xref: /dflybsd-src/sys/kern/lwkt_msgport.c (revision 1f8e62c9ab8d2ecdefffbdf2ef5ed3db7376c6ec)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * NOTE! This file may be compiled for userland libraries as well as for
35  * the kernel.
36  *
37  * $DragonFly: src/sys/kern/lwkt_msgport.c,v 1.31 2005/01/19 17:41:20 dillon Exp $
38  */
39 
40 #ifdef _KERNEL
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <sys/signalvar.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_param.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_pager.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_zone.h>
63 
64 #include <sys/thread2.h>
65 #include <sys/msgport2.h>
66 
67 #include <machine/stdarg.h>
68 #include <machine/ipl.h>
69 #include <machine/cpufunc.h>
70 #ifdef SMP
71 #include <machine/smp.h>
72 #endif
73 
74 #include <sys/malloc.h>
75 MALLOC_DEFINE(M_LWKTMSG, "lwkt message", "lwkt message");
76 
77 #else
78 
79 #include <sys/stdint.h>
80 #include <libcaps/thread.h>
81 #include <sys/thread.h>
82 #include <sys/msgport.h>
83 #include <sys/errno.h>
84 #include <libcaps/globaldata.h>
85 #include <machine/cpufunc.h>
86 #include <sys/thread2.h>
87 #include <sys/msgport2.h>
88 #include <string.h>
89 
90 #endif /* _KERNEL */
91 
92 
93 /************************************************************************
94  *				MESSAGE FUNCTIONS			*
95  ************************************************************************/
96 
97 static void lwkt_replyport_remote(lwkt_msg_t msg);
98 static void lwkt_putport_remote(lwkt_msg_t msg);
99 
100 /*
101  * lwkt_sendmsg()
102  *
103  *	Send a message asynchronously.  This function requests asynchronous
104  *	completion and calls lwkt_beginmsg().  If the target port decides to
105  *	run the message synchronously this function will automatically queue
106  *	the message to the current thread's message queue to present a
107  *	consistent interface to the caller.
108  *
109  *	The message's ms_cmd must be initialized and its ms_flags must
110  *	be zero'd out.  lwkt_sendmsg() will initialize the ms_abort_port
111  *	(abort chasing port).  If abort is supported, ms_abort must also be
112  *	initialized.
113  *
114  *	NOTE: you cannot safely request an abort until lwkt_sendmsg() returns
115  *	to the caller.
116  *
117  *	NOTE: MSGF_DONE is left set.  The target port must clear it if the
118  *	message is to be handled asynchronously, while the synchronous case
119  *	can just ignore it.
120  */
121 void
122 lwkt_sendmsg(lwkt_port_t port, lwkt_msg_t msg)
123 {
124     int error;
125 
126     msg->ms_flags |= MSGF_ASYNC;
127     msg->ms_flags &= ~(MSGF_REPLY1 | MSGF_REPLY2 | MSGF_QUEUED | \
128 			MSGF_ABORTED | MSGF_RETRIEVED);
129     KKASSERT(msg->ms_reply_port != NULL);
130     msg->ms_abort_port = msg->ms_reply_port;
131     if ((error = lwkt_beginmsg(port, msg)) != EASYNC) {
132 	lwkt_replymsg(msg, error);
133     }
134 }
135 
136 /*
137  * lwkt_domsg()
138  *
139  *	Send a message synchronously.  This function requests synchronous
140  *	completion and calls lwkt_beginmsg().  If the target port decides to
141  *	run the message asynchronously this function will block waiting for
142  *	the message to complete.  Since MSGF_ASYNC is not set the target
143  *	will not attempt to queue the reply to a reply port but will simply
144  *	wake up anyone waiting on the message.
145  *
146  *	A synchronous error code is always returned.
147  *
148  *	The message's ms_cmd must be initialized, and its ms_flags must be
149  *	at least zero'd out.  lwkt_domsg() will initialize the message's
150  *	ms_abort_port (abort chasing port).  If abort is supported, ms_abort
151  *	must also be initialized.
152  *
153  *	NOTE: you cannot safely request an abort until lwkt_domsg() blocks.
154  *	XXX this probably needs some work.
155  *
156  *	NOTE: MSGF_DONE is left set.  The target port must clear it if the
157  *	message is to be handled asynchronously, while the synchronous case
158  *	can just ignore it.
159  */
160 int
161 lwkt_domsg(lwkt_port_t port, lwkt_msg_t msg)
162 {
163     int error;
164 
165     msg->ms_flags &= ~(MSGF_ASYNC | MSGF_REPLY1 | MSGF_REPLY2 | \
166 			MSGF_QUEUED | MSGF_ABORTED | MSGF_RETRIEVED);
167     KKASSERT(msg->ms_reply_port != NULL);
168     msg->ms_abort_port = msg->ms_reply_port;
169     if ((error = lwkt_beginmsg(port, msg)) == EASYNC) {
170 	error = lwkt_waitmsg(msg);
171     }
172     return(error);
173 }
174 
175 /************************************************************************
176  *				PORT FUNCTIONS				*
177  ************************************************************************/
178 
179 /*
180  * lwkt_initport()
181  *
182  *	Initialize a port for use and assign it to the specified thread.
183  *	The default reply function is to return the message to the originator.
184  */
185 void
186 lwkt_initport(lwkt_port_t port, thread_t td)
187 {
188     bzero(port, sizeof(*port));
189     TAILQ_INIT(&port->mp_msgq);
190     port->mp_td = td;
191     port->mp_putport = lwkt_default_putport;
192     port->mp_waitport =  lwkt_default_waitport;
193     port->mp_replyport = lwkt_default_replyport;
194     port->mp_abortport = lwkt_default_abortport;
195 }
196 
197 /*
198  * Similar to the standard initport, this function simply marks the message
199  * as being done and does not attempt to return it to an originating port.
200  */
201 void
202 lwkt_initport_null_rport(lwkt_port_t port, thread_t td)
203 {
204     lwkt_initport(port, td);
205     port->mp_replyport = lwkt_null_replyport;
206 }
207 
208 /*
209  * lwkt_getport()
210  *
211  *	Retrieve the next message from the port's message queue, return NULL
212  *	if no messages are pending.  Note that callers CANNOT use the
213  *	MSGF_ABORTED flag as a litmus test to determine if a message
214  *	was aborted.  The flag only indicates that an abort was requested.
215  *	The message's error code will indicate whether an abort occured
216  *	(typically by returning EINTR).
217  *
218  *	Note that once a message has been dequeued it is subject to being
219  *	requeued via an IPI based abort request if it is not marked MSGF_DONE.
220  *
221  *	If the message has been aborted we have to guarentee that abort
222  *	semantics are properly followed.   The target port will always see
223  *	the original message at least once, and if it does not reply the
224  *	message before looping on its message port again it will then see
225  *	the message again with ms_cmd set to ms_abort.
226  *
227  *	The calling thread MUST own the port.
228  */
229 
230 static __inline
231 void
232 _lwkt_pullmsg(lwkt_port_t port, lwkt_msg_t msg)
233 {
234     if ((msg->ms_flags & MSGF_ABORTED) == 0) {
235 	/*
236 	 * normal case, remove and return the message.
237 	 */
238 	TAILQ_REMOVE(&port->mp_msgq, msg, ms_node);
239 	msg->ms_flags = (msg->ms_flags & ~MSGF_QUEUED) | MSGF_RETRIEVED;
240     } else {
241 	if (msg->ms_flags & MSGF_RETRIEVED) {
242 	    /*
243 	     * abort case, message already returned once, remvoe and
244 	     * return the aborted message a second time after setting
245 	     * ms_cmd to ms_abort.
246 	     */
247 	    TAILQ_REMOVE(&port->mp_msgq, msg, ms_node);
248 	    msg->ms_flags &= ~MSGF_QUEUED;
249 	    msg->ms_cmd = msg->ms_abort;
250 	} else {
251 	    /*
252 	     * abort case, abort races initial message retrieval.  The
253 	     * message is returned normally but not removed from the
254 	     * queue.  On the next loop the 'aborted' message will be
255 	     * dequeued and returned.  Note that if the caller replies
256 	     * to the message it will be dequeued (the abort becomes a
257 	     * NOP).
258 	     */
259 	    msg->ms_flags |= MSGF_RETRIEVED;
260 	}
261     }
262 }
263 
264 void *
265 lwkt_getport(lwkt_port_t port)
266 {
267     lwkt_msg_t msg;
268 
269     KKASSERT(port->mp_td == curthread);
270 
271     crit_enter_quick(port->mp_td);
272     if ((msg = TAILQ_FIRST(&port->mp_msgq)) != NULL)
273 	_lwkt_pullmsg(port, msg);
274     crit_exit_quick(port->mp_td);
275     return(msg);
276 }
277 
278 /*
279  * This inline helper function completes processing of a reply from an
280  * unknown cpu context.
281  *
282  * The message is being returned to the specified port.  The port is
283  * owned by the mp_td thread.  If we are on the same cpu as the mp_td
284  * thread we can trivially queue the message to the reply port and schedule
285  * the target thread, otherwise we have to send an ipi message to the
286  * correct cpu.
287  *
288  * This inline must be entered with a critical section already held.
289  * Note that the IPIQ callback function (*_remote) is entered with a
290  * critical section already held, and we obtain one in lwkt_replyport().
291  */
292 static __inline
293 void
294 _lwkt_replyport(lwkt_port_t port, lwkt_msg_t msg, int force)
295 {
296     thread_t td = port->mp_td;
297 
298     if (force || td->td_gd == mycpu) {
299 	/*
300 	 * We can only reply the message if the abort has caught up with us,
301 	 * or if no abort was issued (same case).
302 	 */
303 	if (msg->ms_abort_port == port) {
304 	    KKASSERT((msg->ms_flags & MSGF_QUEUED) == 0);
305 	    TAILQ_INSERT_TAIL(&port->mp_msgq, msg, ms_node);
306 	    msg->ms_flags |= MSGF_DONE | MSGF_QUEUED | MSGF_REPLY2;
307 	    if (port->mp_flags & MSGPORTF_WAITING)
308 		lwkt_schedule(td);
309 	}
310     } else {
311 	lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_replyport_remote, msg);
312     }
313 }
314 
315 /*
316  * This function completes reply processing for the default case in the
317  * context of the originating cpu.
318  */
319 static
320 void
321 lwkt_replyport_remote(lwkt_msg_t msg)
322 {
323     _lwkt_replyport(msg->ms_reply_port, msg, 1);
324 }
325 
326 /*
327  * This function is called in the context of the target to reply a message.
328  * The critical section protects us from IPIs on the this CPU.
329  */
330 void
331 lwkt_default_replyport(lwkt_port_t port, lwkt_msg_t msg)
332 {
333     crit_enter();
334     msg->ms_flags |= MSGF_REPLY1;
335 
336     /*
337      * An abort may have caught up to us while we were processing the
338      * message.  If this occured we have to dequeue the message from the
339      * target port in the context of our current cpu before we can finish
340      * replying it.
341      */
342     if (msg->ms_flags & MSGF_QUEUED) {
343 	KKASSERT(msg->ms_flags & MSGF_ABORTED);
344 	TAILQ_REMOVE(&msg->ms_target_port->mp_msgq, msg, ms_node);
345 	msg->ms_flags &= ~MSGF_QUEUED;
346     }
347 
348     /*
349      * Do reply port processing for async messages.  Just mark the message
350      * done and wakeup the owner of the reply port for synchronous messages.
351      */
352     if (msg->ms_flags & MSGF_ASYNC) {
353 	_lwkt_replyport(port, msg, 0);
354     } else {
355 	msg->ms_flags |= MSGF_DONE;
356 	if (port->mp_flags & MSGPORTF_WAITING)
357 	    lwkt_schedule(port->mp_td);
358     }
359     crit_exit();
360 }
361 
362 /*
363  * You can point a port's reply vector at this function if you just want
364  * the message marked done, without any queueing or signaling.  This is
365  * often used for structure-embedded messages.
366  */
367 void
368 lwkt_null_replyport(lwkt_port_t port, lwkt_msg_t msg)
369 {
370     crit_enter();
371     msg->ms_flags |= MSGF_DONE|MSGF_REPLY1;
372     crit_exit();
373 }
374 
375 /*
376  * lwkt_default_putport()
377  *
378  *	This function is typically assigned to the mp_putport port vector.
379  *
380  *	Queue a message to the target port and wakeup the thread owning it.
381  *	This function always returns EASYNC and may be assigned to a
382  *	message port's mp_putport function vector.  Note that we must set
383  *	MSGF_QUEUED prior to sending any IPIs in order to interlock against
384  *	ABORT requests and other tests that might be performed.
385  *
386  *	Note that messages start out as synchronous entities, and as an
387  *	optimization MSGF_DONE is usually left set (so in the synchronous path
388  *	no modifications to ms_flags are ever required).  If a message becomes
389  *	async, i.e. you return EASYNC, then MSGF_DONE must be cleared or
390  *	lwkt_replymsg() will wind up being a NOP.
391  *
392  *	The inline must be called from a critical section (the remote function
393  *	is called from an IPI and will be in a critical section).
394  */
395 static
396 __inline
397 void
398 _lwkt_putport(lwkt_port_t port, lwkt_msg_t msg, int force)
399 {
400     thread_t td = port->mp_td;
401 
402     if (force || td->td_gd == mycpu) {
403 	TAILQ_INSERT_TAIL(&port->mp_msgq, msg, ms_node);
404 	if (port->mp_flags & MSGPORTF_WAITING)
405 	    lwkt_schedule(td);
406     } else {
407 	lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_putport_remote, msg);
408     }
409 }
410 
411 static
412 void
413 lwkt_putport_remote(lwkt_msg_t msg)
414 {
415     _lwkt_putport(msg->ms_target_port, msg, 1);
416 }
417 
418 int
419 lwkt_default_putport(lwkt_port_t port, lwkt_msg_t msg)
420 {
421     crit_enter();
422     msg->ms_flags |= MSGF_QUEUED;	/* abort interlock */
423     msg->ms_flags &= ~MSGF_DONE;
424     msg->ms_target_port = port;
425     _lwkt_putport(port, msg, 0);
426     crit_exit();
427     return(EASYNC);
428 }
429 
430 /*
431  * lwkt_forwardmsg()
432  *
433  * Forward a message received on one port to another port.  The forwarding
434  * function must deal with a pending abort but othewise essentially just
435  * issues a putport to the target port.
436  *
437  * An abort may have two side effects:  First, the message may have been
438  * requeued to the current target port.  If so, we must dequeue it before
439  * we can forward it.
440  */
441 int
442 lwkt_forwardmsg(lwkt_port_t port, lwkt_msg_t msg)
443 {
444     int error;
445 
446     crit_enter();
447     if (msg->ms_flags & MSGF_QUEUED) {
448 	KKASSERT(msg->ms_flags & MSGF_ABORTED);
449 	TAILQ_REMOVE(&msg->ms_target_port->mp_msgq, msg, ms_node);
450 	msg->ms_flags &= ~MSGF_QUEUED;
451     }
452     msg->ms_flags &= ~MSGF_RETRIEVED;
453     if ((error = port->mp_putport(port, msg)) != EASYNC)
454 	lwkt_replymsg(msg, error);
455     crit_exit();
456     return(error);
457 }
458 
459 /*
460  * lwkt_abortmsg()
461  *
462  *	Aborting a message is a fairly complex task.  The first order of
463  *	business is to get the message to the cpu that owns the target
464  *	port, during which we may have to do some port chasing due to
465  *	message forwarding operations.
466  *
467  *	NOTE!  Since an aborted message is requeued all message processing
468  *	loops should check the MSGF_ABORTED flag.
469  */
470 static void lwkt_abortmsg_remote(lwkt_msg_t msg);
471 
472 void
473 lwkt_abortmsg(lwkt_msg_t msg)
474 {
475     lwkt_port_t port;
476     thread_t td;
477 
478     /*
479      * A critical section protects us from reply IPIs on this cpu.   We
480      * can only abort messages that have not yet completed (DONE), are not
481      * in the midst of being replied (REPLY1), and which support the
482      * abort function (ABORTABLE).
483      */
484     crit_enter();
485     if ((msg->ms_flags & (MSGF_DONE|MSGF_REPLY1|MSGF_ABORTABLE)) == MSGF_ABORTABLE) {
486 	/*
487 	 * Chase the message.  If REPLY1 is set the message has been replied
488 	 * all the way back to the originator, otherwise it is sitting on
489 	 * ms_target_port (but we can only complete processing if we are
490 	 * on the same cpu as the selected port in order to avoid
491 	 * SMP cache synchronization issues).
492 	 *
493 	 * When chasing through multiple ports ms_flags may not be
494 	 * synchronized to the current cpu, but it WILL be synchronized
495 	 * with regards to testing the MSGF_REPLY1 bit once we reach the
496 	 * target port that made the reply and since the cpu owning
497 	 * some port X stores the new port in ms_target_port if the message
498 	 * is forwarded, the current port will only ever equal the target
499 	 * port when we are on the correct cpu.
500 	 */
501 	if (msg->ms_flags & MSGF_REPLY1)
502 	    port = msg->ms_reply_port;
503 	else
504 	    port = msg->ms_target_port;
505 	cpu_mb1();
506 
507 	/*
508 	 * The chase call must run on the cpu owning the port.  Fully
509 	 * synchronous ports (mp_td == NULL) can run the call on any cpu.
510 	 */
511 	td = port->mp_td;
512 	if (td && td->td_gd != mycpu) {
513 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_abortmsg_remote, msg);
514 	} else {
515 	    port->mp_abortport(port, msg);
516 	}
517     }
518     crit_exit();
519 }
520 
521 static
522 void
523 lwkt_abortmsg_remote(lwkt_msg_t msg)
524 {
525     lwkt_port_t port;
526     thread_t td;
527 
528     if (msg->ms_flags & MSGF_REPLY1)
529 	port = msg->ms_reply_port;
530     else
531 	port = msg->ms_target_port;
532     cpu_mb1();
533     td = port->mp_td;
534     if (td->td_gd != mycpu) {
535 	lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_abortmsg_remote, msg);
536     } else {
537 	port->mp_abortport(port, msg);
538     }
539 }
540 
541 /*
542  * The mp_abortport function is called when the abort has finally caught up
543  * to the target port or (if the message has been replied) the reply port.
544  */
545 void
546 lwkt_default_abortport(lwkt_port_t port, lwkt_msg_t msg)
547 {
548     /*
549      * Set ms_abort_port to ms_reply_port to indicate the completion of
550      * the messaging chasing portion of the abort request.  Note that
551      * the passed port is the port that we finally caught up to, not
552      * necessarily the reply port.
553      */
554     msg->ms_abort_port = msg->ms_reply_port;
555 
556     if (msg->ms_flags & MSGF_REPLY2) {
557 	/*
558 	 * If REPLY2 is set we must have chased it all the way back to
559 	 * the reply port, but the replyport code has not queued the message
560 	 * (because it was waiting for the abort to catch up).  We become
561 	 * responsible for queueing the message to the reply port.
562 	 */
563 	KKASSERT((msg->ms_flags & MSGF_QUEUED) == 0);
564 	KKASSERT(port == msg->ms_reply_port);
565 	TAILQ_INSERT_TAIL(&port->mp_msgq, msg, ms_node);
566 	msg->ms_flags |= MSGF_DONE | MSGF_QUEUED;
567 	if (port->mp_flags & MSGPORTF_WAITING)
568 	    lwkt_schedule(port->mp_td);
569     } else if ((msg->ms_flags & (MSGF_QUEUED|MSGF_REPLY1)) == 0) {
570 	/*
571 	 * Abort on the target port.  The message has not yet been replied
572 	 * and must be requeued to the target port.
573 	 */
574 	msg->ms_flags |= MSGF_ABORTED | MSGF_QUEUED;
575 	TAILQ_INSERT_TAIL(&port->mp_msgq, msg, ms_node);
576 	if (port->mp_flags & MSGPORTF_WAITING)
577 	    lwkt_schedule(port->mp_td);
578     } else if ((msg->ms_flags & MSGF_REPLY1) == 0) {
579 	/*
580 	 * The message has not yet been retrieved by the target port, set
581 	 * MSGF_ABORTED so the target port can requeue the message abort after
582 	 * retrieving it.
583 	 */
584 	msg->ms_flags |= MSGF_ABORTED;
585     }
586 }
587 
588 /*
589  * lwkt_default_waitport()
590  *
591  *	If msg is NULL, dequeue the next message from the port's message
592  *	queue, block until a message is ready.  This function never
593  *	returns NULL.
594  *
595  *	If msg is non-NULL, block until the requested message has been returned
596  *	to the port then dequeue and return it.  DO NOT USE THIS TO WAIT FOR
597  *	INCOMING REQUESTS, ONLY USE THIS TO WAIT FOR REPLIES.
598  *
599  *	Note that the API does not currently support multiple threads waiting
600  * 	on a port.  By virtue of owning the port it is controlled by our
601  *	cpu and we can safely manipulate it's contents.
602  */
603 void *
604 lwkt_default_waitport(lwkt_port_t port, lwkt_msg_t msg)
605 {
606     thread_t td = curthread;
607     int sentabort;
608 
609     KKASSERT(port->mp_td == td);
610     crit_enter_quick(td);
611     if (msg == NULL) {
612 	if ((msg = TAILQ_FIRST(&port->mp_msgq)) == NULL) {
613 	    port->mp_flags |= MSGPORTF_WAITING;
614 	    td->td_flags |= TDF_BLOCKED;
615 	    do {
616 		lwkt_deschedule_self(td);
617 		lwkt_switch();
618 	    } while ((msg = TAILQ_FIRST(&port->mp_msgq)) == NULL);
619 	    td->td_flags &= ~TDF_BLOCKED;
620 	    port->mp_flags &= ~MSGPORTF_WAITING;
621 	}
622 	_lwkt_pullmsg(port, msg);
623     } else {
624 	/*
625 	 * If a message is not marked done, or if it is queued, we have work
626 	 * to do.  Note that MSGF_DONE is always set in the context of the
627 	 * reply port's cpu.
628 	 */
629 	if ((msg->ms_flags & (MSGF_DONE|MSGF_QUEUED)) != MSGF_DONE) {
630 	    /*
631 	     * We must own the reply port to safely mess with it's contents.
632 	     */
633 	    port = msg->ms_reply_port;
634 	    KKASSERT(port->mp_td == td);
635 
636 	    if ((msg->ms_flags & MSGF_DONE) == 0) {
637 		port->mp_flags |= MSGPORTF_WAITING; /* saved by the BGL */
638 		sentabort = 0;
639 		do {
640 #ifdef _KERNEL
641 		    /*
642 		     * MSGF_PCATCH is only set by processes which wish to
643 		     * abort the message they are blocked on when a signal
644 		     * occurs.  Note that we still must wait for message
645 		     * completion after sending an abort request.
646 		     */
647 		    if (msg->ms_flags & MSGF_PCATCH) {
648 			if (sentabort == 0 && CURSIG(port->mp_td->td_proc)) {
649 			    sentabort = 1;
650 			    lwkt_abortmsg(msg);
651 			    continue;
652 			}
653 		    }
654 #endif
655 		    /*
656 		     * XXX set TDF_SINTR so 'ps' knows the difference between
657 		     * an interruptable wait and a disk wait.  YYY eventually
658 		     * move P_SINTR to TDF_SINTR to reduce duplication.
659 		     */
660 		    td->td_flags |= TDF_SINTR | TDF_BLOCKED;
661 		    lwkt_deschedule_self(td);
662 		    lwkt_switch();
663 		    td->td_flags &= ~(TDF_SINTR | TDF_BLOCKED);
664 		} while ((msg->ms_flags & MSGF_DONE) == 0);
665 		port->mp_flags &= ~MSGPORTF_WAITING; /* saved by the BGL */
666 	    }
667 	    /*
668 	     * We own the message now.
669 	     */
670 	    if (msg->ms_flags & MSGF_QUEUED) {
671 		msg->ms_flags &= ~MSGF_QUEUED;
672 		TAILQ_REMOVE(&port->mp_msgq, msg, ms_node);
673 	    }
674 	}
675     }
676     crit_exit_quick(td);
677     return(msg);
678 }
679 
680