xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 16e9ff28733d8bd9941b9770d79be966ba221f5f)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60 
61 #include <sys/dsched.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74 
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 	 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 	 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 	 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99 
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
104 
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 #ifdef	INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118     "Panic if attempting to switch lwkt's while mastering cpusync");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121     "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123     "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125     "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127     "Number of preempted threads.");
128 #ifdef	INVARIANTS
129 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
130 	&token_contention_count, 0, "spinning due to token contention");
131 #endif
132 static int fairq_enable = 1;
133 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
134 	&fairq_enable, 0, "Turn on fairq priority accumulators");
135 static int lwkt_spin_loops = 10;
136 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
137 	&lwkt_spin_loops, 0, "");
138 static int lwkt_spin_delay = 1;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW,
140 	&lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto");
141 static int lwkt_spin_method = 1;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW,
143 	&lwkt_spin_method, 0, "LWKT scheduler behavior when contended");
144 static int lwkt_spin_fatal = 0;	/* disabled */
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
146 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
147 static int preempt_enable = 1;
148 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
149 	&preempt_enable, 0, "Enable preemption");
150 static int lwkt_cache_threads = 32;
151 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
152 	&lwkt_cache_threads, 0, "thread+kstack cache");
153 
154 static __cachealign int lwkt_cseq_rindex;
155 static __cachealign int lwkt_cseq_windex;
156 
157 /*
158  * These helper procedures handle the runq, they can only be called from
159  * within a critical section.
160  *
161  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
162  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
163  * instead of 'mycpu' when referencing the globaldata structure.   Once
164  * SMP live enqueuing and dequeueing only occurs on the current cpu.
165  */
166 static __inline
167 void
168 _lwkt_dequeue(thread_t td)
169 {
170     if (td->td_flags & TDF_RUNQ) {
171 	struct globaldata *gd = td->td_gd;
172 
173 	td->td_flags &= ~TDF_RUNQ;
174 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
175 	gd->gd_fairq_total_pri -= td->td_pri;
176 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
177 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
178     }
179 }
180 
181 /*
182  * Priority enqueue.
183  *
184  * NOTE: There are a limited number of lwkt threads runnable since user
185  *	 processes only schedule one at a time per cpu.
186  */
187 static __inline
188 void
189 _lwkt_enqueue(thread_t td)
190 {
191     thread_t xtd;
192 
193     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
194 	struct globaldata *gd = td->td_gd;
195 
196 	td->td_flags |= TDF_RUNQ;
197 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
198 	if (xtd == NULL) {
199 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
200 		atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
201 	} else {
202 		while (xtd && xtd->td_pri > td->td_pri)
203 			xtd = TAILQ_NEXT(xtd, td_threadq);
204 		if (xtd)
205 			TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
206 		else
207 			TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
208 	}
209 	gd->gd_fairq_total_pri += td->td_pri;
210     }
211 }
212 
213 static __boolean_t
214 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
215 {
216 	struct thread *td = (struct thread *)obj;
217 
218 	td->td_kstack = NULL;
219 	td->td_kstack_size = 0;
220 	td->td_flags = TDF_ALLOCATED_THREAD;
221 	return (1);
222 }
223 
224 static void
225 _lwkt_thread_dtor(void *obj, void *privdata)
226 {
227 	struct thread *td = (struct thread *)obj;
228 
229 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
230 	    ("_lwkt_thread_dtor: not allocated from objcache"));
231 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
232 		td->td_kstack_size > 0,
233 	    ("_lwkt_thread_dtor: corrupted stack"));
234 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
235 }
236 
237 /*
238  * Initialize the lwkt s/system.
239  *
240  * Nominally cache up to 32 thread + kstack structures.
241  */
242 void
243 lwkt_init(void)
244 {
245     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
246     thread_cache = objcache_create_mbacked(
247 				M_THREAD, sizeof(struct thread),
248 				NULL, lwkt_cache_threads,
249 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
250 }
251 
252 /*
253  * Schedule a thread to run.  As the current thread we can always safely
254  * schedule ourselves, and a shortcut procedure is provided for that
255  * function.
256  *
257  * (non-blocking, self contained on a per cpu basis)
258  */
259 void
260 lwkt_schedule_self(thread_t td)
261 {
262     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
263     crit_enter_quick(td);
264     KASSERT(td != &td->td_gd->gd_idlethread,
265 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
266     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
267     _lwkt_enqueue(td);
268     crit_exit_quick(td);
269 }
270 
271 /*
272  * Deschedule a thread.
273  *
274  * (non-blocking, self contained on a per cpu basis)
275  */
276 void
277 lwkt_deschedule_self(thread_t td)
278 {
279     crit_enter_quick(td);
280     _lwkt_dequeue(td);
281     crit_exit_quick(td);
282 }
283 
284 /*
285  * LWKTs operate on a per-cpu basis
286  *
287  * WARNING!  Called from early boot, 'mycpu' may not work yet.
288  */
289 void
290 lwkt_gdinit(struct globaldata *gd)
291 {
292     TAILQ_INIT(&gd->gd_tdrunq);
293     TAILQ_INIT(&gd->gd_tdallq);
294 }
295 
296 /*
297  * Create a new thread.  The thread must be associated with a process context
298  * or LWKT start address before it can be scheduled.  If the target cpu is
299  * -1 the thread will be created on the current cpu.
300  *
301  * If you intend to create a thread without a process context this function
302  * does everything except load the startup and switcher function.
303  */
304 thread_t
305 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
306 {
307     globaldata_t gd = mycpu;
308     void *stack;
309 
310     /*
311      * If static thread storage is not supplied allocate a thread.  Reuse
312      * a cached free thread if possible.  gd_freetd is used to keep an exiting
313      * thread intact through the exit.
314      */
315     if (td == NULL) {
316 	crit_enter_gd(gd);
317 	if ((td = gd->gd_freetd) != NULL) {
318 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
319 				      TDF_RUNQ)) == 0);
320 	    gd->gd_freetd = NULL;
321 	} else {
322 	    td = objcache_get(thread_cache, M_WAITOK);
323 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
324 				      TDF_RUNQ)) == 0);
325 	}
326 	crit_exit_gd(gd);
327     	KASSERT((td->td_flags &
328 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
329 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
330     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
331     }
332 
333     /*
334      * Try to reuse cached stack.
335      */
336     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
337 	if (flags & TDF_ALLOCATED_STACK) {
338 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
339 	    stack = NULL;
340 	}
341     }
342     if (stack == NULL) {
343 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
344 	flags |= TDF_ALLOCATED_STACK;
345     }
346     if (cpu < 0)
347 	lwkt_init_thread(td, stack, stksize, flags, gd);
348     else
349 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
350     return(td);
351 }
352 
353 /*
354  * Initialize a preexisting thread structure.  This function is used by
355  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
356  *
357  * All threads start out in a critical section at a priority of
358  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
359  * appropriate.  This function may send an IPI message when the
360  * requested cpu is not the current cpu and consequently gd_tdallq may
361  * not be initialized synchronously from the point of view of the originating
362  * cpu.
363  *
364  * NOTE! we have to be careful in regards to creating threads for other cpus
365  * if SMP has not yet been activated.
366  */
367 #ifdef SMP
368 
369 static void
370 lwkt_init_thread_remote(void *arg)
371 {
372     thread_t td = arg;
373 
374     /*
375      * Protected by critical section held by IPI dispatch
376      */
377     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
378 }
379 
380 #endif
381 
382 /*
383  * lwkt core thread structural initialization.
384  *
385  * NOTE: All threads are initialized as mpsafe threads.
386  */
387 void
388 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
389 		struct globaldata *gd)
390 {
391     globaldata_t mygd = mycpu;
392 
393     bzero(td, sizeof(struct thread));
394     td->td_kstack = stack;
395     td->td_kstack_size = stksize;
396     td->td_flags = flags;
397     td->td_gd = gd;
398     td->td_pri = TDPRI_KERN_DAEMON;
399     td->td_critcount = 1;
400     td->td_toks_stop = &td->td_toks_base;
401     if (lwkt_use_spin_port)
402 	lwkt_initport_spin(&td->td_msgport);
403     else
404 	lwkt_initport_thread(&td->td_msgport, td);
405     pmap_init_thread(td);
406 #ifdef SMP
407     /*
408      * Normally initializing a thread for a remote cpu requires sending an
409      * IPI.  However, the idlethread is setup before the other cpus are
410      * activated so we have to treat it as a special case.  XXX manipulation
411      * of gd_tdallq requires the BGL.
412      */
413     if (gd == mygd || td == &gd->gd_idlethread) {
414 	crit_enter_gd(mygd);
415 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
416 	crit_exit_gd(mygd);
417     } else {
418 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
419     }
420 #else
421     crit_enter_gd(mygd);
422     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
423     crit_exit_gd(mygd);
424 #endif
425 
426     dsched_new_thread(td);
427 }
428 
429 void
430 lwkt_set_comm(thread_t td, const char *ctl, ...)
431 {
432     __va_list va;
433 
434     __va_start(va, ctl);
435     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
436     __va_end(va);
437     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
438 }
439 
440 void
441 lwkt_hold(thread_t td)
442 {
443     atomic_add_int(&td->td_refs, 1);
444 }
445 
446 void
447 lwkt_rele(thread_t td)
448 {
449     KKASSERT(td->td_refs > 0);
450     atomic_add_int(&td->td_refs, -1);
451 }
452 
453 void
454 lwkt_wait_free(thread_t td)
455 {
456     while (td->td_refs)
457 	tsleep(td, 0, "tdreap", hz);
458 }
459 
460 void
461 lwkt_free_thread(thread_t td)
462 {
463     KKASSERT(td->td_refs == 0);
464     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
465     if (td->td_flags & TDF_ALLOCATED_THREAD) {
466     	objcache_put(thread_cache, td);
467     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
468 	/* client-allocated struct with internally allocated stack */
469 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
470 	    ("lwkt_free_thread: corrupted stack"));
471 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
472 	td->td_kstack = NULL;
473 	td->td_kstack_size = 0;
474     }
475     KTR_LOG(ctxsw_deadtd, td);
476 }
477 
478 
479 /*
480  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
481  * switch to the idlethread.  Switching must occur within a critical
482  * section to avoid races with the scheduling queue.
483  *
484  * We always have full control over our cpu's run queue.  Other cpus
485  * that wish to manipulate our queue must use the cpu_*msg() calls to
486  * talk to our cpu, so a critical section is all that is needed and
487  * the result is very, very fast thread switching.
488  *
489  * The LWKT scheduler uses a fixed priority model and round-robins at
490  * each priority level.  User process scheduling is a totally
491  * different beast and LWKT priorities should not be confused with
492  * user process priorities.
493  *
494  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
495  * is not called by the current thread in the preemption case, only when
496  * the preempting thread blocks (in order to return to the original thread).
497  *
498  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
499  * migration and tsleep deschedule the current lwkt thread and call
500  * lwkt_switch().  In particular, the target cpu of the migration fully
501  * expects the thread to become non-runnable and can deadlock against
502  * cpusync operations if we run any IPIs prior to switching the thread out.
503  *
504  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
505  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
506  */
507 void
508 lwkt_switch(void)
509 {
510     globaldata_t gd = mycpu;
511     thread_t td = gd->gd_curthread;
512     thread_t ntd;
513     thread_t xtd;
514     int spinning = lwkt_spin_loops;	/* loops before HLTing */
515     int reqflags;
516     int cseq;
517     int oseq;
518     int fatal_count;
519 
520     /*
521      * Switching from within a 'fast' (non thread switched) interrupt or IPI
522      * is illegal.  However, we may have to do it anyway if we hit a fatal
523      * kernel trap or we have paniced.
524      *
525      * If this case occurs save and restore the interrupt nesting level.
526      */
527     if (gd->gd_intr_nesting_level) {
528 	int savegdnest;
529 	int savegdtrap;
530 
531 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
532 	    panic("lwkt_switch: Attempt to switch from a "
533 		  "a fast interrupt, ipi, or hard code section, "
534 		  "td %p\n",
535 		  td);
536 	} else {
537 	    savegdnest = gd->gd_intr_nesting_level;
538 	    savegdtrap = gd->gd_trap_nesting_level;
539 	    gd->gd_intr_nesting_level = 0;
540 	    gd->gd_trap_nesting_level = 0;
541 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
542 		td->td_flags |= TDF_PANICWARN;
543 		kprintf("Warning: thread switch from interrupt, IPI, "
544 			"or hard code section.\n"
545 			"thread %p (%s)\n", td, td->td_comm);
546 		print_backtrace(-1);
547 	    }
548 	    lwkt_switch();
549 	    gd->gd_intr_nesting_level = savegdnest;
550 	    gd->gd_trap_nesting_level = savegdtrap;
551 	    return;
552 	}
553     }
554 
555     /*
556      * Passive release (used to transition from user to kernel mode
557      * when we block or switch rather then when we enter the kernel).
558      * This function is NOT called if we are switching into a preemption
559      * or returning from a preemption.  Typically this causes us to lose
560      * our current process designation (if we have one) and become a true
561      * LWKT thread, and may also hand the current process designation to
562      * another process and schedule thread.
563      */
564     if (td->td_release)
565 	    td->td_release(td);
566 
567     crit_enter_gd(gd);
568     if (TD_TOKS_HELD(td))
569 	    lwkt_relalltokens(td);
570 
571     /*
572      * We had better not be holding any spin locks, but don't get into an
573      * endless panic loop.
574      */
575     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
576 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
577 	     gd->gd_spinlocks_wr));
578 
579 
580 #ifdef SMP
581 #ifdef	INVARIANTS
582     if (td->td_cscount) {
583 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
584 		td);
585 	if (panic_on_cscount)
586 	    panic("switching while mastering cpusync");
587     }
588 #endif
589 #endif
590 
591     /*
592      * If we had preempted another thread on this cpu, resume the preempted
593      * thread.  This occurs transparently, whether the preempted thread
594      * was scheduled or not (it may have been preempted after descheduling
595      * itself).
596      *
597      * We have to setup the MP lock for the original thread after backing
598      * out the adjustment that was made to curthread when the original
599      * was preempted.
600      */
601     if ((ntd = td->td_preempted) != NULL) {
602 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
603 	ntd->td_flags |= TDF_PREEMPT_DONE;
604 
605 	/*
606 	 * The interrupt may have woken a thread up, we need to properly
607 	 * set the reschedule flag if the originally interrupted thread is
608 	 * at a lower priority.
609 	 */
610 	if (TAILQ_FIRST(&gd->gd_tdrunq) &&
611 	    TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
612 	    need_lwkt_resched();
613 	}
614 	/* YYY release mp lock on switchback if original doesn't need it */
615 	goto havethread_preempted;
616     }
617 
618     /*
619      * Implement round-robin fairq with priority insertion.  The priority
620      * insertion is handled by _lwkt_enqueue()
621      *
622      * If we cannot obtain ownership of the tokens we cannot immediately
623      * schedule the target thread.
624      *
625      * Reminder: Again, we cannot afford to run any IPIs in this path if
626      * the current thread has been descheduled.
627      */
628     for (;;) {
629 	/*
630 	 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request)
631 	 * and set RQF_WAKEUP (prevent unnecessary IPIs from being
632 	 * received).
633 	 */
634 	for (;;) {
635 	    reqflags = gd->gd_reqflags;
636 	    if (atomic_cmpset_int(&gd->gd_reqflags, reqflags,
637 				  (reqflags & ~RQF_AST_LWKT_RESCHED) |
638 				  RQF_WAKEUP)) {
639 		break;
640 	    }
641 	}
642 
643 	/*
644 	 * Hotpath - pull the head of the run queue and attempt to schedule
645 	 * it.  Fairq exhaustion moves the task to the end of the list.  If
646 	 * no threads are runnable we switch to the idle thread.
647 	 */
648 	for (;;) {
649 	    ntd = TAILQ_FIRST(&gd->gd_tdrunq);
650 
651 	    if (ntd == NULL) {
652 		/*
653 		 * Runq is empty, switch to idle and clear RQF_WAKEUP
654 		 * to allow it to halt.
655 		 */
656 		ntd = &gd->gd_idlethread;
657 #ifdef SMP
658 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
659 		    ASSERT_NO_TOKENS_HELD(ntd);
660 #endif
661 		cpu_time.cp_msg[0] = 0;
662 		cpu_time.cp_stallpc = 0;
663 		atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
664 		goto haveidle;
665 	    }
666 
667 	    if (ntd->td_fairq_accum >= 0)
668 		    break;
669 
670 	    /*splz_check(); cannot do this here, see above */
671 	    lwkt_fairq_accumulate(gd, ntd);
672 	    TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
673 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
674 	}
675 
676 	/*
677 	 * Hotpath - schedule ntd.  Leaves RQF_WAKEUP set to prevent
678 	 *	     unwanted decontention IPIs.
679 	 *
680 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
681 	 *	     always succeeds.
682 	 */
683 	if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
684 	    goto havethread;
685 
686 	/*
687 	 * Coldpath (SMP only since tokens always succeed on UP)
688 	 *
689 	 * We had some contention on the thread we wanted to schedule.
690 	 * What we do now is try to find a thread that we can schedule
691 	 * in its stead until decontention reschedules on our cpu.
692 	 *
693 	 * The coldpath scan does NOT rearrange threads in the run list
694 	 * and it also ignores the accumulator.
695 	 *
696 	 * We do not immediately schedule a user priority thread, instead
697 	 * we record it in xtd and continue looking for kernel threads.
698 	 * A cpu can only have one user priority thread (normally) so just
699 	 * record the first one.
700 	 *
701 	 * NOTE: This scan will also include threads whos fairq's were
702 	 *	 accumulated in the first loop.
703 	 */
704 	++token_contention_count;
705 	xtd = NULL;
706 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
707 	    /*
708 	     * Try to switch to this thread.  If the thread is running at
709 	     * user priority we clear WAKEUP to allow decontention IPIs
710 	     * (since this thread is simply running until the one we wanted
711 	     * decontends), and we make sure that LWKT_RESCHED is not set.
712 	     *
713 	     * Otherwise for kernel threads we leave WAKEUP set to avoid
714 	     * unnecessary decontention IPIs.
715 	     */
716 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
717 		if (xtd == NULL)
718 		    xtd = ntd;
719 		continue;
720 	    }
721 
722 	    /*
723 	     * Do not let the fairq get too negative.  Even though we are
724 	     * ignoring it atm once the scheduler decontends a very negative
725 	     * thread will get moved to the end of the queue.
726 	     */
727 	    if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) {
728 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
729 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
730 		goto havethread;
731 	    }
732 
733 	    /*
734 	     * Well fubar, this thread is contended as well, loop
735 	     */
736 	    /* */
737 	}
738 
739 	/*
740 	 * We exhausted the run list but we may have recorded a user
741 	 * thread to try.  We have three choices based on
742 	 * lwkt.decontention_method.
743 	 *
744 	 * (0) Atomically clear RQF_WAKEUP in order to receive decontention
745 	 *     IPIs (to interrupt the user process) and test
746 	 *     RQF_AST_LWKT_RESCHED at the same time.
747 	 *
748 	 *     This results in significant decontention IPI traffic but may
749 	 *     be more responsive.
750 	 *
751 	 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI.
752 	 *     An automatic LWKT reschedule will occur on the next hardclock
753 	 *     (typically 100hz).
754 	 *
755 	 *     This results in no decontention IPI traffic but may be less
756 	 *     responsive.  This is the default.
757 	 *
758 	 * (2) Refuse to schedule the user process at this time.
759 	 *
760 	 *     This is highly experimental and should not be used under
761 	 *     normal circumstances.  This can cause a user process to
762 	 *     get starved out in situations where kernel threads are
763 	 *     fighting each other for tokens.
764 	 */
765 	if (xtd) {
766 	    ntd = xtd;
767 
768 	    switch(lwkt_spin_method) {
769 	    case 0:
770 		for (;;) {
771 		    reqflags = gd->gd_reqflags;
772 		    if (atomic_cmpset_int(&gd->gd_reqflags,
773 					  reqflags,
774 					  reqflags & ~RQF_WAKEUP)) {
775 			break;
776 		    }
777 		}
778 		break;
779 	    case 1:
780 		reqflags = gd->gd_reqflags;
781 		break;
782 	    default:
783 		goto skip;
784 		break;
785 	    }
786 	    if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 &&
787 		(TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
788 	    ) {
789 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
790 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
791 		goto havethread;
792 	    }
793 
794 skip:
795 	    /*
796 	     * Make sure RQF_WAKEUP is set if we failed to schedule the
797 	     * user thread to prevent the idle thread from halting.
798 	     */
799 	    atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP);
800 	}
801 
802 	/*
803 	 * We exhausted the run list, meaning that all runnable threads
804 	 * are contended.
805 	 */
806 	cpu_pause();
807 	ntd = &gd->gd_idlethread;
808 #ifdef SMP
809 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
810 	    ASSERT_NO_TOKENS_HELD(ntd);
811 	/* contention case, do not clear contention mask */
812 #endif
813 
814 	/*
815 	 * Ok, we might want to spin a few times as some tokens are held for
816 	 * very short periods of time and IPI overhead is 1uS or worse
817 	 * (meaning it is usually better to spin).  Regardless we have to
818 	 * call splz_check() to be sure to service any interrupts blocked
819 	 * by our critical section, otherwise we could livelock e.g. IPIs.
820 	 *
821 	 * The IPI mechanic is really a last resort.  In nearly all other
822 	 * cases RQF_WAKEUP is left set to prevent decontention IPIs.
823 	 *
824 	 * When we decide not to spin we clear RQF_WAKEUP and switch to
825 	 * the idle thread.  Clearing RQF_WEAKEUP allows the idle thread
826 	 * to halt and decontended tokens will issue an IPI to us.  The
827 	 * idle thread will check for pending reschedules already set
828 	 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have
829 	 * to here.
830 	 *
831 	 * Also, if TDF_RUNQ is not set the current thread is trying to
832 	 * deschedule, possibly in an atomic fashion.  We cannot afford to
833 	 * stay here.
834 	 */
835 	if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) {
836 	    atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
837 	    goto haveidle;
838 	}
839 	--spinning;
840 
841 	/*
842 	 * When spinning a delay is required both to avoid livelocks from
843 	 * token order reversals (a thread may be trying to acquire multiple
844 	 * tokens), and also to reduce cpu cache management traffic.
845 	 *
846 	 * In order to scale to a large number of CPUs we use a time slot
847 	 * resequencer to force contending cpus into non-contending
848 	 * time-slots.  The scheduler may still contend with the lock holder
849 	 * but will not (generally) contend with all the other cpus trying
850 	 * trying to get the same token.
851 	 *
852 	 * The resequencer uses a FIFO counter mechanic.  The owner of the
853 	 * rindex at the head of the FIFO is allowed to pull itself off
854 	 * the FIFO and fetchadd is used to enter into the FIFO.  This bit
855 	 * of code is VERY cache friendly and forces all spinning schedulers
856 	 * into their own time slots.
857 	 *
858 	 * This code has been tested to 48-cpus and caps the cache
859 	 * contention load at ~1uS intervals regardless of the number of
860 	 * cpus.  Scaling beyond 64 cpus might require additional smarts
861 	 * (such as separate FIFOs for specific token cases).
862 	 *
863 	 * WARNING!  We can't call splz_check() or anything else here as
864 	 *	     it could cause a deadlock.
865 	 */
866 #if defined(INVARIANTS) && defined(__amd64__)
867 	if ((read_rflags() & PSL_I) == 0) {
868 		cpu_enable_intr();
869 		panic("lwkt_switch() called with interrupts disabled");
870 	}
871 #endif
872 	cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
873 	fatal_count = lwkt_spin_fatal;
874 	while ((oseq = lwkt_cseq_rindex) != cseq) {
875 	    cpu_ccfence();
876 #if !defined(_KERNEL_VIRTUAL)
877 	    if (cpu_mi_feature & CPU_MI_MONITOR) {
878 		cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
879 	    } else
880 #endif
881 	    {
882 		DELAY(1);
883 		cpu_lfence();
884 	    }
885 	    if (fatal_count && --fatal_count == 0)
886 		panic("lwkt_switch: fatal spin wait");
887 	}
888 	cseq = lwkt_spin_delay;	/* don't trust the system operator */
889 	cpu_ccfence();
890 	if (cseq < 1)
891 	    cseq = 1;
892 	if (cseq > 1000)
893 	    cseq = 1000;
894 	DELAY(cseq);
895 	atomic_add_int(&lwkt_cseq_rindex, 1);
896 	splz_check();	/* ok, we already checked that td is still scheduled */
897 	/* highest level for(;;) loop */
898     }
899 
900 havethread:
901     /*
902      * We must always decrement td_fairq_accum on non-idle threads just
903      * in case a thread never gets a tick due to being in a continuous
904      * critical section.  The page-zeroing code does this, for example.
905      *
906      * If the thread we came up with is a higher or equal priority verses
907      * the thread at the head of the queue we move our thread to the
908      * front.  This way we can always check the front of the queue.
909      *
910      * Clear gd_idle_repeat when doing a normal switch to a non-idle
911      * thread.
912      */
913     ++gd->gd_cnt.v_swtch;
914     --ntd->td_fairq_accum;
915     ntd->td_wmesg = NULL;
916     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
917     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
918 	TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
919 	TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
920     }
921     gd->gd_idle_repeat = 0;
922 
923 havethread_preempted:
924     /*
925      * If the new target does not need the MP lock and we are holding it,
926      * release the MP lock.  If the new target requires the MP lock we have
927      * already acquired it for the target.
928      */
929     ;
930 haveidle:
931     KASSERT(ntd->td_critcount,
932 	    ("priority problem in lwkt_switch %d %d",
933 	    td->td_critcount, ntd->td_critcount));
934 
935     if (td != ntd) {
936 	++switch_count;
937 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
938 	td->td_switch(ntd);
939     }
940     /* NOTE: current cpu may have changed after switch */
941     crit_exit_quick(td);
942 }
943 
944 /*
945  * Request that the target thread preempt the current thread.  Preemption
946  * only works under a specific set of conditions:
947  *
948  *	- We are not preempting ourselves
949  *	- The target thread is owned by the current cpu
950  *	- We are not currently being preempted
951  *	- The target is not currently being preempted
952  *	- We are not holding any spin locks
953  *	- The target thread is not holding any tokens
954  *	- We are able to satisfy the target's MP lock requirements (if any).
955  *
956  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
957  * this is called via lwkt_schedule() through the td_preemptable callback.
958  * critcount is the managed critical priority that we should ignore in order
959  * to determine whether preemption is possible (aka usually just the crit
960  * priority of lwkt_schedule() itself).
961  *
962  * XXX at the moment we run the target thread in a critical section during
963  * the preemption in order to prevent the target from taking interrupts
964  * that *WE* can't.  Preemption is strictly limited to interrupt threads
965  * and interrupt-like threads, outside of a critical section, and the
966  * preempted source thread will be resumed the instant the target blocks
967  * whether or not the source is scheduled (i.e. preemption is supposed to
968  * be as transparent as possible).
969  */
970 void
971 lwkt_preempt(thread_t ntd, int critcount)
972 {
973     struct globaldata *gd = mycpu;
974     thread_t td;
975     int save_gd_intr_nesting_level;
976 
977     /*
978      * The caller has put us in a critical section.  We can only preempt
979      * if the caller of the caller was not in a critical section (basically
980      * a local interrupt), as determined by the 'critcount' parameter.  We
981      * also can't preempt if the caller is holding any spinlocks (even if
982      * he isn't in a critical section).  This also handles the tokens test.
983      *
984      * YYY The target thread must be in a critical section (else it must
985      * inherit our critical section?  I dunno yet).
986      *
987      * Set need_lwkt_resched() unconditionally for now YYY.
988      */
989     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
990 
991     if (preempt_enable == 0) {
992 	++preempt_miss;
993 	return;
994     }
995 
996     td = gd->gd_curthread;
997     if (ntd->td_pri <= td->td_pri) {
998 	++preempt_miss;
999 	return;
1000     }
1001     if (td->td_critcount > critcount) {
1002 	++preempt_miss;
1003 	need_lwkt_resched();
1004 	return;
1005     }
1006 #ifdef SMP
1007     if (ntd->td_gd != gd) {
1008 	++preempt_miss;
1009 	need_lwkt_resched();
1010 	return;
1011     }
1012 #endif
1013     /*
1014      * We don't have to check spinlocks here as they will also bump
1015      * td_critcount.
1016      *
1017      * Do not try to preempt if the target thread is holding any tokens.
1018      * We could try to acquire the tokens but this case is so rare there
1019      * is no need to support it.
1020      */
1021     KKASSERT(gd->gd_spinlocks_wr == 0);
1022 
1023     if (TD_TOKS_HELD(ntd)) {
1024 	++preempt_miss;
1025 	need_lwkt_resched();
1026 	return;
1027     }
1028     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1029 	++preempt_weird;
1030 	need_lwkt_resched();
1031 	return;
1032     }
1033     if (ntd->td_preempted) {
1034 	++preempt_hit;
1035 	need_lwkt_resched();
1036 	return;
1037     }
1038 
1039     /*
1040      * Since we are able to preempt the current thread, there is no need to
1041      * call need_lwkt_resched().
1042      *
1043      * We must temporarily clear gd_intr_nesting_level around the switch
1044      * since switchouts from the target thread are allowed (they will just
1045      * return to our thread), and since the target thread has its own stack.
1046      */
1047     ++preempt_hit;
1048     ntd->td_preempted = td;
1049     td->td_flags |= TDF_PREEMPT_LOCK;
1050     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1051     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1052     gd->gd_intr_nesting_level = 0;
1053     td->td_switch(ntd);
1054     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1055 
1056     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1057     ntd->td_preempted = NULL;
1058     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1059 }
1060 
1061 /*
1062  * Conditionally call splz() if gd_reqflags indicates work is pending.
1063  * This will work inside a critical section but not inside a hard code
1064  * section.
1065  *
1066  * (self contained on a per cpu basis)
1067  */
1068 void
1069 splz_check(void)
1070 {
1071     globaldata_t gd = mycpu;
1072     thread_t td = gd->gd_curthread;
1073 
1074     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1075 	gd->gd_intr_nesting_level == 0 &&
1076 	td->td_nest_count < 2)
1077     {
1078 	splz();
1079     }
1080 }
1081 
1082 /*
1083  * This version is integrated into crit_exit, reqflags has already
1084  * been tested but td_critcount has not.
1085  *
1086  * We only want to execute the splz() on the 1->0 transition of
1087  * critcount and not in a hard code section or if too deeply nested.
1088  */
1089 void
1090 lwkt_maybe_splz(thread_t td)
1091 {
1092     globaldata_t gd = td->td_gd;
1093 
1094     if (td->td_critcount == 0 &&
1095 	gd->gd_intr_nesting_level == 0 &&
1096 	td->td_nest_count < 2)
1097     {
1098 	splz();
1099     }
1100 }
1101 
1102 /*
1103  * This function is used to negotiate a passive release of the current
1104  * process/lwp designation with the user scheduler, allowing the user
1105  * scheduler to schedule another user thread.  The related kernel thread
1106  * (curthread) continues running in the released state.
1107  */
1108 void
1109 lwkt_passive_release(struct thread *td)
1110 {
1111     struct lwp *lp = td->td_lwp;
1112 
1113     td->td_release = NULL;
1114     lwkt_setpri_self(TDPRI_KERN_USER);
1115     lp->lwp_proc->p_usched->release_curproc(lp);
1116 }
1117 
1118 
1119 /*
1120  * This implements a normal yield.  This routine is virtually a nop if
1121  * there is nothing to yield to but it will always run any pending interrupts
1122  * if called from a critical section.
1123  *
1124  * This yield is designed for kernel threads without a user context.
1125  *
1126  * (self contained on a per cpu basis)
1127  */
1128 void
1129 lwkt_yield(void)
1130 {
1131     globaldata_t gd = mycpu;
1132     thread_t td = gd->gd_curthread;
1133     thread_t xtd;
1134 
1135     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1136 	splz();
1137     if (td->td_fairq_accum < 0) {
1138 	lwkt_schedule_self(curthread);
1139 	lwkt_switch();
1140     } else {
1141 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1142 	if (xtd && xtd->td_pri > td->td_pri) {
1143 	    lwkt_schedule_self(curthread);
1144 	    lwkt_switch();
1145 	}
1146     }
1147 }
1148 
1149 /*
1150  * This yield is designed for kernel threads with a user context.
1151  *
1152  * The kernel acting on behalf of the user is potentially cpu-bound,
1153  * this function will efficiently allow other threads to run and also
1154  * switch to other processes by releasing.
1155  *
1156  * The lwkt_user_yield() function is designed to have very low overhead
1157  * if no yield is determined to be needed.
1158  */
1159 void
1160 lwkt_user_yield(void)
1161 {
1162     globaldata_t gd = mycpu;
1163     thread_t td = gd->gd_curthread;
1164 
1165     /*
1166      * Always run any pending interrupts in case we are in a critical
1167      * section.
1168      */
1169     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1170 	splz();
1171 
1172     /*
1173      * Switch (which forces a release) if another kernel thread needs
1174      * the cpu, if userland wants us to resched, or if our kernel
1175      * quantum has run out.
1176      */
1177     if (lwkt_resched_wanted() ||
1178 	user_resched_wanted() ||
1179 	td->td_fairq_accum < 0)
1180     {
1181 	lwkt_switch();
1182     }
1183 
1184 #if 0
1185     /*
1186      * Reacquire the current process if we are released.
1187      *
1188      * XXX not implemented atm.  The kernel may be holding locks and such,
1189      *     so we want the thread to continue to receive cpu.
1190      */
1191     if (td->td_release == NULL && lp) {
1192 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1193 	td->td_release = lwkt_passive_release;
1194 	lwkt_setpri_self(TDPRI_USER_NORM);
1195     }
1196 #endif
1197 }
1198 
1199 /*
1200  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1201  * deal with threads that might be blocked on a wait queue.
1202  *
1203  * We have a little helper inline function which does additional work after
1204  * the thread has been enqueued, including dealing with preemption and
1205  * setting need_lwkt_resched() (which prevents the kernel from returning
1206  * to userland until it has processed higher priority threads).
1207  *
1208  * It is possible for this routine to be called after a failed _enqueue
1209  * (due to the target thread migrating, sleeping, or otherwise blocked).
1210  * We have to check that the thread is actually on the run queue!
1211  *
1212  * reschedok is an optimized constant propagated from lwkt_schedule() or
1213  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1214  * reschedule to be requested if the target thread has a higher priority.
1215  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1216  * be 0, prevented undesired reschedules.
1217  */
1218 static __inline
1219 void
1220 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1221 {
1222     thread_t otd;
1223 
1224     if (ntd->td_flags & TDF_RUNQ) {
1225 	if (ntd->td_preemptable && reschedok) {
1226 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1227 	} else if (reschedok) {
1228 	    otd = curthread;
1229 	    if (ntd->td_pri > otd->td_pri)
1230 		need_lwkt_resched();
1231 	}
1232 
1233 	/*
1234 	 * Give the thread a little fair share scheduler bump if it
1235 	 * has been asleep for a while.  This is primarily to avoid
1236 	 * a degenerate case for interrupt threads where accumulator
1237 	 * crosses into negative territory unnecessarily.
1238 	 */
1239 	if (ntd->td_fairq_lticks != ticks) {
1240 	    ntd->td_fairq_lticks = ticks;
1241 	    ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1242 	    if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1243 		    ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1244 	}
1245     }
1246 }
1247 
1248 static __inline
1249 void
1250 _lwkt_schedule(thread_t td, int reschedok)
1251 {
1252     globaldata_t mygd = mycpu;
1253 
1254     KASSERT(td != &td->td_gd->gd_idlethread,
1255 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1256     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1257     crit_enter_gd(mygd);
1258     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1259     if (td == mygd->gd_curthread) {
1260 	_lwkt_enqueue(td);
1261     } else {
1262 	/*
1263 	 * If we own the thread, there is no race (since we are in a
1264 	 * critical section).  If we do not own the thread there might
1265 	 * be a race but the target cpu will deal with it.
1266 	 */
1267 #ifdef SMP
1268 	if (td->td_gd == mygd) {
1269 	    _lwkt_enqueue(td);
1270 	    _lwkt_schedule_post(mygd, td, 1, reschedok);
1271 	} else {
1272 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1273 	}
1274 #else
1275 	_lwkt_enqueue(td);
1276 	_lwkt_schedule_post(mygd, td, 1, reschedok);
1277 #endif
1278     }
1279     crit_exit_gd(mygd);
1280 }
1281 
1282 void
1283 lwkt_schedule(thread_t td)
1284 {
1285     _lwkt_schedule(td, 1);
1286 }
1287 
1288 void
1289 lwkt_schedule_noresched(thread_t td)
1290 {
1291     _lwkt_schedule(td, 0);
1292 }
1293 
1294 #ifdef SMP
1295 
1296 /*
1297  * When scheduled remotely if frame != NULL the IPIQ is being
1298  * run via doreti or an interrupt then preemption can be allowed.
1299  *
1300  * To allow preemption we have to drop the critical section so only
1301  * one is present in _lwkt_schedule_post.
1302  */
1303 static void
1304 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1305 {
1306     thread_t td = curthread;
1307     thread_t ntd = arg;
1308 
1309     if (frame && ntd->td_preemptable) {
1310 	crit_exit_noyield(td);
1311 	_lwkt_schedule(ntd, 1);
1312 	crit_enter_quick(td);
1313     } else {
1314 	_lwkt_schedule(ntd, 1);
1315     }
1316 }
1317 
1318 /*
1319  * Thread migration using a 'Pull' method.  The thread may or may not be
1320  * the current thread.  It MUST be descheduled and in a stable state.
1321  * lwkt_giveaway() must be called on the cpu owning the thread.
1322  *
1323  * At any point after lwkt_giveaway() is called, the target cpu may
1324  * 'pull' the thread by calling lwkt_acquire().
1325  *
1326  * We have to make sure the thread is not sitting on a per-cpu tsleep
1327  * queue or it will blow up when it moves to another cpu.
1328  *
1329  * MPSAFE - must be called under very specific conditions.
1330  */
1331 void
1332 lwkt_giveaway(thread_t td)
1333 {
1334     globaldata_t gd = mycpu;
1335 
1336     crit_enter_gd(gd);
1337     if (td->td_flags & TDF_TSLEEPQ)
1338 	tsleep_remove(td);
1339     KKASSERT(td->td_gd == gd);
1340     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1341     td->td_flags |= TDF_MIGRATING;
1342     crit_exit_gd(gd);
1343 }
1344 
1345 void
1346 lwkt_acquire(thread_t td)
1347 {
1348     globaldata_t gd;
1349     globaldata_t mygd;
1350 
1351     KKASSERT(td->td_flags & TDF_MIGRATING);
1352     gd = td->td_gd;
1353     mygd = mycpu;
1354     if (gd != mycpu) {
1355 	cpu_lfence();
1356 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1357 	crit_enter_gd(mygd);
1358 	DEBUG_PUSH_INFO("lwkt_acquire");
1359 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1360 #ifdef SMP
1361 	    lwkt_process_ipiq();
1362 #endif
1363 	    cpu_lfence();
1364 	}
1365 	DEBUG_POP_INFO();
1366 	cpu_mfence();
1367 	td->td_gd = mygd;
1368 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1369 	td->td_flags &= ~TDF_MIGRATING;
1370 	crit_exit_gd(mygd);
1371     } else {
1372 	crit_enter_gd(mygd);
1373 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1374 	td->td_flags &= ~TDF_MIGRATING;
1375 	crit_exit_gd(mygd);
1376     }
1377 }
1378 
1379 #endif
1380 
1381 /*
1382  * Generic deschedule.  Descheduling threads other then your own should be
1383  * done only in carefully controlled circumstances.  Descheduling is
1384  * asynchronous.
1385  *
1386  * This function may block if the cpu has run out of messages.
1387  */
1388 void
1389 lwkt_deschedule(thread_t td)
1390 {
1391     crit_enter();
1392 #ifdef SMP
1393     if (td == curthread) {
1394 	_lwkt_dequeue(td);
1395     } else {
1396 	if (td->td_gd == mycpu) {
1397 	    _lwkt_dequeue(td);
1398 	} else {
1399 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1400 	}
1401     }
1402 #else
1403     _lwkt_dequeue(td);
1404 #endif
1405     crit_exit();
1406 }
1407 
1408 /*
1409  * Set the target thread's priority.  This routine does not automatically
1410  * switch to a higher priority thread, LWKT threads are not designed for
1411  * continuous priority changes.  Yield if you want to switch.
1412  */
1413 void
1414 lwkt_setpri(thread_t td, int pri)
1415 {
1416     KKASSERT(td->td_gd == mycpu);
1417     if (td->td_pri != pri) {
1418 	KKASSERT(pri >= 0);
1419 	crit_enter();
1420 	if (td->td_flags & TDF_RUNQ) {
1421 	    _lwkt_dequeue(td);
1422 	    td->td_pri = pri;
1423 	    _lwkt_enqueue(td);
1424 	} else {
1425 	    td->td_pri = pri;
1426 	}
1427 	crit_exit();
1428     }
1429 }
1430 
1431 /*
1432  * Set the initial priority for a thread prior to it being scheduled for
1433  * the first time.  The thread MUST NOT be scheduled before or during
1434  * this call.  The thread may be assigned to a cpu other then the current
1435  * cpu.
1436  *
1437  * Typically used after a thread has been created with TDF_STOPPREQ,
1438  * and before the thread is initially scheduled.
1439  */
1440 void
1441 lwkt_setpri_initial(thread_t td, int pri)
1442 {
1443     KKASSERT(pri >= 0);
1444     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1445     td->td_pri = pri;
1446 }
1447 
1448 void
1449 lwkt_setpri_self(int pri)
1450 {
1451     thread_t td = curthread;
1452 
1453     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1454     crit_enter();
1455     if (td->td_flags & TDF_RUNQ) {
1456 	_lwkt_dequeue(td);
1457 	td->td_pri = pri;
1458 	_lwkt_enqueue(td);
1459     } else {
1460 	td->td_pri = pri;
1461     }
1462     crit_exit();
1463 }
1464 
1465 /*
1466  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1467  *
1468  * Example: two competing threads, same priority N.  decrement by (2*N)
1469  * increment by N*8, each thread will get 4 ticks.
1470  */
1471 void
1472 lwkt_fairq_schedulerclock(thread_t td)
1473 {
1474     globaldata_t gd;
1475 
1476     if (fairq_enable) {
1477 	while (td) {
1478 	    gd = td->td_gd;
1479 	    if (td != &gd->gd_idlethread) {
1480 		td->td_fairq_accum -= gd->gd_fairq_total_pri;
1481 		if (td->td_fairq_accum < -TDFAIRQ_MAX(gd))
1482 			td->td_fairq_accum = -TDFAIRQ_MAX(gd);
1483 		if (td->td_fairq_accum < 0)
1484 			need_lwkt_resched();
1485 		td->td_fairq_lticks = ticks;
1486 	    }
1487 	    td = td->td_preempted;
1488 	}
1489     }
1490 }
1491 
1492 static void
1493 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1494 {
1495 	td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1496 	if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1497 		td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1498 }
1499 
1500 /*
1501  * Migrate the current thread to the specified cpu.
1502  *
1503  * This is accomplished by descheduling ourselves from the current cpu,
1504  * moving our thread to the tdallq of the target cpu, IPI messaging the
1505  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1506  * races while the thread is being migrated.
1507  *
1508  * We must be sure to remove ourselves from the current cpu's tsleepq
1509  * before potentially moving to another queue.  The thread can be on
1510  * a tsleepq due to a left-over tsleep_interlock().
1511  *
1512  * We also have to make sure that the switch code doesn't allow an IPI
1513  * processing operation to leak in between our send and our switch, or
1514  * any other potential livelock such that might occur when we release the
1515  * current process designation, so do that first.
1516  */
1517 #ifdef SMP
1518 static void lwkt_setcpu_remote(void *arg);
1519 #endif
1520 
1521 void
1522 lwkt_setcpu_self(globaldata_t rgd)
1523 {
1524 #ifdef SMP
1525     thread_t td = curthread;
1526 
1527     if (td->td_gd != rgd) {
1528 	crit_enter_quick(td);
1529 	if (td->td_release)
1530 	    td->td_release(td);
1531 	if (td->td_flags & TDF_TSLEEPQ)
1532 	    tsleep_remove(td);
1533 	td->td_flags |= TDF_MIGRATING;
1534 	lwkt_deschedule_self(td);
1535 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1536 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1537 	lwkt_switch();
1538 	/* we are now on the target cpu */
1539 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1540 	crit_exit_quick(td);
1541     }
1542 #endif
1543 }
1544 
1545 void
1546 lwkt_migratecpu(int cpuid)
1547 {
1548 #ifdef SMP
1549 	globaldata_t rgd;
1550 
1551 	rgd = globaldata_find(cpuid);
1552 	lwkt_setcpu_self(rgd);
1553 #endif
1554 }
1555 
1556 /*
1557  * Remote IPI for cpu migration (called while in a critical section so we
1558  * do not have to enter another one).  The thread has already been moved to
1559  * our cpu's allq, but we must wait for the thread to be completely switched
1560  * out on the originating cpu before we schedule it on ours or the stack
1561  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1562  * change to main memory.
1563  *
1564  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1565  * against wakeups.  It is best if this interface is used only when there
1566  * are no pending events that might try to schedule the thread.
1567  */
1568 #ifdef SMP
1569 static void
1570 lwkt_setcpu_remote(void *arg)
1571 {
1572     thread_t td = arg;
1573     globaldata_t gd = mycpu;
1574     int retry = 10000000;
1575 
1576     DEBUG_PUSH_INFO("lwkt_setcpu_remote");
1577     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1578 #ifdef SMP
1579 	lwkt_process_ipiq();
1580 #endif
1581 	cpu_lfence();
1582 	cpu_pause();
1583 	if (--retry == 0) {
1584 		kprintf("lwkt_setcpu_remote: td->td_flags %08x\n",
1585 			td->td_flags);
1586 		retry = 10000000;
1587 	}
1588     }
1589     DEBUG_POP_INFO();
1590     td->td_gd = gd;
1591     cpu_mfence();
1592     td->td_flags &= ~TDF_MIGRATING;
1593     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1594     _lwkt_enqueue(td);
1595 }
1596 #endif
1597 
1598 struct lwp *
1599 lwkt_preempted_proc(void)
1600 {
1601     thread_t td = curthread;
1602     while (td->td_preempted)
1603 	td = td->td_preempted;
1604     return(td->td_lwp);
1605 }
1606 
1607 /*
1608  * Create a kernel process/thread/whatever.  It shares it's address space
1609  * with proc0 - ie: kernel only.
1610  *
1611  * NOTE!  By default new threads are created with the MP lock held.  A
1612  * thread which does not require the MP lock should release it by calling
1613  * rel_mplock() at the start of the new thread.
1614  */
1615 int
1616 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1617 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1618 {
1619     thread_t td;
1620     __va_list ap;
1621 
1622     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1623 			   tdflags);
1624     if (tdp)
1625 	*tdp = td;
1626     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1627 
1628     /*
1629      * Set up arg0 for 'ps' etc
1630      */
1631     __va_start(ap, fmt);
1632     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1633     __va_end(ap);
1634 
1635     /*
1636      * Schedule the thread to run
1637      */
1638     if ((td->td_flags & TDF_STOPREQ) == 0)
1639 	lwkt_schedule(td);
1640     else
1641 	td->td_flags &= ~TDF_STOPREQ;
1642     return 0;
1643 }
1644 
1645 /*
1646  * Destroy an LWKT thread.   Warning!  This function is not called when
1647  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1648  * uses a different reaping mechanism.
1649  */
1650 void
1651 lwkt_exit(void)
1652 {
1653     thread_t td = curthread;
1654     thread_t std;
1655     globaldata_t gd;
1656 
1657     /*
1658      * Do any cleanup that might block here
1659      */
1660     if (td->td_flags & TDF_VERBOSE)
1661 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1662     caps_exit(td);
1663     biosched_done(td);
1664     dsched_exit_thread(td);
1665 
1666     /*
1667      * Get us into a critical section to interlock gd_freetd and loop
1668      * until we can get it freed.
1669      *
1670      * We have to cache the current td in gd_freetd because objcache_put()ing
1671      * it would rip it out from under us while our thread is still active.
1672      */
1673     gd = mycpu;
1674     crit_enter_quick(td);
1675     while ((std = gd->gd_freetd) != NULL) {
1676 	KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1677 	gd->gd_freetd = NULL;
1678 	objcache_put(thread_cache, std);
1679     }
1680 
1681     /*
1682      * Remove thread resources from kernel lists and deschedule us for
1683      * the last time.  We cannot block after this point or we may end
1684      * up with a stale td on the tsleepq.
1685      */
1686     if (td->td_flags & TDF_TSLEEPQ)
1687 	tsleep_remove(td);
1688     lwkt_deschedule_self(td);
1689     lwkt_remove_tdallq(td);
1690     KKASSERT(td->td_refs == 0);
1691 
1692     /*
1693      * Final cleanup
1694      */
1695     KKASSERT(gd->gd_freetd == NULL);
1696     if (td->td_flags & TDF_ALLOCATED_THREAD)
1697 	gd->gd_freetd = td;
1698     cpu_thread_exit();
1699 }
1700 
1701 void
1702 lwkt_remove_tdallq(thread_t td)
1703 {
1704     KKASSERT(td->td_gd == mycpu);
1705     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1706 }
1707 
1708 /*
1709  * Code reduction and branch prediction improvements.  Call/return
1710  * overhead on modern cpus often degenerates into 0 cycles due to
1711  * the cpu's branch prediction hardware and return pc cache.  We
1712  * can take advantage of this by not inlining medium-complexity
1713  * functions and we can also reduce the branch prediction impact
1714  * by collapsing perfectly predictable branches into a single
1715  * procedure instead of duplicating it.
1716  *
1717  * Is any of this noticeable?  Probably not, so I'll take the
1718  * smaller code size.
1719  */
1720 void
1721 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1722 {
1723     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1724 }
1725 
1726 void
1727 crit_panic(void)
1728 {
1729     thread_t td = curthread;
1730     int lcrit = td->td_critcount;
1731 
1732     td->td_critcount = 0;
1733     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1734     /* NOT REACHED */
1735 }
1736 
1737 #ifdef SMP
1738 
1739 /*
1740  * Called from debugger/panic on cpus which have been stopped.  We must still
1741  * process the IPIQ while stopped, even if we were stopped while in a critical
1742  * section (XXX).
1743  *
1744  * If we are dumping also try to process any pending interrupts.  This may
1745  * or may not work depending on the state of the cpu at the point it was
1746  * stopped.
1747  */
1748 void
1749 lwkt_smp_stopped(void)
1750 {
1751     globaldata_t gd = mycpu;
1752 
1753     crit_enter_gd(gd);
1754     if (dumping) {
1755 	lwkt_process_ipiq();
1756 	splz();
1757     } else {
1758 	lwkt_process_ipiq();
1759     }
1760     crit_exit_gd(gd);
1761 }
1762 
1763 #endif
1764