1 /* 2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Each cpu in a system has its own self-contained light weight kernel 37 * thread scheduler, which means that generally speaking we only need 38 * to use a critical section to avoid problems. Foreign thread 39 * scheduling is queued via (async) IPIs. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/rtprio.h> 47 #include <sys/kinfo.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 #include <machine/cpu.h> 52 #include <sys/lock.h> 53 #include <sys/caps.h> 54 #include <sys/spinlock.h> 55 #include <sys/ktr.h> 56 57 #include <sys/thread2.h> 58 #include <sys/spinlock2.h> 59 #include <sys/mplock2.h> 60 61 #include <sys/dsched.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_pager.h> 70 #include <vm/vm_extern.h> 71 72 #include <machine/stdarg.h> 73 #include <machine/smp.h> 74 75 #if !defined(KTR_CTXSW) 76 #define KTR_CTXSW KTR_ALL 77 #endif 78 KTR_INFO_MASTER(ctxsw); 79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", 80 sizeof(int) + sizeof(struct thread *)); 81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", 82 sizeof(int) + sizeof(struct thread *)); 83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", 84 sizeof (struct thread *) + sizeof(char *)); 85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *)); 86 87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads"); 88 89 #ifdef INVARIANTS 90 static int panic_on_cscount = 0; 91 #endif 92 static __int64_t switch_count = 0; 93 static __int64_t preempt_hit = 0; 94 static __int64_t preempt_miss = 0; 95 static __int64_t preempt_weird = 0; 96 static __int64_t token_contention_count __debugvar = 0; 97 static int lwkt_use_spin_port; 98 static struct objcache *thread_cache; 99 100 #ifdef SMP 101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame); 102 static void lwkt_setcpu_remote(void *arg); 103 #endif 104 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td); 105 106 extern void cpu_heavy_restore(void); 107 extern void cpu_lwkt_restore(void); 108 extern void cpu_kthread_restore(void); 109 extern void cpu_idle_restore(void); 110 111 /* 112 * We can make all thread ports use the spin backend instead of the thread 113 * backend. This should only be set to debug the spin backend. 114 */ 115 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port); 116 117 #ifdef INVARIANTS 118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, 119 "Panic if attempting to switch lwkt's while mastering cpusync"); 120 #endif 121 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, 122 "Number of switched threads"); 123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 124 "Successful preemption events"); 125 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 126 "Failed preemption events"); 127 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, 128 "Number of preempted threads."); 129 #ifdef INVARIANTS 130 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW, 131 &token_contention_count, 0, "spinning due to token contention"); 132 #endif 133 static int fairq_enable = 1; 134 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, 135 &fairq_enable, 0, "Turn on fairq priority accumulators"); 136 static int lwkt_spin_loops = 10; 137 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW, 138 &lwkt_spin_loops, 0, ""); 139 static int lwkt_spin_delay = 1; 140 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW, 141 &lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto"); 142 static int lwkt_spin_method = 1; 143 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW, 144 &lwkt_spin_method, 0, "LWKT scheduler behavior when contended"); 145 static int lwkt_spin_fatal = 0; /* disabled */ 146 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW, 147 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic"); 148 static int preempt_enable = 1; 149 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, 150 &preempt_enable, 0, "Enable preemption"); 151 static int lwkt_cache_threads = 32; 152 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD, 153 &lwkt_cache_threads, 0, "thread+kstack cache"); 154 155 static __cachealign int lwkt_cseq_rindex; 156 static __cachealign int lwkt_cseq_windex; 157 158 /* 159 * These helper procedures handle the runq, they can only be called from 160 * within a critical section. 161 * 162 * WARNING! Prior to SMP being brought up it is possible to enqueue and 163 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 164 * instead of 'mycpu' when referencing the globaldata structure. Once 165 * SMP live enqueuing and dequeueing only occurs on the current cpu. 166 */ 167 static __inline 168 void 169 _lwkt_dequeue(thread_t td) 170 { 171 if (td->td_flags & TDF_RUNQ) { 172 struct globaldata *gd = td->td_gd; 173 174 td->td_flags &= ~TDF_RUNQ; 175 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 176 gd->gd_fairq_total_pri -= td->td_pri; 177 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL) 178 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING); 179 } 180 } 181 182 /* 183 * Priority enqueue. 184 * 185 * NOTE: There are a limited number of lwkt threads runnable since user 186 * processes only schedule one at a time per cpu. 187 */ 188 static __inline 189 void 190 _lwkt_enqueue(thread_t td) 191 { 192 thread_t xtd; 193 194 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) { 195 struct globaldata *gd = td->td_gd; 196 197 td->td_flags |= TDF_RUNQ; 198 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 199 if (xtd == NULL) { 200 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 201 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING); 202 } else { 203 while (xtd && xtd->td_pri > td->td_pri) 204 xtd = TAILQ_NEXT(xtd, td_threadq); 205 if (xtd) 206 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 207 else 208 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 209 } 210 gd->gd_fairq_total_pri += td->td_pri; 211 } 212 } 213 214 static __boolean_t 215 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags) 216 { 217 struct thread *td = (struct thread *)obj; 218 219 td->td_kstack = NULL; 220 td->td_kstack_size = 0; 221 td->td_flags = TDF_ALLOCATED_THREAD; 222 return (1); 223 } 224 225 static void 226 _lwkt_thread_dtor(void *obj, void *privdata) 227 { 228 struct thread *td = (struct thread *)obj; 229 230 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD, 231 ("_lwkt_thread_dtor: not allocated from objcache")); 232 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack && 233 td->td_kstack_size > 0, 234 ("_lwkt_thread_dtor: corrupted stack")); 235 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 236 } 237 238 /* 239 * Initialize the lwkt s/system. 240 * 241 * Nominally cache up to 32 thread + kstack structures. 242 */ 243 void 244 lwkt_init(void) 245 { 246 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads); 247 thread_cache = objcache_create_mbacked( 248 M_THREAD, sizeof(struct thread), 249 NULL, lwkt_cache_threads, 250 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL); 251 } 252 253 /* 254 * Schedule a thread to run. As the current thread we can always safely 255 * schedule ourselves, and a shortcut procedure is provided for that 256 * function. 257 * 258 * (non-blocking, self contained on a per cpu basis) 259 */ 260 void 261 lwkt_schedule_self(thread_t td) 262 { 263 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 264 crit_enter_quick(td); 265 KASSERT(td != &td->td_gd->gd_idlethread, 266 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 267 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 268 _lwkt_enqueue(td); 269 crit_exit_quick(td); 270 } 271 272 /* 273 * Deschedule a thread. 274 * 275 * (non-blocking, self contained on a per cpu basis) 276 */ 277 void 278 lwkt_deschedule_self(thread_t td) 279 { 280 crit_enter_quick(td); 281 _lwkt_dequeue(td); 282 crit_exit_quick(td); 283 } 284 285 /* 286 * LWKTs operate on a per-cpu basis 287 * 288 * WARNING! Called from early boot, 'mycpu' may not work yet. 289 */ 290 void 291 lwkt_gdinit(struct globaldata *gd) 292 { 293 TAILQ_INIT(&gd->gd_tdrunq); 294 TAILQ_INIT(&gd->gd_tdallq); 295 } 296 297 /* 298 * Create a new thread. The thread must be associated with a process context 299 * or LWKT start address before it can be scheduled. If the target cpu is 300 * -1 the thread will be created on the current cpu. 301 * 302 * If you intend to create a thread without a process context this function 303 * does everything except load the startup and switcher function. 304 */ 305 thread_t 306 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags) 307 { 308 globaldata_t gd = mycpu; 309 void *stack; 310 311 /* 312 * If static thread storage is not supplied allocate a thread. Reuse 313 * a cached free thread if possible. gd_freetd is used to keep an exiting 314 * thread intact through the exit. 315 */ 316 if (td == NULL) { 317 crit_enter_gd(gd); 318 if ((td = gd->gd_freetd) != NULL) { 319 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 320 TDF_RUNQ)) == 0); 321 gd->gd_freetd = NULL; 322 } else { 323 td = objcache_get(thread_cache, M_WAITOK); 324 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 325 TDF_RUNQ)) == 0); 326 } 327 crit_exit_gd(gd); 328 KASSERT((td->td_flags & 329 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD, 330 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags)); 331 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK); 332 } 333 334 /* 335 * Try to reuse cached stack. 336 */ 337 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 338 if (flags & TDF_ALLOCATED_STACK) { 339 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size); 340 stack = NULL; 341 } 342 } 343 if (stack == NULL) { 344 stack = (void *)kmem_alloc_stack(&kernel_map, stksize); 345 flags |= TDF_ALLOCATED_STACK; 346 } 347 if (cpu < 0) 348 lwkt_init_thread(td, stack, stksize, flags, gd); 349 else 350 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 351 return(td); 352 } 353 354 /* 355 * Initialize a preexisting thread structure. This function is used by 356 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 357 * 358 * All threads start out in a critical section at a priority of 359 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 360 * appropriate. This function may send an IPI message when the 361 * requested cpu is not the current cpu and consequently gd_tdallq may 362 * not be initialized synchronously from the point of view of the originating 363 * cpu. 364 * 365 * NOTE! we have to be careful in regards to creating threads for other cpus 366 * if SMP has not yet been activated. 367 */ 368 #ifdef SMP 369 370 static void 371 lwkt_init_thread_remote(void *arg) 372 { 373 thread_t td = arg; 374 375 /* 376 * Protected by critical section held by IPI dispatch 377 */ 378 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 379 } 380 381 #endif 382 383 /* 384 * lwkt core thread structural initialization. 385 * 386 * NOTE: All threads are initialized as mpsafe threads. 387 */ 388 void 389 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 390 struct globaldata *gd) 391 { 392 globaldata_t mygd = mycpu; 393 394 bzero(td, sizeof(struct thread)); 395 td->td_kstack = stack; 396 td->td_kstack_size = stksize; 397 td->td_flags = flags; 398 td->td_gd = gd; 399 td->td_pri = TDPRI_KERN_DAEMON; 400 td->td_critcount = 1; 401 td->td_toks_stop = &td->td_toks_base; 402 if (lwkt_use_spin_port) 403 lwkt_initport_spin(&td->td_msgport); 404 else 405 lwkt_initport_thread(&td->td_msgport, td); 406 pmap_init_thread(td); 407 #ifdef SMP 408 /* 409 * Normally initializing a thread for a remote cpu requires sending an 410 * IPI. However, the idlethread is setup before the other cpus are 411 * activated so we have to treat it as a special case. XXX manipulation 412 * of gd_tdallq requires the BGL. 413 */ 414 if (gd == mygd || td == &gd->gd_idlethread) { 415 crit_enter_gd(mygd); 416 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 417 crit_exit_gd(mygd); 418 } else { 419 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 420 } 421 #else 422 crit_enter_gd(mygd); 423 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 424 crit_exit_gd(mygd); 425 #endif 426 427 dsched_new_thread(td); 428 } 429 430 void 431 lwkt_set_comm(thread_t td, const char *ctl, ...) 432 { 433 __va_list va; 434 435 __va_start(va, ctl); 436 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 437 __va_end(va); 438 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]); 439 } 440 441 void 442 lwkt_hold(thread_t td) 443 { 444 atomic_add_int(&td->td_refs, 1); 445 } 446 447 void 448 lwkt_rele(thread_t td) 449 { 450 KKASSERT(td->td_refs > 0); 451 atomic_add_int(&td->td_refs, -1); 452 } 453 454 void 455 lwkt_wait_free(thread_t td) 456 { 457 while (td->td_refs) 458 tsleep(td, 0, "tdreap", hz); 459 } 460 461 void 462 lwkt_free_thread(thread_t td) 463 { 464 KKASSERT(td->td_refs == 0); 465 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0); 466 if (td->td_flags & TDF_ALLOCATED_THREAD) { 467 objcache_put(thread_cache, td); 468 } else if (td->td_flags & TDF_ALLOCATED_STACK) { 469 /* client-allocated struct with internally allocated stack */ 470 KASSERT(td->td_kstack && td->td_kstack_size > 0, 471 ("lwkt_free_thread: corrupted stack")); 472 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 473 td->td_kstack = NULL; 474 td->td_kstack_size = 0; 475 } 476 KTR_LOG(ctxsw_deadtd, td); 477 } 478 479 480 /* 481 * Switch to the next runnable lwkt. If no LWKTs are runnable then 482 * switch to the idlethread. Switching must occur within a critical 483 * section to avoid races with the scheduling queue. 484 * 485 * We always have full control over our cpu's run queue. Other cpus 486 * that wish to manipulate our queue must use the cpu_*msg() calls to 487 * talk to our cpu, so a critical section is all that is needed and 488 * the result is very, very fast thread switching. 489 * 490 * The LWKT scheduler uses a fixed priority model and round-robins at 491 * each priority level. User process scheduling is a totally 492 * different beast and LWKT priorities should not be confused with 493 * user process priorities. 494 * 495 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch() 496 * is not called by the current thread in the preemption case, only when 497 * the preempting thread blocks (in order to return to the original thread). 498 * 499 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread 500 * migration and tsleep deschedule the current lwkt thread and call 501 * lwkt_switch(). In particular, the target cpu of the migration fully 502 * expects the thread to become non-runnable and can deadlock against 503 * cpusync operations if we run any IPIs prior to switching the thread out. 504 * 505 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF 506 * THE CURRENT THREAD HAS BEEN DESCHEDULED! 507 */ 508 void 509 lwkt_switch(void) 510 { 511 globaldata_t gd = mycpu; 512 thread_t td = gd->gd_curthread; 513 thread_t ntd; 514 thread_t xtd; 515 int spinning = lwkt_spin_loops; /* loops before HLTing */ 516 int reqflags; 517 int cseq; 518 int oseq; 519 int fatal_count; 520 521 KKASSERT(gd->gd_processing_ipiq == 0); 522 523 /* 524 * Switching from within a 'fast' (non thread switched) interrupt or IPI 525 * is illegal. However, we may have to do it anyway if we hit a fatal 526 * kernel trap or we have paniced. 527 * 528 * If this case occurs save and restore the interrupt nesting level. 529 */ 530 if (gd->gd_intr_nesting_level) { 531 int savegdnest; 532 int savegdtrap; 533 534 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) { 535 panic("lwkt_switch: Attempt to switch from a " 536 "a fast interrupt, ipi, or hard code section, " 537 "td %p\n", 538 td); 539 } else { 540 savegdnest = gd->gd_intr_nesting_level; 541 savegdtrap = gd->gd_trap_nesting_level; 542 gd->gd_intr_nesting_level = 0; 543 gd->gd_trap_nesting_level = 0; 544 if ((td->td_flags & TDF_PANICWARN) == 0) { 545 td->td_flags |= TDF_PANICWARN; 546 kprintf("Warning: thread switch from interrupt, IPI, " 547 "or hard code section.\n" 548 "thread %p (%s)\n", td, td->td_comm); 549 print_backtrace(-1); 550 } 551 lwkt_switch(); 552 gd->gd_intr_nesting_level = savegdnest; 553 gd->gd_trap_nesting_level = savegdtrap; 554 return; 555 } 556 } 557 558 /* 559 * Passive release (used to transition from user to kernel mode 560 * when we block or switch rather then when we enter the kernel). 561 * This function is NOT called if we are switching into a preemption 562 * or returning from a preemption. Typically this causes us to lose 563 * our current process designation (if we have one) and become a true 564 * LWKT thread, and may also hand the current process designation to 565 * another process and schedule thread. 566 */ 567 if (td->td_release) 568 td->td_release(td); 569 570 crit_enter_gd(gd); 571 if (TD_TOKS_HELD(td)) 572 lwkt_relalltokens(td); 573 574 /* 575 * We had better not be holding any spin locks, but don't get into an 576 * endless panic loop. 577 */ 578 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 579 ("lwkt_switch: still holding %d exclusive spinlocks!", 580 gd->gd_spinlocks_wr)); 581 582 583 #ifdef SMP 584 #ifdef INVARIANTS 585 if (td->td_cscount) { 586 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 587 td); 588 if (panic_on_cscount) 589 panic("switching while mastering cpusync"); 590 } 591 #endif 592 #endif 593 594 /* 595 * If we had preempted another thread on this cpu, resume the preempted 596 * thread. This occurs transparently, whether the preempted thread 597 * was scheduled or not (it may have been preempted after descheduling 598 * itself). 599 * 600 * We have to setup the MP lock for the original thread after backing 601 * out the adjustment that was made to curthread when the original 602 * was preempted. 603 */ 604 if ((ntd = td->td_preempted) != NULL) { 605 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 606 ntd->td_flags |= TDF_PREEMPT_DONE; 607 608 /* 609 * The interrupt may have woken a thread up, we need to properly 610 * set the reschedule flag if the originally interrupted thread is 611 * at a lower priority. 612 */ 613 if (TAILQ_FIRST(&gd->gd_tdrunq) && 614 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) { 615 need_lwkt_resched(); 616 } 617 /* YYY release mp lock on switchback if original doesn't need it */ 618 goto havethread_preempted; 619 } 620 621 /* 622 * Implement round-robin fairq with priority insertion. The priority 623 * insertion is handled by _lwkt_enqueue() 624 * 625 * If we cannot obtain ownership of the tokens we cannot immediately 626 * schedule the target thread. 627 * 628 * Reminder: Again, we cannot afford to run any IPIs in this path if 629 * the current thread has been descheduled. 630 */ 631 for (;;) { 632 /* 633 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request) 634 * and set RQF_WAKEUP (prevent unnecessary IPIs from being 635 * received). 636 */ 637 for (;;) { 638 reqflags = gd->gd_reqflags; 639 if (atomic_cmpset_int(&gd->gd_reqflags, reqflags, 640 (reqflags & ~RQF_AST_LWKT_RESCHED) | 641 RQF_WAKEUP)) { 642 break; 643 } 644 } 645 646 /* 647 * Hotpath - pull the head of the run queue and attempt to schedule 648 * it. Fairq exhaustion moves the task to the end of the list. If 649 * no threads are runnable we switch to the idle thread. 650 */ 651 for (;;) { 652 ntd = TAILQ_FIRST(&gd->gd_tdrunq); 653 654 if (ntd == NULL) { 655 /* 656 * Runq is empty, switch to idle and clear RQF_WAKEUP 657 * to allow it to halt. 658 */ 659 ntd = &gd->gd_idlethread; 660 #ifdef SMP 661 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 662 ASSERT_NO_TOKENS_HELD(ntd); 663 #endif 664 cpu_time.cp_msg[0] = 0; 665 cpu_time.cp_stallpc = 0; 666 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 667 goto haveidle; 668 } 669 670 if (ntd->td_fairq_accum >= 0) 671 break; 672 673 /*splz_check(); cannot do this here, see above */ 674 lwkt_fairq_accumulate(gd, ntd); 675 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 676 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq); 677 } 678 679 /* 680 * Hotpath - schedule ntd. Leaves RQF_WAKEUP set to prevent 681 * unwanted decontention IPIs. 682 * 683 * NOTE: For UP there is no mplock and lwkt_getalltokens() 684 * always succeeds. 685 */ 686 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 687 goto havethread; 688 689 /* 690 * Coldpath (SMP only since tokens always succeed on UP) 691 * 692 * We had some contention on the thread we wanted to schedule. 693 * What we do now is try to find a thread that we can schedule 694 * in its stead until decontention reschedules on our cpu. 695 * 696 * The coldpath scan does NOT rearrange threads in the run list 697 * and it also ignores the accumulator. 698 * 699 * We do not immediately schedule a user priority thread, instead 700 * we record it in xtd and continue looking for kernel threads. 701 * A cpu can only have one user priority thread (normally) so just 702 * record the first one. 703 * 704 * NOTE: This scan will also include threads whos fairq's were 705 * accumulated in the first loop. 706 */ 707 ++token_contention_count; 708 xtd = NULL; 709 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) { 710 /* 711 * Try to switch to this thread. If the thread is running at 712 * user priority we clear WAKEUP to allow decontention IPIs 713 * (since this thread is simply running until the one we wanted 714 * decontends), and we make sure that LWKT_RESCHED is not set. 715 * 716 * Otherwise for kernel threads we leave WAKEUP set to avoid 717 * unnecessary decontention IPIs. 718 */ 719 if (ntd->td_pri < TDPRI_KERN_LPSCHED) { 720 if (xtd == NULL) 721 xtd = ntd; 722 continue; 723 } 724 725 /* 726 * Do not let the fairq get too negative. Even though we are 727 * ignoring it atm once the scheduler decontends a very negative 728 * thread will get moved to the end of the queue. 729 */ 730 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) { 731 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 732 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 733 goto havethread; 734 } 735 736 /* 737 * Well fubar, this thread is contended as well, loop 738 */ 739 /* */ 740 } 741 742 /* 743 * We exhausted the run list but we may have recorded a user 744 * thread to try. We have three choices based on 745 * lwkt.decontention_method. 746 * 747 * (0) Atomically clear RQF_WAKEUP in order to receive decontention 748 * IPIs (to interrupt the user process) and test 749 * RQF_AST_LWKT_RESCHED at the same time. 750 * 751 * This results in significant decontention IPI traffic but may 752 * be more responsive. 753 * 754 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI. 755 * An automatic LWKT reschedule will occur on the next hardclock 756 * (typically 100hz). 757 * 758 * This results in no decontention IPI traffic but may be less 759 * responsive. This is the default. 760 * 761 * (2) Refuse to schedule the user process at this time. 762 * 763 * This is highly experimental and should not be used under 764 * normal circumstances. This can cause a user process to 765 * get starved out in situations where kernel threads are 766 * fighting each other for tokens. 767 */ 768 if (xtd) { 769 ntd = xtd; 770 771 switch(lwkt_spin_method) { 772 case 0: 773 for (;;) { 774 reqflags = gd->gd_reqflags; 775 if (atomic_cmpset_int(&gd->gd_reqflags, 776 reqflags, 777 reqflags & ~RQF_WAKEUP)) { 778 break; 779 } 780 } 781 break; 782 case 1: 783 reqflags = gd->gd_reqflags; 784 break; 785 default: 786 goto skip; 787 break; 788 } 789 if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 && 790 (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 791 ) { 792 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 793 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 794 goto havethread; 795 } 796 797 skip: 798 /* 799 * Make sure RQF_WAKEUP is set if we failed to schedule the 800 * user thread to prevent the idle thread from halting. 801 */ 802 atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP); 803 } 804 805 /* 806 * We exhausted the run list, meaning that all runnable threads 807 * are contended. 808 */ 809 cpu_pause(); 810 ntd = &gd->gd_idlethread; 811 #ifdef SMP 812 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 813 ASSERT_NO_TOKENS_HELD(ntd); 814 /* contention case, do not clear contention mask */ 815 #endif 816 817 /* 818 * Ok, we might want to spin a few times as some tokens are held for 819 * very short periods of time and IPI overhead is 1uS or worse 820 * (meaning it is usually better to spin). Regardless we have to 821 * call splz_check() to be sure to service any interrupts blocked 822 * by our critical section, otherwise we could livelock e.g. IPIs. 823 * 824 * The IPI mechanic is really a last resort. In nearly all other 825 * cases RQF_WAKEUP is left set to prevent decontention IPIs. 826 * 827 * When we decide not to spin we clear RQF_WAKEUP and switch to 828 * the idle thread. Clearing RQF_WEAKEUP allows the idle thread 829 * to halt and decontended tokens will issue an IPI to us. The 830 * idle thread will check for pending reschedules already set 831 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have 832 * to here. 833 * 834 * Also, if TDF_RUNQ is not set the current thread is trying to 835 * deschedule, possibly in an atomic fashion. We cannot afford to 836 * stay here. 837 */ 838 if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) { 839 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 840 goto haveidle; 841 } 842 --spinning; 843 844 /* 845 * When spinning a delay is required both to avoid livelocks from 846 * token order reversals (a thread may be trying to acquire multiple 847 * tokens), and also to reduce cpu cache management traffic. 848 * 849 * In order to scale to a large number of CPUs we use a time slot 850 * resequencer to force contending cpus into non-contending 851 * time-slots. The scheduler may still contend with the lock holder 852 * but will not (generally) contend with all the other cpus trying 853 * trying to get the same token. 854 * 855 * The resequencer uses a FIFO counter mechanic. The owner of the 856 * rindex at the head of the FIFO is allowed to pull itself off 857 * the FIFO and fetchadd is used to enter into the FIFO. This bit 858 * of code is VERY cache friendly and forces all spinning schedulers 859 * into their own time slots. 860 * 861 * This code has been tested to 48-cpus and caps the cache 862 * contention load at ~1uS intervals regardless of the number of 863 * cpus. Scaling beyond 64 cpus might require additional smarts 864 * (such as separate FIFOs for specific token cases). 865 * 866 * WARNING! We can't call splz_check() or anything else here as 867 * it could cause a deadlock. 868 */ 869 #if defined(INVARIANTS) && defined(__amd64__) 870 if ((read_rflags() & PSL_I) == 0) { 871 cpu_enable_intr(); 872 panic("lwkt_switch() called with interrupts disabled"); 873 } 874 #endif 875 cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1); 876 fatal_count = lwkt_spin_fatal; 877 while ((oseq = lwkt_cseq_rindex) != cseq) { 878 cpu_ccfence(); 879 #if !defined(_KERNEL_VIRTUAL) 880 if (cpu_mi_feature & CPU_MI_MONITOR) { 881 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq); 882 } else 883 #endif 884 { 885 DELAY(1); 886 cpu_lfence(); 887 } 888 if (fatal_count && --fatal_count == 0) 889 panic("lwkt_switch: fatal spin wait"); 890 } 891 cseq = lwkt_spin_delay; /* don't trust the system operator */ 892 cpu_ccfence(); 893 if (cseq < 1) 894 cseq = 1; 895 if (cseq > 1000) 896 cseq = 1000; 897 DELAY(cseq); 898 atomic_add_int(&lwkt_cseq_rindex, 1); 899 splz_check(); /* ok, we already checked that td is still scheduled */ 900 /* highest level for(;;) loop */ 901 } 902 903 havethread: 904 /* 905 * We must always decrement td_fairq_accum on non-idle threads just 906 * in case a thread never gets a tick due to being in a continuous 907 * critical section. The page-zeroing code does this, for example. 908 * 909 * If the thread we came up with is a higher or equal priority verses 910 * the thread at the head of the queue we move our thread to the 911 * front. This way we can always check the front of the queue. 912 * 913 * Clear gd_idle_repeat when doing a normal switch to a non-idle 914 * thread. 915 */ 916 ++gd->gd_cnt.v_swtch; 917 --ntd->td_fairq_accum; 918 ntd->td_wmesg = NULL; 919 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 920 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) { 921 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 922 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq); 923 } 924 gd->gd_idle_repeat = 0; 925 926 havethread_preempted: 927 /* 928 * If the new target does not need the MP lock and we are holding it, 929 * release the MP lock. If the new target requires the MP lock we have 930 * already acquired it for the target. 931 */ 932 ; 933 haveidle: 934 KASSERT(ntd->td_critcount, 935 ("priority problem in lwkt_switch %d %d", 936 td->td_critcount, ntd->td_critcount)); 937 938 if (td != ntd) { 939 /* 940 * Execute the actual thread switch operation. This function 941 * returns to the current thread and returns the previous thread 942 * (which may be different from the thread we switched to). 943 * 944 * We are responsible for marking ntd as TDF_RUNNING. 945 */ 946 ++switch_count; 947 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd); 948 ntd->td_flags |= TDF_RUNNING; 949 lwkt_switch_return(td->td_switch(ntd)); 950 /* ntd invalid, td_switch() can return a different thread_t */ 951 } 952 /* NOTE: current cpu may have changed after switch */ 953 crit_exit_quick(td); 954 } 955 956 /* 957 * Called by assembly in the td_switch (thread restore path) for thread 958 * bootstrap cases which do not 'return' to lwkt_switch(). 959 */ 960 void 961 lwkt_switch_return(thread_t otd) 962 { 963 #ifdef SMP 964 globaldata_t rgd; 965 966 /* 967 * Check if otd was migrating. Now that we are on ntd we can finish 968 * up the migration. This is a bit messy but it is the only place 969 * where td is known to be fully descheduled. 970 * 971 * We can only activate the migration if otd was migrating but not 972 * held on the cpu due to a preemption chain. We still have to 973 * clear TDF_RUNNING on the old thread either way. 974 * 975 * We are responsible for clearing the previously running thread's 976 * TDF_RUNNING. 977 */ 978 if ((rgd = otd->td_migrate_gd) != NULL && 979 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) { 980 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) == 981 (TDF_MIGRATING | TDF_RUNNING)); 982 otd->td_migrate_gd = NULL; 983 otd->td_flags &= ~TDF_RUNNING; 984 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd); 985 } else { 986 otd->td_flags &= ~TDF_RUNNING; 987 } 988 #else 989 otd->td_flags &= ~TDF_RUNNING; 990 #endif 991 } 992 993 /* 994 * Request that the target thread preempt the current thread. Preemption 995 * only works under a specific set of conditions: 996 * 997 * - We are not preempting ourselves 998 * - The target thread is owned by the current cpu 999 * - We are not currently being preempted 1000 * - The target is not currently being preempted 1001 * - We are not holding any spin locks 1002 * - The target thread is not holding any tokens 1003 * - We are able to satisfy the target's MP lock requirements (if any). 1004 * 1005 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 1006 * this is called via lwkt_schedule() through the td_preemptable callback. 1007 * critcount is the managed critical priority that we should ignore in order 1008 * to determine whether preemption is possible (aka usually just the crit 1009 * priority of lwkt_schedule() itself). 1010 * 1011 * XXX at the moment we run the target thread in a critical section during 1012 * the preemption in order to prevent the target from taking interrupts 1013 * that *WE* can't. Preemption is strictly limited to interrupt threads 1014 * and interrupt-like threads, outside of a critical section, and the 1015 * preempted source thread will be resumed the instant the target blocks 1016 * whether or not the source is scheduled (i.e. preemption is supposed to 1017 * be as transparent as possible). 1018 */ 1019 void 1020 lwkt_preempt(thread_t ntd, int critcount) 1021 { 1022 struct globaldata *gd = mycpu; 1023 thread_t xtd; 1024 thread_t td; 1025 int save_gd_intr_nesting_level; 1026 1027 /* 1028 * The caller has put us in a critical section. We can only preempt 1029 * if the caller of the caller was not in a critical section (basically 1030 * a local interrupt), as determined by the 'critcount' parameter. We 1031 * also can't preempt if the caller is holding any spinlocks (even if 1032 * he isn't in a critical section). This also handles the tokens test. 1033 * 1034 * YYY The target thread must be in a critical section (else it must 1035 * inherit our critical section? I dunno yet). 1036 * 1037 * Set need_lwkt_resched() unconditionally for now YYY. 1038 */ 1039 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri)); 1040 1041 if (preempt_enable == 0) { 1042 ++preempt_miss; 1043 return; 1044 } 1045 1046 td = gd->gd_curthread; 1047 if (ntd->td_pri <= td->td_pri) { 1048 ++preempt_miss; 1049 return; 1050 } 1051 if (td->td_critcount > critcount) { 1052 ++preempt_miss; 1053 need_lwkt_resched(); 1054 return; 1055 } 1056 #ifdef SMP 1057 if (ntd->td_gd != gd) { 1058 ++preempt_miss; 1059 need_lwkt_resched(); 1060 return; 1061 } 1062 #endif 1063 /* 1064 * We don't have to check spinlocks here as they will also bump 1065 * td_critcount. 1066 * 1067 * Do not try to preempt if the target thread is holding any tokens. 1068 * We could try to acquire the tokens but this case is so rare there 1069 * is no need to support it. 1070 */ 1071 KKASSERT(gd->gd_spinlocks_wr == 0); 1072 1073 if (TD_TOKS_HELD(ntd)) { 1074 ++preempt_miss; 1075 need_lwkt_resched(); 1076 return; 1077 } 1078 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 1079 ++preempt_weird; 1080 need_lwkt_resched(); 1081 return; 1082 } 1083 if (ntd->td_preempted) { 1084 ++preempt_hit; 1085 need_lwkt_resched(); 1086 return; 1087 } 1088 KKASSERT(gd->gd_processing_ipiq == 0); 1089 1090 /* 1091 * Since we are able to preempt the current thread, there is no need to 1092 * call need_lwkt_resched(). 1093 * 1094 * We must temporarily clear gd_intr_nesting_level around the switch 1095 * since switchouts from the target thread are allowed (they will just 1096 * return to our thread), and since the target thread has its own stack. 1097 * 1098 * A preemption must switch back to the original thread, assert the 1099 * case. 1100 */ 1101 ++preempt_hit; 1102 ntd->td_preempted = td; 1103 td->td_flags |= TDF_PREEMPT_LOCK; 1104 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd); 1105 save_gd_intr_nesting_level = gd->gd_intr_nesting_level; 1106 gd->gd_intr_nesting_level = 0; 1107 ntd->td_flags |= TDF_RUNNING; 1108 xtd = td->td_switch(ntd); 1109 KKASSERT(xtd == ntd); 1110 lwkt_switch_return(xtd); 1111 gd->gd_intr_nesting_level = save_gd_intr_nesting_level; 1112 1113 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 1114 ntd->td_preempted = NULL; 1115 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 1116 } 1117 1118 /* 1119 * Conditionally call splz() if gd_reqflags indicates work is pending. 1120 * This will work inside a critical section but not inside a hard code 1121 * section. 1122 * 1123 * (self contained on a per cpu basis) 1124 */ 1125 void 1126 splz_check(void) 1127 { 1128 globaldata_t gd = mycpu; 1129 thread_t td = gd->gd_curthread; 1130 1131 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && 1132 gd->gd_intr_nesting_level == 0 && 1133 td->td_nest_count < 2) 1134 { 1135 splz(); 1136 } 1137 } 1138 1139 /* 1140 * This version is integrated into crit_exit, reqflags has already 1141 * been tested but td_critcount has not. 1142 * 1143 * We only want to execute the splz() on the 1->0 transition of 1144 * critcount and not in a hard code section or if too deeply nested. 1145 */ 1146 void 1147 lwkt_maybe_splz(thread_t td) 1148 { 1149 globaldata_t gd = td->td_gd; 1150 1151 if (td->td_critcount == 0 && 1152 gd->gd_intr_nesting_level == 0 && 1153 td->td_nest_count < 2) 1154 { 1155 splz(); 1156 } 1157 } 1158 1159 /* 1160 * This function is used to negotiate a passive release of the current 1161 * process/lwp designation with the user scheduler, allowing the user 1162 * scheduler to schedule another user thread. The related kernel thread 1163 * (curthread) continues running in the released state. 1164 */ 1165 void 1166 lwkt_passive_release(struct thread *td) 1167 { 1168 struct lwp *lp = td->td_lwp; 1169 1170 td->td_release = NULL; 1171 lwkt_setpri_self(TDPRI_KERN_USER); 1172 lp->lwp_proc->p_usched->release_curproc(lp); 1173 } 1174 1175 1176 /* 1177 * This implements a normal yield. This routine is virtually a nop if 1178 * there is nothing to yield to but it will always run any pending interrupts 1179 * if called from a critical section. 1180 * 1181 * This yield is designed for kernel threads without a user context. 1182 * 1183 * (self contained on a per cpu basis) 1184 */ 1185 void 1186 lwkt_yield(void) 1187 { 1188 globaldata_t gd = mycpu; 1189 thread_t td = gd->gd_curthread; 1190 thread_t xtd; 1191 1192 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1193 splz(); 1194 if (td->td_fairq_accum < 0) { 1195 lwkt_schedule_self(curthread); 1196 lwkt_switch(); 1197 } else { 1198 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 1199 if (xtd && xtd->td_pri > td->td_pri) { 1200 lwkt_schedule_self(curthread); 1201 lwkt_switch(); 1202 } 1203 } 1204 } 1205 1206 /* 1207 * This yield is designed for kernel threads with a user context. 1208 * 1209 * The kernel acting on behalf of the user is potentially cpu-bound, 1210 * this function will efficiently allow other threads to run and also 1211 * switch to other processes by releasing. 1212 * 1213 * The lwkt_user_yield() function is designed to have very low overhead 1214 * if no yield is determined to be needed. 1215 */ 1216 void 1217 lwkt_user_yield(void) 1218 { 1219 globaldata_t gd = mycpu; 1220 thread_t td = gd->gd_curthread; 1221 1222 /* 1223 * Always run any pending interrupts in case we are in a critical 1224 * section. 1225 */ 1226 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1227 splz(); 1228 1229 /* 1230 * Switch (which forces a release) if another kernel thread needs 1231 * the cpu, if userland wants us to resched, or if our kernel 1232 * quantum has run out. 1233 */ 1234 if (lwkt_resched_wanted() || 1235 user_resched_wanted() || 1236 td->td_fairq_accum < 0) 1237 { 1238 lwkt_switch(); 1239 } 1240 1241 #if 0 1242 /* 1243 * Reacquire the current process if we are released. 1244 * 1245 * XXX not implemented atm. The kernel may be holding locks and such, 1246 * so we want the thread to continue to receive cpu. 1247 */ 1248 if (td->td_release == NULL && lp) { 1249 lp->lwp_proc->p_usched->acquire_curproc(lp); 1250 td->td_release = lwkt_passive_release; 1251 lwkt_setpri_self(TDPRI_USER_NORM); 1252 } 1253 #endif 1254 } 1255 1256 /* 1257 * Generic schedule. Possibly schedule threads belonging to other cpus and 1258 * deal with threads that might be blocked on a wait queue. 1259 * 1260 * We have a little helper inline function which does additional work after 1261 * the thread has been enqueued, including dealing with preemption and 1262 * setting need_lwkt_resched() (which prevents the kernel from returning 1263 * to userland until it has processed higher priority threads). 1264 * 1265 * It is possible for this routine to be called after a failed _enqueue 1266 * (due to the target thread migrating, sleeping, or otherwise blocked). 1267 * We have to check that the thread is actually on the run queue! 1268 * 1269 * reschedok is an optimized constant propagated from lwkt_schedule() or 1270 * lwkt_schedule_noresched(). By default it is non-zero, causing a 1271 * reschedule to be requested if the target thread has a higher priority. 1272 * The port messaging code will set MSG_NORESCHED and cause reschedok to 1273 * be 0, prevented undesired reschedules. 1274 */ 1275 static __inline 1276 void 1277 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok) 1278 { 1279 thread_t otd; 1280 1281 if (ntd->td_flags & TDF_RUNQ) { 1282 if (ntd->td_preemptable && reschedok) { 1283 ntd->td_preemptable(ntd, ccount); /* YYY +token */ 1284 } else if (reschedok) { 1285 otd = curthread; 1286 if (ntd->td_pri > otd->td_pri) 1287 need_lwkt_resched(); 1288 } 1289 1290 /* 1291 * Give the thread a little fair share scheduler bump if it 1292 * has been asleep for a while. This is primarily to avoid 1293 * a degenerate case for interrupt threads where accumulator 1294 * crosses into negative territory unnecessarily. 1295 */ 1296 if (ntd->td_fairq_lticks != ticks) { 1297 ntd->td_fairq_lticks = ticks; 1298 ntd->td_fairq_accum += gd->gd_fairq_total_pri; 1299 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd)) 1300 ntd->td_fairq_accum = TDFAIRQ_MAX(gd); 1301 } 1302 } 1303 } 1304 1305 static __inline 1306 void 1307 _lwkt_schedule(thread_t td, int reschedok) 1308 { 1309 globaldata_t mygd = mycpu; 1310 1311 KASSERT(td != &td->td_gd->gd_idlethread, 1312 ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 1313 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 1314 crit_enter_gd(mygd); 1315 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1316 if (td == mygd->gd_curthread) { 1317 _lwkt_enqueue(td); 1318 } else { 1319 /* 1320 * If we own the thread, there is no race (since we are in a 1321 * critical section). If we do not own the thread there might 1322 * be a race but the target cpu will deal with it. 1323 */ 1324 #ifdef SMP 1325 if (td->td_gd == mygd) { 1326 _lwkt_enqueue(td); 1327 _lwkt_schedule_post(mygd, td, 1, reschedok); 1328 } else { 1329 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0); 1330 } 1331 #else 1332 _lwkt_enqueue(td); 1333 _lwkt_schedule_post(mygd, td, 1, reschedok); 1334 #endif 1335 } 1336 crit_exit_gd(mygd); 1337 } 1338 1339 void 1340 lwkt_schedule(thread_t td) 1341 { 1342 _lwkt_schedule(td, 1); 1343 } 1344 1345 void 1346 lwkt_schedule_noresched(thread_t td) 1347 { 1348 _lwkt_schedule(td, 0); 1349 } 1350 1351 #ifdef SMP 1352 1353 /* 1354 * When scheduled remotely if frame != NULL the IPIQ is being 1355 * run via doreti or an interrupt then preemption can be allowed. 1356 * 1357 * To allow preemption we have to drop the critical section so only 1358 * one is present in _lwkt_schedule_post. 1359 */ 1360 static void 1361 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame) 1362 { 1363 thread_t td = curthread; 1364 thread_t ntd = arg; 1365 1366 if (frame && ntd->td_preemptable) { 1367 crit_exit_noyield(td); 1368 _lwkt_schedule(ntd, 1); 1369 crit_enter_quick(td); 1370 } else { 1371 _lwkt_schedule(ntd, 1); 1372 } 1373 } 1374 1375 /* 1376 * Thread migration using a 'Pull' method. The thread may or may not be 1377 * the current thread. It MUST be descheduled and in a stable state. 1378 * lwkt_giveaway() must be called on the cpu owning the thread. 1379 * 1380 * At any point after lwkt_giveaway() is called, the target cpu may 1381 * 'pull' the thread by calling lwkt_acquire(). 1382 * 1383 * We have to make sure the thread is not sitting on a per-cpu tsleep 1384 * queue or it will blow up when it moves to another cpu. 1385 * 1386 * MPSAFE - must be called under very specific conditions. 1387 */ 1388 void 1389 lwkt_giveaway(thread_t td) 1390 { 1391 globaldata_t gd = mycpu; 1392 1393 crit_enter_gd(gd); 1394 if (td->td_flags & TDF_TSLEEPQ) 1395 tsleep_remove(td); 1396 KKASSERT(td->td_gd == gd); 1397 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1398 td->td_flags |= TDF_MIGRATING; 1399 crit_exit_gd(gd); 1400 } 1401 1402 void 1403 lwkt_acquire(thread_t td) 1404 { 1405 globaldata_t gd; 1406 globaldata_t mygd; 1407 int retry = 10000000; 1408 1409 KKASSERT(td->td_flags & TDF_MIGRATING); 1410 gd = td->td_gd; 1411 mygd = mycpu; 1412 if (gd != mycpu) { 1413 cpu_lfence(); 1414 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1415 crit_enter_gd(mygd); 1416 DEBUG_PUSH_INFO("lwkt_acquire"); 1417 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1418 #ifdef SMP 1419 lwkt_process_ipiq(); 1420 #endif 1421 cpu_lfence(); 1422 if (--retry == 0) { 1423 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n", 1424 td, td->td_flags); 1425 retry = 10000000; 1426 } 1427 } 1428 DEBUG_POP_INFO(); 1429 cpu_mfence(); 1430 td->td_gd = mygd; 1431 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1432 td->td_flags &= ~TDF_MIGRATING; 1433 crit_exit_gd(mygd); 1434 } else { 1435 crit_enter_gd(mygd); 1436 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1437 td->td_flags &= ~TDF_MIGRATING; 1438 crit_exit_gd(mygd); 1439 } 1440 } 1441 1442 #endif 1443 1444 /* 1445 * Generic deschedule. Descheduling threads other then your own should be 1446 * done only in carefully controlled circumstances. Descheduling is 1447 * asynchronous. 1448 * 1449 * This function may block if the cpu has run out of messages. 1450 */ 1451 void 1452 lwkt_deschedule(thread_t td) 1453 { 1454 crit_enter(); 1455 #ifdef SMP 1456 if (td == curthread) { 1457 _lwkt_dequeue(td); 1458 } else { 1459 if (td->td_gd == mycpu) { 1460 _lwkt_dequeue(td); 1461 } else { 1462 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td); 1463 } 1464 } 1465 #else 1466 _lwkt_dequeue(td); 1467 #endif 1468 crit_exit(); 1469 } 1470 1471 /* 1472 * Set the target thread's priority. This routine does not automatically 1473 * switch to a higher priority thread, LWKT threads are not designed for 1474 * continuous priority changes. Yield if you want to switch. 1475 */ 1476 void 1477 lwkt_setpri(thread_t td, int pri) 1478 { 1479 KKASSERT(td->td_gd == mycpu); 1480 if (td->td_pri != pri) { 1481 KKASSERT(pri >= 0); 1482 crit_enter(); 1483 if (td->td_flags & TDF_RUNQ) { 1484 _lwkt_dequeue(td); 1485 td->td_pri = pri; 1486 _lwkt_enqueue(td); 1487 } else { 1488 td->td_pri = pri; 1489 } 1490 crit_exit(); 1491 } 1492 } 1493 1494 /* 1495 * Set the initial priority for a thread prior to it being scheduled for 1496 * the first time. The thread MUST NOT be scheduled before or during 1497 * this call. The thread may be assigned to a cpu other then the current 1498 * cpu. 1499 * 1500 * Typically used after a thread has been created with TDF_STOPPREQ, 1501 * and before the thread is initially scheduled. 1502 */ 1503 void 1504 lwkt_setpri_initial(thread_t td, int pri) 1505 { 1506 KKASSERT(pri >= 0); 1507 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1508 td->td_pri = pri; 1509 } 1510 1511 void 1512 lwkt_setpri_self(int pri) 1513 { 1514 thread_t td = curthread; 1515 1516 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1517 crit_enter(); 1518 if (td->td_flags & TDF_RUNQ) { 1519 _lwkt_dequeue(td); 1520 td->td_pri = pri; 1521 _lwkt_enqueue(td); 1522 } else { 1523 td->td_pri = pri; 1524 } 1525 crit_exit(); 1526 } 1527 1528 /* 1529 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle. 1530 * 1531 * Example: two competing threads, same priority N. decrement by (2*N) 1532 * increment by N*8, each thread will get 4 ticks. 1533 */ 1534 void 1535 lwkt_fairq_schedulerclock(thread_t td) 1536 { 1537 globaldata_t gd; 1538 1539 if (fairq_enable) { 1540 while (td) { 1541 gd = td->td_gd; 1542 if (td != &gd->gd_idlethread) { 1543 td->td_fairq_accum -= gd->gd_fairq_total_pri; 1544 if (td->td_fairq_accum < -TDFAIRQ_MAX(gd)) 1545 td->td_fairq_accum = -TDFAIRQ_MAX(gd); 1546 if (td->td_fairq_accum < 0) 1547 need_lwkt_resched(); 1548 td->td_fairq_lticks = ticks; 1549 } 1550 td = td->td_preempted; 1551 } 1552 } 1553 } 1554 1555 static void 1556 lwkt_fairq_accumulate(globaldata_t gd, thread_t td) 1557 { 1558 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE; 1559 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd)) 1560 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd); 1561 } 1562 1563 /* 1564 * Migrate the current thread to the specified cpu. 1565 * 1566 * This is accomplished by descheduling ourselves from the current cpu 1567 * and setting td_migrate_gd. The lwkt_switch() code will detect that the 1568 * 'old' thread wants to migrate after it has been completely switched out 1569 * and will complete the migration. 1570 * 1571 * TDF_MIGRATING prevents scheduling races while the thread is being migrated. 1572 * 1573 * We must be sure to release our current process designation (if a user 1574 * process) before clearing out any tsleepq we are on because the release 1575 * code may re-add us. 1576 * 1577 * We must be sure to remove ourselves from the current cpu's tsleepq 1578 * before potentially moving to another queue. The thread can be on 1579 * a tsleepq due to a left-over tsleep_interlock(). 1580 */ 1581 1582 void 1583 lwkt_setcpu_self(globaldata_t rgd) 1584 { 1585 #ifdef SMP 1586 thread_t td = curthread; 1587 1588 if (td->td_gd != rgd) { 1589 crit_enter_quick(td); 1590 1591 if (td->td_release) 1592 td->td_release(td); 1593 if (td->td_flags & TDF_TSLEEPQ) 1594 tsleep_remove(td); 1595 1596 /* 1597 * Set TDF_MIGRATING to prevent a spurious reschedule while we are 1598 * trying to deschedule ourselves and switch away, then deschedule 1599 * ourself, remove us from tdallq, and set td_migrate_gd. Finally, 1600 * call lwkt_switch() to complete the operation. 1601 */ 1602 td->td_flags |= TDF_MIGRATING; 1603 lwkt_deschedule_self(td); 1604 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1605 td->td_migrate_gd = rgd; 1606 lwkt_switch(); 1607 1608 /* 1609 * We are now on the target cpu 1610 */ 1611 KKASSERT(rgd == mycpu); 1612 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); 1613 crit_exit_quick(td); 1614 } 1615 #endif 1616 } 1617 1618 void 1619 lwkt_migratecpu(int cpuid) 1620 { 1621 #ifdef SMP 1622 globaldata_t rgd; 1623 1624 rgd = globaldata_find(cpuid); 1625 lwkt_setcpu_self(rgd); 1626 #endif 1627 } 1628 1629 #ifdef SMP 1630 /* 1631 * Remote IPI for cpu migration (called while in a critical section so we 1632 * do not have to enter another one). 1633 * 1634 * The thread (td) has already been completely descheduled from the 1635 * originating cpu and we can simply assert the case. The thread is 1636 * assigned to the new cpu and enqueued. 1637 * 1638 * The thread will re-add itself to tdallq when it resumes execution. 1639 */ 1640 static void 1641 lwkt_setcpu_remote(void *arg) 1642 { 1643 thread_t td = arg; 1644 globaldata_t gd = mycpu; 1645 1646 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1647 td->td_gd = gd; 1648 cpu_mfence(); 1649 td->td_flags &= ~TDF_MIGRATING; 1650 KKASSERT(td->td_migrate_gd == NULL); 1651 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1652 _lwkt_enqueue(td); 1653 } 1654 #endif 1655 1656 struct lwp * 1657 lwkt_preempted_proc(void) 1658 { 1659 thread_t td = curthread; 1660 while (td->td_preempted) 1661 td = td->td_preempted; 1662 return(td->td_lwp); 1663 } 1664 1665 /* 1666 * Create a kernel process/thread/whatever. It shares it's address space 1667 * with proc0 - ie: kernel only. 1668 * 1669 * NOTE! By default new threads are created with the MP lock held. A 1670 * thread which does not require the MP lock should release it by calling 1671 * rel_mplock() at the start of the new thread. 1672 */ 1673 int 1674 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp, 1675 thread_t template, int tdflags, int cpu, const char *fmt, ...) 1676 { 1677 thread_t td; 1678 __va_list ap; 1679 1680 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu, 1681 tdflags); 1682 if (tdp) 1683 *tdp = td; 1684 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1685 1686 /* 1687 * Set up arg0 for 'ps' etc 1688 */ 1689 __va_start(ap, fmt); 1690 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1691 __va_end(ap); 1692 1693 /* 1694 * Schedule the thread to run 1695 */ 1696 if ((td->td_flags & TDF_STOPREQ) == 0) 1697 lwkt_schedule(td); 1698 else 1699 td->td_flags &= ~TDF_STOPREQ; 1700 return 0; 1701 } 1702 1703 /* 1704 * Destroy an LWKT thread. Warning! This function is not called when 1705 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1706 * uses a different reaping mechanism. 1707 */ 1708 void 1709 lwkt_exit(void) 1710 { 1711 thread_t td = curthread; 1712 thread_t std; 1713 globaldata_t gd; 1714 1715 /* 1716 * Do any cleanup that might block here 1717 */ 1718 if (td->td_flags & TDF_VERBOSE) 1719 kprintf("kthread %p %s has exited\n", td, td->td_comm); 1720 caps_exit(td); 1721 biosched_done(td); 1722 dsched_exit_thread(td); 1723 1724 /* 1725 * Get us into a critical section to interlock gd_freetd and loop 1726 * until we can get it freed. 1727 * 1728 * We have to cache the current td in gd_freetd because objcache_put()ing 1729 * it would rip it out from under us while our thread is still active. 1730 */ 1731 gd = mycpu; 1732 crit_enter_quick(td); 1733 while ((std = gd->gd_freetd) != NULL) { 1734 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1735 gd->gd_freetd = NULL; 1736 objcache_put(thread_cache, std); 1737 } 1738 1739 /* 1740 * Remove thread resources from kernel lists and deschedule us for 1741 * the last time. We cannot block after this point or we may end 1742 * up with a stale td on the tsleepq. 1743 */ 1744 if (td->td_flags & TDF_TSLEEPQ) 1745 tsleep_remove(td); 1746 lwkt_deschedule_self(td); 1747 lwkt_remove_tdallq(td); 1748 KKASSERT(td->td_refs == 0); 1749 1750 /* 1751 * Final cleanup 1752 */ 1753 KKASSERT(gd->gd_freetd == NULL); 1754 if (td->td_flags & TDF_ALLOCATED_THREAD) 1755 gd->gd_freetd = td; 1756 cpu_thread_exit(); 1757 } 1758 1759 void 1760 lwkt_remove_tdallq(thread_t td) 1761 { 1762 KKASSERT(td->td_gd == mycpu); 1763 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1764 } 1765 1766 /* 1767 * Code reduction and branch prediction improvements. Call/return 1768 * overhead on modern cpus often degenerates into 0 cycles due to 1769 * the cpu's branch prediction hardware and return pc cache. We 1770 * can take advantage of this by not inlining medium-complexity 1771 * functions and we can also reduce the branch prediction impact 1772 * by collapsing perfectly predictable branches into a single 1773 * procedure instead of duplicating it. 1774 * 1775 * Is any of this noticeable? Probably not, so I'll take the 1776 * smaller code size. 1777 */ 1778 void 1779 crit_exit_wrapper(__DEBUG_CRIT_ARG__) 1780 { 1781 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__); 1782 } 1783 1784 void 1785 crit_panic(void) 1786 { 1787 thread_t td = curthread; 1788 int lcrit = td->td_critcount; 1789 1790 td->td_critcount = 0; 1791 panic("td_critcount is/would-go negative! %p %d", td, lcrit); 1792 /* NOT REACHED */ 1793 } 1794 1795 #ifdef SMP 1796 1797 /* 1798 * Called from debugger/panic on cpus which have been stopped. We must still 1799 * process the IPIQ while stopped, even if we were stopped while in a critical 1800 * section (XXX). 1801 * 1802 * If we are dumping also try to process any pending interrupts. This may 1803 * or may not work depending on the state of the cpu at the point it was 1804 * stopped. 1805 */ 1806 void 1807 lwkt_smp_stopped(void) 1808 { 1809 globaldata_t gd = mycpu; 1810 1811 crit_enter_gd(gd); 1812 if (dumping) { 1813 lwkt_process_ipiq(); 1814 splz(); 1815 } else { 1816 lwkt_process_ipiq(); 1817 } 1818 crit_exit_gd(gd); 1819 } 1820 1821 #endif 1822