1 /* 2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Each cpu in a system has its own self-contained light weight kernel 37 * thread scheduler, which means that generally speaking we only need 38 * to use a critical section to avoid problems. Foreign thread 39 * scheduling is queued via (async) IPIs. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/rtprio.h> 47 #include <sys/kinfo.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 #include <machine/cpu.h> 52 #include <sys/lock.h> 53 #include <sys/spinlock.h> 54 #include <sys/ktr.h> 55 56 #include <sys/thread2.h> 57 #include <sys/spinlock2.h> 58 #include <sys/mplock2.h> 59 60 #include <sys/dsched.h> 61 62 #include <vm/vm.h> 63 #include <vm/vm_param.h> 64 #include <vm/vm_kern.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_map.h> 68 #include <vm/vm_pager.h> 69 #include <vm/vm_extern.h> 70 71 #include <machine/stdarg.h> 72 #include <machine/smp.h> 73 #include <machine/clock.h> 74 75 #ifdef _KERNEL_VIRTUAL 76 #include <pthread.h> 77 #endif 78 79 #define LOOPMASK 80 81 #if !defined(KTR_CTXSW) 82 #define KTR_CTXSW KTR_ALL 83 #endif 84 KTR_INFO_MASTER(ctxsw); 85 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td); 86 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td); 87 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm); 88 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td); 89 90 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads"); 91 92 #ifdef INVARIANTS 93 static int panic_on_cscount = 0; 94 #endif 95 static int64_t switch_count = 0; 96 static int64_t preempt_hit = 0; 97 static int64_t preempt_miss = 0; 98 static int64_t preempt_weird = 0; 99 static int lwkt_use_spin_port; 100 static struct objcache *thread_cache; 101 int cpu_mwait_spin = 0; 102 103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame); 104 static void lwkt_setcpu_remote(void *arg); 105 106 /* 107 * We can make all thread ports use the spin backend instead of the thread 108 * backend. This should only be set to debug the spin backend. 109 */ 110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port); 111 112 #ifdef INVARIANTS 113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, 114 "Panic if attempting to switch lwkt's while mastering cpusync"); 115 #endif 116 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, 117 "Number of switched threads"); 118 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 119 "Successful preemption events"); 120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 121 "Failed preemption events"); 122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, 123 "Number of preempted threads."); 124 static int fairq_enable = 0; 125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, 126 &fairq_enable, 0, "Turn on fairq priority accumulators"); 127 static int fairq_bypass = -1; 128 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW, 129 &fairq_bypass, 0, "Allow fairq to bypass td on token failure"); 130 extern int lwkt_sched_debug; 131 int lwkt_sched_debug = 0; 132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW, 133 &lwkt_sched_debug, 0, "Scheduler debug"); 134 static u_int lwkt_spin_loops = 10; 135 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW, 136 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon"); 137 static int preempt_enable = 1; 138 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, 139 &preempt_enable, 0, "Enable preemption"); 140 static int lwkt_cache_threads = 0; 141 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD, 142 &lwkt_cache_threads, 0, "thread+kstack cache"); 143 144 /* 145 * These helper procedures handle the runq, they can only be called from 146 * within a critical section. 147 * 148 * WARNING! Prior to SMP being brought up it is possible to enqueue and 149 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 150 * instead of 'mycpu' when referencing the globaldata structure. Once 151 * SMP live enqueuing and dequeueing only occurs on the current cpu. 152 */ 153 static __inline 154 void 155 _lwkt_dequeue(thread_t td) 156 { 157 if (td->td_flags & TDF_RUNQ) { 158 struct globaldata *gd = td->td_gd; 159 160 td->td_flags &= ~TDF_RUNQ; 161 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 162 --gd->gd_tdrunqcount; 163 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL) 164 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING); 165 } 166 } 167 168 /* 169 * Priority enqueue. 170 * 171 * There are a limited number of lwkt threads runnable since user 172 * processes only schedule one at a time per cpu. However, there can 173 * be many user processes in kernel mode exiting from a tsleep() which 174 * become runnable. 175 * 176 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and 177 * will ignore user priority. This is to ensure that user threads in 178 * kernel mode get cpu at some point regardless of what the user 179 * scheduler thinks. 180 */ 181 static __inline 182 void 183 _lwkt_enqueue(thread_t td) 184 { 185 thread_t xtd; 186 187 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) { 188 struct globaldata *gd = td->td_gd; 189 190 td->td_flags |= TDF_RUNQ; 191 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 192 if (xtd == NULL) { 193 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 194 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING); 195 } else { 196 /* 197 * NOTE: td_upri - higher numbers more desireable, same sense 198 * as td_pri (typically reversed from lwp_upri). 199 * 200 * In the equal priority case we want the best selection 201 * at the beginning so the less desireable selections know 202 * that they have to setrunqueue/go-to-another-cpu, even 203 * though it means switching back to the 'best' selection. 204 * This also avoids degenerate situations when many threads 205 * are runnable or waking up at the same time. 206 * 207 * If upri matches exactly place at end/round-robin. 208 */ 209 while (xtd && 210 (xtd->td_pri >= td->td_pri || 211 (xtd->td_pri == td->td_pri && 212 xtd->td_upri >= td->td_upri))) { 213 xtd = TAILQ_NEXT(xtd, td_threadq); 214 } 215 if (xtd) 216 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 217 else 218 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 219 } 220 ++gd->gd_tdrunqcount; 221 222 /* 223 * Request a LWKT reschedule if we are now at the head of the queue. 224 */ 225 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) 226 need_lwkt_resched(); 227 } 228 } 229 230 static boolean_t 231 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags) 232 { 233 struct thread *td = (struct thread *)obj; 234 235 td->td_kstack = NULL; 236 td->td_kstack_size = 0; 237 td->td_flags = TDF_ALLOCATED_THREAD; 238 td->td_mpflags = 0; 239 return (1); 240 } 241 242 static void 243 _lwkt_thread_dtor(void *obj, void *privdata) 244 { 245 struct thread *td = (struct thread *)obj; 246 247 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD, 248 ("_lwkt_thread_dtor: not allocated from objcache")); 249 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack && 250 td->td_kstack_size > 0, 251 ("_lwkt_thread_dtor: corrupted stack")); 252 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 253 td->td_kstack = NULL; 254 td->td_flags = 0; 255 } 256 257 /* 258 * Initialize the lwkt s/system. 259 * 260 * Nominally cache up to 32 thread + kstack structures. Cache more on 261 * systems with a lot of cpu cores. 262 */ 263 static void 264 lwkt_init(void) 265 { 266 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads); 267 if (lwkt_cache_threads == 0) { 268 lwkt_cache_threads = ncpus * 4; 269 if (lwkt_cache_threads < 32) 270 lwkt_cache_threads = 32; 271 } 272 thread_cache = objcache_create_mbacked( 273 M_THREAD, sizeof(struct thread), 274 0, lwkt_cache_threads, 275 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL); 276 } 277 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL); 278 279 /* 280 * Schedule a thread to run. As the current thread we can always safely 281 * schedule ourselves, and a shortcut procedure is provided for that 282 * function. 283 * 284 * (non-blocking, self contained on a per cpu basis) 285 */ 286 void 287 lwkt_schedule_self(thread_t td) 288 { 289 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 290 crit_enter_quick(td); 291 KASSERT(td != &td->td_gd->gd_idlethread, 292 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 293 KKASSERT(td->td_lwp == NULL || 294 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0); 295 _lwkt_enqueue(td); 296 crit_exit_quick(td); 297 } 298 299 /* 300 * Deschedule a thread. 301 * 302 * (non-blocking, self contained on a per cpu basis) 303 */ 304 void 305 lwkt_deschedule_self(thread_t td) 306 { 307 crit_enter_quick(td); 308 _lwkt_dequeue(td); 309 crit_exit_quick(td); 310 } 311 312 /* 313 * LWKTs operate on a per-cpu basis 314 * 315 * WARNING! Called from early boot, 'mycpu' may not work yet. 316 */ 317 void 318 lwkt_gdinit(struct globaldata *gd) 319 { 320 TAILQ_INIT(&gd->gd_tdrunq); 321 TAILQ_INIT(&gd->gd_tdallq); 322 } 323 324 /* 325 * Create a new thread. The thread must be associated with a process context 326 * or LWKT start address before it can be scheduled. If the target cpu is 327 * -1 the thread will be created on the current cpu. 328 * 329 * If you intend to create a thread without a process context this function 330 * does everything except load the startup and switcher function. 331 */ 332 thread_t 333 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags) 334 { 335 static int cpu_rotator; 336 globaldata_t gd = mycpu; 337 void *stack; 338 339 /* 340 * If static thread storage is not supplied allocate a thread. Reuse 341 * a cached free thread if possible. gd_freetd is used to keep an exiting 342 * thread intact through the exit. 343 */ 344 if (td == NULL) { 345 crit_enter_gd(gd); 346 if ((td = gd->gd_freetd) != NULL) { 347 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 348 TDF_RUNQ)) == 0); 349 gd->gd_freetd = NULL; 350 } else { 351 td = objcache_get(thread_cache, M_WAITOK); 352 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 353 TDF_RUNQ)) == 0); 354 } 355 crit_exit_gd(gd); 356 KASSERT((td->td_flags & 357 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) == 358 TDF_ALLOCATED_THREAD, 359 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags)); 360 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK); 361 } 362 363 /* 364 * Try to reuse cached stack. 365 */ 366 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 367 if (flags & TDF_ALLOCATED_STACK) { 368 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size); 369 stack = NULL; 370 } 371 } 372 if (stack == NULL) { 373 if (cpu < 0) 374 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0); 375 else 376 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 377 KM_CPU(cpu)); 378 flags |= TDF_ALLOCATED_STACK; 379 } 380 if (cpu < 0) { 381 cpu = ++cpu_rotator; 382 cpu_ccfence(); 383 cpu %= ncpus; 384 } 385 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 386 return(td); 387 } 388 389 /* 390 * Initialize a preexisting thread structure. This function is used by 391 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 392 * 393 * All threads start out in a critical section at a priority of 394 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 395 * appropriate. This function may send an IPI message when the 396 * requested cpu is not the current cpu and consequently gd_tdallq may 397 * not be initialized synchronously from the point of view of the originating 398 * cpu. 399 * 400 * NOTE! we have to be careful in regards to creating threads for other cpus 401 * if SMP has not yet been activated. 402 */ 403 static void 404 lwkt_init_thread_remote(void *arg) 405 { 406 thread_t td = arg; 407 408 /* 409 * Protected by critical section held by IPI dispatch 410 */ 411 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 412 } 413 414 /* 415 * lwkt core thread structural initialization. 416 * 417 * NOTE: All threads are initialized as mpsafe threads. 418 */ 419 void 420 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 421 struct globaldata *gd) 422 { 423 globaldata_t mygd = mycpu; 424 425 bzero(td, sizeof(struct thread)); 426 td->td_kstack = stack; 427 td->td_kstack_size = stksize; 428 td->td_flags = flags; 429 td->td_mpflags = 0; 430 td->td_type = TD_TYPE_GENERIC; 431 td->td_gd = gd; 432 td->td_pri = TDPRI_KERN_DAEMON; 433 td->td_critcount = 1; 434 td->td_toks_have = NULL; 435 td->td_toks_stop = &td->td_toks_base; 436 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) { 437 lwkt_initport_spin(&td->td_msgport, td, 438 (flags & TDF_FIXEDCPU) ? TRUE : FALSE); 439 } else { 440 lwkt_initport_thread(&td->td_msgport, td); 441 } 442 pmap_init_thread(td); 443 /* 444 * Normally initializing a thread for a remote cpu requires sending an 445 * IPI. However, the idlethread is setup before the other cpus are 446 * activated so we have to treat it as a special case. XXX manipulation 447 * of gd_tdallq requires the BGL. 448 */ 449 if (gd == mygd || td == &gd->gd_idlethread) { 450 crit_enter_gd(mygd); 451 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 452 crit_exit_gd(mygd); 453 } else { 454 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 455 } 456 dsched_enter_thread(td); 457 } 458 459 void 460 lwkt_set_comm(thread_t td, const char *ctl, ...) 461 { 462 __va_list va; 463 464 __va_start(va, ctl); 465 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 466 __va_end(va); 467 KTR_LOG(ctxsw_newtd, td, td->td_comm); 468 } 469 470 /* 471 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE 472 * this does not prevent the thread from migrating to another cpu so the 473 * gd_tdallq state is not protected by this. 474 */ 475 void 476 lwkt_hold(thread_t td) 477 { 478 atomic_add_int(&td->td_refs, 1); 479 } 480 481 void 482 lwkt_rele(thread_t td) 483 { 484 KKASSERT(td->td_refs > 0); 485 atomic_add_int(&td->td_refs, -1); 486 } 487 488 void 489 lwkt_free_thread(thread_t td) 490 { 491 KKASSERT(td->td_refs == 0); 492 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK | 493 TDF_RUNQ | TDF_TSLEEPQ)) == 0); 494 if (td->td_flags & TDF_ALLOCATED_THREAD) { 495 objcache_put(thread_cache, td); 496 } else if (td->td_flags & TDF_ALLOCATED_STACK) { 497 /* client-allocated struct with internally allocated stack */ 498 KASSERT(td->td_kstack && td->td_kstack_size > 0, 499 ("lwkt_free_thread: corrupted stack")); 500 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 501 td->td_kstack = NULL; 502 td->td_kstack_size = 0; 503 } 504 505 KTR_LOG(ctxsw_deadtd, td); 506 } 507 508 509 /* 510 * Switch to the next runnable lwkt. If no LWKTs are runnable then 511 * switch to the idlethread. Switching must occur within a critical 512 * section to avoid races with the scheduling queue. 513 * 514 * We always have full control over our cpu's run queue. Other cpus 515 * that wish to manipulate our queue must use the cpu_*msg() calls to 516 * talk to our cpu, so a critical section is all that is needed and 517 * the result is very, very fast thread switching. 518 * 519 * The LWKT scheduler uses a fixed priority model and round-robins at 520 * each priority level. User process scheduling is a totally 521 * different beast and LWKT priorities should not be confused with 522 * user process priorities. 523 * 524 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch() 525 * is not called by the current thread in the preemption case, only when 526 * the preempting thread blocks (in order to return to the original thread). 527 * 528 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread 529 * migration and tsleep deschedule the current lwkt thread and call 530 * lwkt_switch(). In particular, the target cpu of the migration fully 531 * expects the thread to become non-runnable and can deadlock against 532 * cpusync operations if we run any IPIs prior to switching the thread out. 533 * 534 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF 535 * THE CURRENT THREAD HAS BEEN DESCHEDULED! 536 */ 537 void 538 lwkt_switch(void) 539 { 540 globaldata_t gd = mycpu; 541 thread_t td = gd->gd_curthread; 542 thread_t ntd; 543 int upri; 544 #ifdef LOOPMASK 545 uint64_t tsc_base = rdtsc(); 546 #endif 547 548 KKASSERT(gd->gd_processing_ipiq == 0); 549 KKASSERT(td->td_flags & TDF_RUNNING); 550 551 /* 552 * Switching from within a 'fast' (non thread switched) interrupt or IPI 553 * is illegal. However, we may have to do it anyway if we hit a fatal 554 * kernel trap or we have paniced. 555 * 556 * If this case occurs save and restore the interrupt nesting level. 557 */ 558 if (gd->gd_intr_nesting_level) { 559 int savegdnest; 560 int savegdtrap; 561 562 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) { 563 panic("lwkt_switch: Attempt to switch from a " 564 "fast interrupt, ipi, or hard code section, " 565 "td %p\n", 566 td); 567 } else { 568 savegdnest = gd->gd_intr_nesting_level; 569 savegdtrap = gd->gd_trap_nesting_level; 570 gd->gd_intr_nesting_level = 0; 571 gd->gd_trap_nesting_level = 0; 572 if ((td->td_flags & TDF_PANICWARN) == 0) { 573 td->td_flags |= TDF_PANICWARN; 574 kprintf("Warning: thread switch from interrupt, IPI, " 575 "or hard code section.\n" 576 "thread %p (%s)\n", td, td->td_comm); 577 print_backtrace(-1); 578 } 579 lwkt_switch(); 580 gd->gd_intr_nesting_level = savegdnest; 581 gd->gd_trap_nesting_level = savegdtrap; 582 return; 583 } 584 } 585 586 /* 587 * Release our current user process designation if we are blocking 588 * or if a user reschedule was requested. 589 * 590 * NOTE: This function is NOT called if we are switching into or 591 * returning from a preemption. 592 * 593 * NOTE: Releasing our current user process designation may cause 594 * it to be assigned to another thread, which in turn will 595 * cause us to block in the usched acquire code when we attempt 596 * to return to userland. 597 * 598 * NOTE: On SMP systems this can be very nasty when heavy token 599 * contention is present so we want to be careful not to 600 * release the designation gratuitously. 601 */ 602 if (td->td_release && 603 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) { 604 td->td_release(td); 605 } 606 607 /* 608 * Release all tokens. Once we do this we must remain in the critical 609 * section and cannot run IPIs or other interrupts until we switch away 610 * because they may implode if they try to get a token using our thread 611 * context. 612 */ 613 crit_enter_gd(gd); 614 if (TD_TOKS_HELD(td)) 615 lwkt_relalltokens(td); 616 617 /* 618 * We had better not be holding any spin locks, but don't get into an 619 * endless panic loop. 620 */ 621 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL, 622 ("lwkt_switch: still holding %d exclusive spinlocks!", 623 gd->gd_spinlocks)); 624 625 #ifdef INVARIANTS 626 if (td->td_cscount) { 627 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 628 td); 629 if (panic_on_cscount) 630 panic("switching while mastering cpusync"); 631 } 632 #endif 633 634 /* 635 * If we had preempted another thread on this cpu, resume the preempted 636 * thread. This occurs transparently, whether the preempted thread 637 * was scheduled or not (it may have been preempted after descheduling 638 * itself). 639 * 640 * We have to setup the MP lock for the original thread after backing 641 * out the adjustment that was made to curthread when the original 642 * was preempted. 643 */ 644 if ((ntd = td->td_preempted) != NULL) { 645 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 646 ntd->td_flags |= TDF_PREEMPT_DONE; 647 ntd->td_contended = 0; /* reset contended */ 648 649 /* 650 * The interrupt may have woken a thread up, we need to properly 651 * set the reschedule flag if the originally interrupted thread is 652 * at a lower priority. 653 * 654 * The interrupt may not have descheduled. 655 */ 656 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd) 657 need_lwkt_resched(); 658 goto havethread_preempted; 659 } 660 661 /* 662 * Figure out switch target. If we cannot switch to our desired target 663 * look for a thread that we can switch to. 664 * 665 * NOTE! The limited spin loop and related parameters are extremely 666 * important for system performance, particularly for pipes and 667 * concurrent conflicting VM faults. 668 */ 669 clear_lwkt_resched(); 670 ntd = TAILQ_FIRST(&gd->gd_tdrunq); 671 672 if (ntd) { 673 do { 674 if (TD_TOKS_NOT_HELD(ntd) || 675 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) 676 { 677 goto havethread; 678 } 679 ++gd->gd_cnt.v_lock_colls; 680 ++ntd->td_contended; /* overflow ok */ 681 #ifdef LOOPMASK 682 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) { 683 kprintf("lwkt_switch: excessive contended %d " 684 "thread %p\n", ntd->td_contended, ntd); 685 tsc_base = rdtsc(); 686 } 687 #endif 688 } while (ntd->td_contended < (lwkt_spin_loops >> 1)); 689 upri = ntd->td_upri; 690 691 /* 692 * Bleh, the thread we wanted to switch to has a contended token. 693 * See if we can switch to another thread. 694 * 695 * We generally don't want to do this because it represents a 696 * priority inversion. Do not allow the case if the thread 697 * is returning to userland (not a kernel thread) AND the thread 698 * has a lower upri. 699 */ 700 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) { 701 if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) 702 break; 703 upri = ntd->td_upri; 704 705 /* 706 * Try this one. 707 */ 708 if (TD_TOKS_NOT_HELD(ntd) || 709 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) { 710 goto havethread; 711 } 712 ++ntd->td_contended; /* overflow ok */ 713 ++gd->gd_cnt.v_lock_colls; 714 } 715 716 /* 717 * Fall through, switch to idle thread to get us out of the current 718 * context. Since we were contended, prevent HLT by flagging a 719 * LWKT reschedule. 720 */ 721 need_lwkt_resched(); 722 } 723 724 /* 725 * We either contended on ntd or the runq is empty. We must switch 726 * through the idle thread to get out of the current context. 727 */ 728 ntd = &gd->gd_idlethread; 729 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 730 ASSERT_NO_TOKENS_HELD(ntd); 731 cpu_time.cp_msg[0] = 0; 732 goto haveidle; 733 734 havethread: 735 /* 736 * Clear gd_idle_repeat when doing a normal switch to a non-idle 737 * thread. 738 */ 739 ntd->td_wmesg = NULL; 740 ntd->td_contended = 0; /* reset once scheduled */ 741 ++gd->gd_cnt.v_swtch; 742 gd->gd_idle_repeat = 0; 743 744 havethread_preempted: 745 /* 746 * If the new target does not need the MP lock and we are holding it, 747 * release the MP lock. If the new target requires the MP lock we have 748 * already acquired it for the target. 749 */ 750 ; 751 haveidle: 752 KASSERT(ntd->td_critcount, 753 ("priority problem in lwkt_switch %d %d", 754 td->td_critcount, ntd->td_critcount)); 755 756 if (td != ntd) { 757 /* 758 * Execute the actual thread switch operation. This function 759 * returns to the current thread and returns the previous thread 760 * (which may be different from the thread we switched to). 761 * 762 * We are responsible for marking ntd as TDF_RUNNING. 763 */ 764 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0); 765 ++switch_count; 766 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd); 767 ntd->td_flags |= TDF_RUNNING; 768 lwkt_switch_return(td->td_switch(ntd)); 769 /* ntd invalid, td_switch() can return a different thread_t */ 770 } 771 772 /* 773 * catch-all. XXX is this strictly needed? 774 */ 775 splz_check(); 776 777 /* NOTE: current cpu may have changed after switch */ 778 crit_exit_quick(td); 779 } 780 781 /* 782 * Called by assembly in the td_switch (thread restore path) for thread 783 * bootstrap cases which do not 'return' to lwkt_switch(). 784 */ 785 void 786 lwkt_switch_return(thread_t otd) 787 { 788 globaldata_t rgd; 789 #ifdef LOOPMASK 790 uint64_t tsc_base = rdtsc(); 791 #endif 792 int exiting; 793 794 exiting = otd->td_flags & TDF_EXITING; 795 cpu_ccfence(); 796 797 /* 798 * Check if otd was migrating. Now that we are on ntd we can finish 799 * up the migration. This is a bit messy but it is the only place 800 * where td is known to be fully descheduled. 801 * 802 * We can only activate the migration if otd was migrating but not 803 * held on the cpu due to a preemption chain. We still have to 804 * clear TDF_RUNNING on the old thread either way. 805 * 806 * We are responsible for clearing the previously running thread's 807 * TDF_RUNNING. 808 */ 809 if ((rgd = otd->td_migrate_gd) != NULL && 810 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) { 811 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) == 812 (TDF_MIGRATING | TDF_RUNNING)); 813 otd->td_migrate_gd = NULL; 814 otd->td_flags &= ~TDF_RUNNING; 815 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd); 816 } else { 817 otd->td_flags &= ~TDF_RUNNING; 818 } 819 820 /* 821 * Final exit validations (see lwp_wait()). Note that otd becomes 822 * invalid the *instant* we set TDF_MP_EXITSIG. 823 * 824 * Use the EXITING status loaded from before we clear TDF_RUNNING, 825 * because if it is not set otd becomes invalid the instant we clear 826 * TDF_RUNNING on it (otherwise, if the system is fast enough, we 827 * might 'steal' TDF_EXITING from another switch-return!). 828 */ 829 while (exiting) { 830 u_int mpflags; 831 832 mpflags = otd->td_mpflags; 833 cpu_ccfence(); 834 835 if (mpflags & TDF_MP_EXITWAIT) { 836 if (atomic_cmpset_int(&otd->td_mpflags, mpflags, 837 mpflags | TDF_MP_EXITSIG)) { 838 wakeup(otd); 839 break; 840 } 841 } else { 842 if (atomic_cmpset_int(&otd->td_mpflags, mpflags, 843 mpflags | TDF_MP_EXITSIG)) { 844 wakeup(otd); 845 break; 846 } 847 } 848 849 #ifdef LOOPMASK 850 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) { 851 kprintf("lwkt_switch_return: excessive TDF_EXITING " 852 "thread %p\n", otd); 853 tsc_base = rdtsc(); 854 } 855 #endif 856 } 857 } 858 859 /* 860 * Request that the target thread preempt the current thread. Preemption 861 * can only occur if our only critical section is the one that we were called 862 * with, the relative priority of the target thread is higher, and the target 863 * thread holds no tokens. This also only works if we are not holding any 864 * spinlocks (obviously). 865 * 866 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 867 * this is called via lwkt_schedule() through the td_preemptable callback. 868 * critcount is the managed critical priority that we should ignore in order 869 * to determine whether preemption is possible (aka usually just the crit 870 * priority of lwkt_schedule() itself). 871 * 872 * Preemption is typically limited to interrupt threads. 873 * 874 * Operation works in a fairly straight-forward manner. The normal 875 * scheduling code is bypassed and we switch directly to the target 876 * thread. When the target thread attempts to block or switch away 877 * code at the base of lwkt_switch() will switch directly back to our 878 * thread. Our thread is able to retain whatever tokens it holds and 879 * if the target needs one of them the target will switch back to us 880 * and reschedule itself normally. 881 */ 882 void 883 lwkt_preempt(thread_t ntd, int critcount) 884 { 885 struct globaldata *gd = mycpu; 886 thread_t xtd; 887 thread_t td; 888 int save_gd_intr_nesting_level; 889 890 /* 891 * The caller has put us in a critical section. We can only preempt 892 * if the caller of the caller was not in a critical section (basically 893 * a local interrupt), as determined by the 'critcount' parameter. We 894 * also can't preempt if the caller is holding any spinlocks (even if 895 * he isn't in a critical section). This also handles the tokens test. 896 * 897 * YYY The target thread must be in a critical section (else it must 898 * inherit our critical section? I dunno yet). 899 */ 900 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri)); 901 902 td = gd->gd_curthread; 903 if (preempt_enable == 0) { 904 ++preempt_miss; 905 return; 906 } 907 if (ntd->td_pri <= td->td_pri) { 908 ++preempt_miss; 909 return; 910 } 911 if (td->td_critcount > critcount) { 912 ++preempt_miss; 913 return; 914 } 915 if (td->td_cscount) { 916 ++preempt_miss; 917 return; 918 } 919 if (ntd->td_gd != gd) { 920 ++preempt_miss; 921 return; 922 } 923 924 /* 925 * We don't have to check spinlocks here as they will also bump 926 * td_critcount. 927 * 928 * Do not try to preempt if the target thread is holding any tokens. 929 * We could try to acquire the tokens but this case is so rare there 930 * is no need to support it. 931 */ 932 KKASSERT(gd->gd_spinlocks == 0); 933 934 if (TD_TOKS_HELD(ntd)) { 935 ++preempt_miss; 936 return; 937 } 938 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 939 ++preempt_weird; 940 return; 941 } 942 if (ntd->td_preempted) { 943 ++preempt_hit; 944 return; 945 } 946 KKASSERT(gd->gd_processing_ipiq == 0); 947 948 /* 949 * Since we are able to preempt the current thread, there is no need to 950 * call need_lwkt_resched(). 951 * 952 * We must temporarily clear gd_intr_nesting_level around the switch 953 * since switchouts from the target thread are allowed (they will just 954 * return to our thread), and since the target thread has its own stack. 955 * 956 * A preemption must switch back to the original thread, assert the 957 * case. 958 */ 959 ++preempt_hit; 960 ntd->td_preempted = td; 961 td->td_flags |= TDF_PREEMPT_LOCK; 962 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd); 963 save_gd_intr_nesting_level = gd->gd_intr_nesting_level; 964 gd->gd_intr_nesting_level = 0; 965 966 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0); 967 ntd->td_flags |= TDF_RUNNING; 968 xtd = td->td_switch(ntd); 969 KKASSERT(xtd == ntd); 970 lwkt_switch_return(xtd); 971 gd->gd_intr_nesting_level = save_gd_intr_nesting_level; 972 973 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 974 ntd->td_preempted = NULL; 975 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 976 } 977 978 /* 979 * Conditionally call splz() if gd_reqflags indicates work is pending. 980 * This will work inside a critical section but not inside a hard code 981 * section. 982 * 983 * (self contained on a per cpu basis) 984 */ 985 void 986 splz_check(void) 987 { 988 globaldata_t gd = mycpu; 989 thread_t td = gd->gd_curthread; 990 991 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && 992 gd->gd_intr_nesting_level == 0 && 993 td->td_nest_count < 2) 994 { 995 splz(); 996 } 997 } 998 999 /* 1000 * This version is integrated into crit_exit, reqflags has already 1001 * been tested but td_critcount has not. 1002 * 1003 * We only want to execute the splz() on the 1->0 transition of 1004 * critcount and not in a hard code section or if too deeply nested. 1005 * 1006 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0. 1007 */ 1008 void 1009 lwkt_maybe_splz(thread_t td) 1010 { 1011 globaldata_t gd = td->td_gd; 1012 1013 if (td->td_critcount == 0 && 1014 gd->gd_intr_nesting_level == 0 && 1015 td->td_nest_count < 2) 1016 { 1017 splz(); 1018 } 1019 } 1020 1021 /* 1022 * Drivers which set up processing co-threads can call this function to 1023 * run the co-thread at a higher priority and to allow it to preempt 1024 * normal threads. 1025 */ 1026 void 1027 lwkt_set_interrupt_support_thread(void) 1028 { 1029 thread_t td = curthread; 1030 1031 lwkt_setpri_self(TDPRI_INT_SUPPORT); 1032 td->td_flags |= TDF_INTTHREAD; 1033 td->td_preemptable = lwkt_preempt; 1034 } 1035 1036 1037 /* 1038 * This function is used to negotiate a passive release of the current 1039 * process/lwp designation with the user scheduler, allowing the user 1040 * scheduler to schedule another user thread. The related kernel thread 1041 * (curthread) continues running in the released state. 1042 */ 1043 void 1044 lwkt_passive_release(struct thread *td) 1045 { 1046 struct lwp *lp = td->td_lwp; 1047 1048 td->td_release = NULL; 1049 lwkt_setpri_self(TDPRI_KERN_USER); 1050 1051 lp->lwp_proc->p_usched->release_curproc(lp); 1052 } 1053 1054 1055 /* 1056 * This implements a LWKT yield, allowing a kernel thread to yield to other 1057 * kernel threads at the same or higher priority. This function can be 1058 * called in a tight loop and will typically only yield once per tick. 1059 * 1060 * Most kernel threads run at the same priority in order to allow equal 1061 * sharing. 1062 * 1063 * (self contained on a per cpu basis) 1064 */ 1065 void 1066 lwkt_yield(void) 1067 { 1068 globaldata_t gd = mycpu; 1069 thread_t td = gd->gd_curthread; 1070 1071 /* 1072 * Should never be called with spinlocks held but there is a path 1073 * via ACPI where it might happen. 1074 */ 1075 if (gd->gd_spinlocks) 1076 return; 1077 1078 /* 1079 * Safe to call splz if we are not too-heavily nested. 1080 */ 1081 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1082 splz(); 1083 1084 /* 1085 * Caller allows switching 1086 */ 1087 if (lwkt_resched_wanted()) { 1088 lwkt_schedule_self(curthread); 1089 lwkt_switch(); 1090 } 1091 } 1092 1093 /* 1094 * The quick version processes pending interrupts and higher-priority 1095 * LWKT threads but will not round-robin same-priority LWKT threads. 1096 * 1097 * When called while attempting to return to userland the only same-pri 1098 * threads are the ones which have already tried to become the current 1099 * user process. 1100 */ 1101 void 1102 lwkt_yield_quick(void) 1103 { 1104 globaldata_t gd = mycpu; 1105 thread_t td = gd->gd_curthread; 1106 1107 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1108 splz(); 1109 if (lwkt_resched_wanted()) { 1110 crit_enter(); 1111 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) { 1112 clear_lwkt_resched(); 1113 } else { 1114 lwkt_schedule_self(curthread); 1115 lwkt_switch(); 1116 } 1117 crit_exit(); 1118 } 1119 } 1120 1121 /* 1122 * This yield is designed for kernel threads with a user context. 1123 * 1124 * The kernel acting on behalf of the user is potentially cpu-bound, 1125 * this function will efficiently allow other threads to run and also 1126 * switch to other processes by releasing. 1127 * 1128 * The lwkt_user_yield() function is designed to have very low overhead 1129 * if no yield is determined to be needed. 1130 */ 1131 void 1132 lwkt_user_yield(void) 1133 { 1134 globaldata_t gd = mycpu; 1135 thread_t td = gd->gd_curthread; 1136 1137 /* 1138 * Should never be called with spinlocks held but there is a path 1139 * via ACPI where it might happen. 1140 */ 1141 if (gd->gd_spinlocks) 1142 return; 1143 1144 /* 1145 * Always run any pending interrupts in case we are in a critical 1146 * section. 1147 */ 1148 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1149 splz(); 1150 1151 /* 1152 * Switch (which forces a release) if another kernel thread needs 1153 * the cpu, if userland wants us to resched, or if our kernel 1154 * quantum has run out. 1155 */ 1156 if (lwkt_resched_wanted() || 1157 user_resched_wanted()) 1158 { 1159 lwkt_switch(); 1160 } 1161 1162 #if 0 1163 /* 1164 * Reacquire the current process if we are released. 1165 * 1166 * XXX not implemented atm. The kernel may be holding locks and such, 1167 * so we want the thread to continue to receive cpu. 1168 */ 1169 if (td->td_release == NULL && lp) { 1170 lp->lwp_proc->p_usched->acquire_curproc(lp); 1171 td->td_release = lwkt_passive_release; 1172 lwkt_setpri_self(TDPRI_USER_NORM); 1173 } 1174 #endif 1175 } 1176 1177 /* 1178 * Generic schedule. Possibly schedule threads belonging to other cpus and 1179 * deal with threads that might be blocked on a wait queue. 1180 * 1181 * We have a little helper inline function which does additional work after 1182 * the thread has been enqueued, including dealing with preemption and 1183 * setting need_lwkt_resched() (which prevents the kernel from returning 1184 * to userland until it has processed higher priority threads). 1185 * 1186 * It is possible for this routine to be called after a failed _enqueue 1187 * (due to the target thread migrating, sleeping, or otherwise blocked). 1188 * We have to check that the thread is actually on the run queue! 1189 */ 1190 static __inline 1191 void 1192 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount) 1193 { 1194 if (ntd->td_flags & TDF_RUNQ) { 1195 if (ntd->td_preemptable) { 1196 ntd->td_preemptable(ntd, ccount); /* YYY +token */ 1197 } 1198 } 1199 } 1200 1201 static __inline 1202 void 1203 _lwkt_schedule(thread_t td) 1204 { 1205 globaldata_t mygd = mycpu; 1206 1207 KASSERT(td != &td->td_gd->gd_idlethread, 1208 ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 1209 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 1210 crit_enter_gd(mygd); 1211 KKASSERT(td->td_lwp == NULL || 1212 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0); 1213 1214 if (td == mygd->gd_curthread) { 1215 _lwkt_enqueue(td); 1216 } else { 1217 /* 1218 * If we own the thread, there is no race (since we are in a 1219 * critical section). If we do not own the thread there might 1220 * be a race but the target cpu will deal with it. 1221 */ 1222 if (td->td_gd == mygd) { 1223 _lwkt_enqueue(td); 1224 _lwkt_schedule_post(mygd, td, 1); 1225 } else { 1226 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0); 1227 } 1228 } 1229 crit_exit_gd(mygd); 1230 } 1231 1232 void 1233 lwkt_schedule(thread_t td) 1234 { 1235 _lwkt_schedule(td); 1236 } 1237 1238 void 1239 lwkt_schedule_noresched(thread_t td) /* XXX not impl */ 1240 { 1241 _lwkt_schedule(td); 1242 } 1243 1244 /* 1245 * When scheduled remotely if frame != NULL the IPIQ is being 1246 * run via doreti or an interrupt then preemption can be allowed. 1247 * 1248 * To allow preemption we have to drop the critical section so only 1249 * one is present in _lwkt_schedule_post. 1250 */ 1251 static void 1252 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame) 1253 { 1254 thread_t td = curthread; 1255 thread_t ntd = arg; 1256 1257 if (frame && ntd->td_preemptable) { 1258 crit_exit_noyield(td); 1259 _lwkt_schedule(ntd); 1260 crit_enter_quick(td); 1261 } else { 1262 _lwkt_schedule(ntd); 1263 } 1264 } 1265 1266 /* 1267 * Thread migration using a 'Pull' method. The thread may or may not be 1268 * the current thread. It MUST be descheduled and in a stable state. 1269 * lwkt_giveaway() must be called on the cpu owning the thread. 1270 * 1271 * At any point after lwkt_giveaway() is called, the target cpu may 1272 * 'pull' the thread by calling lwkt_acquire(). 1273 * 1274 * We have to make sure the thread is not sitting on a per-cpu tsleep 1275 * queue or it will blow up when it moves to another cpu. 1276 * 1277 * MPSAFE - must be called under very specific conditions. 1278 */ 1279 void 1280 lwkt_giveaway(thread_t td) 1281 { 1282 globaldata_t gd = mycpu; 1283 1284 crit_enter_gd(gd); 1285 if (td->td_flags & TDF_TSLEEPQ) 1286 tsleep_remove(td); 1287 KKASSERT(td->td_gd == gd); 1288 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1289 td->td_flags |= TDF_MIGRATING; 1290 crit_exit_gd(gd); 1291 } 1292 1293 void 1294 lwkt_acquire(thread_t td) 1295 { 1296 globaldata_t gd; 1297 globaldata_t mygd; 1298 1299 KKASSERT(td->td_flags & TDF_MIGRATING); 1300 gd = td->td_gd; 1301 mygd = mycpu; 1302 if (gd != mycpu) { 1303 #ifdef LOOPMASK 1304 uint64_t tsc_base = rdtsc(); 1305 #endif 1306 cpu_lfence(); 1307 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1308 crit_enter_gd(mygd); 1309 DEBUG_PUSH_INFO("lwkt_acquire"); 1310 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1311 lwkt_process_ipiq(); 1312 cpu_lfence(); 1313 #ifdef _KERNEL_VIRTUAL 1314 pthread_yield(); 1315 #endif 1316 #ifdef LOOPMASK 1317 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) { 1318 kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n", 1319 td, td->td_flags); 1320 tsc_base = rdtsc(); 1321 } 1322 #endif 1323 } 1324 DEBUG_POP_INFO(); 1325 cpu_mfence(); 1326 td->td_gd = mygd; 1327 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1328 td->td_flags &= ~TDF_MIGRATING; 1329 crit_exit_gd(mygd); 1330 } else { 1331 crit_enter_gd(mygd); 1332 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1333 td->td_flags &= ~TDF_MIGRATING; 1334 crit_exit_gd(mygd); 1335 } 1336 } 1337 1338 /* 1339 * Generic deschedule. Descheduling threads other then your own should be 1340 * done only in carefully controlled circumstances. Descheduling is 1341 * asynchronous. 1342 * 1343 * This function may block if the cpu has run out of messages. 1344 */ 1345 void 1346 lwkt_deschedule(thread_t td) 1347 { 1348 crit_enter(); 1349 if (td == curthread) { 1350 _lwkt_dequeue(td); 1351 } else { 1352 if (td->td_gd == mycpu) { 1353 _lwkt_dequeue(td); 1354 } else { 1355 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td); 1356 } 1357 } 1358 crit_exit(); 1359 } 1360 1361 /* 1362 * Set the target thread's priority. This routine does not automatically 1363 * switch to a higher priority thread, LWKT threads are not designed for 1364 * continuous priority changes. Yield if you want to switch. 1365 */ 1366 void 1367 lwkt_setpri(thread_t td, int pri) 1368 { 1369 if (td->td_pri != pri) { 1370 KKASSERT(pri >= 0); 1371 crit_enter(); 1372 if (td->td_flags & TDF_RUNQ) { 1373 KKASSERT(td->td_gd == mycpu); 1374 _lwkt_dequeue(td); 1375 td->td_pri = pri; 1376 _lwkt_enqueue(td); 1377 } else { 1378 td->td_pri = pri; 1379 } 1380 crit_exit(); 1381 } 1382 } 1383 1384 /* 1385 * Set the initial priority for a thread prior to it being scheduled for 1386 * the first time. The thread MUST NOT be scheduled before or during 1387 * this call. The thread may be assigned to a cpu other then the current 1388 * cpu. 1389 * 1390 * Typically used after a thread has been created with TDF_STOPPREQ, 1391 * and before the thread is initially scheduled. 1392 */ 1393 void 1394 lwkt_setpri_initial(thread_t td, int pri) 1395 { 1396 KKASSERT(pri >= 0); 1397 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1398 td->td_pri = pri; 1399 } 1400 1401 void 1402 lwkt_setpri_self(int pri) 1403 { 1404 thread_t td = curthread; 1405 1406 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1407 crit_enter(); 1408 if (td->td_flags & TDF_RUNQ) { 1409 _lwkt_dequeue(td); 1410 td->td_pri = pri; 1411 _lwkt_enqueue(td); 1412 } else { 1413 td->td_pri = pri; 1414 } 1415 crit_exit(); 1416 } 1417 1418 /* 1419 * hz tick scheduler clock for LWKT threads 1420 */ 1421 void 1422 lwkt_schedulerclock(thread_t td) 1423 { 1424 globaldata_t gd = td->td_gd; 1425 thread_t xtd; 1426 1427 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) { 1428 /* 1429 * If the current thread is at the head of the runq shift it to the 1430 * end of any equal-priority threads and request a LWKT reschedule 1431 * if it moved. 1432 * 1433 * Ignore upri in this situation. There will only be one user thread 1434 * in user mode, all others will be user threads running in kernel 1435 * mode and we have to make sure they get some cpu. 1436 */ 1437 xtd = TAILQ_NEXT(td, td_threadq); 1438 if (xtd && xtd->td_pri == td->td_pri) { 1439 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 1440 while (xtd && xtd->td_pri == td->td_pri) 1441 xtd = TAILQ_NEXT(xtd, td_threadq); 1442 if (xtd) 1443 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 1444 else 1445 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 1446 need_lwkt_resched(); 1447 } 1448 } else { 1449 /* 1450 * If we scheduled a thread other than the one at the head of the 1451 * queue always request a reschedule every tick. 1452 */ 1453 need_lwkt_resched(); 1454 } 1455 } 1456 1457 /* 1458 * Migrate the current thread to the specified cpu. 1459 * 1460 * This is accomplished by descheduling ourselves from the current cpu 1461 * and setting td_migrate_gd. The lwkt_switch() code will detect that the 1462 * 'old' thread wants to migrate after it has been completely switched out 1463 * and will complete the migration. 1464 * 1465 * TDF_MIGRATING prevents scheduling races while the thread is being migrated. 1466 * 1467 * We must be sure to release our current process designation (if a user 1468 * process) before clearing out any tsleepq we are on because the release 1469 * code may re-add us. 1470 * 1471 * We must be sure to remove ourselves from the current cpu's tsleepq 1472 * before potentially moving to another queue. The thread can be on 1473 * a tsleepq due to a left-over tsleep_interlock(). 1474 */ 1475 1476 void 1477 lwkt_setcpu_self(globaldata_t rgd) 1478 { 1479 thread_t td = curthread; 1480 1481 if (td->td_gd != rgd) { 1482 crit_enter_quick(td); 1483 1484 if (td->td_release) 1485 td->td_release(td); 1486 if (td->td_flags & TDF_TSLEEPQ) 1487 tsleep_remove(td); 1488 1489 /* 1490 * Set TDF_MIGRATING to prevent a spurious reschedule while we are 1491 * trying to deschedule ourselves and switch away, then deschedule 1492 * ourself, remove us from tdallq, and set td_migrate_gd. Finally, 1493 * call lwkt_switch() to complete the operation. 1494 */ 1495 td->td_flags |= TDF_MIGRATING; 1496 lwkt_deschedule_self(td); 1497 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1498 td->td_migrate_gd = rgd; 1499 lwkt_switch(); 1500 1501 /* 1502 * We are now on the target cpu 1503 */ 1504 KKASSERT(rgd == mycpu); 1505 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); 1506 crit_exit_quick(td); 1507 } 1508 } 1509 1510 void 1511 lwkt_migratecpu(int cpuid) 1512 { 1513 globaldata_t rgd; 1514 1515 rgd = globaldata_find(cpuid); 1516 lwkt_setcpu_self(rgd); 1517 } 1518 1519 /* 1520 * Remote IPI for cpu migration (called while in a critical section so we 1521 * do not have to enter another one). 1522 * 1523 * The thread (td) has already been completely descheduled from the 1524 * originating cpu and we can simply assert the case. The thread is 1525 * assigned to the new cpu and enqueued. 1526 * 1527 * The thread will re-add itself to tdallq when it resumes execution. 1528 */ 1529 static void 1530 lwkt_setcpu_remote(void *arg) 1531 { 1532 thread_t td = arg; 1533 globaldata_t gd = mycpu; 1534 1535 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1536 td->td_gd = gd; 1537 cpu_mfence(); 1538 td->td_flags &= ~TDF_MIGRATING; 1539 KKASSERT(td->td_migrate_gd == NULL); 1540 KKASSERT(td->td_lwp == NULL || 1541 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0); 1542 _lwkt_enqueue(td); 1543 } 1544 1545 struct lwp * 1546 lwkt_preempted_proc(void) 1547 { 1548 thread_t td = curthread; 1549 while (td->td_preempted) 1550 td = td->td_preempted; 1551 return(td->td_lwp); 1552 } 1553 1554 /* 1555 * Create a kernel process/thread/whatever. It shares it's address space 1556 * with proc0 - ie: kernel only. 1557 * 1558 * If the cpu is not specified one will be selected. In the future 1559 * specifying a cpu of -1 will enable kernel thread migration between 1560 * cpus. 1561 */ 1562 int 1563 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp, 1564 thread_t template, int tdflags, int cpu, const char *fmt, ...) 1565 { 1566 thread_t td; 1567 __va_list ap; 1568 1569 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu, 1570 tdflags); 1571 if (tdp) 1572 *tdp = td; 1573 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1574 1575 /* 1576 * Set up arg0 for 'ps' etc 1577 */ 1578 __va_start(ap, fmt); 1579 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1580 __va_end(ap); 1581 1582 /* 1583 * Schedule the thread to run 1584 */ 1585 if (td->td_flags & TDF_NOSTART) 1586 td->td_flags &= ~TDF_NOSTART; 1587 else 1588 lwkt_schedule(td); 1589 return 0; 1590 } 1591 1592 /* 1593 * Destroy an LWKT thread. Warning! This function is not called when 1594 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1595 * uses a different reaping mechanism. 1596 */ 1597 void 1598 lwkt_exit(void) 1599 { 1600 thread_t td = curthread; 1601 thread_t std; 1602 globaldata_t gd; 1603 1604 /* 1605 * Do any cleanup that might block here 1606 */ 1607 if (td->td_flags & TDF_VERBOSE) 1608 kprintf("kthread %p %s has exited\n", td, td->td_comm); 1609 biosched_done(td); 1610 dsched_exit_thread(td); 1611 1612 /* 1613 * Get us into a critical section to interlock gd_freetd and loop 1614 * until we can get it freed. 1615 * 1616 * We have to cache the current td in gd_freetd because objcache_put()ing 1617 * it would rip it out from under us while our thread is still active. 1618 * 1619 * We are the current thread so of course our own TDF_RUNNING bit will 1620 * be set, so unlike the lwp reap code we don't wait for it to clear. 1621 */ 1622 gd = mycpu; 1623 crit_enter_quick(td); 1624 for (;;) { 1625 if (td->td_refs) { 1626 tsleep(td, 0, "tdreap", 1); 1627 continue; 1628 } 1629 if ((std = gd->gd_freetd) != NULL) { 1630 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1631 gd->gd_freetd = NULL; 1632 objcache_put(thread_cache, std); 1633 continue; 1634 } 1635 break; 1636 } 1637 1638 /* 1639 * Remove thread resources from kernel lists and deschedule us for 1640 * the last time. We cannot block after this point or we may end 1641 * up with a stale td on the tsleepq. 1642 * 1643 * None of this may block, the critical section is the only thing 1644 * protecting tdallq and the only thing preventing new lwkt_hold() 1645 * thread refs now. 1646 */ 1647 if (td->td_flags & TDF_TSLEEPQ) 1648 tsleep_remove(td); 1649 lwkt_deschedule_self(td); 1650 lwkt_remove_tdallq(td); 1651 KKASSERT(td->td_refs == 0); 1652 1653 /* 1654 * Final cleanup 1655 */ 1656 KKASSERT(gd->gd_freetd == NULL); 1657 if (td->td_flags & TDF_ALLOCATED_THREAD) 1658 gd->gd_freetd = td; 1659 cpu_thread_exit(); 1660 } 1661 1662 void 1663 lwkt_remove_tdallq(thread_t td) 1664 { 1665 KKASSERT(td->td_gd == mycpu); 1666 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1667 } 1668 1669 /* 1670 * Code reduction and branch prediction improvements. Call/return 1671 * overhead on modern cpus often degenerates into 0 cycles due to 1672 * the cpu's branch prediction hardware and return pc cache. We 1673 * can take advantage of this by not inlining medium-complexity 1674 * functions and we can also reduce the branch prediction impact 1675 * by collapsing perfectly predictable branches into a single 1676 * procedure instead of duplicating it. 1677 * 1678 * Is any of this noticeable? Probably not, so I'll take the 1679 * smaller code size. 1680 */ 1681 void 1682 crit_exit_wrapper(__DEBUG_CRIT_ARG__) 1683 { 1684 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__); 1685 } 1686 1687 void 1688 crit_panic(void) 1689 { 1690 thread_t td = curthread; 1691 int lcrit = td->td_critcount; 1692 1693 td->td_critcount = 0; 1694 panic("td_critcount is/would-go negative! %p %d", td, lcrit); 1695 /* NOT REACHED */ 1696 } 1697 1698 /* 1699 * Called from debugger/panic on cpus which have been stopped. We must still 1700 * process the IPIQ while stopped. 1701 * 1702 * If we are dumping also try to process any pending interrupts. This may 1703 * or may not work depending on the state of the cpu at the point it was 1704 * stopped. 1705 */ 1706 void 1707 lwkt_smp_stopped(void) 1708 { 1709 globaldata_t gd = mycpu; 1710 1711 if (dumping) { 1712 lwkt_process_ipiq(); 1713 --gd->gd_intr_nesting_level; 1714 splz(); 1715 ++gd->gd_intr_nesting_level; 1716 } else { 1717 lwkt_process_ipiq(); 1718 } 1719 cpu_smp_stopped(); 1720 } 1721