
110 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
112 
113 #endif
114 
115 /*
116  * These helper procedures handle the runq, they can only be called from
117  * within a critical section.
118  *
119  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
120  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
121  * instead of 'mycpu' when referencing the globaldata structure.   Once
122  * SMP live enqueuing and dequeueing only occurs on the current cpu.
123  */
124 static __inline
125 void
126 _lwkt_dequeue(thread_t td)
127 {
128     if (td->td_flags & TDF_RUNQ) {
129 	int nq = td->td_pri & TDPRI_MASK;
130 	struct globaldata *gd = td->td_gd;
131 
132 	td->td_flags &= ~TDF_RUNQ;
133 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
134 	/* runqmask is passively cleaned up by the switcher */
135     }
136 }
137 
138 static __inline
139 void
140 _lwkt_enqueue(thread_t td)
141 {
142     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
143 	int nq = td->td_pri & TDPRI_MASK;
144 	struct globaldata *gd = td->td_gd;
145 
146 	td->td_flags |= TDF_RUNQ;
147 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
148 	gd->gd_runqmask |= 1 << nq;
149     }
150 }
151 
152 /*
153  * Schedule a thread to run.  As the current thread we can always safely
154  * schedule ourselves, and a shortcut procedure is provided for that
155  * function.
156  *
157  * (non-blocking, self contained on a per cpu basis)
158  */
159 void
160 lwkt_schedule_self(thread_t td)
161 {
162     crit_enter_quick(td);
163     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
164     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
165     _lwkt_enqueue(td);
166 #ifdef _KERNEL
167     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
168 	panic("SCHED SELF PANIC");
169 #endif
170     crit_exit_quick(td);
171 }
172 
173 /*
174  * Deschedule a thread.
175  *
176  * (non-blocking, self contained on a per cpu basis)
177  */
178 void
179 lwkt_deschedule_self(thread_t td)
180 {
181     crit_enter_quick(td);
182     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
183     _lwkt_dequeue(td);
184     crit_exit_quick(td);
185 }
186 
187 #ifdef _KERNEL
188 
189 /*
190  * LWKTs operate on a per-cpu basis
191  *
192  * WARNING!  Called from early boot, 'mycpu' may not work yet.
193  */
194 void
195 lwkt_gdinit(struct globaldata *gd)
196 {
197     int i;
198 
199     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
200 	TAILQ_INIT(&gd->gd_tdrunq[i]);
201     gd->gd_runqmask = 0;
202     TAILQ_INIT(&gd->gd_tdallq);
203 }
204 
205 #endif /* _KERNEL */
206 
207 /*
208  * Initialize a thread wait structure prior to first use.
209  *
210  * NOTE!  called from low level boot code, we cannot do anything fancy!
211  */
212 void
213 lwkt_wait_init(lwkt_wait_t w)
214 {
215     lwkt_token_init(&w->wa_token);
216     TAILQ_INIT(&w->wa_waitq);
217     w->wa_gen = 0;
218     w->wa_count = 0;
219 }
220 
221 /*
222  * Create a new thread.  The thread must be associated with a process context
223  * or LWKT start address before it can be scheduled.  If the target cpu is
224  * -1 the thread will be created on the current cpu.
225  *
226  * If you intend to create a thread without a process context this function
227  * does everything except load the startup and switcher function.
228  */
229 thread_t
230 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
231 {
232     void *stack;
233     int flags = 0;
234     globaldata_t gd = mycpu;
235 
236     if (td == NULL) {
237 	crit_enter_gd(gd);
238 	if (gd->gd_tdfreecount > 0) {
239 	    --gd->gd_tdfreecount;
240 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
241 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
242 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
243 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
244 	    crit_exit_gd(gd);
245 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
246 	} else {
247 	    crit_exit_gd(gd);
248 #ifdef _KERNEL
249 	    td = zalloc(thread_zone);
250 #else
251 	    td = malloc(sizeof(struct thread));
252 #endif
253 	    td->td_kstack = NULL;
254 	    td->td_kstack_size = 0;
255 	    flags |= TDF_ALLOCATED_THREAD;
256 	}
257     }
258     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
259 	if (flags & TDF_ALLOCATED_STACK) {
260 #ifdef _KERNEL
261 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
262 #else
263 	    libcaps_free_stack(stack, td->td_kstack_size);
264 #endif
265 	    stack = NULL;
266 	}
267     }
268     if (stack == NULL) {
269 #ifdef _KERNEL
270 	stack = (void *)kmem_alloc(kernel_map, stksize);
271 #else
272 	stack = libcaps_alloc_stack(stksize);
273 #endif
274 	flags |= TDF_ALLOCATED_STACK;
275     }
276     if (cpu < 0)
277 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
278     else
279 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
280     return(td);
281 }
282 
283 #ifdef _KERNEL
284 
285 /*
286  * Initialize a preexisting thread structure.  This function is used by
287  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
288  *
289  * All threads start out in a critical section at a priority of
290  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
291  * appropriate.  This function may send an IPI message when the
292  * requested cpu is not the current cpu and consequently gd_tdallq may
293  * not be initialized synchronously from the point of view of the originating
294  * cpu.
295  *
296  * NOTE! we have to be careful in regards to creating threads for other cpus
297  * if SMP has not yet been activated.
298  */
299 #ifdef SMP
300 
301 static void
302 lwkt_init_thread_remote(void *arg)
303 {
304     thread_t td = arg;
305 
306     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
307 }
308 
309 #endif
310 
311 void
312 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
313 		struct globaldata *gd)
314 {
315     globaldata_t mygd = mycpu;
316 
317     bzero(td, sizeof(struct thread));
318     td->td_kstack = stack;
319     td->td_kstack_size = stksize;
320     td->td_flags |= flags;
321     td->td_gd = gd;
322     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
323     lwkt_initport(&td->td_msgport, td);
324     pmap_init_thread(td);
325 #ifdef SMP
326     /*
327      * Normally initializing a thread for a remote cpu requires sending an
328      * IPI.  However, the idlethread is setup before the other cpus are
329      * activated so we have to treat it as a special case.  XXX manipulation
330      * of gd_tdallq requires the BGL.
331      */
332     if (gd == mygd || td == &gd->gd_idlethread) {
333 	crit_enter_gd(mygd);
334 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
335 	crit_exit_gd(mygd);
336     } else {
337 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
338     }
339 #else
340     crit_enter_gd(mygd);
341     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
342     crit_exit_gd(mygd);
343 #endif
344 }
345 
346 #endif /* _KERNEL */
347 
348 void
349 lwkt_set_comm(thread_t td, const char *ctl, ...)
350 {
351     __va_list va;
352 
353     __va_start(va, ctl);
354     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
355     __va_end(va);
356 }
357 
358 void
359 lwkt_hold(thread_t td)
360 {
361     ++td->td_refs;
362 }
363 
364 void
365 lwkt_rele(thread_t td)
366 {
367     KKASSERT(td->td_refs > 0);
368     --td->td_refs;
369 }
370 
371 #ifdef _KERNEL
372 
373 void
374 lwkt_wait_free(thread_t td)
375 {
376     while (td->td_refs)
377 	tsleep(td, 0, "tdreap", hz);
378 }
379 
380 #endif
381 
382 void
383 lwkt_free_thread(thread_t td)
384 {
385     struct globaldata *gd = mycpu;
386 
387     KASSERT((td->td_flags & TDF_RUNNING) == 0,
388 	("lwkt_free_thread: did not exit! %p", td));
389 
390     crit_enter_gd(gd);
391     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
392     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
393 	(td->td_flags & TDF_ALLOCATED_THREAD)
394     ) {
395 	++gd->gd_tdfreecount;
396 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
397 	crit_exit_gd(gd);
398     } else {
399 	crit_exit_gd(gd);
400 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
401 #ifdef _KERNEL
402 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
403 #else
404 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
405 #endif
406 	    /* gd invalid */
407 	    td->td_kstack = NULL;
408 	    td->td_kstack_size = 0;
409 	}
410 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
411 #ifdef _KERNEL
412 	    zfree(thread_zone, td);
413 #else
414 	    free(td);
415 #endif
416 	}
417     }
418 }
419 
420 
421 /*
422  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
423  * switch to the idlethread.  Switching must occur within a critical
424  * section to avoid races with the scheduling queue.
425  *
426  * We always have full control over our cpu's run queue.  Other cpus
427  * that wish to manipulate our queue must use the cpu_*msg() calls to
428  * talk to our cpu, so a critical section is all that is needed and
429  * the result is very, very fast thread switching.
430  *
431  * The LWKT scheduler uses a fixed priority model and round-robins at
432  * each priority level.  User process scheduling is a totally
433  * different beast and LWKT priorities should not be confused with
434  * user process priorities.
435  *
436  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
437  * cleans it up.  Note that the td_switch() function cannot do anything that
438  * requires the MP lock since the MP lock will have already been setup for
439  * the target thread (not the current thread).  It's nice to have a scheduler
440  * that does not need the MP lock to work because it allows us to do some
441  * really cool high-performance MP lock optimizations.
442  */
443 
444 void
445 lwkt_switch(void)
446 {
447     globaldata_t gd = mycpu;
448     thread_t td = gd->gd_curthread;
449     thread_t ntd;
450 #ifdef SMP
451     int mpheld;
452 #endif
453 
454     /*
455      * Switching from within a 'fast' (non thread switched) interrupt is
456      * illegal.
457      */
458     if (gd->gd_intr_nesting_level && panicstr == NULL) {
459 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet");
460     }
461 
462     /*
463      * Passive release (used to transition from user to kernel mode
464      * when we block or switch rather then when we enter the kernel).
465      * This function is NOT called if we are switching into a preemption
466      * or returning from a preemption.  Typically this causes us to lose
467      * our current process designation (if we have one) and become a true
468      * LWKT thread, and may also hand the current process designation to
469      * another process and schedule thread.
470      */
471     if (td->td_release)
472 	    td->td_release(td);
473 
474     crit_enter_gd(gd);
475 
476 #ifdef SMP
477     /*
478      * td_mpcount cannot be used to determine if we currently hold the
479      * MP lock because get_mplock() will increment it prior to attempting
480      * to get the lock, and switch out if it can't.  Our ownership of
481      * the actual lock will remain stable while we are in a critical section
482      * (but, of course, another cpu may own or release the lock so the
483      * actual value of mp_lock is not stable).
484      */
485     mpheld = MP_LOCK_HELD();
486 #ifdef	INVARIANTS
487     if (td->td_cscount) {
488 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
489 		td);
490 	if (panic_on_cscount)
491 	    panic("switching while mastering cpusync");
492     }
493 #endif
494 #endif
495     if ((ntd = td->td_preempted) != NULL) {
496 	/*
497 	 * We had preempted another thread on this cpu, resume the preempted
498 	 * thread.  This occurs transparently, whether the preempted thread
499 	 * was scheduled or not (it may have been preempted after descheduling
500 	 * itself).
501 	 *
502 	 * We have to setup the MP lock for the original thread after backing
503 	 * out the adjustment that was made to curthread when the original
504 	 * was preempted.
505 	 */
506 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
507 #ifdef SMP
508 	if (ntd->td_mpcount && mpheld == 0) {
509 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
510 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
511 	}
512 	if (ntd->td_mpcount) {
513 	    td->td_mpcount -= ntd->td_mpcount;
514 	    KKASSERT(td->td_mpcount >= 0);
515 	}
516 #endif
517 	ntd->td_flags |= TDF_PREEMPT_DONE;
518 
519 	/*
520 	 * XXX.  The interrupt may have woken a thread up, we need to properly
521 	 * set the reschedule flag if the originally interrupted thread is at
522 	 * a lower priority.
523 	 */
524 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
525 	    need_lwkt_resched();
526 	/* YYY release mp lock on switchback if original doesn't need it */
527     } else {
528 	/*
529 	 * Priority queue / round-robin at each priority.  Note that user
530 	 * processes run at a fixed, low priority and the user process
531 	 * scheduler deals with interactions between user processes
532 	 * by scheduling and descheduling them from the LWKT queue as
533 	 * necessary.
534 	 *
535 	 * We have to adjust the MP lock for the target thread.  If we
536 	 * need the MP lock and cannot obtain it we try to locate a
537 	 * thread that does not need the MP lock.  If we cannot, we spin
538 	 * instead of HLT.
539 	 *
540 	 * A similar issue exists for the tokens held by the target thread.
541 	 * If we cannot obtain ownership of the tokens we cannot immediately
542 	 * schedule the thread.
543 	 */
544 
545 	/*
546 	 * We are switching threads.  If there are any pending requests for
547 	 * tokens we can satisfy all of them here.
548 	 */
549 #ifdef SMP
550 	if (gd->gd_tokreqbase)
551 		lwkt_drain_token_requests();
552 #endif
553 
554 	/*
555 	 * If an LWKT reschedule was requested, well that is what we are
556 	 * doing now so clear it.
557 	 */
558 	clear_lwkt_resched();
559 again:
560 	if (gd->gd_runqmask) {
561 	    int nq = bsrl(gd->gd_runqmask);
562 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
563 		gd->gd_runqmask &= ~(1 << nq);
564 		goto again;
565 	    }
566 #ifdef SMP
567 	    /*
568 	     * If the target needs the MP lock and we couldn't get it,
569 	     * or if the target is holding tokens and we could not
570 	     * gain ownership of the tokens, continue looking for a
571 	     * thread to schedule and spin instead of HLT if we can't.
572 	     */
573 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
574 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
575 	    ) {
576 		u_int32_t rqmask = gd->gd_runqmask;
577 		while (rqmask) {
578 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
579 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
580 			    continue;
581 			mpheld = MP_LOCK_HELD();
582 			if (ntd->td_toks && !lwkt_chktokens(ntd))
583 			    continue;
584 			break;
585 		    }
586 		    if (ntd)
587 			break;
588 		    rqmask &= ~(1 << nq);
589 		    nq = bsrl(rqmask);
590 		}
591 		if (ntd == NULL) {
592 		    ntd = &gd->gd_idlethread;
593 		    ntd->td_flags |= TDF_IDLE_NOHLT;
594 		} else {
595 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
596 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
597 		}
598 	    } else {
599 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
600 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
601 	    }
602 #else
603 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
604 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
605 #endif
606 	} else {
607 	    /*
608 	     * We have nothing to run but only let the idle loop halt
609 	     * the cpu if there are no pending interrupts.
610 	     */
611 	    ntd = &gd->gd_idlethread;
612 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
613 		ntd->td_flags |= TDF_IDLE_NOHLT;
614 	}
615     }
616     KASSERT(ntd->td_pri >= TDPRI_CRIT,
617 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
618 
619     /*
620      * Do the actual switch.  If the new target does not need the MP lock
621      * and we are holding it, release the MP lock.  If the new target requires
622      * the MP lock we have already acquired it for the target.
623      */
624 #ifdef SMP
625     if (ntd->td_mpcount == 0 ) {
626 	if (MP_LOCK_HELD())
627 	    cpu_rel_mplock();
628     } else {
629 	ASSERT_MP_LOCK_HELD();
630     }
631 #endif
632     if (td != ntd) {
633 	++switch_count;
634 	td->td_switch(ntd);
635     }
636     /* NOTE: current cpu may have changed after switch */
637     crit_exit_quick(td);
638 }
639 
640 /*
641  * Request that the target thread preempt the current thread.  Preemption
642  * only works under a specific set of conditions:
643  *
644  *	- We are not preempting ourselves
645  *	- The target thread is owned by the current cpu
646  *	- We are not currently being preempted
647  *	- The target is not currently being preempted
648  *	- We are able to satisfy the target's MP lock requirements (if any).
649  *
650  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
651  * this is called via lwkt_schedule() through the td_preemptable callback.
652  * critpri is the managed critical priority that we should ignore in order
653  * to determine whether preemption is possible (aka usually just the crit
654  * priority of lwkt_schedule() itself).
655  *
656  * XXX at the moment we run the target thread in a critical section during
657  * the preemption in order to prevent the target from taking interrupts
658  * that *WE* can't.  Preemption is strictly limited to interrupt threads
659  * and interrupt-like threads, outside of a critical section, and the
660  * preempted source thread will be resumed the instant the target blocks
661  * whether or not the source is scheduled (i.e. preemption is supposed to
662  * be as transparent as possible).
663  *
664  * The target thread inherits our MP count (added to its own) for the
665  * duration of the preemption in order to preserve the atomicy of the
666  * MP lock during the preemption.  Therefore, any preempting targets must be
667  * careful in regards to MP assertions.  Note that the MP count may be
668  * out of sync with the physical mp_lock, but we do not have to preserve
669  * the original ownership of the lock if it was out of synch (that is, we
670  * can leave it synchronized on return).
671  */
672 void
673 lwkt_preempt(thread_t ntd, int critpri)
674 {
675     struct globaldata *gd = mycpu;
676     thread_t td;
677 #ifdef SMP
678     int mpheld;
679     int savecnt;
680 #endif
681 
682     /*
683      * The caller has put us in a critical section.  We can only preempt
684      * if the caller of the caller was not in a critical section (basically
685      * a local interrupt), as determined by the 'critpri' parameter.
686      *
687      * YYY The target thread must be in a critical section (else it must
688      * inherit our critical section?  I dunno yet).
689      *
690      * Any tokens held by the target may not be held by thread(s) being
691      * preempted.  We take the easy way out and do not preempt if
692      * the target is holding tokens.
693      *
694      * Set need_lwkt_resched() unconditionally for now YYY.
695      */
696     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
697 
698     td = gd->gd_curthread;
699     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
700 	++preempt_miss;
701 	return;
702     }
703     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
704 	++preempt_miss;
705 	need_lwkt_resched();
706 	return;
707     }
708 #ifdef SMP
709     if (ntd->td_gd != gd) {
710 	++preempt_miss;
711 	need_lwkt_resched();
712 	return;
713     }
714 #endif
715     /*
716      * Take the easy way out and do not preempt if the target is holding
717      * one or more tokens.  We could test whether the thread(s) being
718      * preempted interlock against the target thread's tokens and whether
719      * we can get all the target thread's tokens, but this situation
720      * should not occur very often so its easier to simply not preempt.
721      */
722     if (ntd->td_toks != NULL) {
723 	++preempt_miss;
724 	need_lwkt_resched();
725 	return;
726     }
727     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
728 	++preempt_weird;
729 	need_lwkt_resched();
730 	return;
731     }
732     if (ntd->td_preempted) {
733 	++preempt_hit;
734 	need_lwkt_resched();
735 	return;
736     }
737 #ifdef SMP
738     /*
739      * note: an interrupt might have occured just as we were transitioning
740      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
741      * (non-zero) but not actually synchronized with the actual state of the
742      * lock.  We can use it to imply an MP lock requirement for the
743      * preemption but we cannot use it to test whether we hold the MP lock
744      * or not.
745      */
746     savecnt = td->td_mpcount;
747     mpheld = MP_LOCK_HELD();
748     ntd->td_mpcount += td->td_mpcount;
749     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
750 	ntd->td_mpcount -= td->td_mpcount;
751 	++preempt_miss;
752 	need_lwkt_resched();
753 	return;
754     }
755 #endif
756 
757     /*
758      * Since we are able to preempt the current thread, there is no need to
759      * call need_lwkt_resched().
760      */
761     ++preempt_hit;
762     ntd->td_preempted = td;
763     td->td_flags |= TDF_PREEMPT_LOCK;
764     td->td_switch(ntd);
765     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
766 #ifdef SMP
767     KKASSERT(savecnt == td->td_mpcount);
768     mpheld = MP_LOCK_HELD();
769     if (mpheld && td->td_mpcount == 0)
770 	cpu_rel_mplock();
771     else if (mpheld == 0 && td->td_mpcount)
772 	panic("lwkt_preempt(): MP lock was not held through");
773 #endif
774     ntd->td_preempted = NULL;
775     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
776 }
777 
778 /*
779  * Yield our thread while higher priority threads are pending.  This is
780  * typically called when we leave a critical section but it can be safely
781  * called while we are in a critical section.
782  *
783  * This function will not generally yield to equal priority threads but it
784  * can occur as a side effect.  Note that lwkt_switch() is called from
785  * inside the critical section to prevent its own crit_exit() from reentering
786  * lwkt_yield_quick().
787  *
788  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
789  * came along but was blocked and made pending.
790  *
791  * (self contained on a per cpu basis)
792  */
793 void
794 lwkt_yield_quick(void)
795 {
796     globaldata_t gd = mycpu;
797     thread_t td = gd->gd_curthread;
798 
799     /*
800      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
801      * it with a non-zero cpl then we might not wind up calling splz after
802      * a task switch when the critical section is exited even though the
803      * new task could accept the interrupt.
804      *
805      * XXX from crit_exit() only called after last crit section is released.
806      * If called directly will run splz() even if in a critical section.
807      *
808      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
809      * except for this special case, we MUST call splz() here to handle any
810      * pending ints, particularly after we switch, or we might accidently
811      * halt the cpu with interrupts pending.
812      */
813     if (gd->gd_reqflags && td->td_nest_count < 2)
814 	splz();
815 
816     /*
817      * YYY enabling will cause wakeup() to task-switch, which really
818      * confused the old 4.x code.  This is a good way to simulate
819      * preemption and MP without actually doing preemption or MP, because a
820      * lot of code assumes that wakeup() does not block.
821      */
822     if (untimely_switch && td->td_nest_count == 0 &&
823 	gd->gd_intr_nesting_level == 0
824     ) {
825 	crit_enter_quick(td);
826 	/*
827 	 * YYY temporary hacks until we disassociate the userland scheduler
828 	 * from the LWKT scheduler.
829 	 */
830 	if (td->td_flags & TDF_RUNQ) {
831 	    lwkt_switch();		/* will not reenter yield function */
832 	} else {
833 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
834 	    lwkt_switch();		/* will not reenter yield function */
835 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
836 	}
837 	crit_exit_noyield(td);
838     }
839 }
840 
841 /*
842  * This implements a normal yield which, unlike _quick, will yield to equal
843  * priority threads as well.  Note that gd_reqflags tests will be handled by
844  * the crit_exit() call in lwkt_switch().
845  *
846  * (self contained on a per cpu basis)
847  */
848 void
849 lwkt_yield(void)
850 {
851     lwkt_schedule_self(curthread);
852     lwkt_switch();
853 }
854 
855 /*
856  * Generic schedule.  Possibly schedule threads belonging to other cpus and
857  * deal with threads that might be blocked on a wait queue.
858  *
859  * We have a little helper inline function which does additional work after
860  * the thread has been enqueued, including dealing with preemption and
861  * setting need_lwkt_resched() (which prevents the kernel from returning
862  * to userland until it has processed higher priority threads).
863  */
864 static __inline
865 void
866 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
867 {
868     if (ntd->td_preemptable) {
869 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
870     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
871 	(ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
872     ) {
873 	need_lwkt_resched();
874     }
875 }
876 
877 void
878 lwkt_schedule(thread_t td)
879 {
880     globaldata_t mygd = mycpu;
881 
882 #ifdef	INVARIANTS
883     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
884     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
885 	&& td->td_proc->p_stat == SSLEEP
886     ) {
887 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
888 	    curthread,
889 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
890 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
891 	    td,
892 	    td->td_proc ? curthread->td_proc->p_pid : -1,
893 	    td->td_proc ? curthread->td_proc->p_stat : -1
894 	);
895 	panic("SCHED PANIC");
896     }
897 #endif
898     crit_enter_gd(mygd);
899     if (td == mygd->gd_curthread) {
900 	_lwkt_enqueue(td);
901     } else {
902 	lwkt_wait_t w;
903 
904 	/*
905 	 * If the thread is on a wait list we have to send our scheduling
906 	 * request to the owner of the wait structure.  Otherwise we send
907 	 * the scheduling request to the cpu owning the thread.  Races
908 	 * are ok, the target will forward the message as necessary (the
909 	 * message may chase the thread around before it finally gets
910 	 * acted upon).
911 	 *
912 	 * (remember, wait structures use stable storage)
913 	 *
914 	 * NOTE: tokens no longer enter a critical section, so we only need
915 	 * to account for the crit_enter() above when calling
916 	 * _lwkt_schedule_post().
917 	 */
918 	if ((w = td->td_wait) != NULL) {
919 	    lwkt_tokref wref;
920 
921 	    if (lwkt_trytoken(&wref, &w->wa_token)) {
922 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
923 		--w->wa_count;
924 		td->td_wait = NULL;
925 #ifdef SMP
926 		if (td->td_gd == mygd) {
927 		    _lwkt_enqueue(td);
928 		    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
929 		} else {
930 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
931 		}
932 #else
933 		_lwkt_enqueue(td);
934 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
935 #endif
936 		lwkt_reltoken(&wref);
937 	    } else {
938 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
939 	    }
940 	} else {
941 	    /*
942 	     * If the wait structure is NULL and we own the thread, there
943 	     * is no race (since we are in a critical section).  If we
944 	     * do not own the thread there might be a race but the
945 	     * target cpu will deal with it.
946 	     */
947 #ifdef SMP
948 	    if (td->td_gd == mygd) {
949 		_lwkt_enqueue(td);
950 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
951 	    } else {
952 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
953 	    }
954 #else
955 	    _lwkt_enqueue(td);
956 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
957 #endif
958 	}
959     }
960     crit_exit_gd(mygd);
961 }
962 
963 /*
964  * Managed acquisition.  This code assumes that the MP lock is held for
965  * the tdallq operation and that the thread has been descheduled from its
966  * original cpu.  We also have to wait for the thread to be entirely switched
967  * out on its original cpu (this is usually fast enough that we never loop)
968  * since the LWKT system does not have to hold the MP lock while switching
969  * and the target may have released it before switching.
970  */
971 void
972 lwkt_acquire(thread_t td)
973 {
974     globaldata_t gd;
975     globaldata_t mygd;
976 
977     gd = td->td_gd;
978     mygd = mycpu;
979     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
980     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
981 	cpu_mb1();
982     if (gd != mygd) {
983 	crit_enter_gd(mygd);
984 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
985 	td->td_gd = mygd;
986 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
987 	crit_exit_gd(mygd);
988     }
989 }
990 
991 /*
992  * Generic deschedule.  Descheduling threads other then your own should be
993  * done only in carefully controlled circumstances.  Descheduling is
994  * asynchronous.
995  *
996  * This function may block if the cpu has run out of messages.
997  */
998 void
999 lwkt_deschedule(thread_t td)
1000 {
1001     crit_enter();
1002     if (td == curthread) {
1003 	_lwkt_dequeue(td);
1004     } else {
1005 	if (td->td_gd == mycpu) {
1006 	    _lwkt_dequeue(td);
1007 	} else {
1008 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
1009 	}
1010     }
1011     crit_exit();
1012 }
1013 
1014 /*
1015  * Set the target thread's priority.  This routine does not automatically
1016  * switch to a higher priority thread, LWKT threads are not designed for
1017  * continuous priority changes.  Yield if you want to switch.
1018  *
1019  * We have to retain the critical section count which uses the high bits
1020  * of the td_pri field.  The specified priority may also indicate zero or
1021  * more critical sections by adding TDPRI_CRIT*N.
1022  *
1023  * Note that we requeue the thread whether it winds up on a different runq
1024  * or not.  uio_yield() depends on this and the routine is not normally
1025  * called with the same priority otherwise.
1026  */
1027 void
1028 lwkt_setpri(thread_t td, int pri)
1029 {
1030     KKASSERT(pri >= 0);
1031     KKASSERT(td->td_gd == mycpu);
1032     crit_enter();
1033     if (td->td_flags & TDF_RUNQ) {
1034 	_lwkt_dequeue(td);
1035 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1036 	_lwkt_enqueue(td);
1037     } else {
1038 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1039     }
1040     crit_exit();
1041 }
1042 
1043 void
1044 lwkt_setpri_self(int pri)
1045 {
1046     thread_t td = curthread;
1047 
1048     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1049     crit_enter();
1050     if (td->td_flags & TDF_RUNQ) {
1051 	_lwkt_dequeue(td);
1052 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1053 	_lwkt_enqueue(td);
1054     } else {
1055 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1056     }
1057     crit_exit();
1058 }
1059 
1060 /*
1061  * Determine if there is a runnable thread at a higher priority then
1062  * the current thread.  lwkt_setpri() does not check this automatically.
1063  * Return 1 if there is, 0 if there isn't.
1064  *
1065  * Example: if bit 31 of runqmask is set and the current thread is priority
1066  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1067  *
1068  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1069  * up comparing against 0xffffffff, a comparison that will always be false.
1070  */
1071 int
1072 lwkt_checkpri_self(void)
1073 {
1074     globaldata_t gd = mycpu;
1075     thread_t td = gd->gd_curthread;
1076     int nq = td->td_pri & TDPRI_MASK;
1077 
1078     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1079 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1080 	    return(1);
1081 	++nq;
1082     }
1083     return(0);
1084 }
1085 
1086 /*
1087  * Migrate the current thread to the specified cpu.  The BGL must be held
1088  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1089  * descheduling ourselves from the current cpu, moving our thread to the
1090  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1091  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1092  */
1093 #ifdef SMP
1094 static void lwkt_setcpu_remote(void *arg);
1095 #endif
1096 
1097 void
1098 lwkt_setcpu_self(globaldata_t rgd)
1099 {
1100 #ifdef SMP
1101     thread_t td = curthread;
1102 
1103     if (td->td_gd != rgd) {
1104 	crit_enter_quick(td);
1105 	td->td_flags |= TDF_MIGRATING;
1106 	lwkt_deschedule_self(td);
1107 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1108 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1109 	lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1110 	lwkt_switch();
1111 	/* we are now on the target cpu */
1112 	crit_exit_quick(td);
1113     }
1114 #endif
1115 }
1116 
1117 /*
1118  * Remote IPI for cpu migration (called while in a critical section so we
1119  * do not have to enter another one).  The thread has already been moved to
1120  * our cpu's allq, but we must wait for the thread to be completely switched
1121  * out on the originating cpu before we schedule it on ours or the stack
1122  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1123  * change to main memory.
1124  *
1125  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1126  * against wakeups.  It is best if this interface is used only when there
1127  * are no pending events that might try to schedule the thread.
1128  */
1129 #ifdef SMP
1130 static void
1131 lwkt_setcpu_remote(void *arg)
1132 {
1133     thread_t td = arg;
1134     globaldata_t gd = mycpu;
1135 
1136     while (td->td_flags & TDF_RUNNING)
1137 	cpu_mb1();
1138     td->td_gd = gd;
1139     cpu_mb2();
1140     td->td_flags &= ~TDF_MIGRATING;
1141     _lwkt_enqueue(td);
1142 }
1143 #endif
1144 
1145 struct proc *
1146 lwkt_preempted_proc(void)
1147 {
1148     thread_t td = curthread;
1149     while (td->td_preempted)
1150 	td = td->td_preempted;
1151     return(td->td_proc);
1152 }
1153 
1154 /*
1155  * Block on the specified wait queue until signaled.  A generation number
1156  * must be supplied to interlock the wait queue.  The function will
1157  * return immediately if the generation number does not match the wait
1158  * structure's generation number.
1159  */
1160 void
1161 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1162 {
1163     thread_t td = curthread;
1164     lwkt_tokref ilock;
1165 
1166     lwkt_gettoken(&ilock, &w->wa_token);
1167     crit_enter();
1168     if (w->wa_gen == *gen) {
1169 	_lwkt_dequeue(td);
1170 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1171 	++w->wa_count;
1172 	td->td_wait = w;
1173 	td->td_wmesg = wmesg;
1174     again:
1175 	lwkt_switch();
1176 	if (td->td_wmesg != NULL) {
1177 	    _lwkt_dequeue(td);
1178 	    goto again;
1179 	}
1180     }
1181     crit_exit();
1182     *gen = w->wa_gen;
1183     lwkt_reltoken(&ilock);
1184 }
1185 
1186 /*
1187  * Signal a wait queue.  We gain ownership of the wait queue in order to
1188  * signal it.  Once a thread is removed from the wait queue we have to
1189  * deal with the cpu owning the thread.
1190  *
1191  * Note: alternatively we could message the target cpu owning the wait
1192  * queue.  YYY implement as sysctl.
1193  */
1194 void
1195 lwkt_signal(lwkt_wait_t w, int count)
1196 {
1197     thread_t td;
1198     lwkt_tokref ilock;
1199 
1200     lwkt_gettoken(&ilock, &w->wa_token);
1201     ++w->wa_gen;
1202     crit_enter();
1203     if (count < 0)
1204 	count = w->wa_count;
1205     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1206 	--count;
1207 	--w->wa_count;
1208 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1209 	td->td_wait = NULL;
1210 	td->td_wmesg = NULL;
1211 	if (td->td_gd == mycpu) {
1212 	    _lwkt_enqueue(td);
1213 	} else {
1214 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1215 	}
1216     }
1217     crit_exit();
1218     lwkt_reltoken(&ilock);
1219 }
1220 
1221 /*
1222  * Create a kernel process/thread/whatever.  It shares it's address space
1223  * with proc0 - ie: kernel only.
1224  *
1225  * NOTE!  By default new threads are created with the MP lock held.  A
1226  * thread which does not require the MP lock should release it by calling
1227  * rel_mplock() at the start of the new thread.
1228  */
1229 int
1230 lwkt_create(void (*func)(void *), void *arg,
1231     struct thread **tdp, thread_t template, int tdflags, int cpu,
1232     const char *fmt, ...)
1233 {
1234     thread_t td;
1235     __va_list ap;
1236 
1237     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1238     if (tdp)
1239 	*tdp = td;
1240     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1241     td->td_flags |= TDF_VERBOSE | tdflags;
1242 #ifdef SMP
1243     td->td_mpcount = 1;
1244 #endif
1245 
1246     /*
1247      * Set up arg0 for 'ps' etc
1248      */
1249     __va_start(ap, fmt);
1250     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1251     __va_end(ap);
1252 
1253     /*
1254      * Schedule the thread to run
1255      */
1256     if ((td->td_flags & TDF_STOPREQ) == 0)
1257 	lwkt_schedule(td);
1258     else
1259 	td->td_flags &= ~TDF_STOPREQ;
1260     return 0;
1261 }
1262 
1263 /*
1264  * kthread_* is specific to the kernel and is not needed by userland.
1265  */
1266 #ifdef _KERNEL
1267 
1268 /*
1269  * Destroy an LWKT thread.   Warning!  This function is not called when
1270  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1271  * uses a different reaping mechanism.
1272  */
1273 void
1274 lwkt_exit(void)
1275 {
1276     thread_t td = curthread;
1277     globaldata_t gd;
1278 
1279     if (td->td_flags & TDF_VERBOSE)
1280 	printf("kthread %p %s has exited\n", td, td->td_comm);
1281     caps_exit(td);
1282     crit_enter_quick(td);
1283     lwkt_deschedule_self(td);
1284     gd = mycpu;
1285     KKASSERT(gd == td->td_gd);
1286     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1287     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1288 	++gd->gd_tdfreecount;
1289 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1290     }
1291     cpu_thread_exit();
1292 }
1293 
1294 #endif /* _KERNEL */
1295 
1296 void
1297 crit_panic(void)
1298 {
1299     thread_t td = curthread;
1300     int lpri = td->td_pri;
1301 
1302     td->td_pri = 0;
1303     panic("td_pri is/would-go negative! %p %d", td, lpri);
1304 }
1305 
1306