1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.69 2004/09/21 18:09:57 joerg Exp $ 35 */ 36 37 /* 38 * Each cpu in a system has its own self-contained light weight kernel 39 * thread scheduler, which means that generally speaking we only need 40 * to use a critical section to avoid problems. Foreign thread 41 * scheduling is queued via (async) IPIs. 42 */ 43 44 #ifdef _KERNEL 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/rtprio.h> 51 #include <sys/queue.h> 52 #include <sys/thread2.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 #include <machine/cpu.h> 56 #include <sys/lock.h> 57 #include <sys/caps.h> 58 59 #include <vm/vm.h> 60 #include <vm/vm_param.h> 61 #include <vm/vm_kern.h> 62 #include <vm/vm_object.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_pager.h> 66 #include <vm/vm_extern.h> 67 #include <vm/vm_zone.h> 68 69 #include <machine/stdarg.h> 70 #include <machine/ipl.h> 71 #include <machine/smp.h> 72 73 #else 74 75 #include <sys/stdint.h> 76 #include <libcaps/thread.h> 77 #include <sys/thread.h> 78 #include <sys/msgport.h> 79 #include <sys/errno.h> 80 #include <libcaps/globaldata.h> 81 #include <machine/cpufunc.h> 82 #include <sys/thread2.h> 83 #include <sys/msgport2.h> 84 #include <stdio.h> 85 #include <stdlib.h> 86 #include <string.h> 87 #include <machine/lock.h> 88 89 #endif 90 91 static int untimely_switch = 0; 92 #ifdef INVARIANTS 93 static int panic_on_cscount = 0; 94 #endif 95 static __int64_t switch_count = 0; 96 static __int64_t preempt_hit = 0; 97 static __int64_t preempt_miss = 0; 98 static __int64_t preempt_weird = 0; 99 100 #ifdef _KERNEL 101 102 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, ""); 103 #ifdef INVARIANTS 104 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, ""); 105 #endif 106 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, ""); 107 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, ""); 108 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, ""); 109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, ""); 110 111 #endif 112 113 /* 114 * These helper procedures handle the runq, they can only be called from 115 * within a critical section. 116 * 117 * WARNING! Prior to SMP being brought up it is possible to enqueue and 118 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 119 * instead of 'mycpu' when referencing the globaldata structure. Once 120 * SMP live enqueuing and dequeueing only occurs on the current cpu. 121 */ 122 static __inline 123 void 124 _lwkt_dequeue(thread_t td) 125 { 126 if (td->td_flags & TDF_RUNQ) { 127 int nq = td->td_pri & TDPRI_MASK; 128 struct globaldata *gd = td->td_gd; 129 130 td->td_flags &= ~TDF_RUNQ; 131 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq); 132 /* runqmask is passively cleaned up by the switcher */ 133 } 134 } 135 136 static __inline 137 void 138 _lwkt_enqueue(thread_t td) 139 { 140 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) { 141 int nq = td->td_pri & TDPRI_MASK; 142 struct globaldata *gd = td->td_gd; 143 144 td->td_flags |= TDF_RUNQ; 145 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq); 146 gd->gd_runqmask |= 1 << nq; 147 } 148 } 149 150 /* 151 * Schedule a thread to run. As the current thread we can always safely 152 * schedule ourselves, and a shortcut procedure is provided for that 153 * function. 154 * 155 * (non-blocking, self contained on a per cpu basis) 156 */ 157 void 158 lwkt_schedule_self(thread_t td) 159 { 160 crit_enter_quick(td); 161 KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!")); 162 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 163 _lwkt_enqueue(td); 164 #ifdef _KERNEL 165 if (td->td_proc && td->td_proc->p_stat == SSLEEP) 166 panic("SCHED SELF PANIC"); 167 #endif 168 crit_exit_quick(td); 169 } 170 171 /* 172 * Deschedule a thread. 173 * 174 * (non-blocking, self contained on a per cpu basis) 175 */ 176 void 177 lwkt_deschedule_self(thread_t td) 178 { 179 crit_enter_quick(td); 180 KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!")); 181 _lwkt_dequeue(td); 182 crit_exit_quick(td); 183 } 184 185 #ifdef _KERNEL 186 187 /* 188 * LWKTs operate on a per-cpu basis 189 * 190 * WARNING! Called from early boot, 'mycpu' may not work yet. 191 */ 192 void 193 lwkt_gdinit(struct globaldata *gd) 194 { 195 int i; 196 197 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i) 198 TAILQ_INIT(&gd->gd_tdrunq[i]); 199 gd->gd_runqmask = 0; 200 TAILQ_INIT(&gd->gd_tdallq); 201 } 202 203 #endif /* _KERNEL */ 204 205 /* 206 * Initialize a thread wait structure prior to first use. 207 * 208 * NOTE! called from low level boot code, we cannot do anything fancy! 209 */ 210 void 211 lwkt_wait_init(lwkt_wait_t w) 212 { 213 lwkt_token_init(&w->wa_token); 214 TAILQ_INIT(&w->wa_waitq); 215 w->wa_gen = 0; 216 w->wa_count = 0; 217 } 218 219 /* 220 * Create a new thread. The thread must be associated with a process context 221 * or LWKT start address before it can be scheduled. If the target cpu is 222 * -1 the thread will be created on the current cpu. 223 * 224 * If you intend to create a thread without a process context this function 225 * does everything except load the startup and switcher function. 226 */ 227 thread_t 228 lwkt_alloc_thread(struct thread *td, int stksize, int cpu) 229 { 230 void *stack; 231 int flags = 0; 232 globaldata_t gd = mycpu; 233 234 if (td == NULL) { 235 crit_enter_gd(gd); 236 if (gd->gd_tdfreecount > 0) { 237 --gd->gd_tdfreecount; 238 td = TAILQ_FIRST(&gd->gd_tdfreeq); 239 KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0, 240 ("lwkt_alloc_thread: unexpected NULL or corrupted td")); 241 TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq); 242 crit_exit_gd(gd); 243 flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD); 244 } else { 245 crit_exit_gd(gd); 246 #ifdef _KERNEL 247 td = zalloc(thread_zone); 248 #else 249 td = malloc(sizeof(struct thread)); 250 #endif 251 td->td_kstack = NULL; 252 td->td_kstack_size = 0; 253 flags |= TDF_ALLOCATED_THREAD; 254 } 255 } 256 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 257 if (flags & TDF_ALLOCATED_STACK) { 258 #ifdef _KERNEL 259 kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size); 260 #else 261 libcaps_free_stack(stack, td->td_kstack_size); 262 #endif 263 stack = NULL; 264 } 265 } 266 if (stack == NULL) { 267 #ifdef _KERNEL 268 stack = (void *)kmem_alloc(kernel_map, stksize); 269 #else 270 stack = libcaps_alloc_stack(stksize); 271 #endif 272 flags |= TDF_ALLOCATED_STACK; 273 } 274 if (cpu < 0) 275 lwkt_init_thread(td, stack, stksize, flags, mycpu); 276 else 277 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 278 return(td); 279 } 280 281 #ifdef _KERNEL 282 283 /* 284 * Initialize a preexisting thread structure. This function is used by 285 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 286 * 287 * All threads start out in a critical section at a priority of 288 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 289 * appropriate. This function may send an IPI message when the 290 * requested cpu is not the current cpu and consequently gd_tdallq may 291 * not be initialized synchronously from the point of view of the originating 292 * cpu. 293 * 294 * NOTE! we have to be careful in regards to creating threads for other cpus 295 * if SMP has not yet been activated. 296 */ 297 #ifdef SMP 298 299 static void 300 lwkt_init_thread_remote(void *arg) 301 { 302 thread_t td = arg; 303 304 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 305 } 306 307 #endif 308 309 void 310 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 311 struct globaldata *gd) 312 { 313 globaldata_t mygd = mycpu; 314 315 bzero(td, sizeof(struct thread)); 316 td->td_kstack = stack; 317 td->td_kstack_size = stksize; 318 td->td_flags |= flags; 319 td->td_gd = gd; 320 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT; 321 lwkt_initport(&td->td_msgport, td); 322 pmap_init_thread(td); 323 #ifdef SMP 324 /* 325 * Normally initializing a thread for a remote cpu requires sending an 326 * IPI. However, the idlethread is setup before the other cpus are 327 * activated so we have to treat it as a special case. XXX manipulation 328 * of gd_tdallq requires the BGL. 329 */ 330 if (gd == mygd || td == &gd->gd_idlethread) { 331 crit_enter_gd(mygd); 332 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 333 crit_exit_gd(mygd); 334 } else { 335 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 336 } 337 #else 338 crit_enter_gd(mygd); 339 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 340 crit_exit_gd(mygd); 341 #endif 342 } 343 344 #endif /* _KERNEL */ 345 346 void 347 lwkt_set_comm(thread_t td, const char *ctl, ...) 348 { 349 __va_list va; 350 351 __va_start(va, ctl); 352 vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 353 __va_end(va); 354 } 355 356 void 357 lwkt_hold(thread_t td) 358 { 359 ++td->td_refs; 360 } 361 362 void 363 lwkt_rele(thread_t td) 364 { 365 KKASSERT(td->td_refs > 0); 366 --td->td_refs; 367 } 368 369 #ifdef _KERNEL 370 371 void 372 lwkt_wait_free(thread_t td) 373 { 374 while (td->td_refs) 375 tsleep(td, 0, "tdreap", hz); 376 } 377 378 #endif 379 380 void 381 lwkt_free_thread(thread_t td) 382 { 383 struct globaldata *gd = mycpu; 384 385 KASSERT((td->td_flags & TDF_RUNNING) == 0, 386 ("lwkt_free_thread: did not exit! %p", td)); 387 388 crit_enter_gd(gd); 389 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 390 if (gd->gd_tdfreecount < CACHE_NTHREADS && 391 (td->td_flags & TDF_ALLOCATED_THREAD) 392 ) { 393 ++gd->gd_tdfreecount; 394 TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq); 395 crit_exit_gd(gd); 396 } else { 397 crit_exit_gd(gd); 398 if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) { 399 #ifdef _KERNEL 400 kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 401 #else 402 libcaps_free_stack(td->td_kstack, td->td_kstack_size); 403 #endif 404 /* gd invalid */ 405 td->td_kstack = NULL; 406 td->td_kstack_size = 0; 407 } 408 if (td->td_flags & TDF_ALLOCATED_THREAD) { 409 #ifdef _KERNEL 410 zfree(thread_zone, td); 411 #else 412 free(td); 413 #endif 414 } 415 } 416 } 417 418 419 /* 420 * Switch to the next runnable lwkt. If no LWKTs are runnable then 421 * switch to the idlethread. Switching must occur within a critical 422 * section to avoid races with the scheduling queue. 423 * 424 * We always have full control over our cpu's run queue. Other cpus 425 * that wish to manipulate our queue must use the cpu_*msg() calls to 426 * talk to our cpu, so a critical section is all that is needed and 427 * the result is very, very fast thread switching. 428 * 429 * The LWKT scheduler uses a fixed priority model and round-robins at 430 * each priority level. User process scheduling is a totally 431 * different beast and LWKT priorities should not be confused with 432 * user process priorities. 433 * 434 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch() 435 * cleans it up. Note that the td_switch() function cannot do anything that 436 * requires the MP lock since the MP lock will have already been setup for 437 * the target thread (not the current thread). It's nice to have a scheduler 438 * that does not need the MP lock to work because it allows us to do some 439 * really cool high-performance MP lock optimizations. 440 */ 441 442 void 443 lwkt_switch(void) 444 { 445 globaldata_t gd = mycpu; 446 thread_t td = gd->gd_curthread; 447 thread_t ntd; 448 #ifdef SMP 449 int mpheld; 450 #endif 451 452 /* 453 * Switching from within a 'fast' (non thread switched) interrupt is 454 * illegal. 455 */ 456 if (gd->gd_intr_nesting_level && panicstr == NULL) { 457 panic("lwkt_switch: cannot switch from within a fast interrupt, yet"); 458 } 459 460 /* 461 * Passive release (used to transition from user to kernel mode 462 * when we block or switch rather then when we enter the kernel). 463 * This function is NOT called if we are switching into a preemption 464 * or returning from a preemption. Typically this causes us to lose 465 * our current process designation (if we have one) and become a true 466 * LWKT thread, and may also hand the current process designation to 467 * another process and schedule thread. 468 */ 469 if (td->td_release) 470 td->td_release(td); 471 472 crit_enter_gd(gd); 473 ++switch_count; 474 475 #ifdef SMP 476 /* 477 * td_mpcount cannot be used to determine if we currently hold the 478 * MP lock because get_mplock() will increment it prior to attempting 479 * to get the lock, and switch out if it can't. Our ownership of 480 * the actual lock will remain stable while we are in a critical section 481 * (but, of course, another cpu may own or release the lock so the 482 * actual value of mp_lock is not stable). 483 */ 484 mpheld = MP_LOCK_HELD(); 485 #ifdef INVARIANTS 486 if (td->td_cscount) { 487 printf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 488 td); 489 if (panic_on_cscount) 490 panic("switching while mastering cpusync"); 491 } 492 #endif 493 #endif 494 if ((ntd = td->td_preempted) != NULL) { 495 /* 496 * We had preempted another thread on this cpu, resume the preempted 497 * thread. This occurs transparently, whether the preempted thread 498 * was scheduled or not (it may have been preempted after descheduling 499 * itself). 500 * 501 * We have to setup the MP lock for the original thread after backing 502 * out the adjustment that was made to curthread when the original 503 * was preempted. 504 */ 505 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 506 #ifdef SMP 507 if (ntd->td_mpcount && mpheld == 0) { 508 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d", 509 td, ntd, td->td_mpcount, ntd->td_mpcount); 510 } 511 if (ntd->td_mpcount) { 512 td->td_mpcount -= ntd->td_mpcount; 513 KKASSERT(td->td_mpcount >= 0); 514 } 515 #endif 516 ntd->td_flags |= TDF_PREEMPT_DONE; 517 518 /* 519 * XXX. The interrupt may have woken a thread up, we need to properly 520 * set the reschedule flag if the originally interrupted thread is at 521 * a lower priority. 522 */ 523 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1) 524 need_lwkt_resched(); 525 /* YYY release mp lock on switchback if original doesn't need it */ 526 } else { 527 /* 528 * Priority queue / round-robin at each priority. Note that user 529 * processes run at a fixed, low priority and the user process 530 * scheduler deals with interactions between user processes 531 * by scheduling and descheduling them from the LWKT queue as 532 * necessary. 533 * 534 * We have to adjust the MP lock for the target thread. If we 535 * need the MP lock and cannot obtain it we try to locate a 536 * thread that does not need the MP lock. If we cannot, we spin 537 * instead of HLT. 538 * 539 * A similar issue exists for the tokens held by the target thread. 540 * If we cannot obtain ownership of the tokens we cannot immediately 541 * schedule the thread. 542 */ 543 544 /* 545 * We are switching threads. If there are any pending requests for 546 * tokens we can satisfy all of them here. 547 */ 548 #ifdef SMP 549 if (gd->gd_tokreqbase) 550 lwkt_drain_token_requests(); 551 #endif 552 553 /* 554 * If an LWKT reschedule was requested, well that is what we are 555 * doing now so clear it. 556 */ 557 clear_lwkt_resched(); 558 again: 559 if (gd->gd_runqmask) { 560 int nq = bsrl(gd->gd_runqmask); 561 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) { 562 gd->gd_runqmask &= ~(1 << nq); 563 goto again; 564 } 565 #ifdef SMP 566 /* 567 * If the target needs the MP lock and we couldn't get it, 568 * or if the target is holding tokens and we could not 569 * gain ownership of the tokens, continue looking for a 570 * thread to schedule and spin instead of HLT if we can't. 571 */ 572 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) || 573 (ntd->td_toks && lwkt_chktokens(ntd) == 0) 574 ) { 575 u_int32_t rqmask = gd->gd_runqmask; 576 while (rqmask) { 577 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) { 578 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) 579 continue; 580 mpheld = MP_LOCK_HELD(); 581 if (ntd->td_toks && !lwkt_chktokens(ntd)) 582 continue; 583 break; 584 } 585 if (ntd) 586 break; 587 rqmask &= ~(1 << nq); 588 nq = bsrl(rqmask); 589 } 590 if (ntd == NULL) { 591 ntd = &gd->gd_idlethread; 592 ntd->td_flags |= TDF_IDLE_NOHLT; 593 } else { 594 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 595 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 596 } 597 } else { 598 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 599 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 600 } 601 #else 602 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq); 603 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq); 604 #endif 605 } else { 606 /* 607 * We have nothing to run but only let the idle loop halt 608 * the cpu if there are no pending interrupts. 609 */ 610 ntd = &gd->gd_idlethread; 611 if (gd->gd_reqflags & RQF_IDLECHECK_MASK) 612 ntd->td_flags |= TDF_IDLE_NOHLT; 613 } 614 } 615 KASSERT(ntd->td_pri >= TDPRI_CRIT, 616 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri)); 617 618 /* 619 * Do the actual switch. If the new target does not need the MP lock 620 * and we are holding it, release the MP lock. If the new target requires 621 * the MP lock we have already acquired it for the target. 622 */ 623 #ifdef SMP 624 if (ntd->td_mpcount == 0 ) { 625 if (MP_LOCK_HELD()) 626 cpu_rel_mplock(); 627 } else { 628 ASSERT_MP_LOCK_HELD(); 629 } 630 #endif 631 if (td != ntd) 632 td->td_switch(ntd); 633 /* NOTE: current cpu may have changed after switch */ 634 crit_exit_quick(td); 635 } 636 637 /* 638 * Request that the target thread preempt the current thread. Preemption 639 * only works under a specific set of conditions: 640 * 641 * - We are not preempting ourselves 642 * - The target thread is owned by the current cpu 643 * - We are not currently being preempted 644 * - The target is not currently being preempted 645 * - We are able to satisfy the target's MP lock requirements (if any). 646 * 647 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 648 * this is called via lwkt_schedule() through the td_preemptable callback. 649 * critpri is the managed critical priority that we should ignore in order 650 * to determine whether preemption is possible (aka usually just the crit 651 * priority of lwkt_schedule() itself). 652 * 653 * XXX at the moment we run the target thread in a critical section during 654 * the preemption in order to prevent the target from taking interrupts 655 * that *WE* can't. Preemption is strictly limited to interrupt threads 656 * and interrupt-like threads, outside of a critical section, and the 657 * preempted source thread will be resumed the instant the target blocks 658 * whether or not the source is scheduled (i.e. preemption is supposed to 659 * be as transparent as possible). 660 * 661 * The target thread inherits our MP count (added to its own) for the 662 * duration of the preemption in order to preserve the atomicy of the 663 * MP lock during the preemption. Therefore, any preempting targets must be 664 * careful in regards to MP assertions. Note that the MP count may be 665 * out of sync with the physical mp_lock, but we do not have to preserve 666 * the original ownership of the lock if it was out of synch (that is, we 667 * can leave it synchronized on return). 668 */ 669 void 670 lwkt_preempt(thread_t ntd, int critpri) 671 { 672 struct globaldata *gd = mycpu; 673 thread_t td; 674 #ifdef SMP 675 int mpheld; 676 int savecnt; 677 #endif 678 679 /* 680 * The caller has put us in a critical section. We can only preempt 681 * if the caller of the caller was not in a critical section (basically 682 * a local interrupt), as determined by the 'critpri' parameter. 683 * 684 * YYY The target thread must be in a critical section (else it must 685 * inherit our critical section? I dunno yet). 686 * 687 * Any tokens held by the target may not be held by thread(s) being 688 * preempted. We take the easy way out and do not preempt if 689 * the target is holding tokens. 690 * 691 * Set need_lwkt_resched() unconditionally for now YYY. 692 */ 693 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri)); 694 695 td = gd->gd_curthread; 696 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) { 697 ++preempt_miss; 698 return; 699 } 700 if ((td->td_pri & ~TDPRI_MASK) > critpri) { 701 ++preempt_miss; 702 need_lwkt_resched(); 703 return; 704 } 705 #ifdef SMP 706 if (ntd->td_gd != gd) { 707 ++preempt_miss; 708 need_lwkt_resched(); 709 return; 710 } 711 #endif 712 /* 713 * Take the easy way out and do not preempt if the target is holding 714 * one or more tokens. We could test whether the thread(s) being 715 * preempted interlock against the target thread's tokens and whether 716 * we can get all the target thread's tokens, but this situation 717 * should not occur very often so its easier to simply not preempt. 718 */ 719 if (ntd->td_toks != NULL) { 720 ++preempt_miss; 721 need_lwkt_resched(); 722 return; 723 } 724 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 725 ++preempt_weird; 726 need_lwkt_resched(); 727 return; 728 } 729 if (ntd->td_preempted) { 730 ++preempt_hit; 731 need_lwkt_resched(); 732 return; 733 } 734 #ifdef SMP 735 /* 736 * note: an interrupt might have occured just as we were transitioning 737 * to or from the MP lock. In this case td_mpcount will be pre-disposed 738 * (non-zero) but not actually synchronized with the actual state of the 739 * lock. We can use it to imply an MP lock requirement for the 740 * preemption but we cannot use it to test whether we hold the MP lock 741 * or not. 742 */ 743 savecnt = td->td_mpcount; 744 mpheld = MP_LOCK_HELD(); 745 ntd->td_mpcount += td->td_mpcount; 746 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) { 747 ntd->td_mpcount -= td->td_mpcount; 748 ++preempt_miss; 749 need_lwkt_resched(); 750 return; 751 } 752 #endif 753 754 /* 755 * Since we are able to preempt the current thread, there is no need to 756 * call need_lwkt_resched(). 757 */ 758 ++preempt_hit; 759 ntd->td_preempted = td; 760 td->td_flags |= TDF_PREEMPT_LOCK; 761 td->td_switch(ntd); 762 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 763 #ifdef SMP 764 KKASSERT(savecnt == td->td_mpcount); 765 mpheld = MP_LOCK_HELD(); 766 if (mpheld && td->td_mpcount == 0) 767 cpu_rel_mplock(); 768 else if (mpheld == 0 && td->td_mpcount) 769 panic("lwkt_preempt(): MP lock was not held through"); 770 #endif 771 ntd->td_preempted = NULL; 772 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 773 } 774 775 /* 776 * Yield our thread while higher priority threads are pending. This is 777 * typically called when we leave a critical section but it can be safely 778 * called while we are in a critical section. 779 * 780 * This function will not generally yield to equal priority threads but it 781 * can occur as a side effect. Note that lwkt_switch() is called from 782 * inside the critical section to prevent its own crit_exit() from reentering 783 * lwkt_yield_quick(). 784 * 785 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint 786 * came along but was blocked and made pending. 787 * 788 * (self contained on a per cpu basis) 789 */ 790 void 791 lwkt_yield_quick(void) 792 { 793 globaldata_t gd = mycpu; 794 thread_t td = gd->gd_curthread; 795 796 /* 797 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear 798 * it with a non-zero cpl then we might not wind up calling splz after 799 * a task switch when the critical section is exited even though the 800 * new task could accept the interrupt. 801 * 802 * XXX from crit_exit() only called after last crit section is released. 803 * If called directly will run splz() even if in a critical section. 804 * 805 * td_nest_count prevent deep nesting via splz() or doreti(). Note that 806 * except for this special case, we MUST call splz() here to handle any 807 * pending ints, particularly after we switch, or we might accidently 808 * halt the cpu with interrupts pending. 809 */ 810 if (gd->gd_reqflags && td->td_nest_count < 2) 811 splz(); 812 813 /* 814 * YYY enabling will cause wakeup() to task-switch, which really 815 * confused the old 4.x code. This is a good way to simulate 816 * preemption and MP without actually doing preemption or MP, because a 817 * lot of code assumes that wakeup() does not block. 818 */ 819 if (untimely_switch && td->td_nest_count == 0 && 820 gd->gd_intr_nesting_level == 0 821 ) { 822 crit_enter_quick(td); 823 /* 824 * YYY temporary hacks until we disassociate the userland scheduler 825 * from the LWKT scheduler. 826 */ 827 if (td->td_flags & TDF_RUNQ) { 828 lwkt_switch(); /* will not reenter yield function */ 829 } else { 830 lwkt_schedule_self(td); /* make sure we are scheduled */ 831 lwkt_switch(); /* will not reenter yield function */ 832 lwkt_deschedule_self(td); /* make sure we are descheduled */ 833 } 834 crit_exit_noyield(td); 835 } 836 } 837 838 /* 839 * This implements a normal yield which, unlike _quick, will yield to equal 840 * priority threads as well. Note that gd_reqflags tests will be handled by 841 * the crit_exit() call in lwkt_switch(). 842 * 843 * (self contained on a per cpu basis) 844 */ 845 void 846 lwkt_yield(void) 847 { 848 lwkt_schedule_self(curthread); 849 lwkt_switch(); 850 } 851 852 /* 853 * Generic schedule. Possibly schedule threads belonging to other cpus and 854 * deal with threads that might be blocked on a wait queue. 855 * 856 * We have a little helper inline function which does additional work after 857 * the thread has been enqueued, including dealing with preemption and 858 * setting need_lwkt_resched() (which prevents the kernel from returning 859 * to userland until it has processed higher priority threads). 860 */ 861 static __inline 862 void 863 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri) 864 { 865 if (ntd->td_preemptable) { 866 ntd->td_preemptable(ntd, cpri); /* YYY +token */ 867 } else if ((ntd->td_flags & TDF_NORESCHED) == 0 && 868 (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK) 869 ) { 870 need_lwkt_resched(); 871 } 872 } 873 874 void 875 lwkt_schedule(thread_t td) 876 { 877 globaldata_t mygd = mycpu; 878 879 #ifdef INVARIANTS 880 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 881 if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc 882 && td->td_proc->p_stat == SSLEEP 883 ) { 884 printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n", 885 curthread, 886 curthread->td_proc ? curthread->td_proc->p_pid : -1, 887 curthread->td_proc ? curthread->td_proc->p_stat : -1, 888 td, 889 td->td_proc ? curthread->td_proc->p_pid : -1, 890 td->td_proc ? curthread->td_proc->p_stat : -1 891 ); 892 panic("SCHED PANIC"); 893 } 894 #endif 895 crit_enter_gd(mygd); 896 if (td == mygd->gd_curthread) { 897 _lwkt_enqueue(td); 898 } else { 899 lwkt_wait_t w; 900 901 /* 902 * If the thread is on a wait list we have to send our scheduling 903 * request to the owner of the wait structure. Otherwise we send 904 * the scheduling request to the cpu owning the thread. Races 905 * are ok, the target will forward the message as necessary (the 906 * message may chase the thread around before it finally gets 907 * acted upon). 908 * 909 * (remember, wait structures use stable storage) 910 * 911 * NOTE: tokens no longer enter a critical section, so we only need 912 * to account for the crit_enter() above when calling 913 * _lwkt_schedule_post(). 914 */ 915 if ((w = td->td_wait) != NULL) { 916 lwkt_tokref wref; 917 918 if (lwkt_trytoken(&wref, &w->wa_token)) { 919 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq); 920 --w->wa_count; 921 td->td_wait = NULL; 922 #ifdef SMP 923 if (td->td_gd == mygd) { 924 _lwkt_enqueue(td); 925 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 926 } else { 927 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 928 } 929 #else 930 _lwkt_enqueue(td); 931 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 932 #endif 933 lwkt_reltoken(&wref); 934 } else { 935 lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td); 936 } 937 } else { 938 /* 939 * If the wait structure is NULL and we own the thread, there 940 * is no race (since we are in a critical section). If we 941 * do not own the thread there might be a race but the 942 * target cpu will deal with it. 943 */ 944 #ifdef SMP 945 if (td->td_gd == mygd) { 946 _lwkt_enqueue(td); 947 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 948 } else { 949 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 950 } 951 #else 952 _lwkt_enqueue(td); 953 _lwkt_schedule_post(mygd, td, TDPRI_CRIT); 954 #endif 955 } 956 } 957 crit_exit_gd(mygd); 958 } 959 960 /* 961 * Managed acquisition. This code assumes that the MP lock is held for 962 * the tdallq operation and that the thread has been descheduled from its 963 * original cpu. We also have to wait for the thread to be entirely switched 964 * out on its original cpu (this is usually fast enough that we never loop) 965 * since the LWKT system does not have to hold the MP lock while switching 966 * and the target may have released it before switching. 967 */ 968 void 969 lwkt_acquire(thread_t td) 970 { 971 globaldata_t gd; 972 globaldata_t mygd; 973 974 gd = td->td_gd; 975 mygd = mycpu; 976 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 977 while (td->td_flags & TDF_RUNNING) /* XXX spin */ 978 cpu_mb1(); 979 if (gd != mygd) { 980 crit_enter_gd(mygd); 981 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); /* protected by BGL */ 982 td->td_gd = mygd; 983 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */ 984 crit_exit_gd(mygd); 985 } 986 } 987 988 /* 989 * Generic deschedule. Descheduling threads other then your own should be 990 * done only in carefully controlled circumstances. Descheduling is 991 * asynchronous. 992 * 993 * This function may block if the cpu has run out of messages. 994 */ 995 void 996 lwkt_deschedule(thread_t td) 997 { 998 crit_enter(); 999 if (td == curthread) { 1000 _lwkt_dequeue(td); 1001 } else { 1002 if (td->td_gd == mycpu) { 1003 _lwkt_dequeue(td); 1004 } else { 1005 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td); 1006 } 1007 } 1008 crit_exit(); 1009 } 1010 1011 /* 1012 * Set the target thread's priority. This routine does not automatically 1013 * switch to a higher priority thread, LWKT threads are not designed for 1014 * continuous priority changes. Yield if you want to switch. 1015 * 1016 * We have to retain the critical section count which uses the high bits 1017 * of the td_pri field. The specified priority may also indicate zero or 1018 * more critical sections by adding TDPRI_CRIT*N. 1019 * 1020 * Note that we requeue the thread whether it winds up on a different runq 1021 * or not. uio_yield() depends on this and the routine is not normally 1022 * called with the same priority otherwise. 1023 */ 1024 void 1025 lwkt_setpri(thread_t td, int pri) 1026 { 1027 KKASSERT(pri >= 0); 1028 KKASSERT(td->td_gd == mycpu); 1029 crit_enter(); 1030 if (td->td_flags & TDF_RUNQ) { 1031 _lwkt_dequeue(td); 1032 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1033 _lwkt_enqueue(td); 1034 } else { 1035 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1036 } 1037 crit_exit(); 1038 } 1039 1040 void 1041 lwkt_setpri_self(int pri) 1042 { 1043 thread_t td = curthread; 1044 1045 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1046 crit_enter(); 1047 if (td->td_flags & TDF_RUNQ) { 1048 _lwkt_dequeue(td); 1049 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1050 _lwkt_enqueue(td); 1051 } else { 1052 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri; 1053 } 1054 crit_exit(); 1055 } 1056 1057 /* 1058 * Determine if there is a runnable thread at a higher priority then 1059 * the current thread. lwkt_setpri() does not check this automatically. 1060 * Return 1 if there is, 0 if there isn't. 1061 * 1062 * Example: if bit 31 of runqmask is set and the current thread is priority 1063 * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff. 1064 * 1065 * If nq reaches 31 the shift operation will overflow to 0 and we will wind 1066 * up comparing against 0xffffffff, a comparison that will always be false. 1067 */ 1068 int 1069 lwkt_checkpri_self(void) 1070 { 1071 globaldata_t gd = mycpu; 1072 thread_t td = gd->gd_curthread; 1073 int nq = td->td_pri & TDPRI_MASK; 1074 1075 while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) { 1076 if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1])) 1077 return(1); 1078 ++nq; 1079 } 1080 return(0); 1081 } 1082 1083 /* 1084 * Migrate the current thread to the specified cpu. The BGL must be held 1085 * (for the gd_tdallq manipulation XXX). This is accomplished by 1086 * descheduling ourselves from the current cpu, moving our thread to the 1087 * tdallq of the target cpu, IPI messaging the target cpu, and switching out. 1088 * TDF_MIGRATING prevents scheduling races while the thread is being migrated. 1089 */ 1090 #ifdef SMP 1091 static void lwkt_setcpu_remote(void *arg); 1092 #endif 1093 1094 void 1095 lwkt_setcpu_self(globaldata_t rgd) 1096 { 1097 #ifdef SMP 1098 thread_t td = curthread; 1099 1100 if (td->td_gd != rgd) { 1101 crit_enter_quick(td); 1102 td->td_flags |= TDF_MIGRATING; 1103 lwkt_deschedule_self(td); 1104 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */ 1105 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */ 1106 lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td); 1107 lwkt_switch(); 1108 /* we are now on the target cpu */ 1109 crit_exit_quick(td); 1110 } 1111 #endif 1112 } 1113 1114 /* 1115 * Remote IPI for cpu migration (called while in a critical section so we 1116 * do not have to enter another one). The thread has already been moved to 1117 * our cpu's allq, but we must wait for the thread to be completely switched 1118 * out on the originating cpu before we schedule it on ours or the stack 1119 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD 1120 * change to main memory. 1121 * 1122 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races 1123 * against wakeups. It is best if this interface is used only when there 1124 * are no pending events that might try to schedule the thread. 1125 */ 1126 #ifdef SMP 1127 static void 1128 lwkt_setcpu_remote(void *arg) 1129 { 1130 thread_t td = arg; 1131 globaldata_t gd = mycpu; 1132 1133 while (td->td_flags & TDF_RUNNING) 1134 cpu_mb1(); 1135 td->td_gd = gd; 1136 cpu_mb2(); 1137 td->td_flags &= ~TDF_MIGRATING; 1138 _lwkt_enqueue(td); 1139 } 1140 #endif 1141 1142 struct proc * 1143 lwkt_preempted_proc(void) 1144 { 1145 thread_t td = curthread; 1146 while (td->td_preempted) 1147 td = td->td_preempted; 1148 return(td->td_proc); 1149 } 1150 1151 /* 1152 * Block on the specified wait queue until signaled. A generation number 1153 * must be supplied to interlock the wait queue. The function will 1154 * return immediately if the generation number does not match the wait 1155 * structure's generation number. 1156 */ 1157 void 1158 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen) 1159 { 1160 thread_t td = curthread; 1161 lwkt_tokref ilock; 1162 1163 lwkt_gettoken(&ilock, &w->wa_token); 1164 crit_enter(); 1165 if (w->wa_gen == *gen) { 1166 _lwkt_dequeue(td); 1167 TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq); 1168 ++w->wa_count; 1169 td->td_wait = w; 1170 td->td_wmesg = wmesg; 1171 again: 1172 lwkt_switch(); 1173 if (td->td_wmesg != NULL) { 1174 _lwkt_dequeue(td); 1175 goto again; 1176 } 1177 } 1178 crit_exit(); 1179 *gen = w->wa_gen; 1180 lwkt_reltoken(&ilock); 1181 } 1182 1183 /* 1184 * Signal a wait queue. We gain ownership of the wait queue in order to 1185 * signal it. Once a thread is removed from the wait queue we have to 1186 * deal with the cpu owning the thread. 1187 * 1188 * Note: alternatively we could message the target cpu owning the wait 1189 * queue. YYY implement as sysctl. 1190 */ 1191 void 1192 lwkt_signal(lwkt_wait_t w, int count) 1193 { 1194 thread_t td; 1195 lwkt_tokref ilock; 1196 1197 lwkt_gettoken(&ilock, &w->wa_token); 1198 ++w->wa_gen; 1199 crit_enter(); 1200 if (count < 0) 1201 count = w->wa_count; 1202 while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) { 1203 --count; 1204 --w->wa_count; 1205 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq); 1206 td->td_wait = NULL; 1207 td->td_wmesg = NULL; 1208 if (td->td_gd == mycpu) { 1209 _lwkt_enqueue(td); 1210 } else { 1211 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td); 1212 } 1213 } 1214 crit_exit(); 1215 lwkt_reltoken(&ilock); 1216 } 1217 1218 /* 1219 * Create a kernel process/thread/whatever. It shares it's address space 1220 * with proc0 - ie: kernel only. 1221 * 1222 * NOTE! By default new threads are created with the MP lock held. A 1223 * thread which does not require the MP lock should release it by calling 1224 * rel_mplock() at the start of the new thread. 1225 */ 1226 int 1227 lwkt_create(void (*func)(void *), void *arg, 1228 struct thread **tdp, thread_t template, int tdflags, int cpu, 1229 const char *fmt, ...) 1230 { 1231 thread_t td; 1232 __va_list ap; 1233 1234 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu); 1235 if (tdp) 1236 *tdp = td; 1237 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1238 td->td_flags |= TDF_VERBOSE | tdflags; 1239 #ifdef SMP 1240 td->td_mpcount = 1; 1241 #endif 1242 1243 /* 1244 * Set up arg0 for 'ps' etc 1245 */ 1246 __va_start(ap, fmt); 1247 vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1248 __va_end(ap); 1249 1250 /* 1251 * Schedule the thread to run 1252 */ 1253 if ((td->td_flags & TDF_STOPREQ) == 0) 1254 lwkt_schedule(td); 1255 else 1256 td->td_flags &= ~TDF_STOPREQ; 1257 return 0; 1258 } 1259 1260 /* 1261 * kthread_* is specific to the kernel and is not needed by userland. 1262 */ 1263 #ifdef _KERNEL 1264 1265 /* 1266 * Destroy an LWKT thread. Warning! This function is not called when 1267 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1268 * uses a different reaping mechanism. 1269 */ 1270 void 1271 lwkt_exit(void) 1272 { 1273 thread_t td = curthread; 1274 globaldata_t gd; 1275 1276 if (td->td_flags & TDF_VERBOSE) 1277 printf("kthread %p %s has exited\n", td, td->td_comm); 1278 caps_exit(td); 1279 crit_enter_quick(td); 1280 lwkt_deschedule_self(td); 1281 gd = mycpu; 1282 KKASSERT(gd == td->td_gd); 1283 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1284 if (td->td_flags & TDF_ALLOCATED_THREAD) { 1285 ++gd->gd_tdfreecount; 1286 TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq); 1287 } 1288 cpu_thread_exit(); 1289 } 1290 1291 #endif /* _KERNEL */ 1292 1293 void 1294 crit_panic(void) 1295 { 1296 thread_t td = curthread; 1297 int lpri = td->td_pri; 1298 1299 td->td_pri = 0; 1300 panic("td_pri is/would-go negative! %p %d", td, lpri); 1301 } 1302 1303