xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 17d47efc07365403688d5c8f3cb9d571c0a593cd)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.86 2005/11/14 18:50:05 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68 
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72 
73 #else
74 
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 #include <machine/atomic.h>
89 #include <machine/cpu.h>
90 
91 #endif
92 
93 static int untimely_switch = 0;
94 #ifdef	INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101 static __int64_t token_contention_count = 0;
102 static __int64_t mplock_contention_count = 0;
103 
104 #ifdef _KERNEL
105 
106 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
107 #ifdef	INVARIANTS
108 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
109 #endif
110 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
112 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
113 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
114 #ifdef	INVARIANTS
115 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
116 	&token_contention_count, 0, "spinning due to token contention");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
118 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
119 #endif
120 #endif
121 
122 /*
123  * These helper procedures handle the runq, they can only be called from
124  * within a critical section.
125  *
126  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
127  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128  * instead of 'mycpu' when referencing the globaldata structure.   Once
129  * SMP live enqueuing and dequeueing only occurs on the current cpu.
130  */
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
134 {
135     if (td->td_flags & TDF_RUNQ) {
136 	int nq = td->td_pri & TDPRI_MASK;
137 	struct globaldata *gd = td->td_gd;
138 
139 	td->td_flags &= ~TDF_RUNQ;
140 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141 	/* runqmask is passively cleaned up by the switcher */
142     }
143 }
144 
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
148 {
149     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
150 	int nq = td->td_pri & TDPRI_MASK;
151 	struct globaldata *gd = td->td_gd;
152 
153 	td->td_flags |= TDF_RUNQ;
154 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155 	gd->gd_runqmask |= 1 << nq;
156     }
157 }
158 
159 /*
160  * Schedule a thread to run.  As the current thread we can always safely
161  * schedule ourselves, and a shortcut procedure is provided for that
162  * function.
163  *
164  * (non-blocking, self contained on a per cpu basis)
165  */
166 void
167 lwkt_schedule_self(thread_t td)
168 {
169     crit_enter_quick(td);
170     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
171     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
172     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
173     _lwkt_enqueue(td);
174     crit_exit_quick(td);
175 }
176 
177 /*
178  * Deschedule a thread.
179  *
180  * (non-blocking, self contained on a per cpu basis)
181  */
182 void
183 lwkt_deschedule_self(thread_t td)
184 {
185     crit_enter_quick(td);
186     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
187     _lwkt_dequeue(td);
188     crit_exit_quick(td);
189 }
190 
191 #ifdef _KERNEL
192 
193 /*
194  * LWKTs operate on a per-cpu basis
195  *
196  * WARNING!  Called from early boot, 'mycpu' may not work yet.
197  */
198 void
199 lwkt_gdinit(struct globaldata *gd)
200 {
201     int i;
202 
203     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
204 	TAILQ_INIT(&gd->gd_tdrunq[i]);
205     gd->gd_runqmask = 0;
206     TAILQ_INIT(&gd->gd_tdallq);
207 }
208 
209 #endif /* _KERNEL */
210 
211 /*
212  * Initialize a thread wait structure prior to first use.
213  *
214  * NOTE!  called from low level boot code, we cannot do anything fancy!
215  */
216 void
217 lwkt_wait_init(lwkt_wait_t w)
218 {
219     lwkt_token_init(&w->wa_token);
220     TAILQ_INIT(&w->wa_waitq);
221     w->wa_gen = 0;
222     w->wa_count = 0;
223 }
224 
225 /*
226  * Create a new thread.  The thread must be associated with a process context
227  * or LWKT start address before it can be scheduled.  If the target cpu is
228  * -1 the thread will be created on the current cpu.
229  *
230  * If you intend to create a thread without a process context this function
231  * does everything except load the startup and switcher function.
232  */
233 thread_t
234 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
235 {
236     void *stack;
237     int flags = 0;
238     globaldata_t gd = mycpu;
239 
240     if (td == NULL) {
241 	crit_enter_gd(gd);
242 	if (gd->gd_tdfreecount > 0) {
243 	    --gd->gd_tdfreecount;
244 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
245 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
246 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
247 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
248 	    crit_exit_gd(gd);
249 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
250 	} else {
251 	    crit_exit_gd(gd);
252 #ifdef _KERNEL
253 	    td = zalloc(thread_zone);
254 #else
255 	    td = malloc(sizeof(struct thread));
256 #endif
257 	    td->td_kstack = NULL;
258 	    td->td_kstack_size = 0;
259 	    flags |= TDF_ALLOCATED_THREAD;
260 	}
261     }
262     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
263 	if (flags & TDF_ALLOCATED_STACK) {
264 #ifdef _KERNEL
265 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
266 #else
267 	    libcaps_free_stack(stack, td->td_kstack_size);
268 #endif
269 	    stack = NULL;
270 	}
271     }
272     if (stack == NULL) {
273 #ifdef _KERNEL
274 	stack = (void *)kmem_alloc(kernel_map, stksize);
275 #else
276 	stack = libcaps_alloc_stack(stksize);
277 #endif
278 	flags |= TDF_ALLOCATED_STACK;
279     }
280     if (cpu < 0)
281 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
282     else
283 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
284     return(td);
285 }
286 
287 #ifdef _KERNEL
288 
289 /*
290  * Initialize a preexisting thread structure.  This function is used by
291  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
292  *
293  * All threads start out in a critical section at a priority of
294  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
295  * appropriate.  This function may send an IPI message when the
296  * requested cpu is not the current cpu and consequently gd_tdallq may
297  * not be initialized synchronously from the point of view of the originating
298  * cpu.
299  *
300  * NOTE! we have to be careful in regards to creating threads for other cpus
301  * if SMP has not yet been activated.
302  */
303 #ifdef SMP
304 
305 static void
306 lwkt_init_thread_remote(void *arg)
307 {
308     thread_t td = arg;
309 
310     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
311 }
312 
313 #endif
314 
315 void
316 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
317 		struct globaldata *gd)
318 {
319     globaldata_t mygd = mycpu;
320 
321     bzero(td, sizeof(struct thread));
322     td->td_kstack = stack;
323     td->td_kstack_size = stksize;
324     td->td_flags |= flags;
325     td->td_gd = gd;
326     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
327     lwkt_initport(&td->td_msgport, td);
328     pmap_init_thread(td);
329 #ifdef SMP
330     /*
331      * Normally initializing a thread for a remote cpu requires sending an
332      * IPI.  However, the idlethread is setup before the other cpus are
333      * activated so we have to treat it as a special case.  XXX manipulation
334      * of gd_tdallq requires the BGL.
335      */
336     if (gd == mygd || td == &gd->gd_idlethread) {
337 	crit_enter_gd(mygd);
338 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
339 	crit_exit_gd(mygd);
340     } else {
341 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
342     }
343 #else
344     crit_enter_gd(mygd);
345     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
346     crit_exit_gd(mygd);
347 #endif
348 }
349 
350 #endif /* _KERNEL */
351 
352 void
353 lwkt_set_comm(thread_t td, const char *ctl, ...)
354 {
355     __va_list va;
356 
357     __va_start(va, ctl);
358     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
359     __va_end(va);
360 }
361 
362 void
363 lwkt_hold(thread_t td)
364 {
365     ++td->td_refs;
366 }
367 
368 void
369 lwkt_rele(thread_t td)
370 {
371     KKASSERT(td->td_refs > 0);
372     --td->td_refs;
373 }
374 
375 #ifdef _KERNEL
376 
377 void
378 lwkt_wait_free(thread_t td)
379 {
380     while (td->td_refs)
381 	tsleep(td, 0, "tdreap", hz);
382 }
383 
384 #endif
385 
386 void
387 lwkt_free_thread(thread_t td)
388 {
389     struct globaldata *gd = mycpu;
390 
391     KASSERT((td->td_flags & TDF_RUNNING) == 0,
392 	("lwkt_free_thread: did not exit! %p", td));
393 
394     crit_enter_gd(gd);
395     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
396     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
397 	(td->td_flags & TDF_ALLOCATED_THREAD)
398     ) {
399 	++gd->gd_tdfreecount;
400 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
401 	crit_exit_gd(gd);
402     } else {
403 	crit_exit_gd(gd);
404 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
405 #ifdef _KERNEL
406 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
407 #else
408 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
409 #endif
410 	    /* gd invalid */
411 	    td->td_kstack = NULL;
412 	    td->td_kstack_size = 0;
413 	}
414 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
415 #ifdef _KERNEL
416 	    zfree(thread_zone, td);
417 #else
418 	    free(td);
419 #endif
420 	}
421     }
422 }
423 
424 
425 /*
426  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
427  * switch to the idlethread.  Switching must occur within a critical
428  * section to avoid races with the scheduling queue.
429  *
430  * We always have full control over our cpu's run queue.  Other cpus
431  * that wish to manipulate our queue must use the cpu_*msg() calls to
432  * talk to our cpu, so a critical section is all that is needed and
433  * the result is very, very fast thread switching.
434  *
435  * The LWKT scheduler uses a fixed priority model and round-robins at
436  * each priority level.  User process scheduling is a totally
437  * different beast and LWKT priorities should not be confused with
438  * user process priorities.
439  *
440  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
441  * cleans it up.  Note that the td_switch() function cannot do anything that
442  * requires the MP lock since the MP lock will have already been setup for
443  * the target thread (not the current thread).  It's nice to have a scheduler
444  * that does not need the MP lock to work because it allows us to do some
445  * really cool high-performance MP lock optimizations.
446  *
447  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
448  * is not called by the current thread in the preemption case, only when
449  * the preempting thread blocks (in order to return to the original thread).
450  */
451 void
452 lwkt_switch(void)
453 {
454     globaldata_t gd = mycpu;
455     thread_t td = gd->gd_curthread;
456     thread_t ntd;
457 #ifdef SMP
458     int mpheld;
459 #endif
460 
461     /*
462      * We had better not be holding any spin locks.
463      */
464     KKASSERT(td->td_spinlocks == 0);
465 
466     /*
467      * Switching from within a 'fast' (non thread switched) interrupt or IPI
468      * is illegal.  However, we may have to do it anyway if we hit a fatal
469      * kernel trap or we have paniced.
470      *
471      * If this case occurs save and restore the interrupt nesting level.
472      */
473     if (gd->gd_intr_nesting_level) {
474 	int savegdnest;
475 	int savegdtrap;
476 
477 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
478 	    panic("lwkt_switch: cannot switch from within "
479 		  "a fast interrupt, yet, td %p\n", td);
480 	} else {
481 	    savegdnest = gd->gd_intr_nesting_level;
482 	    savegdtrap = gd->gd_trap_nesting_level;
483 	    gd->gd_intr_nesting_level = 0;
484 	    gd->gd_trap_nesting_level = 0;
485 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
486 		td->td_flags |= TDF_PANICWARN;
487 		printf("Warning: thread switch from interrupt or IPI, "
488 			"thread %p (%s)\n", td, td->td_comm);
489 #ifdef DDB
490 		db_print_backtrace();
491 #endif
492 	    }
493 	    lwkt_switch();
494 	    gd->gd_intr_nesting_level = savegdnest;
495 	    gd->gd_trap_nesting_level = savegdtrap;
496 	    return;
497 	}
498     }
499 
500     /*
501      * Passive release (used to transition from user to kernel mode
502      * when we block or switch rather then when we enter the kernel).
503      * This function is NOT called if we are switching into a preemption
504      * or returning from a preemption.  Typically this causes us to lose
505      * our current process designation (if we have one) and become a true
506      * LWKT thread, and may also hand the current process designation to
507      * another process and schedule thread.
508      */
509     if (td->td_release)
510 	    td->td_release(td);
511 
512     crit_enter_gd(gd);
513 
514 #ifdef SMP
515     /*
516      * td_mpcount cannot be used to determine if we currently hold the
517      * MP lock because get_mplock() will increment it prior to attempting
518      * to get the lock, and switch out if it can't.  Our ownership of
519      * the actual lock will remain stable while we are in a critical section
520      * (but, of course, another cpu may own or release the lock so the
521      * actual value of mp_lock is not stable).
522      */
523     mpheld = MP_LOCK_HELD();
524 #ifdef	INVARIANTS
525     if (td->td_cscount) {
526 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
527 		td);
528 	if (panic_on_cscount)
529 	    panic("switching while mastering cpusync");
530     }
531 #endif
532 #endif
533     if ((ntd = td->td_preempted) != NULL) {
534 	/*
535 	 * We had preempted another thread on this cpu, resume the preempted
536 	 * thread.  This occurs transparently, whether the preempted thread
537 	 * was scheduled or not (it may have been preempted after descheduling
538 	 * itself).
539 	 *
540 	 * We have to setup the MP lock for the original thread after backing
541 	 * out the adjustment that was made to curthread when the original
542 	 * was preempted.
543 	 */
544 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
545 #ifdef SMP
546 	if (ntd->td_mpcount && mpheld == 0) {
547 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
548 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
549 	}
550 	if (ntd->td_mpcount) {
551 	    td->td_mpcount -= ntd->td_mpcount;
552 	    KKASSERT(td->td_mpcount >= 0);
553 	}
554 #endif
555 	ntd->td_flags |= TDF_PREEMPT_DONE;
556 
557 	/*
558 	 * XXX.  The interrupt may have woken a thread up, we need to properly
559 	 * set the reschedule flag if the originally interrupted thread is at
560 	 * a lower priority.
561 	 */
562 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
563 	    need_lwkt_resched();
564 	/* YYY release mp lock on switchback if original doesn't need it */
565     } else {
566 	/*
567 	 * Priority queue / round-robin at each priority.  Note that user
568 	 * processes run at a fixed, low priority and the user process
569 	 * scheduler deals with interactions between user processes
570 	 * by scheduling and descheduling them from the LWKT queue as
571 	 * necessary.
572 	 *
573 	 * We have to adjust the MP lock for the target thread.  If we
574 	 * need the MP lock and cannot obtain it we try to locate a
575 	 * thread that does not need the MP lock.  If we cannot, we spin
576 	 * instead of HLT.
577 	 *
578 	 * A similar issue exists for the tokens held by the target thread.
579 	 * If we cannot obtain ownership of the tokens we cannot immediately
580 	 * schedule the thread.
581 	 */
582 
583 	/*
584 	 * We are switching threads.  If there are any pending requests for
585 	 * tokens we can satisfy all of them here.
586 	 */
587 #ifdef SMP
588 	if (gd->gd_tokreqbase)
589 		lwkt_drain_token_requests();
590 #endif
591 
592 	/*
593 	 * If an LWKT reschedule was requested, well that is what we are
594 	 * doing now so clear it.
595 	 */
596 	clear_lwkt_resched();
597 again:
598 	if (gd->gd_runqmask) {
599 	    int nq = bsrl(gd->gd_runqmask);
600 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
601 		gd->gd_runqmask &= ~(1 << nq);
602 		goto again;
603 	    }
604 #ifdef SMP
605 	    /*
606 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
607 	     *
608 	     * If the target needs the MP lock and we couldn't get it,
609 	     * or if the target is holding tokens and we could not
610 	     * gain ownership of the tokens, continue looking for a
611 	     * thread to schedule and spin instead of HLT if we can't.
612 	     *
613 	     * NOTE: the mpheld variable invalid after this conditional, it
614 	     * can change due to both cpu_try_mplock() returning success
615 	     * AND interactions in lwkt_chktokens() due to the fact that
616 	     * we are trying to check the mpcount of a thread other then
617 	     * the current thread.  Because of this, if the current thread
618 	     * is not holding td_mpcount, an IPI indirectly run via
619 	     * lwkt_chktokens() can obtain and release the MP lock and
620 	     * cause the core MP lock to be released.
621 	     */
622 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
623 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
624 	    ) {
625 		u_int32_t rqmask = gd->gd_runqmask;
626 
627 		mpheld = MP_LOCK_HELD();
628 		ntd = NULL;
629 		while (rqmask) {
630 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
631 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
632 			    /* spinning due to MP lock being held */
633 #ifdef	INVARIANTS
634 			    ++mplock_contention_count;
635 #endif
636 			    /* mplock still not held, 'mpheld' still valid */
637 			    continue;
638 			}
639 
640 			/*
641 			 * mpheld state invalid after chktokens call returns
642 			 * failure, but the variable is only needed for
643 			 * the loop.
644 			 */
645 			if (ntd->td_toks && !lwkt_chktokens(ntd)) {
646 			    /* spinning due to token contention */
647 #ifdef	INVARIANTS
648 			    ++token_contention_count;
649 #endif
650 			    mpheld = MP_LOCK_HELD();
651 			    continue;
652 			}
653 			break;
654 		    }
655 		    if (ntd)
656 			break;
657 		    rqmask &= ~(1 << nq);
658 		    nq = bsrl(rqmask);
659 		}
660 		if (ntd == NULL) {
661 		    ntd = &gd->gd_idlethread;
662 		    ntd->td_flags |= TDF_IDLE_NOHLT;
663 		    goto using_idle_thread;
664 		} else {
665 		    ++gd->gd_cnt.v_swtch;
666 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
667 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
668 		}
669 	    } else {
670 		++gd->gd_cnt.v_swtch;
671 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
672 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
673 	    }
674 #else
675 	    /*
676 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
677 	     * worry about tokens or the BGL.
678 	     */
679 	    ++gd->gd_cnt.v_swtch;
680 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
681 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
682 #endif
683 	} else {
684 	    /*
685 	     * We have nothing to run but only let the idle loop halt
686 	     * the cpu if there are no pending interrupts.
687 	     */
688 	    ntd = &gd->gd_idlethread;
689 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
690 		ntd->td_flags |= TDF_IDLE_NOHLT;
691 #ifdef SMP
692 using_idle_thread:
693 	    /*
694 	     * The idle thread should not be holding the MP lock unless we
695 	     * are trapping in the kernel or in a panic.  Since we select the
696 	     * idle thread unconditionally when no other thread is available,
697 	     * if the MP lock is desired during a panic or kernel trap, we
698 	     * have to loop in the scheduler until we get it.
699 	     */
700 	    if (ntd->td_mpcount) {
701 		mpheld = MP_LOCK_HELD();
702 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
703 		    panic("Idle thread %p was holding the BGL!", ntd);
704 		else if (mpheld == 0)
705 		    goto again;
706 	    }
707 #endif
708 	}
709     }
710     KASSERT(ntd->td_pri >= TDPRI_CRIT,
711 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
712 
713     /*
714      * Do the actual switch.  If the new target does not need the MP lock
715      * and we are holding it, release the MP lock.  If the new target requires
716      * the MP lock we have already acquired it for the target.
717      */
718 #ifdef SMP
719     if (ntd->td_mpcount == 0 ) {
720 	if (MP_LOCK_HELD())
721 	    cpu_rel_mplock();
722     } else {
723 	ASSERT_MP_LOCK_HELD(ntd);
724     }
725 #endif
726     if (td != ntd) {
727 	++switch_count;
728 	td->td_switch(ntd);
729     }
730     /* NOTE: current cpu may have changed after switch */
731     crit_exit_quick(td);
732 }
733 
734 /*
735  * Request that the target thread preempt the current thread.  Preemption
736  * only works under a specific set of conditions:
737  *
738  *	- We are not preempting ourselves
739  *	- The target thread is owned by the current cpu
740  *	- We are not currently being preempted
741  *	- The target is not currently being preempted
742  *	- We are able to satisfy the target's MP lock requirements (if any).
743  *
744  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
745  * this is called via lwkt_schedule() through the td_preemptable callback.
746  * critpri is the managed critical priority that we should ignore in order
747  * to determine whether preemption is possible (aka usually just the crit
748  * priority of lwkt_schedule() itself).
749  *
750  * XXX at the moment we run the target thread in a critical section during
751  * the preemption in order to prevent the target from taking interrupts
752  * that *WE* can't.  Preemption is strictly limited to interrupt threads
753  * and interrupt-like threads, outside of a critical section, and the
754  * preempted source thread will be resumed the instant the target blocks
755  * whether or not the source is scheduled (i.e. preemption is supposed to
756  * be as transparent as possible).
757  *
758  * The target thread inherits our MP count (added to its own) for the
759  * duration of the preemption in order to preserve the atomicy of the
760  * MP lock during the preemption.  Therefore, any preempting targets must be
761  * careful in regards to MP assertions.  Note that the MP count may be
762  * out of sync with the physical mp_lock, but we do not have to preserve
763  * the original ownership of the lock if it was out of synch (that is, we
764  * can leave it synchronized on return).
765  */
766 void
767 lwkt_preempt(thread_t ntd, int critpri)
768 {
769     struct globaldata *gd = mycpu;
770     thread_t td;
771 #ifdef SMP
772     int mpheld;
773     int savecnt;
774 #endif
775 
776     /*
777      * The caller has put us in a critical section.  We can only preempt
778      * if the caller of the caller was not in a critical section (basically
779      * a local interrupt), as determined by the 'critpri' parameter.
780      *
781      * YYY The target thread must be in a critical section (else it must
782      * inherit our critical section?  I dunno yet).
783      *
784      * Any tokens held by the target may not be held by thread(s) being
785      * preempted.  We take the easy way out and do not preempt if
786      * the target is holding tokens.
787      *
788      * Set need_lwkt_resched() unconditionally for now YYY.
789      */
790     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
791 
792     td = gd->gd_curthread;
793     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
794 	++preempt_miss;
795 	return;
796     }
797     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
798 	++preempt_miss;
799 	need_lwkt_resched();
800 	return;
801     }
802 #ifdef SMP
803     if (ntd->td_gd != gd) {
804 	++preempt_miss;
805 	need_lwkt_resched();
806 	return;
807     }
808 #endif
809     /*
810      * Take the easy way out and do not preempt if the target is holding
811      * one or more tokens.  We could test whether the thread(s) being
812      * preempted interlock against the target thread's tokens and whether
813      * we can get all the target thread's tokens, but this situation
814      * should not occur very often so its easier to simply not preempt.
815      */
816     if (ntd->td_toks != NULL) {
817 	++preempt_miss;
818 	need_lwkt_resched();
819 	return;
820     }
821     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
822 	++preempt_weird;
823 	need_lwkt_resched();
824 	return;
825     }
826     if (ntd->td_preempted) {
827 	++preempt_hit;
828 	need_lwkt_resched();
829 	return;
830     }
831 #ifdef SMP
832     /*
833      * note: an interrupt might have occured just as we were transitioning
834      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
835      * (non-zero) but not actually synchronized with the actual state of the
836      * lock.  We can use it to imply an MP lock requirement for the
837      * preemption but we cannot use it to test whether we hold the MP lock
838      * or not.
839      */
840     savecnt = td->td_mpcount;
841     mpheld = MP_LOCK_HELD();
842     ntd->td_mpcount += td->td_mpcount;
843     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
844 	ntd->td_mpcount -= td->td_mpcount;
845 	++preempt_miss;
846 	need_lwkt_resched();
847 	return;
848     }
849 #endif
850 
851     /*
852      * Since we are able to preempt the current thread, there is no need to
853      * call need_lwkt_resched().
854      */
855     ++preempt_hit;
856     ntd->td_preempted = td;
857     td->td_flags |= TDF_PREEMPT_LOCK;
858     td->td_switch(ntd);
859     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
860 #ifdef SMP
861     KKASSERT(savecnt == td->td_mpcount);
862     mpheld = MP_LOCK_HELD();
863     if (mpheld && td->td_mpcount == 0)
864 	cpu_rel_mplock();
865     else if (mpheld == 0 && td->td_mpcount)
866 	panic("lwkt_preempt(): MP lock was not held through");
867 #endif
868     ntd->td_preempted = NULL;
869     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
870 }
871 
872 /*
873  * Yield our thread while higher priority threads are pending.  This is
874  * typically called when we leave a critical section but it can be safely
875  * called while we are in a critical section.
876  *
877  * This function will not generally yield to equal priority threads but it
878  * can occur as a side effect.  Note that lwkt_switch() is called from
879  * inside the critical section to prevent its own crit_exit() from reentering
880  * lwkt_yield_quick().
881  *
882  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
883  * came along but was blocked and made pending.
884  *
885  * (self contained on a per cpu basis)
886  */
887 void
888 lwkt_yield_quick(void)
889 {
890     globaldata_t gd = mycpu;
891     thread_t td = gd->gd_curthread;
892 
893     /*
894      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
895      * it with a non-zero cpl then we might not wind up calling splz after
896      * a task switch when the critical section is exited even though the
897      * new task could accept the interrupt.
898      *
899      * XXX from crit_exit() only called after last crit section is released.
900      * If called directly will run splz() even if in a critical section.
901      *
902      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
903      * except for this special case, we MUST call splz() here to handle any
904      * pending ints, particularly after we switch, or we might accidently
905      * halt the cpu with interrupts pending.
906      */
907     if (gd->gd_reqflags && td->td_nest_count < 2)
908 	splz();
909 
910     /*
911      * YYY enabling will cause wakeup() to task-switch, which really
912      * confused the old 4.x code.  This is a good way to simulate
913      * preemption and MP without actually doing preemption or MP, because a
914      * lot of code assumes that wakeup() does not block.
915      */
916     if (untimely_switch && td->td_nest_count == 0 &&
917 	gd->gd_intr_nesting_level == 0
918     ) {
919 	crit_enter_quick(td);
920 	/*
921 	 * YYY temporary hacks until we disassociate the userland scheduler
922 	 * from the LWKT scheduler.
923 	 */
924 	if (td->td_flags & TDF_RUNQ) {
925 	    lwkt_switch();		/* will not reenter yield function */
926 	} else {
927 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
928 	    lwkt_switch();		/* will not reenter yield function */
929 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
930 	}
931 	crit_exit_noyield(td);
932     }
933 }
934 
935 /*
936  * This implements a normal yield which, unlike _quick, will yield to equal
937  * priority threads as well.  Note that gd_reqflags tests will be handled by
938  * the crit_exit() call in lwkt_switch().
939  *
940  * (self contained on a per cpu basis)
941  */
942 void
943 lwkt_yield(void)
944 {
945     lwkt_schedule_self(curthread);
946     lwkt_switch();
947 }
948 
949 /*
950  * Generic schedule.  Possibly schedule threads belonging to other cpus and
951  * deal with threads that might be blocked on a wait queue.
952  *
953  * We have a little helper inline function which does additional work after
954  * the thread has been enqueued, including dealing with preemption and
955  * setting need_lwkt_resched() (which prevents the kernel from returning
956  * to userland until it has processed higher priority threads).
957  */
958 static __inline
959 void
960 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
961 {
962     if (ntd->td_preemptable) {
963 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
964     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
965 	(ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
966     ) {
967 	need_lwkt_resched();
968     }
969 }
970 
971 void
972 lwkt_schedule(thread_t td)
973 {
974     globaldata_t mygd = mycpu;
975 
976     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
977     crit_enter_gd(mygd);
978     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
979     if (td == mygd->gd_curthread) {
980 	_lwkt_enqueue(td);
981     } else {
982 	lwkt_wait_t w;
983 
984 	/*
985 	 * If the thread is on a wait list we have to send our scheduling
986 	 * request to the owner of the wait structure.  Otherwise we send
987 	 * the scheduling request to the cpu owning the thread.  Races
988 	 * are ok, the target will forward the message as necessary (the
989 	 * message may chase the thread around before it finally gets
990 	 * acted upon).
991 	 *
992 	 * (remember, wait structures use stable storage)
993 	 *
994 	 * NOTE: we have to account for the number of critical sections
995 	 * under our control when calling _lwkt_schedule_post() so it
996 	 * can figure out whether preemption is allowed.
997 	 *
998 	 * NOTE: The wait structure algorithms are a mess and need to be
999 	 * rewritten.
1000 	 *
1001 	 * NOTE: We cannot safely acquire or release a token, even
1002 	 * non-blocking, because this routine may be called in the context
1003 	 * of a thread already holding the token and thus not provide any
1004 	 * interlock protection.  We cannot safely manipulate the td_toks
1005 	 * list for the same reason.  Instead we depend on our critical
1006 	 * section if the token is owned by our cpu.
1007 	 */
1008 	if ((w = td->td_wait) != NULL) {
1009 	    if (w->wa_token.t_cpu == mygd) {
1010 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1011 		--w->wa_count;
1012 		td->td_wait = NULL;
1013 #ifdef SMP
1014 		if (td->td_gd == mygd) {
1015 		    _lwkt_enqueue(td);
1016 		    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1017 		} else {
1018 		    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1019 		}
1020 #else
1021 		_lwkt_enqueue(td);
1022 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1023 #endif
1024 	    } else {
1025 #ifdef SMP
1026 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc1_t)lwkt_schedule, td);
1027 #else
1028 		panic("bad token %p", &w->wa_token);
1029 #endif
1030 	    }
1031 	} else {
1032 	    /*
1033 	     * If the wait structure is NULL and we own the thread, there
1034 	     * is no race (since we are in a critical section).  If we
1035 	     * do not own the thread there might be a race but the
1036 	     * target cpu will deal with it.
1037 	     */
1038 #ifdef SMP
1039 	    if (td->td_gd == mygd) {
1040 		_lwkt_enqueue(td);
1041 		_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1042 	    } else {
1043 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1044 	    }
1045 #else
1046 	    _lwkt_enqueue(td);
1047 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1048 #endif
1049 	}
1050     }
1051     crit_exit_gd(mygd);
1052 }
1053 
1054 /*
1055  * Managed acquisition.  This code assumes that the MP lock is held for
1056  * the tdallq operation and that the thread has been descheduled from its
1057  * original cpu.  We also have to wait for the thread to be entirely switched
1058  * out on its original cpu (this is usually fast enough that we never loop)
1059  * since the LWKT system does not have to hold the MP lock while switching
1060  * and the target may have released it before switching.
1061  */
1062 void
1063 lwkt_acquire(thread_t td)
1064 {
1065     globaldata_t gd;
1066     globaldata_t mygd;
1067 
1068     gd = td->td_gd;
1069     mygd = mycpu;
1070     cpu_lfence();
1071     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1072     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
1073 	cpu_lfence();
1074     if (gd != mygd) {
1075 	crit_enter_gd(mygd);
1076 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
1077 	td->td_gd = mygd;
1078 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
1079 	crit_exit_gd(mygd);
1080     }
1081 }
1082 
1083 /*
1084  * Generic deschedule.  Descheduling threads other then your own should be
1085  * done only in carefully controlled circumstances.  Descheduling is
1086  * asynchronous.
1087  *
1088  * This function may block if the cpu has run out of messages.
1089  */
1090 void
1091 lwkt_deschedule(thread_t td)
1092 {
1093     crit_enter();
1094 #ifdef SMP
1095     if (td == curthread) {
1096 	_lwkt_dequeue(td);
1097     } else {
1098 	if (td->td_gd == mycpu) {
1099 	    _lwkt_dequeue(td);
1100 	} else {
1101 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1102 	}
1103     }
1104 #else
1105     _lwkt_dequeue(td);
1106 #endif
1107     crit_exit();
1108 }
1109 
1110 /*
1111  * Set the target thread's priority.  This routine does not automatically
1112  * switch to a higher priority thread, LWKT threads are not designed for
1113  * continuous priority changes.  Yield if you want to switch.
1114  *
1115  * We have to retain the critical section count which uses the high bits
1116  * of the td_pri field.  The specified priority may also indicate zero or
1117  * more critical sections by adding TDPRI_CRIT*N.
1118  *
1119  * Note that we requeue the thread whether it winds up on a different runq
1120  * or not.  uio_yield() depends on this and the routine is not normally
1121  * called with the same priority otherwise.
1122  */
1123 void
1124 lwkt_setpri(thread_t td, int pri)
1125 {
1126     KKASSERT(pri >= 0);
1127     KKASSERT(td->td_gd == mycpu);
1128     crit_enter();
1129     if (td->td_flags & TDF_RUNQ) {
1130 	_lwkt_dequeue(td);
1131 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1132 	_lwkt_enqueue(td);
1133     } else {
1134 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1135     }
1136     crit_exit();
1137 }
1138 
1139 void
1140 lwkt_setpri_self(int pri)
1141 {
1142     thread_t td = curthread;
1143 
1144     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1145     crit_enter();
1146     if (td->td_flags & TDF_RUNQ) {
1147 	_lwkt_dequeue(td);
1148 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1149 	_lwkt_enqueue(td);
1150     } else {
1151 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1152     }
1153     crit_exit();
1154 }
1155 
1156 /*
1157  * Determine if there is a runnable thread at a higher priority then
1158  * the current thread.  lwkt_setpri() does not check this automatically.
1159  * Return 1 if there is, 0 if there isn't.
1160  *
1161  * Example: if bit 31 of runqmask is set and the current thread is priority
1162  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1163  *
1164  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1165  * up comparing against 0xffffffff, a comparison that will always be false.
1166  */
1167 int
1168 lwkt_checkpri_self(void)
1169 {
1170     globaldata_t gd = mycpu;
1171     thread_t td = gd->gd_curthread;
1172     int nq = td->td_pri & TDPRI_MASK;
1173 
1174     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1175 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1176 	    return(1);
1177 	++nq;
1178     }
1179     return(0);
1180 }
1181 
1182 /*
1183  * Migrate the current thread to the specified cpu.  The BGL must be held
1184  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1185  * descheduling ourselves from the current cpu, moving our thread to the
1186  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1187  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1188  */
1189 #ifdef SMP
1190 static void lwkt_setcpu_remote(void *arg);
1191 #endif
1192 
1193 void
1194 lwkt_setcpu_self(globaldata_t rgd)
1195 {
1196 #ifdef SMP
1197     thread_t td = curthread;
1198 
1199     if (td->td_gd != rgd) {
1200 	crit_enter_quick(td);
1201 	td->td_flags |= TDF_MIGRATING;
1202 	lwkt_deschedule_self(td);
1203 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1204 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1205 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1206 	lwkt_switch();
1207 	/* we are now on the target cpu */
1208 	crit_exit_quick(td);
1209     }
1210 #endif
1211 }
1212 
1213 /*
1214  * Remote IPI for cpu migration (called while in a critical section so we
1215  * do not have to enter another one).  The thread has already been moved to
1216  * our cpu's allq, but we must wait for the thread to be completely switched
1217  * out on the originating cpu before we schedule it on ours or the stack
1218  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1219  * change to main memory.
1220  *
1221  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1222  * against wakeups.  It is best if this interface is used only when there
1223  * are no pending events that might try to schedule the thread.
1224  */
1225 #ifdef SMP
1226 static void
1227 lwkt_setcpu_remote(void *arg)
1228 {
1229     thread_t td = arg;
1230     globaldata_t gd = mycpu;
1231 
1232     while (td->td_flags & TDF_RUNNING)
1233 	cpu_lfence();
1234     td->td_gd = gd;
1235     cpu_sfence();
1236     td->td_flags &= ~TDF_MIGRATING;
1237     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
1238     _lwkt_enqueue(td);
1239 }
1240 #endif
1241 
1242 struct lwp *
1243 lwkt_preempted_proc(void)
1244 {
1245     thread_t td = curthread;
1246     while (td->td_preempted)
1247 	td = td->td_preempted;
1248     return(td->td_lwp);
1249 }
1250 
1251 /*
1252  * Block on the specified wait queue until signaled.  A generation number
1253  * must be supplied to interlock the wait queue.  The function will
1254  * return immediately if the generation number does not match the wait
1255  * structure's generation number.
1256  */
1257 void
1258 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1259 {
1260     thread_t td = curthread;
1261     lwkt_tokref ilock;
1262 
1263     lwkt_gettoken(&ilock, &w->wa_token);
1264     crit_enter();
1265     if (w->wa_gen == *gen) {
1266 	_lwkt_dequeue(td);
1267 	td->td_flags |= TDF_BLOCKQ;
1268 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1269 	++w->wa_count;
1270 	td->td_wait = w;
1271 	td->td_wmesg = wmesg;
1272 	lwkt_switch();
1273 	KKASSERT((td->td_flags & TDF_BLOCKQ) == 0);
1274 	td->td_wmesg = NULL;
1275     }
1276     crit_exit();
1277     *gen = w->wa_gen;
1278     lwkt_reltoken(&ilock);
1279 }
1280 
1281 /*
1282  * Signal a wait queue.  We gain ownership of the wait queue in order to
1283  * signal it.  Once a thread is removed from the wait queue we have to
1284  * deal with the cpu owning the thread.
1285  *
1286  * Note: alternatively we could message the target cpu owning the wait
1287  * queue.  YYY implement as sysctl.
1288  */
1289 void
1290 lwkt_signal(lwkt_wait_t w, int count)
1291 {
1292     thread_t td;
1293     lwkt_tokref ilock;
1294 
1295     lwkt_gettoken(&ilock, &w->wa_token);
1296     ++w->wa_gen;
1297     crit_enter();
1298     if (count < 0)
1299 	count = w->wa_count;
1300     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1301 	--count;
1302 	--w->wa_count;
1303 	KKASSERT(td->td_flags & TDF_BLOCKQ);
1304 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1305 	td->td_flags &= ~TDF_BLOCKQ;
1306 	td->td_wait = NULL;
1307 	KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
1308 #ifdef SMP
1309 	if (td->td_gd == mycpu) {
1310 	    _lwkt_enqueue(td);
1311 	} else {
1312 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1313 	}
1314 #else
1315 	_lwkt_enqueue(td);
1316 #endif
1317     }
1318     crit_exit();
1319     lwkt_reltoken(&ilock);
1320 }
1321 
1322 /*
1323  * Create a kernel process/thread/whatever.  It shares it's address space
1324  * with proc0 - ie: kernel only.
1325  *
1326  * NOTE!  By default new threads are created with the MP lock held.  A
1327  * thread which does not require the MP lock should release it by calling
1328  * rel_mplock() at the start of the new thread.
1329  */
1330 int
1331 lwkt_create(void (*func)(void *), void *arg,
1332     struct thread **tdp, thread_t template, int tdflags, int cpu,
1333     const char *fmt, ...)
1334 {
1335     thread_t td;
1336     __va_list ap;
1337 
1338     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1339     if (tdp)
1340 	*tdp = td;
1341     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1342     td->td_flags |= TDF_VERBOSE | tdflags;
1343 #ifdef SMP
1344     td->td_mpcount = 1;
1345 #endif
1346 
1347     /*
1348      * Set up arg0 for 'ps' etc
1349      */
1350     __va_start(ap, fmt);
1351     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1352     __va_end(ap);
1353 
1354     /*
1355      * Schedule the thread to run
1356      */
1357     if ((td->td_flags & TDF_STOPREQ) == 0)
1358 	lwkt_schedule(td);
1359     else
1360 	td->td_flags &= ~TDF_STOPREQ;
1361     return 0;
1362 }
1363 
1364 /*
1365  * kthread_* is specific to the kernel and is not needed by userland.
1366  */
1367 #ifdef _KERNEL
1368 
1369 /*
1370  * Destroy an LWKT thread.   Warning!  This function is not called when
1371  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1372  * uses a different reaping mechanism.
1373  */
1374 void
1375 lwkt_exit(void)
1376 {
1377     thread_t td = curthread;
1378     globaldata_t gd;
1379 
1380     if (td->td_flags & TDF_VERBOSE)
1381 	printf("kthread %p %s has exited\n", td, td->td_comm);
1382     caps_exit(td);
1383     crit_enter_quick(td);
1384     lwkt_deschedule_self(td);
1385     gd = mycpu;
1386     KKASSERT(gd == td->td_gd);
1387     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1388     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1389 	++gd->gd_tdfreecount;
1390 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1391     }
1392     cpu_thread_exit();
1393 }
1394 
1395 #endif /* _KERNEL */
1396 
1397 void
1398 crit_panic(void)
1399 {
1400     thread_t td = curthread;
1401     int lpri = td->td_pri;
1402 
1403     td->td_pri = 0;
1404     panic("td_pri is/would-go negative! %p %d", td, lpri);
1405 }
1406 
1407 #ifdef SMP
1408 
1409 /*
1410  * Called from debugger/panic on cpus which have been stopped.  We must still
1411  * process the IPIQ while stopped, even if we were stopped while in a critical
1412  * section (XXX).
1413  *
1414  * If we are dumping also try to process any pending interrupts.  This may
1415  * or may not work depending on the state of the cpu at the point it was
1416  * stopped.
1417  */
1418 void
1419 lwkt_smp_stopped(void)
1420 {
1421     globaldata_t gd = mycpu;
1422 
1423     crit_enter_gd(gd);
1424     if (dumping) {
1425 	lwkt_process_ipiq();
1426 	splz();
1427     } else {
1428 	lwkt_process_ipiq();
1429     }
1430     crit_exit_gd(gd);
1431 }
1432 
1433 #endif
1434