xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 441d34b2441f59fde86fa4ef2d5d5cb7a6bfcb11)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #if !defined(KTR_CTXSW)
75 #define KTR_CTXSW KTR_ALL
76 #endif
77 KTR_INFO_MASTER(ctxsw);
78 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
79 	 sizeof(int) + sizeof(struct thread *));
80 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
81 	 sizeof(int) + sizeof(struct thread *));
82 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
83 	 sizeof (struct thread *) + sizeof(char *));
84 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
85 
86 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
87 
88 #ifdef	INVARIANTS
89 static int panic_on_cscount = 0;
90 #endif
91 static __int64_t switch_count = 0;
92 static __int64_t preempt_hit = 0;
93 static __int64_t preempt_miss = 0;
94 static __int64_t preempt_weird = 0;
95 static __int64_t token_contention_count __debugvar = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 
99 #ifdef SMP
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 #endif
102 
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107 
108 #ifdef __x86_64__
109 
110 static int
111 jg_tos_ok(struct thread *td)
112 {
113 	void *tos;
114 	int tos_ok;
115 
116 	if (td == NULL) {
117 		return 1;
118 	}
119 	KKASSERT(td->td_sp != NULL);
120 	tos = ((void **)td->td_sp)[0];
121 	tos_ok = 0;
122 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
123 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
124 		tos_ok = 1;
125 	}
126 	return tos_ok;
127 }
128 
129 #endif
130 
131 /*
132  * We can make all thread ports use the spin backend instead of the thread
133  * backend.  This should only be set to debug the spin backend.
134  */
135 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
136 
137 #ifdef	INVARIANTS
138 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
139 #endif
140 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
141 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
142 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
143 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
144 #ifdef	INVARIANTS
145 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
146 	&token_contention_count, 0, "spinning due to token contention");
147 #endif
148 
149 /*
150  * These helper procedures handle the runq, they can only be called from
151  * within a critical section.
152  *
153  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
154  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
155  * instead of 'mycpu' when referencing the globaldata structure.   Once
156  * SMP live enqueuing and dequeueing only occurs on the current cpu.
157  */
158 static __inline
159 void
160 _lwkt_dequeue(thread_t td)
161 {
162     if (td->td_flags & TDF_RUNQ) {
163 	int nq = td->td_pri & TDPRI_MASK;
164 	struct globaldata *gd = td->td_gd;
165 
166 	td->td_flags &= ~TDF_RUNQ;
167 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
168 	/* runqmask is passively cleaned up by the switcher */
169     }
170 }
171 
172 static __inline
173 void
174 _lwkt_enqueue(thread_t td)
175 {
176     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
177 	int nq = td->td_pri & TDPRI_MASK;
178 	struct globaldata *gd = td->td_gd;
179 
180 	td->td_flags |= TDF_RUNQ;
181 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
182 	gd->gd_runqmask |= 1 << nq;
183     }
184 }
185 
186 static __boolean_t
187 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
188 {
189 	struct thread *td = (struct thread *)obj;
190 
191 	td->td_kstack = NULL;
192 	td->td_kstack_size = 0;
193 	td->td_flags = TDF_ALLOCATED_THREAD;
194 	return (1);
195 }
196 
197 static void
198 _lwkt_thread_dtor(void *obj, void *privdata)
199 {
200 	struct thread *td = (struct thread *)obj;
201 
202 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
203 	    ("_lwkt_thread_dtor: not allocated from objcache"));
204 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
205 		td->td_kstack_size > 0,
206 	    ("_lwkt_thread_dtor: corrupted stack"));
207 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
208 }
209 
210 /*
211  * Initialize the lwkt s/system.
212  */
213 void
214 lwkt_init(void)
215 {
216     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
217     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
218 			NULL, CACHE_NTHREADS/2,
219 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
220 }
221 
222 /*
223  * Schedule a thread to run.  As the current thread we can always safely
224  * schedule ourselves, and a shortcut procedure is provided for that
225  * function.
226  *
227  * (non-blocking, self contained on a per cpu basis)
228  */
229 void
230 lwkt_schedule_self(thread_t td)
231 {
232     crit_enter_quick(td);
233     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
234     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
235     _lwkt_enqueue(td);
236     crit_exit_quick(td);
237 }
238 
239 /*
240  * Deschedule a thread.
241  *
242  * (non-blocking, self contained on a per cpu basis)
243  */
244 void
245 lwkt_deschedule_self(thread_t td)
246 {
247     crit_enter_quick(td);
248     _lwkt_dequeue(td);
249     crit_exit_quick(td);
250 }
251 
252 /*
253  * LWKTs operate on a per-cpu basis
254  *
255  * WARNING!  Called from early boot, 'mycpu' may not work yet.
256  */
257 void
258 lwkt_gdinit(struct globaldata *gd)
259 {
260     int i;
261 
262     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
263 	TAILQ_INIT(&gd->gd_tdrunq[i]);
264     gd->gd_runqmask = 0;
265     TAILQ_INIT(&gd->gd_tdallq);
266 }
267 
268 /*
269  * Create a new thread.  The thread must be associated with a process context
270  * or LWKT start address before it can be scheduled.  If the target cpu is
271  * -1 the thread will be created on the current cpu.
272  *
273  * If you intend to create a thread without a process context this function
274  * does everything except load the startup and switcher function.
275  */
276 thread_t
277 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
278 {
279     globaldata_t gd = mycpu;
280     void *stack;
281 
282     /*
283      * If static thread storage is not supplied allocate a thread.  Reuse
284      * a cached free thread if possible.  gd_freetd is used to keep an exiting
285      * thread intact through the exit.
286      */
287     if (td == NULL) {
288 	if ((td = gd->gd_freetd) != NULL)
289 	    gd->gd_freetd = NULL;
290 	else
291 	    td = objcache_get(thread_cache, M_WAITOK);
292     	KASSERT((td->td_flags &
293 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
294 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
295     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
296     }
297 
298     /*
299      * Try to reuse cached stack.
300      */
301     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
302 	if (flags & TDF_ALLOCATED_STACK) {
303 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
304 	    stack = NULL;
305 	}
306     }
307     if (stack == NULL) {
308 	stack = (void *)kmem_alloc(&kernel_map, stksize);
309 	flags |= TDF_ALLOCATED_STACK;
310     }
311     if (cpu < 0)
312 	lwkt_init_thread(td, stack, stksize, flags, gd);
313     else
314 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
315     return(td);
316 }
317 
318 /*
319  * Initialize a preexisting thread structure.  This function is used by
320  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
321  *
322  * All threads start out in a critical section at a priority of
323  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
324  * appropriate.  This function may send an IPI message when the
325  * requested cpu is not the current cpu and consequently gd_tdallq may
326  * not be initialized synchronously from the point of view of the originating
327  * cpu.
328  *
329  * NOTE! we have to be careful in regards to creating threads for other cpus
330  * if SMP has not yet been activated.
331  */
332 #ifdef SMP
333 
334 static void
335 lwkt_init_thread_remote(void *arg)
336 {
337     thread_t td = arg;
338 
339     /*
340      * Protected by critical section held by IPI dispatch
341      */
342     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
343 }
344 
345 #endif
346 
347 void
348 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
349 		struct globaldata *gd)
350 {
351     globaldata_t mygd = mycpu;
352 
353     bzero(td, sizeof(struct thread));
354     td->td_kstack = stack;
355     td->td_kstack_size = stksize;
356     td->td_flags = flags;
357     td->td_gd = gd;
358     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
359     td->td_toks_stop = &td->td_toks_base;
360 #ifdef SMP
361     if ((flags & TDF_MPSAFE) == 0)
362 	td->td_mpcount = 1;
363 #endif
364     if (lwkt_use_spin_port)
365 	lwkt_initport_spin(&td->td_msgport);
366     else
367 	lwkt_initport_thread(&td->td_msgport, td);
368     pmap_init_thread(td);
369 #ifdef SMP
370     /*
371      * Normally initializing a thread for a remote cpu requires sending an
372      * IPI.  However, the idlethread is setup before the other cpus are
373      * activated so we have to treat it as a special case.  XXX manipulation
374      * of gd_tdallq requires the BGL.
375      */
376     if (gd == mygd || td == &gd->gd_idlethread) {
377 	crit_enter_gd(mygd);
378 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
379 	crit_exit_gd(mygd);
380     } else {
381 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
382     }
383 #else
384     crit_enter_gd(mygd);
385     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
386     crit_exit_gd(mygd);
387 #endif
388 
389     dsched_new_thread(td);
390 }
391 
392 void
393 lwkt_set_comm(thread_t td, const char *ctl, ...)
394 {
395     __va_list va;
396 
397     __va_start(va, ctl);
398     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
399     __va_end(va);
400     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
401 }
402 
403 void
404 lwkt_hold(thread_t td)
405 {
406     ++td->td_refs;
407 }
408 
409 void
410 lwkt_rele(thread_t td)
411 {
412     KKASSERT(td->td_refs > 0);
413     --td->td_refs;
414 }
415 
416 void
417 lwkt_wait_free(thread_t td)
418 {
419     while (td->td_refs)
420 	tsleep(td, 0, "tdreap", hz);
421 }
422 
423 void
424 lwkt_free_thread(thread_t td)
425 {
426     KASSERT((td->td_flags & TDF_RUNNING) == 0,
427 	("lwkt_free_thread: did not exit! %p", td));
428 
429     if (td->td_flags & TDF_ALLOCATED_THREAD) {
430     	objcache_put(thread_cache, td);
431     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
432 	/* client-allocated struct with internally allocated stack */
433 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
434 	    ("lwkt_free_thread: corrupted stack"));
435 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
436 	td->td_kstack = NULL;
437 	td->td_kstack_size = 0;
438     }
439     KTR_LOG(ctxsw_deadtd, td);
440 }
441 
442 
443 /*
444  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
445  * switch to the idlethread.  Switching must occur within a critical
446  * section to avoid races with the scheduling queue.
447  *
448  * We always have full control over our cpu's run queue.  Other cpus
449  * that wish to manipulate our queue must use the cpu_*msg() calls to
450  * talk to our cpu, so a critical section is all that is needed and
451  * the result is very, very fast thread switching.
452  *
453  * The LWKT scheduler uses a fixed priority model and round-robins at
454  * each priority level.  User process scheduling is a totally
455  * different beast and LWKT priorities should not be confused with
456  * user process priorities.
457  *
458  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
459  * cleans it up.  Note that the td_switch() function cannot do anything that
460  * requires the MP lock since the MP lock will have already been setup for
461  * the target thread (not the current thread).  It's nice to have a scheduler
462  * that does not need the MP lock to work because it allows us to do some
463  * really cool high-performance MP lock optimizations.
464  *
465  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
466  * is not called by the current thread in the preemption case, only when
467  * the preempting thread blocks (in order to return to the original thread).
468  */
469 void
470 lwkt_switch(void)
471 {
472     globaldata_t gd = mycpu;
473     thread_t td = gd->gd_curthread;
474     thread_t ntd;
475 #ifdef SMP
476     int mpheld;
477 #endif
478 
479     /*
480      * Switching from within a 'fast' (non thread switched) interrupt or IPI
481      * is illegal.  However, we may have to do it anyway if we hit a fatal
482      * kernel trap or we have paniced.
483      *
484      * If this case occurs save and restore the interrupt nesting level.
485      */
486     if (gd->gd_intr_nesting_level) {
487 	int savegdnest;
488 	int savegdtrap;
489 
490 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
491 	    panic("lwkt_switch: cannot switch from within "
492 		  "a fast interrupt, yet, td %p\n", td);
493 	} else {
494 	    savegdnest = gd->gd_intr_nesting_level;
495 	    savegdtrap = gd->gd_trap_nesting_level;
496 	    gd->gd_intr_nesting_level = 0;
497 	    gd->gd_trap_nesting_level = 0;
498 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
499 		td->td_flags |= TDF_PANICWARN;
500 		kprintf("Warning: thread switch from interrupt or IPI, "
501 			"thread %p (%s)\n", td, td->td_comm);
502 		print_backtrace(-1);
503 	    }
504 	    lwkt_switch();
505 	    gd->gd_intr_nesting_level = savegdnest;
506 	    gd->gd_trap_nesting_level = savegdtrap;
507 	    return;
508 	}
509     }
510 
511     /*
512      * Passive release (used to transition from user to kernel mode
513      * when we block or switch rather then when we enter the kernel).
514      * This function is NOT called if we are switching into a preemption
515      * or returning from a preemption.  Typically this causes us to lose
516      * our current process designation (if we have one) and become a true
517      * LWKT thread, and may also hand the current process designation to
518      * another process and schedule thread.
519      */
520     if (td->td_release)
521 	    td->td_release(td);
522 
523     crit_enter_gd(gd);
524     if (TD_TOKS_HELD(td))
525 	    lwkt_relalltokens(td);
526 
527     /*
528      * We had better not be holding any spin locks, but don't get into an
529      * endless panic loop.
530      */
531     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
532 	    ("lwkt_switch: still holding a shared spinlock %p!",
533 	     gd->gd_spinlock_rd));
534     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
535 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
536 	     gd->gd_spinlocks_wr));
537 
538 
539 #ifdef SMP
540     /*
541      * td_mpcount cannot be used to determine if we currently hold the
542      * MP lock because get_mplock() will increment it prior to attempting
543      * to get the lock, and switch out if it can't.  Our ownership of
544      * the actual lock will remain stable while we are in a critical section
545      * (but, of course, another cpu may own or release the lock so the
546      * actual value of mp_lock is not stable).
547      */
548     mpheld = MP_LOCK_HELD();
549 #ifdef	INVARIANTS
550     if (td->td_cscount) {
551 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
552 		td);
553 	if (panic_on_cscount)
554 	    panic("switching while mastering cpusync");
555     }
556 #endif
557 #endif
558     if ((ntd = td->td_preempted) != NULL) {
559 	/*
560 	 * We had preempted another thread on this cpu, resume the preempted
561 	 * thread.  This occurs transparently, whether the preempted thread
562 	 * was scheduled or not (it may have been preempted after descheduling
563 	 * itself).
564 	 *
565 	 * We have to setup the MP lock for the original thread after backing
566 	 * out the adjustment that was made to curthread when the original
567 	 * was preempted.
568 	 */
569 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
570 #ifdef SMP
571 	if (ntd->td_mpcount && mpheld == 0) {
572 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
573 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
574 	}
575 	if (ntd->td_mpcount) {
576 	    td->td_mpcount -= ntd->td_mpcount;
577 	    KKASSERT(td->td_mpcount >= 0);
578 	}
579 #endif
580 	ntd->td_flags |= TDF_PREEMPT_DONE;
581 
582 	/*
583 	 * The interrupt may have woken a thread up, we need to properly
584 	 * set the reschedule flag if the originally interrupted thread is
585 	 * at a lower priority.
586 	 */
587 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
588 	    need_lwkt_resched();
589 	/* YYY release mp lock on switchback if original doesn't need it */
590     } else {
591 	/*
592 	 * Priority queue / round-robin at each priority.  Note that user
593 	 * processes run at a fixed, low priority and the user process
594 	 * scheduler deals with interactions between user processes
595 	 * by scheduling and descheduling them from the LWKT queue as
596 	 * necessary.
597 	 *
598 	 * We have to adjust the MP lock for the target thread.  If we
599 	 * need the MP lock and cannot obtain it we try to locate a
600 	 * thread that does not need the MP lock.  If we cannot, we spin
601 	 * instead of HLT.
602 	 *
603 	 * A similar issue exists for the tokens held by the target thread.
604 	 * If we cannot obtain ownership of the tokens we cannot immediately
605 	 * schedule the thread.
606 	 */
607 
608 	/*
609 	 * If an LWKT reschedule was requested, well that is what we are
610 	 * doing now so clear it.
611 	 */
612 	clear_lwkt_resched();
613 again:
614 	if (gd->gd_runqmask) {
615 	    int nq = bsrl(gd->gd_runqmask);
616 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
617 		gd->gd_runqmask &= ~(1 << nq);
618 		goto again;
619 	    }
620 #ifdef SMP
621 	    /*
622 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
623 	     *
624 	     * If the target needs the MP lock and we couldn't get it,
625 	     * or if the target is holding tokens and we could not
626 	     * gain ownership of the tokens, continue looking for a
627 	     * thread to schedule and spin instead of HLT if we can't.
628 	     *
629 	     * NOTE: the mpheld variable invalid after this conditional, it
630 	     * can change due to both cpu_try_mplock() returning success
631 	     * AND interactions in lwkt_getalltokens() due to the fact that
632 	     * we are trying to check the mpcount of a thread other then
633 	     * the current thread.  Because of this, if the current thread
634 	     * is not holding td_mpcount, an IPI indirectly run via
635 	     * lwkt_getalltokens() can obtain and release the MP lock and
636 	     * cause the core MP lock to be released.
637 	     */
638 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
639 		(TD_TOKS_HELD(ntd) && lwkt_getalltokens(ntd) == 0)
640 	    ) {
641 		u_int32_t rqmask = gd->gd_runqmask;
642 
643 		cpu_pause();
644 
645 		mpheld = MP_LOCK_HELD();
646 		ntd = NULL;
647 		while (rqmask) {
648 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
649 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
650 			    /* spinning due to MP lock being held */
651 			    continue;
652 			}
653 
654 			/*
655 			 * mpheld state invalid after getalltokens call returns
656 			 * failure, but the variable is only needed for
657 			 * the loop.
658 			 */
659 			if (TD_TOKS_HELD(ntd) && !lwkt_getalltokens(ntd)) {
660 			    /* spinning due to token contention */
661 #ifdef	INVARIANTS
662 			    ++token_contention_count;
663 #endif
664 			    mpheld = MP_LOCK_HELD();
665 			    continue;
666 			}
667 			break;
668 		    }
669 		    if (ntd)
670 			break;
671 		    rqmask &= ~(1 << nq);
672 		    nq = bsrl(rqmask);
673 
674 		    /*
675 		     * We have two choices. We can either refuse to run a
676 		     * user thread when a kernel thread needs the MP lock
677 		     * but could not get it, or we can allow it to run but
678 		     * then expect an IPI (hopefully) later on to force a
679 		     * reschedule when the MP lock might become available.
680 		     */
681 		    if (nq < TDPRI_KERN_LPSCHED) {
682 			break;	/* for now refuse to run */
683 #if 0
684 			if (chain_mplock == 0)
685 				break;
686 			/* continue loop, allow user threads to be scheduled */
687 #endif
688 		    }
689 		}
690 
691 		/*
692 		 * Case where a (kernel) thread needed the MP lock and could
693 		 * not get one, and we may or may not have found another
694 		 * thread which does not need the MP lock to run while
695 		 * we wait (ntd).
696 		 */
697 		if (ntd == NULL) {
698 		    ntd = &gd->gd_idlethread;
699 		    ntd->td_flags |= TDF_IDLE_NOHLT;
700 		    set_mplock_contention_mask(gd);
701 		    cpu_mplock_contested();
702 		    goto using_idle_thread;
703 		} else {
704 		    clr_mplock_contention_mask(gd);
705 		    ++gd->gd_cnt.v_swtch;
706 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
707 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
708 		}
709 	    } else {
710 		clr_mplock_contention_mask(gd);
711 		++gd->gd_cnt.v_swtch;
712 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
713 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 	    }
715 #else
716 	    /*
717 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
718 	     * worry about tokens or the BGL.  However, we still have
719 	     * to call lwkt_getalltokens() in order to properly detect
720 	     * stale tokens.  This call cannot fail for a UP build!
721 	     */
722 	    lwkt_getalltokens(ntd);
723 	    ++gd->gd_cnt.v_swtch;
724 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
725 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
726 #endif
727 	} else {
728 	    /*
729 	     * We have nothing to run but only let the idle loop halt
730 	     * the cpu if there are no pending interrupts.
731 	     */
732 	    ntd = &gd->gd_idlethread;
733 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
734 		ntd->td_flags |= TDF_IDLE_NOHLT;
735 #ifdef SMP
736 using_idle_thread:
737 	    /*
738 	     * The idle thread should not be holding the MP lock unless we
739 	     * are trapping in the kernel or in a panic.  Since we select the
740 	     * idle thread unconditionally when no other thread is available,
741 	     * if the MP lock is desired during a panic or kernel trap, we
742 	     * have to loop in the scheduler until we get it.
743 	     */
744 	    if (ntd->td_mpcount) {
745 		mpheld = MP_LOCK_HELD();
746 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
747 		    panic("Idle thread %p was holding the BGL!", ntd);
748 		if (mpheld == 0)
749 		    goto again;
750 	    }
751 #endif
752 	}
753     }
754     KASSERT(ntd->td_pri >= TDPRI_CRIT,
755 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
756 
757     /*
758      * Do the actual switch.  If the new target does not need the MP lock
759      * and we are holding it, release the MP lock.  If the new target requires
760      * the MP lock we have already acquired it for the target.
761      */
762 #ifdef SMP
763     if (ntd->td_mpcount == 0 ) {
764 	if (MP_LOCK_HELD())
765 	    cpu_rel_mplock();
766     } else {
767 	ASSERT_MP_LOCK_HELD(ntd);
768     }
769 #endif
770     if (td != ntd) {
771 	++switch_count;
772 #ifdef __x86_64__
773     {
774 	int tos_ok __debugvar = jg_tos_ok(ntd);
775 	KKASSERT(tos_ok);
776     }
777 #endif
778 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
779 	td->td_switch(ntd);
780     }
781     /* NOTE: current cpu may have changed after switch */
782     crit_exit_quick(td);
783 }
784 
785 /*
786  * Request that the target thread preempt the current thread.  Preemption
787  * only works under a specific set of conditions:
788  *
789  *	- We are not preempting ourselves
790  *	- The target thread is owned by the current cpu
791  *	- We are not currently being preempted
792  *	- The target is not currently being preempted
793  *	- We are not holding any spin locks
794  *	- The target thread is not holding any tokens
795  *	- We are able to satisfy the target's MP lock requirements (if any).
796  *
797  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
798  * this is called via lwkt_schedule() through the td_preemptable callback.
799  * critpri is the managed critical priority that we should ignore in order
800  * to determine whether preemption is possible (aka usually just the crit
801  * priority of lwkt_schedule() itself).
802  *
803  * XXX at the moment we run the target thread in a critical section during
804  * the preemption in order to prevent the target from taking interrupts
805  * that *WE* can't.  Preemption is strictly limited to interrupt threads
806  * and interrupt-like threads, outside of a critical section, and the
807  * preempted source thread will be resumed the instant the target blocks
808  * whether or not the source is scheduled (i.e. preemption is supposed to
809  * be as transparent as possible).
810  *
811  * The target thread inherits our MP count (added to its own) for the
812  * duration of the preemption in order to preserve the atomicy of the
813  * MP lock during the preemption.  Therefore, any preempting targets must be
814  * careful in regards to MP assertions.  Note that the MP count may be
815  * out of sync with the physical mp_lock, but we do not have to preserve
816  * the original ownership of the lock if it was out of synch (that is, we
817  * can leave it synchronized on return).
818  */
819 void
820 lwkt_preempt(thread_t ntd, int critpri)
821 {
822     struct globaldata *gd = mycpu;
823     thread_t td;
824 #ifdef SMP
825     int mpheld;
826     int savecnt;
827 #endif
828 
829     /*
830      * The caller has put us in a critical section.  We can only preempt
831      * if the caller of the caller was not in a critical section (basically
832      * a local interrupt), as determined by the 'critpri' parameter.  We
833      * also can't preempt if the caller is holding any spinlocks (even if
834      * he isn't in a critical section).  This also handles the tokens test.
835      *
836      * YYY The target thread must be in a critical section (else it must
837      * inherit our critical section?  I dunno yet).
838      *
839      * Set need_lwkt_resched() unconditionally for now YYY.
840      */
841     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
842 
843     td = gd->gd_curthread;
844     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
845 	++preempt_miss;
846 	return;
847     }
848     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
849 	++preempt_miss;
850 	need_lwkt_resched();
851 	return;
852     }
853 #ifdef SMP
854     if (ntd->td_gd != gd) {
855 	++preempt_miss;
856 	need_lwkt_resched();
857 	return;
858     }
859 #endif
860     /*
861      * Take the easy way out and do not preempt if we are holding
862      * any spinlocks.  We could test whether the thread(s) being
863      * preempted interlock against the target thread's tokens and whether
864      * we can get all the target thread's tokens, but this situation
865      * should not occur very often so its easier to simply not preempt.
866      * Also, plain spinlocks are impossible to figure out at this point so
867      * just don't preempt.
868      *
869      * Do not try to preempt if the target thread is holding any tokens.
870      * We could try to acquire the tokens but this case is so rare there
871      * is no need to support it.
872      */
873     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
874 	++preempt_miss;
875 	need_lwkt_resched();
876 	return;
877     }
878     if (TD_TOKS_HELD(ntd)) {
879 	++preempt_miss;
880 	need_lwkt_resched();
881 	return;
882     }
883     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
884 	++preempt_weird;
885 	need_lwkt_resched();
886 	return;
887     }
888     if (ntd->td_preempted) {
889 	++preempt_hit;
890 	need_lwkt_resched();
891 	return;
892     }
893 #ifdef SMP
894     /*
895      * note: an interrupt might have occured just as we were transitioning
896      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
897      * (non-zero) but not actually synchronized with the actual state of the
898      * lock.  We can use it to imply an MP lock requirement for the
899      * preemption but we cannot use it to test whether we hold the MP lock
900      * or not.
901      */
902     savecnt = td->td_mpcount;
903     mpheld = MP_LOCK_HELD();
904     ntd->td_mpcount += td->td_mpcount;
905     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
906 	ntd->td_mpcount -= td->td_mpcount;
907 	++preempt_miss;
908 	need_lwkt_resched();
909 	return;
910     }
911 #endif
912 
913     /*
914      * Since we are able to preempt the current thread, there is no need to
915      * call need_lwkt_resched().
916      */
917     ++preempt_hit;
918     ntd->td_preempted = td;
919     td->td_flags |= TDF_PREEMPT_LOCK;
920     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
921     td->td_switch(ntd);
922 
923     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
924 #ifdef SMP
925     KKASSERT(savecnt == td->td_mpcount);
926     mpheld = MP_LOCK_HELD();
927     if (mpheld && td->td_mpcount == 0)
928 	cpu_rel_mplock();
929     else if (mpheld == 0 && td->td_mpcount)
930 	panic("lwkt_preempt(): MP lock was not held through");
931 #endif
932     ntd->td_preempted = NULL;
933     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
934 }
935 
936 /*
937  * Conditionally call splz() if gd_reqflags indicates work is pending.
938  *
939  * td_nest_count prevents deep nesting via splz() or doreti() which
940  * might otherwise blow out the kernel stack.  Note that except for
941  * this special case, we MUST call splz() here to handle any
942  * pending ints, particularly after we switch, or we might accidently
943  * halt the cpu with interrupts pending.
944  *
945  * (self contained on a per cpu basis)
946  */
947 void
948 splz_check(void)
949 {
950     globaldata_t gd = mycpu;
951     thread_t td = gd->gd_curthread;
952 
953     if (gd->gd_reqflags && td->td_nest_count < 2)
954 	splz();
955 }
956 
957 /*
958  * This implements a normal yield which will yield to equal priority
959  * threads as well as higher priority threads.  Note that gd_reqflags
960  * tests will be handled by the crit_exit() call in lwkt_switch().
961  *
962  * (self contained on a per cpu basis)
963  */
964 void
965 lwkt_yield(void)
966 {
967     lwkt_schedule_self(curthread);
968     lwkt_switch();
969 }
970 
971 /*
972  * This function is used along with the lwkt_passive_recover() inline
973  * by the trap code to negotiate a passive release of the current
974  * process/lwp designation with the user scheduler.
975  */
976 void
977 lwkt_passive_release(struct thread *td)
978 {
979     struct lwp *lp = td->td_lwp;
980 
981     td->td_release = NULL;
982     lwkt_setpri_self(TDPRI_KERN_USER);
983     lp->lwp_proc->p_usched->release_curproc(lp);
984 }
985 
986 /*
987  * Make a kernel thread act as if it were in user mode with regards
988  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
989  * loops which may be potentially cpu-bound can call lwkt_user_yield().
990  *
991  * The lwkt_user_yield() function is designed to have very low overhead
992  * if no yield is determined to be needed.
993  */
994 void
995 lwkt_user_yield(void)
996 {
997     thread_t td = curthread;
998     struct lwp *lp = td->td_lwp;
999 
1000 #ifdef SMP
1001     /*
1002      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1003      * kernel can prevent other cpus from servicing interrupt threads
1004      * which still require the MP lock (which is a lot of them).  This
1005      * has a chaining effect since if the interrupt is blocked, so is
1006      * the event, so normal scheduling will not pick up on the problem.
1007      */
1008     if (mp_lock_contention_mask && td->td_mpcount) {
1009 	yield_mplock(td);
1010     }
1011 #endif
1012 
1013     /*
1014      * Another kernel thread wants the cpu
1015      */
1016     if (lwkt_resched_wanted())
1017 	lwkt_switch();
1018 
1019     /*
1020      * If the user scheduler has asynchronously determined that the current
1021      * process (when running in user mode) needs to lose the cpu then make
1022      * sure we are released.
1023      */
1024     if (user_resched_wanted()) {
1025 	if (td->td_release)
1026 	    td->td_release(td);
1027     }
1028 
1029     /*
1030      * If we are released reduce our priority
1031      */
1032     if (td->td_release == NULL) {
1033 	if (lwkt_check_resched(td) > 0)
1034 		lwkt_switch();
1035 	if (lp) {
1036 		lp->lwp_proc->p_usched->acquire_curproc(lp);
1037 		td->td_release = lwkt_passive_release;
1038 		lwkt_setpri_self(TDPRI_USER_NORM);
1039 	}
1040     }
1041 }
1042 
1043 /*
1044  * Return 0 if no runnable threads are pending at the same or higher
1045  * priority as the passed thread.
1046  *
1047  * Return 1 if runnable threads are pending at the same priority.
1048  *
1049  * Return 2 if runnable threads are pending at a higher priority.
1050  */
1051 int
1052 lwkt_check_resched(thread_t td)
1053 {
1054 	int pri = td->td_pri & TDPRI_MASK;
1055 
1056 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1057 		return(2);
1058 	if (TAILQ_NEXT(td, td_threadq))
1059 		return(1);
1060 	return(0);
1061 }
1062 
1063 /*
1064  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1065  * deal with threads that might be blocked on a wait queue.
1066  *
1067  * We have a little helper inline function which does additional work after
1068  * the thread has been enqueued, including dealing with preemption and
1069  * setting need_lwkt_resched() (which prevents the kernel from returning
1070  * to userland until it has processed higher priority threads).
1071  *
1072  * It is possible for this routine to be called after a failed _enqueue
1073  * (due to the target thread migrating, sleeping, or otherwise blocked).
1074  * We have to check that the thread is actually on the run queue!
1075  *
1076  * reschedok is an optimized constant propagated from lwkt_schedule() or
1077  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1078  * reschedule to be requested if the target thread has a higher priority.
1079  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1080  * be 0, prevented undesired reschedules.
1081  */
1082 static __inline
1083 void
1084 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1085 {
1086     thread_t otd;
1087 
1088     if (ntd->td_flags & TDF_RUNQ) {
1089 	if (ntd->td_preemptable && reschedok) {
1090 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1091 	} else if (reschedok) {
1092 	    otd = curthread;
1093 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1094 		need_lwkt_resched();
1095 	}
1096     }
1097 }
1098 
1099 static __inline
1100 void
1101 _lwkt_schedule(thread_t td, int reschedok)
1102 {
1103     globaldata_t mygd = mycpu;
1104 
1105     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1106     crit_enter_gd(mygd);
1107     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1108     if (td == mygd->gd_curthread) {
1109 	_lwkt_enqueue(td);
1110     } else {
1111 	/*
1112 	 * If we own the thread, there is no race (since we are in a
1113 	 * critical section).  If we do not own the thread there might
1114 	 * be a race but the target cpu will deal with it.
1115 	 */
1116 #ifdef SMP
1117 	if (td->td_gd == mygd) {
1118 	    _lwkt_enqueue(td);
1119 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1120 	} else {
1121 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1122 	}
1123 #else
1124 	_lwkt_enqueue(td);
1125 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1126 #endif
1127     }
1128     crit_exit_gd(mygd);
1129 }
1130 
1131 void
1132 lwkt_schedule(thread_t td)
1133 {
1134     _lwkt_schedule(td, 1);
1135 }
1136 
1137 void
1138 lwkt_schedule_noresched(thread_t td)
1139 {
1140     _lwkt_schedule(td, 0);
1141 }
1142 
1143 #ifdef SMP
1144 
1145 /*
1146  * When scheduled remotely if frame != NULL the IPIQ is being
1147  * run via doreti or an interrupt then preemption can be allowed.
1148  *
1149  * To allow preemption we have to drop the critical section so only
1150  * one is present in _lwkt_schedule_post.
1151  */
1152 static void
1153 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1154 {
1155     thread_t td = curthread;
1156     thread_t ntd = arg;
1157 
1158     if (frame && ntd->td_preemptable) {
1159 	crit_exit_noyield(td);
1160 	_lwkt_schedule(ntd, 1);
1161 	crit_enter_quick(td);
1162     } else {
1163 	_lwkt_schedule(ntd, 1);
1164     }
1165 }
1166 
1167 /*
1168  * Thread migration using a 'Pull' method.  The thread may or may not be
1169  * the current thread.  It MUST be descheduled and in a stable state.
1170  * lwkt_giveaway() must be called on the cpu owning the thread.
1171  *
1172  * At any point after lwkt_giveaway() is called, the target cpu may
1173  * 'pull' the thread by calling lwkt_acquire().
1174  *
1175  * We have to make sure the thread is not sitting on a per-cpu tsleep
1176  * queue or it will blow up when it moves to another cpu.
1177  *
1178  * MPSAFE - must be called under very specific conditions.
1179  */
1180 void
1181 lwkt_giveaway(thread_t td)
1182 {
1183     globaldata_t gd = mycpu;
1184 
1185     crit_enter_gd(gd);
1186     if (td->td_flags & TDF_TSLEEPQ)
1187 	tsleep_remove(td);
1188     KKASSERT(td->td_gd == gd);
1189     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1190     td->td_flags |= TDF_MIGRATING;
1191     crit_exit_gd(gd);
1192 }
1193 
1194 void
1195 lwkt_acquire(thread_t td)
1196 {
1197     globaldata_t gd;
1198     globaldata_t mygd;
1199 
1200     KKASSERT(td->td_flags & TDF_MIGRATING);
1201     gd = td->td_gd;
1202     mygd = mycpu;
1203     if (gd != mycpu) {
1204 	cpu_lfence();
1205 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1206 	crit_enter_gd(mygd);
1207 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1208 #ifdef SMP
1209 	    lwkt_process_ipiq();
1210 #endif
1211 	    cpu_lfence();
1212 	}
1213 	td->td_gd = mygd;
1214 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1215 	td->td_flags &= ~TDF_MIGRATING;
1216 	crit_exit_gd(mygd);
1217     } else {
1218 	crit_enter_gd(mygd);
1219 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1220 	td->td_flags &= ~TDF_MIGRATING;
1221 	crit_exit_gd(mygd);
1222     }
1223 }
1224 
1225 #endif
1226 
1227 /*
1228  * Generic deschedule.  Descheduling threads other then your own should be
1229  * done only in carefully controlled circumstances.  Descheduling is
1230  * asynchronous.
1231  *
1232  * This function may block if the cpu has run out of messages.
1233  */
1234 void
1235 lwkt_deschedule(thread_t td)
1236 {
1237     crit_enter();
1238 #ifdef SMP
1239     if (td == curthread) {
1240 	_lwkt_dequeue(td);
1241     } else {
1242 	if (td->td_gd == mycpu) {
1243 	    _lwkt_dequeue(td);
1244 	} else {
1245 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1246 	}
1247     }
1248 #else
1249     _lwkt_dequeue(td);
1250 #endif
1251     crit_exit();
1252 }
1253 
1254 /*
1255  * Set the target thread's priority.  This routine does not automatically
1256  * switch to a higher priority thread, LWKT threads are not designed for
1257  * continuous priority changes.  Yield if you want to switch.
1258  *
1259  * We have to retain the critical section count which uses the high bits
1260  * of the td_pri field.  The specified priority may also indicate zero or
1261  * more critical sections by adding TDPRI_CRIT*N.
1262  *
1263  * Note that we requeue the thread whether it winds up on a different runq
1264  * or not.  uio_yield() depends on this and the routine is not normally
1265  * called with the same priority otherwise.
1266  */
1267 void
1268 lwkt_setpri(thread_t td, int pri)
1269 {
1270     KKASSERT(pri >= 0);
1271     KKASSERT(td->td_gd == mycpu);
1272     crit_enter();
1273     if (td->td_flags & TDF_RUNQ) {
1274 	_lwkt_dequeue(td);
1275 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1276 	_lwkt_enqueue(td);
1277     } else {
1278 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1279     }
1280     crit_exit();
1281 }
1282 
1283 /*
1284  * Set the initial priority for a thread prior to it being scheduled for
1285  * the first time.  The thread MUST NOT be scheduled before or during
1286  * this call.  The thread may be assigned to a cpu other then the current
1287  * cpu.
1288  *
1289  * Typically used after a thread has been created with TDF_STOPPREQ,
1290  * and before the thread is initially scheduled.
1291  */
1292 void
1293 lwkt_setpri_initial(thread_t td, int pri)
1294 {
1295     KKASSERT(pri >= 0);
1296     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1297     td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1298 }
1299 
1300 void
1301 lwkt_setpri_self(int pri)
1302 {
1303     thread_t td = curthread;
1304 
1305     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1306     crit_enter();
1307     if (td->td_flags & TDF_RUNQ) {
1308 	_lwkt_dequeue(td);
1309 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1310 	_lwkt_enqueue(td);
1311     } else {
1312 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1313     }
1314     crit_exit();
1315 }
1316 
1317 /*
1318  * Migrate the current thread to the specified cpu.
1319  *
1320  * This is accomplished by descheduling ourselves from the current cpu,
1321  * moving our thread to the tdallq of the target cpu, IPI messaging the
1322  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1323  * races while the thread is being migrated.
1324  *
1325  * We must be sure to remove ourselves from the current cpu's tsleepq
1326  * before potentially moving to another queue.  The thread can be on
1327  * a tsleepq due to a left-over tsleep_interlock().
1328  */
1329 #ifdef SMP
1330 static void lwkt_setcpu_remote(void *arg);
1331 #endif
1332 
1333 void
1334 lwkt_setcpu_self(globaldata_t rgd)
1335 {
1336 #ifdef SMP
1337     thread_t td = curthread;
1338 
1339     if (td->td_gd != rgd) {
1340 	crit_enter_quick(td);
1341 	if (td->td_flags & TDF_TSLEEPQ)
1342 	    tsleep_remove(td);
1343 	td->td_flags |= TDF_MIGRATING;
1344 	lwkt_deschedule_self(td);
1345 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1346 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1347 	lwkt_switch();
1348 	/* we are now on the target cpu */
1349 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1350 	crit_exit_quick(td);
1351     }
1352 #endif
1353 }
1354 
1355 void
1356 lwkt_migratecpu(int cpuid)
1357 {
1358 #ifdef SMP
1359 	globaldata_t rgd;
1360 
1361 	rgd = globaldata_find(cpuid);
1362 	lwkt_setcpu_self(rgd);
1363 #endif
1364 }
1365 
1366 /*
1367  * Remote IPI for cpu migration (called while in a critical section so we
1368  * do not have to enter another one).  The thread has already been moved to
1369  * our cpu's allq, but we must wait for the thread to be completely switched
1370  * out on the originating cpu before we schedule it on ours or the stack
1371  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1372  * change to main memory.
1373  *
1374  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1375  * against wakeups.  It is best if this interface is used only when there
1376  * are no pending events that might try to schedule the thread.
1377  */
1378 #ifdef SMP
1379 static void
1380 lwkt_setcpu_remote(void *arg)
1381 {
1382     thread_t td = arg;
1383     globaldata_t gd = mycpu;
1384 
1385     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1386 #ifdef SMP
1387 	lwkt_process_ipiq();
1388 #endif
1389 	cpu_lfence();
1390     }
1391     td->td_gd = gd;
1392     cpu_sfence();
1393     td->td_flags &= ~TDF_MIGRATING;
1394     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1395     _lwkt_enqueue(td);
1396 }
1397 #endif
1398 
1399 struct lwp *
1400 lwkt_preempted_proc(void)
1401 {
1402     thread_t td = curthread;
1403     while (td->td_preempted)
1404 	td = td->td_preempted;
1405     return(td->td_lwp);
1406 }
1407 
1408 /*
1409  * Create a kernel process/thread/whatever.  It shares it's address space
1410  * with proc0 - ie: kernel only.
1411  *
1412  * NOTE!  By default new threads are created with the MP lock held.  A
1413  * thread which does not require the MP lock should release it by calling
1414  * rel_mplock() at the start of the new thread.
1415  */
1416 int
1417 lwkt_create(void (*func)(void *), void *arg,
1418     struct thread **tdp, thread_t template, int tdflags, int cpu,
1419     const char *fmt, ...)
1420 {
1421     thread_t td;
1422     __va_list ap;
1423 
1424     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1425 			   tdflags);
1426     if (tdp)
1427 	*tdp = td;
1428     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1429 
1430     /*
1431      * Set up arg0 for 'ps' etc
1432      */
1433     __va_start(ap, fmt);
1434     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1435     __va_end(ap);
1436 
1437     /*
1438      * Schedule the thread to run
1439      */
1440     if ((td->td_flags & TDF_STOPREQ) == 0)
1441 	lwkt_schedule(td);
1442     else
1443 	td->td_flags &= ~TDF_STOPREQ;
1444     return 0;
1445 }
1446 
1447 /*
1448  * Destroy an LWKT thread.   Warning!  This function is not called when
1449  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1450  * uses a different reaping mechanism.
1451  */
1452 void
1453 lwkt_exit(void)
1454 {
1455     thread_t td = curthread;
1456     thread_t std;
1457     globaldata_t gd;
1458 
1459     if (td->td_flags & TDF_VERBOSE)
1460 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1461     caps_exit(td);
1462 
1463     /*
1464      * Get us into a critical section to interlock gd_freetd and loop
1465      * until we can get it freed.
1466      *
1467      * We have to cache the current td in gd_freetd because objcache_put()ing
1468      * it would rip it out from under us while our thread is still active.
1469      */
1470     gd = mycpu;
1471     crit_enter_quick(td);
1472     while ((std = gd->gd_freetd) != NULL) {
1473 	gd->gd_freetd = NULL;
1474 	objcache_put(thread_cache, std);
1475     }
1476 
1477     /*
1478      * Remove thread resources from kernel lists and deschedule us for
1479      * the last time.
1480      */
1481     if (td->td_flags & TDF_TSLEEPQ)
1482 	tsleep_remove(td);
1483     biosched_done(td);
1484     dsched_exit_thread(td);
1485     lwkt_deschedule_self(td);
1486     lwkt_remove_tdallq(td);
1487     if (td->td_flags & TDF_ALLOCATED_THREAD)
1488 	gd->gd_freetd = td;
1489     cpu_thread_exit();
1490 }
1491 
1492 void
1493 lwkt_remove_tdallq(thread_t td)
1494 {
1495     KKASSERT(td->td_gd == mycpu);
1496     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1497 }
1498 
1499 void
1500 crit_panic(void)
1501 {
1502     thread_t td = curthread;
1503     int lpri = td->td_pri;
1504 
1505     td->td_pri = 0;
1506     panic("td_pri is/would-go negative! %p %d", td, lpri);
1507 }
1508 
1509 #ifdef SMP
1510 
1511 /*
1512  * Called from debugger/panic on cpus which have been stopped.  We must still
1513  * process the IPIQ while stopped, even if we were stopped while in a critical
1514  * section (XXX).
1515  *
1516  * If we are dumping also try to process any pending interrupts.  This may
1517  * or may not work depending on the state of the cpu at the point it was
1518  * stopped.
1519  */
1520 void
1521 lwkt_smp_stopped(void)
1522 {
1523     globaldata_t gd = mycpu;
1524 
1525     crit_enter_gd(gd);
1526     if (dumping) {
1527 	lwkt_process_ipiq();
1528 	splz();
1529     } else {
1530 	lwkt_process_ipiq();
1531     }
1532     crit_exit_gd(gd);
1533 }
1534 
1535 #endif
1536