1 /* 2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Each cpu in a system has its own self-contained light weight kernel 37 * thread scheduler, which means that generally speaking we only need 38 * to use a critical section to avoid problems. Foreign thread 39 * scheduling is queued via (async) IPIs. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/rtprio.h> 47 #include <sys/kinfo.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 #include <machine/cpu.h> 52 #include <sys/lock.h> 53 #include <sys/caps.h> 54 #include <sys/spinlock.h> 55 #include <sys/ktr.h> 56 57 #include <sys/thread2.h> 58 #include <sys/spinlock2.h> 59 #include <sys/mplock2.h> 60 61 #include <sys/dsched.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_pager.h> 70 #include <vm/vm_extern.h> 71 72 #include <machine/stdarg.h> 73 #include <machine/smp.h> 74 75 #if !defined(KTR_CTXSW) 76 #define KTR_CTXSW KTR_ALL 77 #endif 78 KTR_INFO_MASTER(ctxsw); 79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", 80 sizeof(int) + sizeof(struct thread *)); 81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", 82 sizeof(int) + sizeof(struct thread *)); 83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", 84 sizeof (struct thread *) + sizeof(char *)); 85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *)); 86 87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads"); 88 89 #ifdef INVARIANTS 90 static int panic_on_cscount = 0; 91 #endif 92 static __int64_t switch_count = 0; 93 static __int64_t preempt_hit = 0; 94 static __int64_t preempt_miss = 0; 95 static __int64_t preempt_weird = 0; 96 static __int64_t token_contention_count __debugvar = 0; 97 static int lwkt_use_spin_port; 98 static struct objcache *thread_cache; 99 100 #ifdef SMP 101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame); 102 static void lwkt_setcpu_remote(void *arg); 103 #endif 104 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td); 105 106 extern void cpu_heavy_restore(void); 107 extern void cpu_lwkt_restore(void); 108 extern void cpu_kthread_restore(void); 109 extern void cpu_idle_restore(void); 110 111 /* 112 * We can make all thread ports use the spin backend instead of the thread 113 * backend. This should only be set to debug the spin backend. 114 */ 115 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port); 116 117 #ifdef INVARIANTS 118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, 119 "Panic if attempting to switch lwkt's while mastering cpusync"); 120 #endif 121 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, 122 "Number of switched threads"); 123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 124 "Successful preemption events"); 125 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 126 "Failed preemption events"); 127 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, 128 "Number of preempted threads."); 129 #ifdef INVARIANTS 130 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW, 131 &token_contention_count, 0, "spinning due to token contention"); 132 #endif 133 static int fairq_enable = 1; 134 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, 135 &fairq_enable, 0, "Turn on fairq priority accumulators"); 136 static int lwkt_spin_loops = 10; 137 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW, 138 &lwkt_spin_loops, 0, ""); 139 static int lwkt_spin_delay = 1; 140 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW, 141 &lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto"); 142 static int lwkt_spin_method = 1; 143 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW, 144 &lwkt_spin_method, 0, "LWKT scheduler behavior when contended"); 145 static int lwkt_spin_fatal = 0; /* disabled */ 146 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW, 147 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic"); 148 static int preempt_enable = 1; 149 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW, 150 &preempt_enable, 0, "Enable preemption"); 151 static int lwkt_cache_threads = 32; 152 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD, 153 &lwkt_cache_threads, 0, "thread+kstack cache"); 154 155 static __cachealign int lwkt_cseq_rindex; 156 static __cachealign int lwkt_cseq_windex; 157 158 /* 159 * These helper procedures handle the runq, they can only be called from 160 * within a critical section. 161 * 162 * WARNING! Prior to SMP being brought up it is possible to enqueue and 163 * dequeue threads belonging to other cpus, so be sure to use td->td_gd 164 * instead of 'mycpu' when referencing the globaldata structure. Once 165 * SMP live enqueuing and dequeueing only occurs on the current cpu. 166 */ 167 static __inline 168 void 169 _lwkt_dequeue(thread_t td) 170 { 171 if (td->td_flags & TDF_RUNQ) { 172 struct globaldata *gd = td->td_gd; 173 174 td->td_flags &= ~TDF_RUNQ; 175 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq); 176 gd->gd_fairq_total_pri -= td->td_pri; 177 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL) 178 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING); 179 } 180 } 181 182 /* 183 * Priority enqueue. 184 * 185 * NOTE: There are a limited number of lwkt threads runnable since user 186 * processes only schedule one at a time per cpu. 187 */ 188 static __inline 189 void 190 _lwkt_enqueue(thread_t td) 191 { 192 thread_t xtd; 193 194 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) { 195 struct globaldata *gd = td->td_gd; 196 197 td->td_flags |= TDF_RUNQ; 198 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 199 if (xtd == NULL) { 200 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 201 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING); 202 } else { 203 while (xtd && xtd->td_pri > td->td_pri) 204 xtd = TAILQ_NEXT(xtd, td_threadq); 205 if (xtd) 206 TAILQ_INSERT_BEFORE(xtd, td, td_threadq); 207 else 208 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq); 209 } 210 gd->gd_fairq_total_pri += td->td_pri; 211 } 212 } 213 214 static __boolean_t 215 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags) 216 { 217 struct thread *td = (struct thread *)obj; 218 219 td->td_kstack = NULL; 220 td->td_kstack_size = 0; 221 td->td_flags = TDF_ALLOCATED_THREAD; 222 return (1); 223 } 224 225 static void 226 _lwkt_thread_dtor(void *obj, void *privdata) 227 { 228 struct thread *td = (struct thread *)obj; 229 230 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD, 231 ("_lwkt_thread_dtor: not allocated from objcache")); 232 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack && 233 td->td_kstack_size > 0, 234 ("_lwkt_thread_dtor: corrupted stack")); 235 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 236 } 237 238 /* 239 * Initialize the lwkt s/system. 240 * 241 * Nominally cache up to 32 thread + kstack structures. 242 */ 243 void 244 lwkt_init(void) 245 { 246 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads); 247 thread_cache = objcache_create_mbacked( 248 M_THREAD, sizeof(struct thread), 249 NULL, lwkt_cache_threads, 250 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL); 251 } 252 253 /* 254 * Schedule a thread to run. As the current thread we can always safely 255 * schedule ourselves, and a shortcut procedure is provided for that 256 * function. 257 * 258 * (non-blocking, self contained on a per cpu basis) 259 */ 260 void 261 lwkt_schedule_self(thread_t td) 262 { 263 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 264 crit_enter_quick(td); 265 KASSERT(td != &td->td_gd->gd_idlethread, 266 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!")); 267 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 268 _lwkt_enqueue(td); 269 crit_exit_quick(td); 270 } 271 272 /* 273 * Deschedule a thread. 274 * 275 * (non-blocking, self contained on a per cpu basis) 276 */ 277 void 278 lwkt_deschedule_self(thread_t td) 279 { 280 crit_enter_quick(td); 281 _lwkt_dequeue(td); 282 crit_exit_quick(td); 283 } 284 285 /* 286 * LWKTs operate on a per-cpu basis 287 * 288 * WARNING! Called from early boot, 'mycpu' may not work yet. 289 */ 290 void 291 lwkt_gdinit(struct globaldata *gd) 292 { 293 TAILQ_INIT(&gd->gd_tdrunq); 294 TAILQ_INIT(&gd->gd_tdallq); 295 } 296 297 /* 298 * Create a new thread. The thread must be associated with a process context 299 * or LWKT start address before it can be scheduled. If the target cpu is 300 * -1 the thread will be created on the current cpu. 301 * 302 * If you intend to create a thread without a process context this function 303 * does everything except load the startup and switcher function. 304 */ 305 thread_t 306 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags) 307 { 308 globaldata_t gd = mycpu; 309 void *stack; 310 311 /* 312 * If static thread storage is not supplied allocate a thread. Reuse 313 * a cached free thread if possible. gd_freetd is used to keep an exiting 314 * thread intact through the exit. 315 */ 316 if (td == NULL) { 317 crit_enter_gd(gd); 318 if ((td = gd->gd_freetd) != NULL) { 319 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 320 TDF_RUNQ)) == 0); 321 gd->gd_freetd = NULL; 322 } else { 323 td = objcache_get(thread_cache, M_WAITOK); 324 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 325 TDF_RUNQ)) == 0); 326 } 327 crit_exit_gd(gd); 328 KASSERT((td->td_flags & 329 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD, 330 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags)); 331 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK); 332 } 333 334 /* 335 * Try to reuse cached stack. 336 */ 337 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) { 338 if (flags & TDF_ALLOCATED_STACK) { 339 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size); 340 stack = NULL; 341 } 342 } 343 if (stack == NULL) { 344 stack = (void *)kmem_alloc_stack(&kernel_map, stksize); 345 flags |= TDF_ALLOCATED_STACK; 346 } 347 if (cpu < 0) 348 lwkt_init_thread(td, stack, stksize, flags, gd); 349 else 350 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu)); 351 return(td); 352 } 353 354 /* 355 * Initialize a preexisting thread structure. This function is used by 356 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread. 357 * 358 * All threads start out in a critical section at a priority of 359 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as 360 * appropriate. This function may send an IPI message when the 361 * requested cpu is not the current cpu and consequently gd_tdallq may 362 * not be initialized synchronously from the point of view of the originating 363 * cpu. 364 * 365 * NOTE! we have to be careful in regards to creating threads for other cpus 366 * if SMP has not yet been activated. 367 */ 368 #ifdef SMP 369 370 static void 371 lwkt_init_thread_remote(void *arg) 372 { 373 thread_t td = arg; 374 375 /* 376 * Protected by critical section held by IPI dispatch 377 */ 378 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq); 379 } 380 381 #endif 382 383 /* 384 * lwkt core thread structural initialization. 385 * 386 * NOTE: All threads are initialized as mpsafe threads. 387 */ 388 void 389 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags, 390 struct globaldata *gd) 391 { 392 globaldata_t mygd = mycpu; 393 394 bzero(td, sizeof(struct thread)); 395 td->td_kstack = stack; 396 td->td_kstack_size = stksize; 397 td->td_flags = flags; 398 td->td_gd = gd; 399 td->td_pri = TDPRI_KERN_DAEMON; 400 td->td_critcount = 1; 401 td->td_toks_stop = &td->td_toks_base; 402 if (lwkt_use_spin_port) 403 lwkt_initport_spin(&td->td_msgport); 404 else 405 lwkt_initport_thread(&td->td_msgport, td); 406 pmap_init_thread(td); 407 #ifdef SMP 408 /* 409 * Normally initializing a thread for a remote cpu requires sending an 410 * IPI. However, the idlethread is setup before the other cpus are 411 * activated so we have to treat it as a special case. XXX manipulation 412 * of gd_tdallq requires the BGL. 413 */ 414 if (gd == mygd || td == &gd->gd_idlethread) { 415 crit_enter_gd(mygd); 416 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 417 crit_exit_gd(mygd); 418 } else { 419 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td); 420 } 421 #else 422 crit_enter_gd(mygd); 423 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); 424 crit_exit_gd(mygd); 425 #endif 426 427 dsched_new_thread(td); 428 } 429 430 void 431 lwkt_set_comm(thread_t td, const char *ctl, ...) 432 { 433 __va_list va; 434 435 __va_start(va, ctl); 436 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va); 437 __va_end(va); 438 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]); 439 } 440 441 void 442 lwkt_hold(thread_t td) 443 { 444 atomic_add_int(&td->td_refs, 1); 445 } 446 447 void 448 lwkt_rele(thread_t td) 449 { 450 KKASSERT(td->td_refs > 0); 451 atomic_add_int(&td->td_refs, -1); 452 } 453 454 void 455 lwkt_wait_free(thread_t td) 456 { 457 while (td->td_refs) 458 tsleep(td, 0, "tdreap", hz); 459 } 460 461 void 462 lwkt_free_thread(thread_t td) 463 { 464 KKASSERT(td->td_refs == 0); 465 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0); 466 if (td->td_flags & TDF_ALLOCATED_THREAD) { 467 objcache_put(thread_cache, td); 468 } else if (td->td_flags & TDF_ALLOCATED_STACK) { 469 /* client-allocated struct with internally allocated stack */ 470 KASSERT(td->td_kstack && td->td_kstack_size > 0, 471 ("lwkt_free_thread: corrupted stack")); 472 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size); 473 td->td_kstack = NULL; 474 td->td_kstack_size = 0; 475 } 476 KTR_LOG(ctxsw_deadtd, td); 477 } 478 479 480 /* 481 * Switch to the next runnable lwkt. If no LWKTs are runnable then 482 * switch to the idlethread. Switching must occur within a critical 483 * section to avoid races with the scheduling queue. 484 * 485 * We always have full control over our cpu's run queue. Other cpus 486 * that wish to manipulate our queue must use the cpu_*msg() calls to 487 * talk to our cpu, so a critical section is all that is needed and 488 * the result is very, very fast thread switching. 489 * 490 * The LWKT scheduler uses a fixed priority model and round-robins at 491 * each priority level. User process scheduling is a totally 492 * different beast and LWKT priorities should not be confused with 493 * user process priorities. 494 * 495 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch() 496 * is not called by the current thread in the preemption case, only when 497 * the preempting thread blocks (in order to return to the original thread). 498 * 499 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread 500 * migration and tsleep deschedule the current lwkt thread and call 501 * lwkt_switch(). In particular, the target cpu of the migration fully 502 * expects the thread to become non-runnable and can deadlock against 503 * cpusync operations if we run any IPIs prior to switching the thread out. 504 * 505 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF 506 * THE CURRENT THREAD HAS BEEN DESCHEDULED! 507 */ 508 void 509 lwkt_switch(void) 510 { 511 globaldata_t gd = mycpu; 512 thread_t td = gd->gd_curthread; 513 thread_t ntd; 514 thread_t xtd; 515 int spinning = lwkt_spin_loops; /* loops before HLTing */ 516 int reqflags; 517 int cseq; 518 int oseq; 519 int fatal_count; 520 521 /* 522 * Switching from within a 'fast' (non thread switched) interrupt or IPI 523 * is illegal. However, we may have to do it anyway if we hit a fatal 524 * kernel trap or we have paniced. 525 * 526 * If this case occurs save and restore the interrupt nesting level. 527 */ 528 if (gd->gd_intr_nesting_level) { 529 int savegdnest; 530 int savegdtrap; 531 532 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) { 533 panic("lwkt_switch: Attempt to switch from a " 534 "a fast interrupt, ipi, or hard code section, " 535 "td %p\n", 536 td); 537 } else { 538 savegdnest = gd->gd_intr_nesting_level; 539 savegdtrap = gd->gd_trap_nesting_level; 540 gd->gd_intr_nesting_level = 0; 541 gd->gd_trap_nesting_level = 0; 542 if ((td->td_flags & TDF_PANICWARN) == 0) { 543 td->td_flags |= TDF_PANICWARN; 544 kprintf("Warning: thread switch from interrupt, IPI, " 545 "or hard code section.\n" 546 "thread %p (%s)\n", td, td->td_comm); 547 print_backtrace(-1); 548 } 549 lwkt_switch(); 550 gd->gd_intr_nesting_level = savegdnest; 551 gd->gd_trap_nesting_level = savegdtrap; 552 return; 553 } 554 } 555 556 /* 557 * Passive release (used to transition from user to kernel mode 558 * when we block or switch rather then when we enter the kernel). 559 * This function is NOT called if we are switching into a preemption 560 * or returning from a preemption. Typically this causes us to lose 561 * our current process designation (if we have one) and become a true 562 * LWKT thread, and may also hand the current process designation to 563 * another process and schedule thread. 564 */ 565 if (td->td_release) 566 td->td_release(td); 567 568 crit_enter_gd(gd); 569 if (TD_TOKS_HELD(td)) 570 lwkt_relalltokens(td); 571 572 /* 573 * We had better not be holding any spin locks, but don't get into an 574 * endless panic loop. 575 */ 576 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 577 ("lwkt_switch: still holding %d exclusive spinlocks!", 578 gd->gd_spinlocks_wr)); 579 580 581 #ifdef SMP 582 #ifdef INVARIANTS 583 if (td->td_cscount) { 584 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n", 585 td); 586 if (panic_on_cscount) 587 panic("switching while mastering cpusync"); 588 } 589 #endif 590 #endif 591 592 /* 593 * If we had preempted another thread on this cpu, resume the preempted 594 * thread. This occurs transparently, whether the preempted thread 595 * was scheduled or not (it may have been preempted after descheduling 596 * itself). 597 * 598 * We have to setup the MP lock for the original thread after backing 599 * out the adjustment that was made to curthread when the original 600 * was preempted. 601 */ 602 if ((ntd = td->td_preempted) != NULL) { 603 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK); 604 ntd->td_flags |= TDF_PREEMPT_DONE; 605 606 /* 607 * The interrupt may have woken a thread up, we need to properly 608 * set the reschedule flag if the originally interrupted thread is 609 * at a lower priority. 610 */ 611 if (TAILQ_FIRST(&gd->gd_tdrunq) && 612 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) { 613 need_lwkt_resched(); 614 } 615 /* YYY release mp lock on switchback if original doesn't need it */ 616 goto havethread_preempted; 617 } 618 619 /* 620 * Implement round-robin fairq with priority insertion. The priority 621 * insertion is handled by _lwkt_enqueue() 622 * 623 * If we cannot obtain ownership of the tokens we cannot immediately 624 * schedule the target thread. 625 * 626 * Reminder: Again, we cannot afford to run any IPIs in this path if 627 * the current thread has been descheduled. 628 */ 629 for (;;) { 630 /* 631 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request) 632 * and set RQF_WAKEUP (prevent unnecessary IPIs from being 633 * received). 634 */ 635 for (;;) { 636 reqflags = gd->gd_reqflags; 637 if (atomic_cmpset_int(&gd->gd_reqflags, reqflags, 638 (reqflags & ~RQF_AST_LWKT_RESCHED) | 639 RQF_WAKEUP)) { 640 break; 641 } 642 } 643 644 /* 645 * Hotpath - pull the head of the run queue and attempt to schedule 646 * it. Fairq exhaustion moves the task to the end of the list. If 647 * no threads are runnable we switch to the idle thread. 648 */ 649 for (;;) { 650 ntd = TAILQ_FIRST(&gd->gd_tdrunq); 651 652 if (ntd == NULL) { 653 /* 654 * Runq is empty, switch to idle and clear RQF_WAKEUP 655 * to allow it to halt. 656 */ 657 ntd = &gd->gd_idlethread; 658 #ifdef SMP 659 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 660 ASSERT_NO_TOKENS_HELD(ntd); 661 #endif 662 cpu_time.cp_msg[0] = 0; 663 cpu_time.cp_stallpc = 0; 664 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 665 goto haveidle; 666 } 667 668 if (ntd->td_fairq_accum >= 0) 669 break; 670 671 /*splz_check(); cannot do this here, see above */ 672 lwkt_fairq_accumulate(gd, ntd); 673 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 674 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq); 675 } 676 677 /* 678 * Hotpath - schedule ntd. Leaves RQF_WAKEUP set to prevent 679 * unwanted decontention IPIs. 680 * 681 * NOTE: For UP there is no mplock and lwkt_getalltokens() 682 * always succeeds. 683 */ 684 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 685 goto havethread; 686 687 /* 688 * Coldpath (SMP only since tokens always succeed on UP) 689 * 690 * We had some contention on the thread we wanted to schedule. 691 * What we do now is try to find a thread that we can schedule 692 * in its stead until decontention reschedules on our cpu. 693 * 694 * The coldpath scan does NOT rearrange threads in the run list 695 * and it also ignores the accumulator. 696 * 697 * We do not immediately schedule a user priority thread, instead 698 * we record it in xtd and continue looking for kernel threads. 699 * A cpu can only have one user priority thread (normally) so just 700 * record the first one. 701 * 702 * NOTE: This scan will also include threads whos fairq's were 703 * accumulated in the first loop. 704 */ 705 ++token_contention_count; 706 xtd = NULL; 707 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) { 708 /* 709 * Try to switch to this thread. If the thread is running at 710 * user priority we clear WAKEUP to allow decontention IPIs 711 * (since this thread is simply running until the one we wanted 712 * decontends), and we make sure that LWKT_RESCHED is not set. 713 * 714 * Otherwise for kernel threads we leave WAKEUP set to avoid 715 * unnecessary decontention IPIs. 716 */ 717 if (ntd->td_pri < TDPRI_KERN_LPSCHED) { 718 if (xtd == NULL) 719 xtd = ntd; 720 continue; 721 } 722 723 /* 724 * Do not let the fairq get too negative. Even though we are 725 * ignoring it atm once the scheduler decontends a very negative 726 * thread will get moved to the end of the queue. 727 */ 728 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) { 729 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 730 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 731 goto havethread; 732 } 733 734 /* 735 * Well fubar, this thread is contended as well, loop 736 */ 737 /* */ 738 } 739 740 /* 741 * We exhausted the run list but we may have recorded a user 742 * thread to try. We have three choices based on 743 * lwkt.decontention_method. 744 * 745 * (0) Atomically clear RQF_WAKEUP in order to receive decontention 746 * IPIs (to interrupt the user process) and test 747 * RQF_AST_LWKT_RESCHED at the same time. 748 * 749 * This results in significant decontention IPI traffic but may 750 * be more responsive. 751 * 752 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI. 753 * An automatic LWKT reschedule will occur on the next hardclock 754 * (typically 100hz). 755 * 756 * This results in no decontention IPI traffic but may be less 757 * responsive. This is the default. 758 * 759 * (2) Refuse to schedule the user process at this time. 760 * 761 * This is highly experimental and should not be used under 762 * normal circumstances. This can cause a user process to 763 * get starved out in situations where kernel threads are 764 * fighting each other for tokens. 765 */ 766 if (xtd) { 767 ntd = xtd; 768 769 switch(lwkt_spin_method) { 770 case 0: 771 for (;;) { 772 reqflags = gd->gd_reqflags; 773 if (atomic_cmpset_int(&gd->gd_reqflags, 774 reqflags, 775 reqflags & ~RQF_WAKEUP)) { 776 break; 777 } 778 } 779 break; 780 case 1: 781 reqflags = gd->gd_reqflags; 782 break; 783 default: 784 goto skip; 785 break; 786 } 787 if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 && 788 (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) 789 ) { 790 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd)) 791 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd); 792 goto havethread; 793 } 794 795 skip: 796 /* 797 * Make sure RQF_WAKEUP is set if we failed to schedule the 798 * user thread to prevent the idle thread from halting. 799 */ 800 atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP); 801 } 802 803 /* 804 * We exhausted the run list, meaning that all runnable threads 805 * are contended. 806 */ 807 cpu_pause(); 808 ntd = &gd->gd_idlethread; 809 #ifdef SMP 810 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) 811 ASSERT_NO_TOKENS_HELD(ntd); 812 /* contention case, do not clear contention mask */ 813 #endif 814 815 /* 816 * Ok, we might want to spin a few times as some tokens are held for 817 * very short periods of time and IPI overhead is 1uS or worse 818 * (meaning it is usually better to spin). Regardless we have to 819 * call splz_check() to be sure to service any interrupts blocked 820 * by our critical section, otherwise we could livelock e.g. IPIs. 821 * 822 * The IPI mechanic is really a last resort. In nearly all other 823 * cases RQF_WAKEUP is left set to prevent decontention IPIs. 824 * 825 * When we decide not to spin we clear RQF_WAKEUP and switch to 826 * the idle thread. Clearing RQF_WEAKEUP allows the idle thread 827 * to halt and decontended tokens will issue an IPI to us. The 828 * idle thread will check for pending reschedules already set 829 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have 830 * to here. 831 * 832 * Also, if TDF_RUNQ is not set the current thread is trying to 833 * deschedule, possibly in an atomic fashion. We cannot afford to 834 * stay here. 835 */ 836 if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) { 837 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP); 838 goto haveidle; 839 } 840 --spinning; 841 842 /* 843 * When spinning a delay is required both to avoid livelocks from 844 * token order reversals (a thread may be trying to acquire multiple 845 * tokens), and also to reduce cpu cache management traffic. 846 * 847 * In order to scale to a large number of CPUs we use a time slot 848 * resequencer to force contending cpus into non-contending 849 * time-slots. The scheduler may still contend with the lock holder 850 * but will not (generally) contend with all the other cpus trying 851 * trying to get the same token. 852 * 853 * The resequencer uses a FIFO counter mechanic. The owner of the 854 * rindex at the head of the FIFO is allowed to pull itself off 855 * the FIFO and fetchadd is used to enter into the FIFO. This bit 856 * of code is VERY cache friendly and forces all spinning schedulers 857 * into their own time slots. 858 * 859 * This code has been tested to 48-cpus and caps the cache 860 * contention load at ~1uS intervals regardless of the number of 861 * cpus. Scaling beyond 64 cpus might require additional smarts 862 * (such as separate FIFOs for specific token cases). 863 * 864 * WARNING! We can't call splz_check() or anything else here as 865 * it could cause a deadlock. 866 */ 867 #if defined(INVARIANTS) && defined(__amd64__) 868 if ((read_rflags() & PSL_I) == 0) { 869 cpu_enable_intr(); 870 panic("lwkt_switch() called with interrupts disabled"); 871 } 872 #endif 873 cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1); 874 fatal_count = lwkt_spin_fatal; 875 while ((oseq = lwkt_cseq_rindex) != cseq) { 876 cpu_ccfence(); 877 #if !defined(_KERNEL_VIRTUAL) 878 if (cpu_mi_feature & CPU_MI_MONITOR) { 879 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq); 880 } else 881 #endif 882 { 883 DELAY(1); 884 cpu_lfence(); 885 } 886 if (fatal_count && --fatal_count == 0) 887 panic("lwkt_switch: fatal spin wait"); 888 } 889 cseq = lwkt_spin_delay; /* don't trust the system operator */ 890 cpu_ccfence(); 891 if (cseq < 1) 892 cseq = 1; 893 if (cseq > 1000) 894 cseq = 1000; 895 DELAY(cseq); 896 atomic_add_int(&lwkt_cseq_rindex, 1); 897 splz_check(); /* ok, we already checked that td is still scheduled */ 898 /* highest level for(;;) loop */ 899 } 900 901 havethread: 902 /* 903 * We must always decrement td_fairq_accum on non-idle threads just 904 * in case a thread never gets a tick due to being in a continuous 905 * critical section. The page-zeroing code does this, for example. 906 * 907 * If the thread we came up with is a higher or equal priority verses 908 * the thread at the head of the queue we move our thread to the 909 * front. This way we can always check the front of the queue. 910 * 911 * Clear gd_idle_repeat when doing a normal switch to a non-idle 912 * thread. 913 */ 914 ++gd->gd_cnt.v_swtch; 915 --ntd->td_fairq_accum; 916 ntd->td_wmesg = NULL; 917 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 918 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) { 919 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq); 920 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq); 921 } 922 gd->gd_idle_repeat = 0; 923 924 havethread_preempted: 925 /* 926 * If the new target does not need the MP lock and we are holding it, 927 * release the MP lock. If the new target requires the MP lock we have 928 * already acquired it for the target. 929 */ 930 ; 931 haveidle: 932 KASSERT(ntd->td_critcount, 933 ("priority problem in lwkt_switch %d %d", 934 td->td_critcount, ntd->td_critcount)); 935 936 if (td != ntd) { 937 /* 938 * Execute the actual thread switch operation. This function 939 * returns to the current thread and returns the previous thread 940 * (which may be different from the thread we switched to). 941 * 942 * We are responsible for marking ntd as TDF_RUNNING. 943 */ 944 ++switch_count; 945 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd); 946 ntd->td_flags |= TDF_RUNNING; 947 lwkt_switch_return(td->td_switch(ntd)); 948 /* ntd invalid, td_switch() can return a different thread_t */ 949 } 950 /* NOTE: current cpu may have changed after switch */ 951 crit_exit_quick(td); 952 } 953 954 /* 955 * Called by assembly in the td_switch (thread restore path) for thread 956 * bootstrap cases which do not 'return' to lwkt_switch(). 957 */ 958 void 959 lwkt_switch_return(thread_t otd) 960 { 961 #ifdef SMP 962 globaldata_t rgd; 963 964 /* 965 * Check if otd was migrating. Now that we are on ntd we can finish 966 * up the migration. This is a bit messy but it is the only place 967 * where td is known to be fully descheduled. 968 * 969 * We can only activate the migration if otd was migrating but not 970 * held on the cpu due to a preemption chain. We still have to 971 * clear TDF_RUNNING on the old thread either way. 972 * 973 * We are responsible for clearing the previously running thread's 974 * TDF_RUNNING. 975 */ 976 if ((rgd = otd->td_migrate_gd) != NULL && 977 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) { 978 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) == 979 (TDF_MIGRATING | TDF_RUNNING)); 980 otd->td_migrate_gd = NULL; 981 otd->td_flags &= ~TDF_RUNNING; 982 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd); 983 } else { 984 otd->td_flags &= ~TDF_RUNNING; 985 } 986 #else 987 otd->td_flags &= ~TDF_RUNNING; 988 #endif 989 } 990 991 /* 992 * Request that the target thread preempt the current thread. Preemption 993 * only works under a specific set of conditions: 994 * 995 * - We are not preempting ourselves 996 * - The target thread is owned by the current cpu 997 * - We are not currently being preempted 998 * - The target is not currently being preempted 999 * - We are not holding any spin locks 1000 * - The target thread is not holding any tokens 1001 * - We are able to satisfy the target's MP lock requirements (if any). 1002 * 1003 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically 1004 * this is called via lwkt_schedule() through the td_preemptable callback. 1005 * critcount is the managed critical priority that we should ignore in order 1006 * to determine whether preemption is possible (aka usually just the crit 1007 * priority of lwkt_schedule() itself). 1008 * 1009 * XXX at the moment we run the target thread in a critical section during 1010 * the preemption in order to prevent the target from taking interrupts 1011 * that *WE* can't. Preemption is strictly limited to interrupt threads 1012 * and interrupt-like threads, outside of a critical section, and the 1013 * preempted source thread will be resumed the instant the target blocks 1014 * whether or not the source is scheduled (i.e. preemption is supposed to 1015 * be as transparent as possible). 1016 */ 1017 void 1018 lwkt_preempt(thread_t ntd, int critcount) 1019 { 1020 struct globaldata *gd = mycpu; 1021 thread_t xtd; 1022 thread_t td; 1023 int save_gd_intr_nesting_level; 1024 1025 /* 1026 * The caller has put us in a critical section. We can only preempt 1027 * if the caller of the caller was not in a critical section (basically 1028 * a local interrupt), as determined by the 'critcount' parameter. We 1029 * also can't preempt if the caller is holding any spinlocks (even if 1030 * he isn't in a critical section). This also handles the tokens test. 1031 * 1032 * YYY The target thread must be in a critical section (else it must 1033 * inherit our critical section? I dunno yet). 1034 * 1035 * Set need_lwkt_resched() unconditionally for now YYY. 1036 */ 1037 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri)); 1038 1039 if (preempt_enable == 0) { 1040 ++preempt_miss; 1041 return; 1042 } 1043 1044 td = gd->gd_curthread; 1045 if (ntd->td_pri <= td->td_pri) { 1046 ++preempt_miss; 1047 return; 1048 } 1049 if (td->td_critcount > critcount) { 1050 ++preempt_miss; 1051 need_lwkt_resched(); 1052 return; 1053 } 1054 #ifdef SMP 1055 if (ntd->td_gd != gd) { 1056 ++preempt_miss; 1057 need_lwkt_resched(); 1058 return; 1059 } 1060 #endif 1061 /* 1062 * We don't have to check spinlocks here as they will also bump 1063 * td_critcount. 1064 * 1065 * Do not try to preempt if the target thread is holding any tokens. 1066 * We could try to acquire the tokens but this case is so rare there 1067 * is no need to support it. 1068 */ 1069 KKASSERT(gd->gd_spinlocks_wr == 0); 1070 1071 if (TD_TOKS_HELD(ntd)) { 1072 ++preempt_miss; 1073 need_lwkt_resched(); 1074 return; 1075 } 1076 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) { 1077 ++preempt_weird; 1078 need_lwkt_resched(); 1079 return; 1080 } 1081 if (ntd->td_preempted) { 1082 ++preempt_hit; 1083 need_lwkt_resched(); 1084 return; 1085 } 1086 1087 /* 1088 * Since we are able to preempt the current thread, there is no need to 1089 * call need_lwkt_resched(). 1090 * 1091 * We must temporarily clear gd_intr_nesting_level around the switch 1092 * since switchouts from the target thread are allowed (they will just 1093 * return to our thread), and since the target thread has its own stack. 1094 * 1095 * A preemption must switch back to the original thread, assert the 1096 * case. 1097 */ 1098 ++preempt_hit; 1099 ntd->td_preempted = td; 1100 td->td_flags |= TDF_PREEMPT_LOCK; 1101 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd); 1102 save_gd_intr_nesting_level = gd->gd_intr_nesting_level; 1103 gd->gd_intr_nesting_level = 0; 1104 ntd->td_flags |= TDF_RUNNING; 1105 xtd = td->td_switch(ntd); 1106 KKASSERT(xtd == ntd); 1107 lwkt_switch_return(xtd); 1108 gd->gd_intr_nesting_level = save_gd_intr_nesting_level; 1109 1110 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE)); 1111 ntd->td_preempted = NULL; 1112 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE); 1113 } 1114 1115 /* 1116 * Conditionally call splz() if gd_reqflags indicates work is pending. 1117 * This will work inside a critical section but not inside a hard code 1118 * section. 1119 * 1120 * (self contained on a per cpu basis) 1121 */ 1122 void 1123 splz_check(void) 1124 { 1125 globaldata_t gd = mycpu; 1126 thread_t td = gd->gd_curthread; 1127 1128 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && 1129 gd->gd_intr_nesting_level == 0 && 1130 td->td_nest_count < 2) 1131 { 1132 splz(); 1133 } 1134 } 1135 1136 /* 1137 * This version is integrated into crit_exit, reqflags has already 1138 * been tested but td_critcount has not. 1139 * 1140 * We only want to execute the splz() on the 1->0 transition of 1141 * critcount and not in a hard code section or if too deeply nested. 1142 */ 1143 void 1144 lwkt_maybe_splz(thread_t td) 1145 { 1146 globaldata_t gd = td->td_gd; 1147 1148 if (td->td_critcount == 0 && 1149 gd->gd_intr_nesting_level == 0 && 1150 td->td_nest_count < 2) 1151 { 1152 splz(); 1153 } 1154 } 1155 1156 /* 1157 * This function is used to negotiate a passive release of the current 1158 * process/lwp designation with the user scheduler, allowing the user 1159 * scheduler to schedule another user thread. The related kernel thread 1160 * (curthread) continues running in the released state. 1161 */ 1162 void 1163 lwkt_passive_release(struct thread *td) 1164 { 1165 struct lwp *lp = td->td_lwp; 1166 1167 td->td_release = NULL; 1168 lwkt_setpri_self(TDPRI_KERN_USER); 1169 lp->lwp_proc->p_usched->release_curproc(lp); 1170 } 1171 1172 1173 /* 1174 * This implements a normal yield. This routine is virtually a nop if 1175 * there is nothing to yield to but it will always run any pending interrupts 1176 * if called from a critical section. 1177 * 1178 * This yield is designed for kernel threads without a user context. 1179 * 1180 * (self contained on a per cpu basis) 1181 */ 1182 void 1183 lwkt_yield(void) 1184 { 1185 globaldata_t gd = mycpu; 1186 thread_t td = gd->gd_curthread; 1187 thread_t xtd; 1188 1189 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1190 splz(); 1191 if (td->td_fairq_accum < 0) { 1192 lwkt_schedule_self(curthread); 1193 lwkt_switch(); 1194 } else { 1195 xtd = TAILQ_FIRST(&gd->gd_tdrunq); 1196 if (xtd && xtd->td_pri > td->td_pri) { 1197 lwkt_schedule_self(curthread); 1198 lwkt_switch(); 1199 } 1200 } 1201 } 1202 1203 /* 1204 * This yield is designed for kernel threads with a user context. 1205 * 1206 * The kernel acting on behalf of the user is potentially cpu-bound, 1207 * this function will efficiently allow other threads to run and also 1208 * switch to other processes by releasing. 1209 * 1210 * The lwkt_user_yield() function is designed to have very low overhead 1211 * if no yield is determined to be needed. 1212 */ 1213 void 1214 lwkt_user_yield(void) 1215 { 1216 globaldata_t gd = mycpu; 1217 thread_t td = gd->gd_curthread; 1218 1219 /* 1220 * Always run any pending interrupts in case we are in a critical 1221 * section. 1222 */ 1223 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2) 1224 splz(); 1225 1226 /* 1227 * Switch (which forces a release) if another kernel thread needs 1228 * the cpu, if userland wants us to resched, or if our kernel 1229 * quantum has run out. 1230 */ 1231 if (lwkt_resched_wanted() || 1232 user_resched_wanted() || 1233 td->td_fairq_accum < 0) 1234 { 1235 lwkt_switch(); 1236 } 1237 1238 #if 0 1239 /* 1240 * Reacquire the current process if we are released. 1241 * 1242 * XXX not implemented atm. The kernel may be holding locks and such, 1243 * so we want the thread to continue to receive cpu. 1244 */ 1245 if (td->td_release == NULL && lp) { 1246 lp->lwp_proc->p_usched->acquire_curproc(lp); 1247 td->td_release = lwkt_passive_release; 1248 lwkt_setpri_self(TDPRI_USER_NORM); 1249 } 1250 #endif 1251 } 1252 1253 /* 1254 * Generic schedule. Possibly schedule threads belonging to other cpus and 1255 * deal with threads that might be blocked on a wait queue. 1256 * 1257 * We have a little helper inline function which does additional work after 1258 * the thread has been enqueued, including dealing with preemption and 1259 * setting need_lwkt_resched() (which prevents the kernel from returning 1260 * to userland until it has processed higher priority threads). 1261 * 1262 * It is possible for this routine to be called after a failed _enqueue 1263 * (due to the target thread migrating, sleeping, or otherwise blocked). 1264 * We have to check that the thread is actually on the run queue! 1265 * 1266 * reschedok is an optimized constant propagated from lwkt_schedule() or 1267 * lwkt_schedule_noresched(). By default it is non-zero, causing a 1268 * reschedule to be requested if the target thread has a higher priority. 1269 * The port messaging code will set MSG_NORESCHED and cause reschedok to 1270 * be 0, prevented undesired reschedules. 1271 */ 1272 static __inline 1273 void 1274 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok) 1275 { 1276 thread_t otd; 1277 1278 if (ntd->td_flags & TDF_RUNQ) { 1279 if (ntd->td_preemptable && reschedok) { 1280 ntd->td_preemptable(ntd, ccount); /* YYY +token */ 1281 } else if (reschedok) { 1282 otd = curthread; 1283 if (ntd->td_pri > otd->td_pri) 1284 need_lwkt_resched(); 1285 } 1286 1287 /* 1288 * Give the thread a little fair share scheduler bump if it 1289 * has been asleep for a while. This is primarily to avoid 1290 * a degenerate case for interrupt threads where accumulator 1291 * crosses into negative territory unnecessarily. 1292 */ 1293 if (ntd->td_fairq_lticks != ticks) { 1294 ntd->td_fairq_lticks = ticks; 1295 ntd->td_fairq_accum += gd->gd_fairq_total_pri; 1296 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd)) 1297 ntd->td_fairq_accum = TDFAIRQ_MAX(gd); 1298 } 1299 } 1300 } 1301 1302 static __inline 1303 void 1304 _lwkt_schedule(thread_t td, int reschedok) 1305 { 1306 globaldata_t mygd = mycpu; 1307 1308 KASSERT(td != &td->td_gd->gd_idlethread, 1309 ("lwkt_schedule(): scheduling gd_idlethread is illegal!")); 1310 KKASSERT((td->td_flags & TDF_MIGRATING) == 0); 1311 crit_enter_gd(mygd); 1312 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1313 if (td == mygd->gd_curthread) { 1314 _lwkt_enqueue(td); 1315 } else { 1316 /* 1317 * If we own the thread, there is no race (since we are in a 1318 * critical section). If we do not own the thread there might 1319 * be a race but the target cpu will deal with it. 1320 */ 1321 #ifdef SMP 1322 if (td->td_gd == mygd) { 1323 _lwkt_enqueue(td); 1324 _lwkt_schedule_post(mygd, td, 1, reschedok); 1325 } else { 1326 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0); 1327 } 1328 #else 1329 _lwkt_enqueue(td); 1330 _lwkt_schedule_post(mygd, td, 1, reschedok); 1331 #endif 1332 } 1333 crit_exit_gd(mygd); 1334 } 1335 1336 void 1337 lwkt_schedule(thread_t td) 1338 { 1339 _lwkt_schedule(td, 1); 1340 } 1341 1342 void 1343 lwkt_schedule_noresched(thread_t td) 1344 { 1345 _lwkt_schedule(td, 0); 1346 } 1347 1348 #ifdef SMP 1349 1350 /* 1351 * When scheduled remotely if frame != NULL the IPIQ is being 1352 * run via doreti or an interrupt then preemption can be allowed. 1353 * 1354 * To allow preemption we have to drop the critical section so only 1355 * one is present in _lwkt_schedule_post. 1356 */ 1357 static void 1358 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame) 1359 { 1360 thread_t td = curthread; 1361 thread_t ntd = arg; 1362 1363 if (frame && ntd->td_preemptable) { 1364 crit_exit_noyield(td); 1365 _lwkt_schedule(ntd, 1); 1366 crit_enter_quick(td); 1367 } else { 1368 _lwkt_schedule(ntd, 1); 1369 } 1370 } 1371 1372 /* 1373 * Thread migration using a 'Pull' method. The thread may or may not be 1374 * the current thread. It MUST be descheduled and in a stable state. 1375 * lwkt_giveaway() must be called on the cpu owning the thread. 1376 * 1377 * At any point after lwkt_giveaway() is called, the target cpu may 1378 * 'pull' the thread by calling lwkt_acquire(). 1379 * 1380 * We have to make sure the thread is not sitting on a per-cpu tsleep 1381 * queue or it will blow up when it moves to another cpu. 1382 * 1383 * MPSAFE - must be called under very specific conditions. 1384 */ 1385 void 1386 lwkt_giveaway(thread_t td) 1387 { 1388 globaldata_t gd = mycpu; 1389 1390 crit_enter_gd(gd); 1391 if (td->td_flags & TDF_TSLEEPQ) 1392 tsleep_remove(td); 1393 KKASSERT(td->td_gd == gd); 1394 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq); 1395 td->td_flags |= TDF_MIGRATING; 1396 crit_exit_gd(gd); 1397 } 1398 1399 void 1400 lwkt_acquire(thread_t td) 1401 { 1402 globaldata_t gd; 1403 globaldata_t mygd; 1404 int retry = 10000000; 1405 1406 KKASSERT(td->td_flags & TDF_MIGRATING); 1407 gd = td->td_gd; 1408 mygd = mycpu; 1409 if (gd != mycpu) { 1410 cpu_lfence(); 1411 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1412 crit_enter_gd(mygd); 1413 DEBUG_PUSH_INFO("lwkt_acquire"); 1414 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) { 1415 #ifdef SMP 1416 lwkt_process_ipiq(); 1417 #endif 1418 cpu_lfence(); 1419 if (--retry == 0) { 1420 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n", 1421 td, td->td_flags); 1422 retry = 10000000; 1423 } 1424 } 1425 DEBUG_POP_INFO(); 1426 cpu_mfence(); 1427 td->td_gd = mygd; 1428 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1429 td->td_flags &= ~TDF_MIGRATING; 1430 crit_exit_gd(mygd); 1431 } else { 1432 crit_enter_gd(mygd); 1433 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); 1434 td->td_flags &= ~TDF_MIGRATING; 1435 crit_exit_gd(mygd); 1436 } 1437 } 1438 1439 #endif 1440 1441 /* 1442 * Generic deschedule. Descheduling threads other then your own should be 1443 * done only in carefully controlled circumstances. Descheduling is 1444 * asynchronous. 1445 * 1446 * This function may block if the cpu has run out of messages. 1447 */ 1448 void 1449 lwkt_deschedule(thread_t td) 1450 { 1451 crit_enter(); 1452 #ifdef SMP 1453 if (td == curthread) { 1454 _lwkt_dequeue(td); 1455 } else { 1456 if (td->td_gd == mycpu) { 1457 _lwkt_dequeue(td); 1458 } else { 1459 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td); 1460 } 1461 } 1462 #else 1463 _lwkt_dequeue(td); 1464 #endif 1465 crit_exit(); 1466 } 1467 1468 /* 1469 * Set the target thread's priority. This routine does not automatically 1470 * switch to a higher priority thread, LWKT threads are not designed for 1471 * continuous priority changes. Yield if you want to switch. 1472 */ 1473 void 1474 lwkt_setpri(thread_t td, int pri) 1475 { 1476 KKASSERT(td->td_gd == mycpu); 1477 if (td->td_pri != pri) { 1478 KKASSERT(pri >= 0); 1479 crit_enter(); 1480 if (td->td_flags & TDF_RUNQ) { 1481 _lwkt_dequeue(td); 1482 td->td_pri = pri; 1483 _lwkt_enqueue(td); 1484 } else { 1485 td->td_pri = pri; 1486 } 1487 crit_exit(); 1488 } 1489 } 1490 1491 /* 1492 * Set the initial priority for a thread prior to it being scheduled for 1493 * the first time. The thread MUST NOT be scheduled before or during 1494 * this call. The thread may be assigned to a cpu other then the current 1495 * cpu. 1496 * 1497 * Typically used after a thread has been created with TDF_STOPPREQ, 1498 * and before the thread is initially scheduled. 1499 */ 1500 void 1501 lwkt_setpri_initial(thread_t td, int pri) 1502 { 1503 KKASSERT(pri >= 0); 1504 KKASSERT((td->td_flags & TDF_RUNQ) == 0); 1505 td->td_pri = pri; 1506 } 1507 1508 void 1509 lwkt_setpri_self(int pri) 1510 { 1511 thread_t td = curthread; 1512 1513 KKASSERT(pri >= 0 && pri <= TDPRI_MAX); 1514 crit_enter(); 1515 if (td->td_flags & TDF_RUNQ) { 1516 _lwkt_dequeue(td); 1517 td->td_pri = pri; 1518 _lwkt_enqueue(td); 1519 } else { 1520 td->td_pri = pri; 1521 } 1522 crit_exit(); 1523 } 1524 1525 /* 1526 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle. 1527 * 1528 * Example: two competing threads, same priority N. decrement by (2*N) 1529 * increment by N*8, each thread will get 4 ticks. 1530 */ 1531 void 1532 lwkt_fairq_schedulerclock(thread_t td) 1533 { 1534 globaldata_t gd; 1535 1536 if (fairq_enable) { 1537 while (td) { 1538 gd = td->td_gd; 1539 if (td != &gd->gd_idlethread) { 1540 td->td_fairq_accum -= gd->gd_fairq_total_pri; 1541 if (td->td_fairq_accum < -TDFAIRQ_MAX(gd)) 1542 td->td_fairq_accum = -TDFAIRQ_MAX(gd); 1543 if (td->td_fairq_accum < 0) 1544 need_lwkt_resched(); 1545 td->td_fairq_lticks = ticks; 1546 } 1547 td = td->td_preempted; 1548 } 1549 } 1550 } 1551 1552 static void 1553 lwkt_fairq_accumulate(globaldata_t gd, thread_t td) 1554 { 1555 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE; 1556 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd)) 1557 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd); 1558 } 1559 1560 /* 1561 * Migrate the current thread to the specified cpu. 1562 * 1563 * This is accomplished by descheduling ourselves from the current cpu 1564 * and setting td_migrate_gd. The lwkt_switch() code will detect that the 1565 * 'old' thread wants to migrate after it has been completely switched out 1566 * and will complete the migration. 1567 * 1568 * TDF_MIGRATING prevents scheduling races while the thread is being migrated. 1569 * 1570 * We must be sure to release our current process designation (if a user 1571 * process) before clearing out any tsleepq we are on because the release 1572 * code may re-add us. 1573 * 1574 * We must be sure to remove ourselves from the current cpu's tsleepq 1575 * before potentially moving to another queue. The thread can be on 1576 * a tsleepq due to a left-over tsleep_interlock(). 1577 */ 1578 1579 void 1580 lwkt_setcpu_self(globaldata_t rgd) 1581 { 1582 #ifdef SMP 1583 thread_t td = curthread; 1584 1585 if (td->td_gd != rgd) { 1586 crit_enter_quick(td); 1587 1588 if (td->td_release) 1589 td->td_release(td); 1590 if (td->td_flags & TDF_TSLEEPQ) 1591 tsleep_remove(td); 1592 1593 /* 1594 * Set TDF_MIGRATING to prevent a spurious reschedule while we are 1595 * trying to deschedule ourselves and switch away, then deschedule 1596 * ourself, remove us from tdallq, and set td_migrate_gd. Finally, 1597 * call lwkt_switch() to complete the operation. 1598 */ 1599 td->td_flags |= TDF_MIGRATING; 1600 lwkt_deschedule_self(td); 1601 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1602 td->td_migrate_gd = rgd; 1603 lwkt_switch(); 1604 1605 /* 1606 * We are now on the target cpu 1607 */ 1608 KKASSERT(rgd == mycpu); 1609 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); 1610 crit_exit_quick(td); 1611 } 1612 #endif 1613 } 1614 1615 void 1616 lwkt_migratecpu(int cpuid) 1617 { 1618 #ifdef SMP 1619 globaldata_t rgd; 1620 1621 rgd = globaldata_find(cpuid); 1622 lwkt_setcpu_self(rgd); 1623 #endif 1624 } 1625 1626 #ifdef SMP 1627 /* 1628 * Remote IPI for cpu migration (called while in a critical section so we 1629 * do not have to enter another one). 1630 * 1631 * The thread (td) has already been completely descheduled from the 1632 * originating cpu and we can simply assert the case. The thread is 1633 * assigned to the new cpu and enqueued. 1634 * 1635 * The thread will re-add itself to tdallq when it resumes execution. 1636 */ 1637 static void 1638 lwkt_setcpu_remote(void *arg) 1639 { 1640 thread_t td = arg; 1641 globaldata_t gd = mycpu; 1642 1643 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1644 td->td_gd = gd; 1645 cpu_mfence(); 1646 td->td_flags &= ~TDF_MIGRATING; 1647 KKASSERT(td->td_migrate_gd == NULL); 1648 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0); 1649 _lwkt_enqueue(td); 1650 } 1651 #endif 1652 1653 struct lwp * 1654 lwkt_preempted_proc(void) 1655 { 1656 thread_t td = curthread; 1657 while (td->td_preempted) 1658 td = td->td_preempted; 1659 return(td->td_lwp); 1660 } 1661 1662 /* 1663 * Create a kernel process/thread/whatever. It shares it's address space 1664 * with proc0 - ie: kernel only. 1665 * 1666 * NOTE! By default new threads are created with the MP lock held. A 1667 * thread which does not require the MP lock should release it by calling 1668 * rel_mplock() at the start of the new thread. 1669 */ 1670 int 1671 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp, 1672 thread_t template, int tdflags, int cpu, const char *fmt, ...) 1673 { 1674 thread_t td; 1675 __va_list ap; 1676 1677 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu, 1678 tdflags); 1679 if (tdp) 1680 *tdp = td; 1681 cpu_set_thread_handler(td, lwkt_exit, func, arg); 1682 1683 /* 1684 * Set up arg0 for 'ps' etc 1685 */ 1686 __va_start(ap, fmt); 1687 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap); 1688 __va_end(ap); 1689 1690 /* 1691 * Schedule the thread to run 1692 */ 1693 if ((td->td_flags & TDF_STOPREQ) == 0) 1694 lwkt_schedule(td); 1695 else 1696 td->td_flags &= ~TDF_STOPREQ; 1697 return 0; 1698 } 1699 1700 /* 1701 * Destroy an LWKT thread. Warning! This function is not called when 1702 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and 1703 * uses a different reaping mechanism. 1704 */ 1705 void 1706 lwkt_exit(void) 1707 { 1708 thread_t td = curthread; 1709 thread_t std; 1710 globaldata_t gd; 1711 1712 /* 1713 * Do any cleanup that might block here 1714 */ 1715 if (td->td_flags & TDF_VERBOSE) 1716 kprintf("kthread %p %s has exited\n", td, td->td_comm); 1717 caps_exit(td); 1718 biosched_done(td); 1719 dsched_exit_thread(td); 1720 1721 /* 1722 * Get us into a critical section to interlock gd_freetd and loop 1723 * until we can get it freed. 1724 * 1725 * We have to cache the current td in gd_freetd because objcache_put()ing 1726 * it would rip it out from under us while our thread is still active. 1727 */ 1728 gd = mycpu; 1729 crit_enter_quick(td); 1730 while ((std = gd->gd_freetd) != NULL) { 1731 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0); 1732 gd->gd_freetd = NULL; 1733 objcache_put(thread_cache, std); 1734 } 1735 1736 /* 1737 * Remove thread resources from kernel lists and deschedule us for 1738 * the last time. We cannot block after this point or we may end 1739 * up with a stale td on the tsleepq. 1740 */ 1741 if (td->td_flags & TDF_TSLEEPQ) 1742 tsleep_remove(td); 1743 lwkt_deschedule_self(td); 1744 lwkt_remove_tdallq(td); 1745 KKASSERT(td->td_refs == 0); 1746 1747 /* 1748 * Final cleanup 1749 */ 1750 KKASSERT(gd->gd_freetd == NULL); 1751 if (td->td_flags & TDF_ALLOCATED_THREAD) 1752 gd->gd_freetd = td; 1753 cpu_thread_exit(); 1754 } 1755 1756 void 1757 lwkt_remove_tdallq(thread_t td) 1758 { 1759 KKASSERT(td->td_gd == mycpu); 1760 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); 1761 } 1762 1763 /* 1764 * Code reduction and branch prediction improvements. Call/return 1765 * overhead on modern cpus often degenerates into 0 cycles due to 1766 * the cpu's branch prediction hardware and return pc cache. We 1767 * can take advantage of this by not inlining medium-complexity 1768 * functions and we can also reduce the branch prediction impact 1769 * by collapsing perfectly predictable branches into a single 1770 * procedure instead of duplicating it. 1771 * 1772 * Is any of this noticeable? Probably not, so I'll take the 1773 * smaller code size. 1774 */ 1775 void 1776 crit_exit_wrapper(__DEBUG_CRIT_ARG__) 1777 { 1778 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__); 1779 } 1780 1781 void 1782 crit_panic(void) 1783 { 1784 thread_t td = curthread; 1785 int lcrit = td->td_critcount; 1786 1787 td->td_critcount = 0; 1788 panic("td_critcount is/would-go negative! %p %d", td, lcrit); 1789 /* NOT REACHED */ 1790 } 1791 1792 #ifdef SMP 1793 1794 /* 1795 * Called from debugger/panic on cpus which have been stopped. We must still 1796 * process the IPIQ while stopped, even if we were stopped while in a critical 1797 * section (XXX). 1798 * 1799 * If we are dumping also try to process any pending interrupts. This may 1800 * or may not work depending on the state of the cpu at the point it was 1801 * stopped. 1802 */ 1803 void 1804 lwkt_smp_stopped(void) 1805 { 1806 globaldata_t gd = mycpu; 1807 1808 crit_enter_gd(gd); 1809 if (dumping) { 1810 lwkt_process_ipiq(); 1811 splz(); 1812 } else { 1813 lwkt_process_ipiq(); 1814 } 1815 crit_exit_gd(gd); 1816 } 1817 1818 #endif 1819