xref: /dflybsd-src/sys/kern/lwkt_thread.c (revision 0c1d7dca433e727c476aff53acb839b357a28ef6)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static int64_t switch_count = 0;
93 static int64_t preempt_hit = 0;
94 static int64_t preempt_miss = 0;
95 static int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99 
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102 
103 /*
104  * We can make all thread ports use the spin backend instead of the thread
105  * backend.  This should only be set to debug the spin backend.
106  */
107 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
108 
109 #ifdef	INVARIANTS
110 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
111     "Panic if attempting to switch lwkt's while mastering cpusync");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
114     "Number of switched threads");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
116     "Successful preemption events");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
118     "Failed preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
120     "Number of preempted threads.");
121 static int fairq_enable = 0;
122 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
123 	&fairq_enable, 0, "Turn on fairq priority accumulators");
124 static int fairq_bypass = -1;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
126 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 static int lwkt_spin_loops = 10;
132 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 static int preempt_enable = 1;
135 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
136 	&preempt_enable, 0, "Enable preemption");
137 static int lwkt_cache_threads = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
139 	&lwkt_cache_threads, 0, "thread+kstack cache");
140 
141 /*
142  * These helper procedures handle the runq, they can only be called from
143  * within a critical section.
144  *
145  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
146  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
147  * instead of 'mycpu' when referencing the globaldata structure.   Once
148  * SMP live enqueuing and dequeueing only occurs on the current cpu.
149  */
150 static __inline
151 void
152 _lwkt_dequeue(thread_t td)
153 {
154     if (td->td_flags & TDF_RUNQ) {
155 	struct globaldata *gd = td->td_gd;
156 
157 	td->td_flags &= ~TDF_RUNQ;
158 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
159 	--gd->gd_tdrunqcount;
160 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
161 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
162     }
163 }
164 
165 /*
166  * Priority enqueue.
167  *
168  * There are a limited number of lwkt threads runnable since user
169  * processes only schedule one at a time per cpu.  However, there can
170  * be many user processes in kernel mode exiting from a tsleep() which
171  * become runnable.
172  *
173  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
174  *	 will ignore user priority.  This is to ensure that user threads in
175  *	 kernel mode get cpu at some point regardless of what the user
176  *	 scheduler thinks.
177  */
178 static __inline
179 void
180 _lwkt_enqueue(thread_t td)
181 {
182     thread_t xtd;
183 
184     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
185 	struct globaldata *gd = td->td_gd;
186 
187 	td->td_flags |= TDF_RUNQ;
188 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
189 	if (xtd == NULL) {
190 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
191 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
192 	} else {
193 	    /*
194 	     * NOTE: td_upri - higher numbers more desireable, same sense
195 	     *	     as td_pri (typically reversed from lwp_upri).
196 	     *
197 	     *	     In the equal priority case we want the best selection
198 	     *	     at the beginning so the less desireable selections know
199 	     *	     that they have to setrunqueue/go-to-another-cpu, even
200 	     *	     though it means switching back to the 'best' selection.
201 	     *	     This also avoids degenerate situations when many threads
202 	     *	     are runnable or waking up at the same time.
203 	     *
204 	     *	     If upri matches exactly place at end/round-robin.
205 	     */
206 	    while (xtd &&
207 		   (xtd->td_pri >= td->td_pri ||
208 		    (xtd->td_pri == td->td_pri &&
209 		     xtd->td_upri >= td->td_upri))) {
210 		xtd = TAILQ_NEXT(xtd, td_threadq);
211 	    }
212 	    if (xtd)
213 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
214 	    else
215 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
216 	}
217 	++gd->gd_tdrunqcount;
218 
219 	/*
220 	 * Request a LWKT reschedule if we are now at the head of the queue.
221 	 */
222 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
223 	    need_lwkt_resched();
224     }
225 }
226 
227 static boolean_t
228 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
229 {
230 	struct thread *td = (struct thread *)obj;
231 
232 	td->td_kstack = NULL;
233 	td->td_kstack_size = 0;
234 	td->td_flags = TDF_ALLOCATED_THREAD;
235 	td->td_mpflags = 0;
236 	return (1);
237 }
238 
239 static void
240 _lwkt_thread_dtor(void *obj, void *privdata)
241 {
242 	struct thread *td = (struct thread *)obj;
243 
244 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
245 	    ("_lwkt_thread_dtor: not allocated from objcache"));
246 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
247 		td->td_kstack_size > 0,
248 	    ("_lwkt_thread_dtor: corrupted stack"));
249 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
250 	td->td_kstack = NULL;
251 	td->td_flags = 0;
252 }
253 
254 /*
255  * Initialize the lwkt s/system.
256  *
257  * Nominally cache up to 32 thread + kstack structures.  Cache more on
258  * systems with a lot of cpu cores.
259  */
260 static void
261 lwkt_init(void)
262 {
263     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
264     if (lwkt_cache_threads == 0) {
265 	lwkt_cache_threads = ncpus * 4;
266 	if (lwkt_cache_threads < 32)
267 	    lwkt_cache_threads = 32;
268     }
269     thread_cache = objcache_create_mbacked(
270 				M_THREAD, sizeof(struct thread),
271 				0, lwkt_cache_threads,
272 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
273 }
274 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
275 
276 /*
277  * Schedule a thread to run.  As the current thread we can always safely
278  * schedule ourselves, and a shortcut procedure is provided for that
279  * function.
280  *
281  * (non-blocking, self contained on a per cpu basis)
282  */
283 void
284 lwkt_schedule_self(thread_t td)
285 {
286     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
287     crit_enter_quick(td);
288     KASSERT(td != &td->td_gd->gd_idlethread,
289 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
290     KKASSERT(td->td_lwp == NULL ||
291 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
292     _lwkt_enqueue(td);
293     crit_exit_quick(td);
294 }
295 
296 /*
297  * Deschedule a thread.
298  *
299  * (non-blocking, self contained on a per cpu basis)
300  */
301 void
302 lwkt_deschedule_self(thread_t td)
303 {
304     crit_enter_quick(td);
305     _lwkt_dequeue(td);
306     crit_exit_quick(td);
307 }
308 
309 /*
310  * LWKTs operate on a per-cpu basis
311  *
312  * WARNING!  Called from early boot, 'mycpu' may not work yet.
313  */
314 void
315 lwkt_gdinit(struct globaldata *gd)
316 {
317     TAILQ_INIT(&gd->gd_tdrunq);
318     TAILQ_INIT(&gd->gd_tdallq);
319 }
320 
321 /*
322  * Create a new thread.  The thread must be associated with a process context
323  * or LWKT start address before it can be scheduled.  If the target cpu is
324  * -1 the thread will be created on the current cpu.
325  *
326  * If you intend to create a thread without a process context this function
327  * does everything except load the startup and switcher function.
328  */
329 thread_t
330 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
331 {
332     static int cpu_rotator;
333     globaldata_t gd = mycpu;
334     void *stack;
335 
336     /*
337      * If static thread storage is not supplied allocate a thread.  Reuse
338      * a cached free thread if possible.  gd_freetd is used to keep an exiting
339      * thread intact through the exit.
340      */
341     if (td == NULL) {
342 	crit_enter_gd(gd);
343 	if ((td = gd->gd_freetd) != NULL) {
344 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
345 				      TDF_RUNQ)) == 0);
346 	    gd->gd_freetd = NULL;
347 	} else {
348 	    td = objcache_get(thread_cache, M_WAITOK);
349 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
350 				      TDF_RUNQ)) == 0);
351 	}
352 	crit_exit_gd(gd);
353     	KASSERT((td->td_flags &
354 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
355 		 TDF_ALLOCATED_THREAD,
356 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
357     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
358     }
359 
360     /*
361      * Try to reuse cached stack.
362      */
363     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
364 	if (flags & TDF_ALLOCATED_STACK) {
365 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
366 	    stack = NULL;
367 	}
368     }
369     if (stack == NULL) {
370 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
371 	flags |= TDF_ALLOCATED_STACK;
372     }
373     if (cpu < 0) {
374 	cpu = ++cpu_rotator;
375 	cpu_ccfence();
376 	cpu %= ncpus;
377     }
378     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
379     return(td);
380 }
381 
382 /*
383  * Initialize a preexisting thread structure.  This function is used by
384  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
385  *
386  * All threads start out in a critical section at a priority of
387  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
388  * appropriate.  This function may send an IPI message when the
389  * requested cpu is not the current cpu and consequently gd_tdallq may
390  * not be initialized synchronously from the point of view of the originating
391  * cpu.
392  *
393  * NOTE! we have to be careful in regards to creating threads for other cpus
394  * if SMP has not yet been activated.
395  */
396 static void
397 lwkt_init_thread_remote(void *arg)
398 {
399     thread_t td = arg;
400 
401     /*
402      * Protected by critical section held by IPI dispatch
403      */
404     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
405 }
406 
407 /*
408  * lwkt core thread structural initialization.
409  *
410  * NOTE: All threads are initialized as mpsafe threads.
411  */
412 void
413 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
414 		struct globaldata *gd)
415 {
416     globaldata_t mygd = mycpu;
417 
418     bzero(td, sizeof(struct thread));
419     td->td_kstack = stack;
420     td->td_kstack_size = stksize;
421     td->td_flags = flags;
422     td->td_mpflags = 0;
423     td->td_type = TD_TYPE_GENERIC;
424     td->td_gd = gd;
425     td->td_pri = TDPRI_KERN_DAEMON;
426     td->td_critcount = 1;
427     td->td_toks_have = NULL;
428     td->td_toks_stop = &td->td_toks_base;
429     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
430 	lwkt_initport_spin(&td->td_msgport, td,
431 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
432     } else {
433 	lwkt_initport_thread(&td->td_msgport, td);
434     }
435     pmap_init_thread(td);
436     /*
437      * Normally initializing a thread for a remote cpu requires sending an
438      * IPI.  However, the idlethread is setup before the other cpus are
439      * activated so we have to treat it as a special case.  XXX manipulation
440      * of gd_tdallq requires the BGL.
441      */
442     if (gd == mygd || td == &gd->gd_idlethread) {
443 	crit_enter_gd(mygd);
444 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
445 	crit_exit_gd(mygd);
446     } else {
447 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
448     }
449     dsched_enter_thread(td);
450 }
451 
452 void
453 lwkt_set_comm(thread_t td, const char *ctl, ...)
454 {
455     __va_list va;
456 
457     __va_start(va, ctl);
458     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
459     __va_end(va);
460     KTR_LOG(ctxsw_newtd, td, td->td_comm);
461 }
462 
463 /*
464  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
465  * this does not prevent the thread from migrating to another cpu so the
466  * gd_tdallq state is not protected by this.
467  */
468 void
469 lwkt_hold(thread_t td)
470 {
471     atomic_add_int(&td->td_refs, 1);
472 }
473 
474 void
475 lwkt_rele(thread_t td)
476 {
477     KKASSERT(td->td_refs > 0);
478     atomic_add_int(&td->td_refs, -1);
479 }
480 
481 void
482 lwkt_free_thread(thread_t td)
483 {
484     KKASSERT(td->td_refs == 0);
485     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
486 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
487     if (td->td_flags & TDF_ALLOCATED_THREAD) {
488     	objcache_put(thread_cache, td);
489     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
490 	/* client-allocated struct with internally allocated stack */
491 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
492 	    ("lwkt_free_thread: corrupted stack"));
493 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
494 	td->td_kstack = NULL;
495 	td->td_kstack_size = 0;
496     }
497 
498     KTR_LOG(ctxsw_deadtd, td);
499 }
500 
501 
502 /*
503  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
504  * switch to the idlethread.  Switching must occur within a critical
505  * section to avoid races with the scheduling queue.
506  *
507  * We always have full control over our cpu's run queue.  Other cpus
508  * that wish to manipulate our queue must use the cpu_*msg() calls to
509  * talk to our cpu, so a critical section is all that is needed and
510  * the result is very, very fast thread switching.
511  *
512  * The LWKT scheduler uses a fixed priority model and round-robins at
513  * each priority level.  User process scheduling is a totally
514  * different beast and LWKT priorities should not be confused with
515  * user process priorities.
516  *
517  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
518  * is not called by the current thread in the preemption case, only when
519  * the preempting thread blocks (in order to return to the original thread).
520  *
521  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
522  * migration and tsleep deschedule the current lwkt thread and call
523  * lwkt_switch().  In particular, the target cpu of the migration fully
524  * expects the thread to become non-runnable and can deadlock against
525  * cpusync operations if we run any IPIs prior to switching the thread out.
526  *
527  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
528  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
529  */
530 void
531 lwkt_switch(void)
532 {
533     globaldata_t gd = mycpu;
534     thread_t td = gd->gd_curthread;
535     thread_t ntd;
536     int upri;
537 
538     KKASSERT(gd->gd_processing_ipiq == 0);
539     KKASSERT(td->td_flags & TDF_RUNNING);
540 
541     /*
542      * Switching from within a 'fast' (non thread switched) interrupt or IPI
543      * is illegal.  However, we may have to do it anyway if we hit a fatal
544      * kernel trap or we have paniced.
545      *
546      * If this case occurs save and restore the interrupt nesting level.
547      */
548     if (gd->gd_intr_nesting_level) {
549 	int savegdnest;
550 	int savegdtrap;
551 
552 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
553 	    panic("lwkt_switch: Attempt to switch from a "
554 		  "fast interrupt, ipi, or hard code section, "
555 		  "td %p\n",
556 		  td);
557 	} else {
558 	    savegdnest = gd->gd_intr_nesting_level;
559 	    savegdtrap = gd->gd_trap_nesting_level;
560 	    gd->gd_intr_nesting_level = 0;
561 	    gd->gd_trap_nesting_level = 0;
562 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
563 		td->td_flags |= TDF_PANICWARN;
564 		kprintf("Warning: thread switch from interrupt, IPI, "
565 			"or hard code section.\n"
566 			"thread %p (%s)\n", td, td->td_comm);
567 		print_backtrace(-1);
568 	    }
569 	    lwkt_switch();
570 	    gd->gd_intr_nesting_level = savegdnest;
571 	    gd->gd_trap_nesting_level = savegdtrap;
572 	    return;
573 	}
574     }
575 
576     /*
577      * Release our current user process designation if we are blocking
578      * or if a user reschedule was requested.
579      *
580      * NOTE: This function is NOT called if we are switching into or
581      *	     returning from a preemption.
582      *
583      * NOTE: Releasing our current user process designation may cause
584      *	     it to be assigned to another thread, which in turn will
585      *	     cause us to block in the usched acquire code when we attempt
586      *	     to return to userland.
587      *
588      * NOTE: On SMP systems this can be very nasty when heavy token
589      *	     contention is present so we want to be careful not to
590      *	     release the designation gratuitously.
591      */
592     if (td->td_release &&
593 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
594 	    td->td_release(td);
595     }
596 
597     /*
598      * Release all tokens.  Once we do this we must remain in the critical
599      * section and cannot run IPIs or other interrupts until we switch away
600      * because they may implode if they try to get a token using our thread
601      * context.
602      */
603     crit_enter_gd(gd);
604     if (TD_TOKS_HELD(td))
605 	    lwkt_relalltokens(td);
606 
607     /*
608      * We had better not be holding any spin locks, but don't get into an
609      * endless panic loop.
610      */
611     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
612 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
613 	     gd->gd_spinlocks));
614 
615 #ifdef	INVARIANTS
616     if (td->td_cscount) {
617 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
618 		td);
619 	if (panic_on_cscount)
620 	    panic("switching while mastering cpusync");
621     }
622 #endif
623 
624     /*
625      * If we had preempted another thread on this cpu, resume the preempted
626      * thread.  This occurs transparently, whether the preempted thread
627      * was scheduled or not (it may have been preempted after descheduling
628      * itself).
629      *
630      * We have to setup the MP lock for the original thread after backing
631      * out the adjustment that was made to curthread when the original
632      * was preempted.
633      */
634     if ((ntd = td->td_preempted) != NULL) {
635 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
636 	ntd->td_flags |= TDF_PREEMPT_DONE;
637 
638 	/*
639 	 * The interrupt may have woken a thread up, we need to properly
640 	 * set the reschedule flag if the originally interrupted thread is
641 	 * at a lower priority.
642 	 *
643 	 * The interrupt may not have descheduled.
644 	 */
645 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
646 	    need_lwkt_resched();
647 	goto havethread_preempted;
648     }
649 
650     /*
651      * Figure out switch target.  If we cannot switch to our desired target
652      * look for a thread that we can switch to.
653      *
654      * NOTE! The limited spin loop and related parameters are extremely
655      *	     important for system performance, particularly for pipes and
656      *	     concurrent conflicting VM faults.
657      */
658     clear_lwkt_resched();
659     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
660 
661     if (ntd) {
662 	do {
663 	    if (TD_TOKS_NOT_HELD(ntd) ||
664 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
665 	    {
666 		goto havethread;
667 	    }
668 	    ++gd->gd_cnt.v_lock_colls;
669 	    ++ntd->td_contended;
670 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
671 	upri = ntd->td_upri;
672 
673 	/*
674 	 * Bleh, the thread we wanted to switch to has a contended token.
675 	 * See if we can switch to another thread.
676 	 *
677 	 * We generally don't want to do this because it represents a
678 	 * priority inversion.  Do not allow the case if the thread
679 	 * is returning to userland (not a kernel thread) AND the thread
680 	 * has a lower upri.
681 	 */
682 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
683 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
684 		break;
685 	    upri = ntd->td_upri;
686 
687 	    /*
688 	     * Try this one.
689 	     */
690 	    if (TD_TOKS_NOT_HELD(ntd) ||
691 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
692 		    goto havethread;
693 	    }
694 	    ++ntd->td_contended;
695 	    ++gd->gd_cnt.v_lock_colls;
696 	}
697 
698 	/*
699 	 * Fall through, switch to idle thread to get us out of the current
700 	 * context.  Since we were contended, prevent HLT by flagging a
701 	 * LWKT reschedule.
702 	 */
703 	need_lwkt_resched();
704     }
705 
706     /*
707      * We either contended on ntd or the runq is empty.  We must switch
708      * through the idle thread to get out of the current context.
709      */
710     ntd = &gd->gd_idlethread;
711     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
712 	ASSERT_NO_TOKENS_HELD(ntd);
713     cpu_time.cp_msg[0] = 0;
714     cpu_time.cp_stallpc = 0;
715     goto haveidle;
716 
717 havethread:
718     /*
719      * Clear gd_idle_repeat when doing a normal switch to a non-idle
720      * thread.
721      */
722     ntd->td_wmesg = NULL;
723     ntd->td_contended = 0;
724     ++gd->gd_cnt.v_swtch;
725     gd->gd_idle_repeat = 0;
726 
727 havethread_preempted:
728     /*
729      * If the new target does not need the MP lock and we are holding it,
730      * release the MP lock.  If the new target requires the MP lock we have
731      * already acquired it for the target.
732      */
733     ;
734 haveidle:
735     KASSERT(ntd->td_critcount,
736 	    ("priority problem in lwkt_switch %d %d",
737 	    td->td_critcount, ntd->td_critcount));
738 
739     if (td != ntd) {
740 	/*
741 	 * Execute the actual thread switch operation.  This function
742 	 * returns to the current thread and returns the previous thread
743 	 * (which may be different from the thread we switched to).
744 	 *
745 	 * We are responsible for marking ntd as TDF_RUNNING.
746 	 */
747 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
748 	++switch_count;
749 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
750 	ntd->td_flags |= TDF_RUNNING;
751 	lwkt_switch_return(td->td_switch(ntd));
752 	/* ntd invalid, td_switch() can return a different thread_t */
753     }
754 
755     /*
756      * catch-all.  XXX is this strictly needed?
757      */
758     splz_check();
759 
760     /* NOTE: current cpu may have changed after switch */
761     crit_exit_quick(td);
762 }
763 
764 /*
765  * Called by assembly in the td_switch (thread restore path) for thread
766  * bootstrap cases which do not 'return' to lwkt_switch().
767  */
768 void
769 lwkt_switch_return(thread_t otd)
770 {
771 	globaldata_t rgd;
772 
773 	/*
774 	 * Check if otd was migrating.  Now that we are on ntd we can finish
775 	 * up the migration.  This is a bit messy but it is the only place
776 	 * where td is known to be fully descheduled.
777 	 *
778 	 * We can only activate the migration if otd was migrating but not
779 	 * held on the cpu due to a preemption chain.  We still have to
780 	 * clear TDF_RUNNING on the old thread either way.
781 	 *
782 	 * We are responsible for clearing the previously running thread's
783 	 * TDF_RUNNING.
784 	 */
785 	if ((rgd = otd->td_migrate_gd) != NULL &&
786 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
787 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
788 			 (TDF_MIGRATING | TDF_RUNNING));
789 		otd->td_migrate_gd = NULL;
790 		otd->td_flags &= ~TDF_RUNNING;
791 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
792 	} else {
793 		otd->td_flags &= ~TDF_RUNNING;
794 	}
795 
796 	/*
797 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
798 	 * invalid the *instant* we set TDF_MP_EXITSIG.
799 	 */
800 	while (otd->td_flags & TDF_EXITING) {
801 		u_int mpflags;
802 
803 		mpflags = otd->td_mpflags;
804 		cpu_ccfence();
805 
806 		if (mpflags & TDF_MP_EXITWAIT) {
807 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
808 					      mpflags | TDF_MP_EXITSIG)) {
809 				wakeup(otd);
810 				break;
811 			}
812 		} else {
813 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
814 					      mpflags | TDF_MP_EXITSIG)) {
815 				wakeup(otd);
816 				break;
817 			}
818 		}
819 	}
820 }
821 
822 /*
823  * Request that the target thread preempt the current thread.  Preemption
824  * can only occur if our only critical section is the one that we were called
825  * with, the relative priority of the target thread is higher, and the target
826  * thread holds no tokens.  This also only works if we are not holding any
827  * spinlocks (obviously).
828  *
829  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
830  * this is called via lwkt_schedule() through the td_preemptable callback.
831  * critcount is the managed critical priority that we should ignore in order
832  * to determine whether preemption is possible (aka usually just the crit
833  * priority of lwkt_schedule() itself).
834  *
835  * Preemption is typically limited to interrupt threads.
836  *
837  * Operation works in a fairly straight-forward manner.  The normal
838  * scheduling code is bypassed and we switch directly to the target
839  * thread.  When the target thread attempts to block or switch away
840  * code at the base of lwkt_switch() will switch directly back to our
841  * thread.  Our thread is able to retain whatever tokens it holds and
842  * if the target needs one of them the target will switch back to us
843  * and reschedule itself normally.
844  */
845 void
846 lwkt_preempt(thread_t ntd, int critcount)
847 {
848     struct globaldata *gd = mycpu;
849     thread_t xtd;
850     thread_t td;
851     int save_gd_intr_nesting_level;
852 
853     /*
854      * The caller has put us in a critical section.  We can only preempt
855      * if the caller of the caller was not in a critical section (basically
856      * a local interrupt), as determined by the 'critcount' parameter.  We
857      * also can't preempt if the caller is holding any spinlocks (even if
858      * he isn't in a critical section).  This also handles the tokens test.
859      *
860      * YYY The target thread must be in a critical section (else it must
861      * inherit our critical section?  I dunno yet).
862      */
863     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
864 
865     td = gd->gd_curthread;
866     if (preempt_enable == 0) {
867 	++preempt_miss;
868 	return;
869     }
870     if (ntd->td_pri <= td->td_pri) {
871 	++preempt_miss;
872 	return;
873     }
874     if (td->td_critcount > critcount) {
875 	++preempt_miss;
876 	return;
877     }
878     if (td->td_cscount) {
879 	++preempt_miss;
880 	return;
881     }
882     if (ntd->td_gd != gd) {
883 	++preempt_miss;
884 	return;
885     }
886     /*
887      * We don't have to check spinlocks here as they will also bump
888      * td_critcount.
889      *
890      * Do not try to preempt if the target thread is holding any tokens.
891      * We could try to acquire the tokens but this case is so rare there
892      * is no need to support it.
893      */
894     KKASSERT(gd->gd_spinlocks == 0);
895 
896     if (TD_TOKS_HELD(ntd)) {
897 	++preempt_miss;
898 	return;
899     }
900     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
901 	++preempt_weird;
902 	return;
903     }
904     if (ntd->td_preempted) {
905 	++preempt_hit;
906 	return;
907     }
908     KKASSERT(gd->gd_processing_ipiq == 0);
909 
910     /*
911      * Since we are able to preempt the current thread, there is no need to
912      * call need_lwkt_resched().
913      *
914      * We must temporarily clear gd_intr_nesting_level around the switch
915      * since switchouts from the target thread are allowed (they will just
916      * return to our thread), and since the target thread has its own stack.
917      *
918      * A preemption must switch back to the original thread, assert the
919      * case.
920      */
921     ++preempt_hit;
922     ntd->td_preempted = td;
923     td->td_flags |= TDF_PREEMPT_LOCK;
924     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
925     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
926     gd->gd_intr_nesting_level = 0;
927 
928     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
929     ntd->td_flags |= TDF_RUNNING;
930     xtd = td->td_switch(ntd);
931     KKASSERT(xtd == ntd);
932     lwkt_switch_return(xtd);
933     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
934 
935     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
936     ntd->td_preempted = NULL;
937     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
938 }
939 
940 /*
941  * Conditionally call splz() if gd_reqflags indicates work is pending.
942  * This will work inside a critical section but not inside a hard code
943  * section.
944  *
945  * (self contained on a per cpu basis)
946  */
947 void
948 splz_check(void)
949 {
950     globaldata_t gd = mycpu;
951     thread_t td = gd->gd_curthread;
952 
953     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
954 	gd->gd_intr_nesting_level == 0 &&
955 	td->td_nest_count < 2)
956     {
957 	splz();
958     }
959 }
960 
961 /*
962  * This version is integrated into crit_exit, reqflags has already
963  * been tested but td_critcount has not.
964  *
965  * We only want to execute the splz() on the 1->0 transition of
966  * critcount and not in a hard code section or if too deeply nested.
967  *
968  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
969  */
970 void
971 lwkt_maybe_splz(thread_t td)
972 {
973     globaldata_t gd = td->td_gd;
974 
975     if (td->td_critcount == 0 &&
976 	gd->gd_intr_nesting_level == 0 &&
977 	td->td_nest_count < 2)
978     {
979 	splz();
980     }
981 }
982 
983 /*
984  * Drivers which set up processing co-threads can call this function to
985  * run the co-thread at a higher priority and to allow it to preempt
986  * normal threads.
987  */
988 void
989 lwkt_set_interrupt_support_thread(void)
990 {
991 	thread_t td = curthread;
992 
993         lwkt_setpri_self(TDPRI_INT_SUPPORT);
994 	td->td_flags |= TDF_INTTHREAD;
995 	td->td_preemptable = lwkt_preempt;
996 }
997 
998 
999 /*
1000  * This function is used to negotiate a passive release of the current
1001  * process/lwp designation with the user scheduler, allowing the user
1002  * scheduler to schedule another user thread.  The related kernel thread
1003  * (curthread) continues running in the released state.
1004  */
1005 void
1006 lwkt_passive_release(struct thread *td)
1007 {
1008     struct lwp *lp = td->td_lwp;
1009 
1010     td->td_release = NULL;
1011     lwkt_setpri_self(TDPRI_KERN_USER);
1012 
1013     lp->lwp_proc->p_usched->release_curproc(lp);
1014 }
1015 
1016 
1017 /*
1018  * This implements a LWKT yield, allowing a kernel thread to yield to other
1019  * kernel threads at the same or higher priority.  This function can be
1020  * called in a tight loop and will typically only yield once per tick.
1021  *
1022  * Most kernel threads run at the same priority in order to allow equal
1023  * sharing.
1024  *
1025  * (self contained on a per cpu basis)
1026  */
1027 void
1028 lwkt_yield(void)
1029 {
1030     globaldata_t gd = mycpu;
1031     thread_t td = gd->gd_curthread;
1032 
1033     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1034 	splz();
1035     if (lwkt_resched_wanted()) {
1036 	lwkt_schedule_self(curthread);
1037 	lwkt_switch();
1038     }
1039 }
1040 
1041 /*
1042  * The quick version processes pending interrupts and higher-priority
1043  * LWKT threads but will not round-robin same-priority LWKT threads.
1044  *
1045  * When called while attempting to return to userland the only same-pri
1046  * threads are the ones which have already tried to become the current
1047  * user process.
1048  */
1049 void
1050 lwkt_yield_quick(void)
1051 {
1052     globaldata_t gd = mycpu;
1053     thread_t td = gd->gd_curthread;
1054 
1055     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1056 	splz();
1057     if (lwkt_resched_wanted()) {
1058 	crit_enter();
1059 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1060 	    clear_lwkt_resched();
1061 	} else {
1062 	    lwkt_schedule_self(curthread);
1063 	    lwkt_switch();
1064 	}
1065 	crit_exit();
1066     }
1067 }
1068 
1069 /*
1070  * This yield is designed for kernel threads with a user context.
1071  *
1072  * The kernel acting on behalf of the user is potentially cpu-bound,
1073  * this function will efficiently allow other threads to run and also
1074  * switch to other processes by releasing.
1075  *
1076  * The lwkt_user_yield() function is designed to have very low overhead
1077  * if no yield is determined to be needed.
1078  */
1079 void
1080 lwkt_user_yield(void)
1081 {
1082     globaldata_t gd = mycpu;
1083     thread_t td = gd->gd_curthread;
1084 
1085     /*
1086      * Always run any pending interrupts in case we are in a critical
1087      * section.
1088      */
1089     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1090 	splz();
1091 
1092     /*
1093      * Switch (which forces a release) if another kernel thread needs
1094      * the cpu, if userland wants us to resched, or if our kernel
1095      * quantum has run out.
1096      */
1097     if (lwkt_resched_wanted() ||
1098 	user_resched_wanted())
1099     {
1100 	lwkt_switch();
1101     }
1102 
1103 #if 0
1104     /*
1105      * Reacquire the current process if we are released.
1106      *
1107      * XXX not implemented atm.  The kernel may be holding locks and such,
1108      *     so we want the thread to continue to receive cpu.
1109      */
1110     if (td->td_release == NULL && lp) {
1111 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1112 	td->td_release = lwkt_passive_release;
1113 	lwkt_setpri_self(TDPRI_USER_NORM);
1114     }
1115 #endif
1116 }
1117 
1118 /*
1119  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1120  * deal with threads that might be blocked on a wait queue.
1121  *
1122  * We have a little helper inline function which does additional work after
1123  * the thread has been enqueued, including dealing with preemption and
1124  * setting need_lwkt_resched() (which prevents the kernel from returning
1125  * to userland until it has processed higher priority threads).
1126  *
1127  * It is possible for this routine to be called after a failed _enqueue
1128  * (due to the target thread migrating, sleeping, or otherwise blocked).
1129  * We have to check that the thread is actually on the run queue!
1130  */
1131 static __inline
1132 void
1133 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1134 {
1135     if (ntd->td_flags & TDF_RUNQ) {
1136 	if (ntd->td_preemptable) {
1137 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1138 	}
1139     }
1140 }
1141 
1142 static __inline
1143 void
1144 _lwkt_schedule(thread_t td)
1145 {
1146     globaldata_t mygd = mycpu;
1147 
1148     KASSERT(td != &td->td_gd->gd_idlethread,
1149 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1150     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1151     crit_enter_gd(mygd);
1152     KKASSERT(td->td_lwp == NULL ||
1153 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1154 
1155     if (td == mygd->gd_curthread) {
1156 	_lwkt_enqueue(td);
1157     } else {
1158 	/*
1159 	 * If we own the thread, there is no race (since we are in a
1160 	 * critical section).  If we do not own the thread there might
1161 	 * be a race but the target cpu will deal with it.
1162 	 */
1163 	if (td->td_gd == mygd) {
1164 	    _lwkt_enqueue(td);
1165 	    _lwkt_schedule_post(mygd, td, 1);
1166 	} else {
1167 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1168 	}
1169     }
1170     crit_exit_gd(mygd);
1171 }
1172 
1173 void
1174 lwkt_schedule(thread_t td)
1175 {
1176     _lwkt_schedule(td);
1177 }
1178 
1179 void
1180 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1181 {
1182     _lwkt_schedule(td);
1183 }
1184 
1185 /*
1186  * When scheduled remotely if frame != NULL the IPIQ is being
1187  * run via doreti or an interrupt then preemption can be allowed.
1188  *
1189  * To allow preemption we have to drop the critical section so only
1190  * one is present in _lwkt_schedule_post.
1191  */
1192 static void
1193 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1194 {
1195     thread_t td = curthread;
1196     thread_t ntd = arg;
1197 
1198     if (frame && ntd->td_preemptable) {
1199 	crit_exit_noyield(td);
1200 	_lwkt_schedule(ntd);
1201 	crit_enter_quick(td);
1202     } else {
1203 	_lwkt_schedule(ntd);
1204     }
1205 }
1206 
1207 /*
1208  * Thread migration using a 'Pull' method.  The thread may or may not be
1209  * the current thread.  It MUST be descheduled and in a stable state.
1210  * lwkt_giveaway() must be called on the cpu owning the thread.
1211  *
1212  * At any point after lwkt_giveaway() is called, the target cpu may
1213  * 'pull' the thread by calling lwkt_acquire().
1214  *
1215  * We have to make sure the thread is not sitting on a per-cpu tsleep
1216  * queue or it will blow up when it moves to another cpu.
1217  *
1218  * MPSAFE - must be called under very specific conditions.
1219  */
1220 void
1221 lwkt_giveaway(thread_t td)
1222 {
1223     globaldata_t gd = mycpu;
1224 
1225     crit_enter_gd(gd);
1226     if (td->td_flags & TDF_TSLEEPQ)
1227 	tsleep_remove(td);
1228     KKASSERT(td->td_gd == gd);
1229     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1230     td->td_flags |= TDF_MIGRATING;
1231     crit_exit_gd(gd);
1232 }
1233 
1234 void
1235 lwkt_acquire(thread_t td)
1236 {
1237     globaldata_t gd;
1238     globaldata_t mygd;
1239     int retry = 10000000;
1240 
1241     KKASSERT(td->td_flags & TDF_MIGRATING);
1242     gd = td->td_gd;
1243     mygd = mycpu;
1244     if (gd != mycpu) {
1245 	cpu_lfence();
1246 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1247 	crit_enter_gd(mygd);
1248 	DEBUG_PUSH_INFO("lwkt_acquire");
1249 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1250 	    lwkt_process_ipiq();
1251 	    cpu_lfence();
1252 	    if (--retry == 0) {
1253 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1254 			td, td->td_flags);
1255 		retry = 10000000;
1256 	    }
1257 #ifdef _KERNEL_VIRTUAL
1258 	    pthread_yield();
1259 #endif
1260 	}
1261 	DEBUG_POP_INFO();
1262 	cpu_mfence();
1263 	td->td_gd = mygd;
1264 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1265 	td->td_flags &= ~TDF_MIGRATING;
1266 	crit_exit_gd(mygd);
1267     } else {
1268 	crit_enter_gd(mygd);
1269 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1270 	td->td_flags &= ~TDF_MIGRATING;
1271 	crit_exit_gd(mygd);
1272     }
1273 }
1274 
1275 /*
1276  * Generic deschedule.  Descheduling threads other then your own should be
1277  * done only in carefully controlled circumstances.  Descheduling is
1278  * asynchronous.
1279  *
1280  * This function may block if the cpu has run out of messages.
1281  */
1282 void
1283 lwkt_deschedule(thread_t td)
1284 {
1285     crit_enter();
1286     if (td == curthread) {
1287 	_lwkt_dequeue(td);
1288     } else {
1289 	if (td->td_gd == mycpu) {
1290 	    _lwkt_dequeue(td);
1291 	} else {
1292 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1293 	}
1294     }
1295     crit_exit();
1296 }
1297 
1298 /*
1299  * Set the target thread's priority.  This routine does not automatically
1300  * switch to a higher priority thread, LWKT threads are not designed for
1301  * continuous priority changes.  Yield if you want to switch.
1302  */
1303 void
1304 lwkt_setpri(thread_t td, int pri)
1305 {
1306     if (td->td_pri != pri) {
1307 	KKASSERT(pri >= 0);
1308 	crit_enter();
1309 	if (td->td_flags & TDF_RUNQ) {
1310 	    KKASSERT(td->td_gd == mycpu);
1311 	    _lwkt_dequeue(td);
1312 	    td->td_pri = pri;
1313 	    _lwkt_enqueue(td);
1314 	} else {
1315 	    td->td_pri = pri;
1316 	}
1317 	crit_exit();
1318     }
1319 }
1320 
1321 /*
1322  * Set the initial priority for a thread prior to it being scheduled for
1323  * the first time.  The thread MUST NOT be scheduled before or during
1324  * this call.  The thread may be assigned to a cpu other then the current
1325  * cpu.
1326  *
1327  * Typically used after a thread has been created with TDF_STOPPREQ,
1328  * and before the thread is initially scheduled.
1329  */
1330 void
1331 lwkt_setpri_initial(thread_t td, int pri)
1332 {
1333     KKASSERT(pri >= 0);
1334     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1335     td->td_pri = pri;
1336 }
1337 
1338 void
1339 lwkt_setpri_self(int pri)
1340 {
1341     thread_t td = curthread;
1342 
1343     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1344     crit_enter();
1345     if (td->td_flags & TDF_RUNQ) {
1346 	_lwkt_dequeue(td);
1347 	td->td_pri = pri;
1348 	_lwkt_enqueue(td);
1349     } else {
1350 	td->td_pri = pri;
1351     }
1352     crit_exit();
1353 }
1354 
1355 /*
1356  * hz tick scheduler clock for LWKT threads
1357  */
1358 void
1359 lwkt_schedulerclock(thread_t td)
1360 {
1361     globaldata_t gd = td->td_gd;
1362     thread_t xtd;
1363 
1364     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1365 	/*
1366 	 * If the current thread is at the head of the runq shift it to the
1367 	 * end of any equal-priority threads and request a LWKT reschedule
1368 	 * if it moved.
1369 	 *
1370 	 * Ignore upri in this situation.  There will only be one user thread
1371 	 * in user mode, all others will be user threads running in kernel
1372 	 * mode and we have to make sure they get some cpu.
1373 	 */
1374 	xtd = TAILQ_NEXT(td, td_threadq);
1375 	if (xtd && xtd->td_pri == td->td_pri) {
1376 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1377 	    while (xtd && xtd->td_pri == td->td_pri)
1378 		xtd = TAILQ_NEXT(xtd, td_threadq);
1379 	    if (xtd)
1380 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1381 	    else
1382 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1383 	    need_lwkt_resched();
1384 	}
1385     } else {
1386 	/*
1387 	 * If we scheduled a thread other than the one at the head of the
1388 	 * queue always request a reschedule every tick.
1389 	 */
1390 	need_lwkt_resched();
1391     }
1392 }
1393 
1394 /*
1395  * Migrate the current thread to the specified cpu.
1396  *
1397  * This is accomplished by descheduling ourselves from the current cpu
1398  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1399  * 'old' thread wants to migrate after it has been completely switched out
1400  * and will complete the migration.
1401  *
1402  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1403  *
1404  * We must be sure to release our current process designation (if a user
1405  * process) before clearing out any tsleepq we are on because the release
1406  * code may re-add us.
1407  *
1408  * We must be sure to remove ourselves from the current cpu's tsleepq
1409  * before potentially moving to another queue.  The thread can be on
1410  * a tsleepq due to a left-over tsleep_interlock().
1411  */
1412 
1413 void
1414 lwkt_setcpu_self(globaldata_t rgd)
1415 {
1416     thread_t td = curthread;
1417 
1418     if (td->td_gd != rgd) {
1419 	crit_enter_quick(td);
1420 
1421 	if (td->td_release)
1422 	    td->td_release(td);
1423 	if (td->td_flags & TDF_TSLEEPQ)
1424 	    tsleep_remove(td);
1425 
1426 	/*
1427 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1428 	 * trying to deschedule ourselves and switch away, then deschedule
1429 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1430 	 * call lwkt_switch() to complete the operation.
1431 	 */
1432 	td->td_flags |= TDF_MIGRATING;
1433 	lwkt_deschedule_self(td);
1434 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1435 	td->td_migrate_gd = rgd;
1436 	lwkt_switch();
1437 
1438 	/*
1439 	 * We are now on the target cpu
1440 	 */
1441 	KKASSERT(rgd == mycpu);
1442 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1443 	crit_exit_quick(td);
1444     }
1445 }
1446 
1447 void
1448 lwkt_migratecpu(int cpuid)
1449 {
1450 	globaldata_t rgd;
1451 
1452 	rgd = globaldata_find(cpuid);
1453 	lwkt_setcpu_self(rgd);
1454 }
1455 
1456 /*
1457  * Remote IPI for cpu migration (called while in a critical section so we
1458  * do not have to enter another one).
1459  *
1460  * The thread (td) has already been completely descheduled from the
1461  * originating cpu and we can simply assert the case.  The thread is
1462  * assigned to the new cpu and enqueued.
1463  *
1464  * The thread will re-add itself to tdallq when it resumes execution.
1465  */
1466 static void
1467 lwkt_setcpu_remote(void *arg)
1468 {
1469     thread_t td = arg;
1470     globaldata_t gd = mycpu;
1471 
1472     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1473     td->td_gd = gd;
1474     cpu_mfence();
1475     td->td_flags &= ~TDF_MIGRATING;
1476     KKASSERT(td->td_migrate_gd == NULL);
1477     KKASSERT(td->td_lwp == NULL ||
1478 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1479     _lwkt_enqueue(td);
1480 }
1481 
1482 struct lwp *
1483 lwkt_preempted_proc(void)
1484 {
1485     thread_t td = curthread;
1486     while (td->td_preempted)
1487 	td = td->td_preempted;
1488     return(td->td_lwp);
1489 }
1490 
1491 /*
1492  * Create a kernel process/thread/whatever.  It shares it's address space
1493  * with proc0 - ie: kernel only.
1494  *
1495  * If the cpu is not specified one will be selected.  In the future
1496  * specifying a cpu of -1 will enable kernel thread migration between
1497  * cpus.
1498  */
1499 int
1500 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1501 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1502 {
1503     thread_t td;
1504     __va_list ap;
1505 
1506     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1507 			   tdflags);
1508     if (tdp)
1509 	*tdp = td;
1510     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1511 
1512     /*
1513      * Set up arg0 for 'ps' etc
1514      */
1515     __va_start(ap, fmt);
1516     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1517     __va_end(ap);
1518 
1519     /*
1520      * Schedule the thread to run
1521      */
1522     if (td->td_flags & TDF_NOSTART)
1523 	td->td_flags &= ~TDF_NOSTART;
1524     else
1525 	lwkt_schedule(td);
1526     return 0;
1527 }
1528 
1529 /*
1530  * Destroy an LWKT thread.   Warning!  This function is not called when
1531  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1532  * uses a different reaping mechanism.
1533  */
1534 void
1535 lwkt_exit(void)
1536 {
1537     thread_t td = curthread;
1538     thread_t std;
1539     globaldata_t gd;
1540 
1541     /*
1542      * Do any cleanup that might block here
1543      */
1544     if (td->td_flags & TDF_VERBOSE)
1545 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1546     biosched_done(td);
1547     dsched_exit_thread(td);
1548 
1549     /*
1550      * Get us into a critical section to interlock gd_freetd and loop
1551      * until we can get it freed.
1552      *
1553      * We have to cache the current td in gd_freetd because objcache_put()ing
1554      * it would rip it out from under us while our thread is still active.
1555      *
1556      * We are the current thread so of course our own TDF_RUNNING bit will
1557      * be set, so unlike the lwp reap code we don't wait for it to clear.
1558      */
1559     gd = mycpu;
1560     crit_enter_quick(td);
1561     for (;;) {
1562 	if (td->td_refs) {
1563 	    tsleep(td, 0, "tdreap", 1);
1564 	    continue;
1565 	}
1566 	if ((std = gd->gd_freetd) != NULL) {
1567 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1568 	    gd->gd_freetd = NULL;
1569 	    objcache_put(thread_cache, std);
1570 	    continue;
1571 	}
1572 	break;
1573     }
1574 
1575     /*
1576      * Remove thread resources from kernel lists and deschedule us for
1577      * the last time.  We cannot block after this point or we may end
1578      * up with a stale td on the tsleepq.
1579      *
1580      * None of this may block, the critical section is the only thing
1581      * protecting tdallq and the only thing preventing new lwkt_hold()
1582      * thread refs now.
1583      */
1584     if (td->td_flags & TDF_TSLEEPQ)
1585 	tsleep_remove(td);
1586     lwkt_deschedule_self(td);
1587     lwkt_remove_tdallq(td);
1588     KKASSERT(td->td_refs == 0);
1589 
1590     /*
1591      * Final cleanup
1592      */
1593     KKASSERT(gd->gd_freetd == NULL);
1594     if (td->td_flags & TDF_ALLOCATED_THREAD)
1595 	gd->gd_freetd = td;
1596     cpu_thread_exit();
1597 }
1598 
1599 void
1600 lwkt_remove_tdallq(thread_t td)
1601 {
1602     KKASSERT(td->td_gd == mycpu);
1603     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1604 }
1605 
1606 /*
1607  * Code reduction and branch prediction improvements.  Call/return
1608  * overhead on modern cpus often degenerates into 0 cycles due to
1609  * the cpu's branch prediction hardware and return pc cache.  We
1610  * can take advantage of this by not inlining medium-complexity
1611  * functions and we can also reduce the branch prediction impact
1612  * by collapsing perfectly predictable branches into a single
1613  * procedure instead of duplicating it.
1614  *
1615  * Is any of this noticeable?  Probably not, so I'll take the
1616  * smaller code size.
1617  */
1618 void
1619 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1620 {
1621     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1622 }
1623 
1624 void
1625 crit_panic(void)
1626 {
1627     thread_t td = curthread;
1628     int lcrit = td->td_critcount;
1629 
1630     td->td_critcount = 0;
1631     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1632     /* NOT REACHED */
1633 }
1634 
1635 /*
1636  * Called from debugger/panic on cpus which have been stopped.  We must still
1637  * process the IPIQ while stopped.
1638  *
1639  * If we are dumping also try to process any pending interrupts.  This may
1640  * or may not work depending on the state of the cpu at the point it was
1641  * stopped.
1642  */
1643 void
1644 lwkt_smp_stopped(void)
1645 {
1646     globaldata_t gd = mycpu;
1647 
1648     if (dumping) {
1649 	lwkt_process_ipiq();
1650 	--gd->gd_intr_nesting_level;
1651 	splz();
1652 	++gd->gd_intr_nesting_level;
1653     } else {
1654 	lwkt_process_ipiq();
1655     }
1656 }
1657