xref: /dflybsd-src/sys/kern/lwkt_ipiq.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.13 2005/06/21 05:25:17 dillon Exp $
35  */
36 
37 /*
38  * This module implements IPI message queueing and the MI portion of IPI
39  * message processing.
40  */
41 
42 #ifdef _KERNEL
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/thread2.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_pager.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <machine/stdarg.h>
69 #include <machine/ipl.h>
70 #include <machine/smp.h>
71 #include <machine/atomic.h>
72 
73 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
74 
75 #else
76 
77 #include <sys/stdint.h>
78 #include <libcaps/thread.h>
79 #include <sys/thread.h>
80 #include <sys/msgport.h>
81 #include <sys/errno.h>
82 #include <libcaps/globaldata.h>
83 #include <machine/cpufunc.h>
84 #include <sys/thread2.h>
85 #include <sys/msgport2.h>
86 #include <stdio.h>
87 #include <stdlib.h>
88 #include <string.h>
89 #include <machine/lock.h>
90 #include <machine/cpu.h>
91 #include <machine/atomic.h>
92 
93 #endif
94 
95 #ifdef SMP
96 static __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
97 static __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
98 static __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
99 static __int64_t ipiq_passive;	/* passive IPI messages */
100 static __int64_t ipiq_cscount;	/* number of cpu synchronizations */
101 static int ipiq_optimized = 1;	/* XXX temporary sysctl */
102 #endif
103 
104 #ifdef _KERNEL
105 
106 #ifdef SMP
107 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
108 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
109 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0, "");
110 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0, "");
112 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0, "");
113 
114 #define IPIQ_STRING	"func=%p arg=%p scpu=%d dcpu=%d"
115 #define IPIQ_ARG_SIZE	(sizeof(void *) * 2 + sizeof(int) * 2)
116 
117 #if !defined(KTR_IPIQ)
118 #define KTR_IPIQ	KTR_ALL
119 #endif
120 KTR_INFO_MASTER(ipiq);
121 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
122 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
123 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
124 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
125 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
126 
127 #define logipiq(name, func, arg, sgd, dgd)	\
128 	KTR_LOG(ipiq_ ## name, func, arg, sgd->gd_cpuid, dgd->gd_cpuid)
129 
130 #endif	/* SMP */
131 #endif	/* KERNEL */
132 
133 #ifdef SMP
134 
135 static int lwkt_process_ipiq1(globaldata_t sgd, lwkt_ipiq_t ip, struct intrframe *frame);
136 static void lwkt_cpusync_remote1(lwkt_cpusync_t poll);
137 static void lwkt_cpusync_remote2(lwkt_cpusync_t poll);
138 
139 /*
140  * Send a function execution request to another cpu.  The request is queued
141  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
142  * possible target cpu.  The FIFO can be written.
143  *
144  * If the FIFO fills up we have to enable interrupts to avoid an APIC
145  * deadlock and process pending IPIQs while waiting for it to empty.
146  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
147  *
148  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
149  * end will take care of any pending interrupts.
150  *
151  * The actual hardware IPI is avoided if the target cpu is already processing
152  * the queue from a prior IPI.  It is possible to pipeline IPI messages
153  * very quickly between cpus due to the FIFO hysteresis.
154  *
155  * Need not be called from a critical section.
156  */
157 int
158 lwkt_send_ipiq(globaldata_t target, ipifunc_t func, void *arg)
159 {
160     lwkt_ipiq_t ip;
161     int windex;
162     struct globaldata *gd = mycpu;
163 
164     logipiq(send_norm, func, arg, gd, target);
165 
166     if (target == gd) {
167 	func(arg);
168 	return(0);
169     }
170     crit_enter();
171     ++gd->gd_intr_nesting_level;
172 #ifdef INVARIANTS
173     if (gd->gd_intr_nesting_level > 20)
174 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
175 #endif
176     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
177     ++ipiq_count;
178     ip = &gd->gd_ipiq[target->gd_cpuid];
179 
180     /*
181      * Do not allow the FIFO to become full.  Interrupts must be physically
182      * enabled while we liveloop to avoid deadlocking the APIC.
183      */
184     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
185 	unsigned int eflags = read_eflags();
186 
187 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
188 	    cpu_send_ipiq(target->gd_cpuid);
189 	cpu_enable_intr();
190 	++ipiq_fifofull;
191 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
192 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
193 	    lwkt_process_ipiq();
194 	}
195 	write_eflags(eflags);
196     }
197 
198     /*
199      * Queue the new message
200      */
201     windex = ip->ip_windex & MAXCPUFIFO_MASK;
202     ip->ip_func[windex] = (ipifunc2_t)func;
203     ip->ip_arg[windex] = arg;
204     cpu_sfence();
205     ++ip->ip_windex;
206     --gd->gd_intr_nesting_level;
207 
208     /*
209      * signal the target cpu that there is work pending.
210      */
211     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
212 	cpu_send_ipiq(target->gd_cpuid);
213     } else {
214 	if (ipiq_optimized == 0)
215 	    cpu_send_ipiq(target->gd_cpuid);
216 	++ipiq_avoided;
217     }
218     crit_exit();
219     return(ip->ip_windex);
220 }
221 
222 /*
223  * Similar to lwkt_send_ipiq() but this function does not actually initiate
224  * the IPI to the target cpu unless the FIFO has become too full, so it is
225  * very fast.
226  *
227  * This function is used for non-critical IPI messages, such as memory
228  * deallocations.  The queue will typically be flushed by the target cpu at
229  * the next clock interrupt.
230  *
231  * Need not be called from a critical section.
232  */
233 int
234 lwkt_send_ipiq_passive(globaldata_t target, ipifunc_t func, void *arg)
235 {
236     lwkt_ipiq_t ip;
237     int windex;
238     struct globaldata *gd = mycpu;
239 
240     KKASSERT(target != gd);
241     crit_enter();
242     logipiq(send_pasv, func, arg, gd, target);
243     ++gd->gd_intr_nesting_level;
244 #ifdef INVARIANTS
245     if (gd->gd_intr_nesting_level > 20)
246 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
247 #endif
248     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
249     ++ipiq_count;
250     ++ipiq_passive;
251     ip = &gd->gd_ipiq[target->gd_cpuid];
252 
253     /*
254      * Do not allow the FIFO to become full.  Interrupts must be physically
255      * enabled while we liveloop to avoid deadlocking the APIC.
256      */
257     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
258 	unsigned int eflags = read_eflags();
259 
260 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
261 	    cpu_send_ipiq(target->gd_cpuid);
262 	cpu_enable_intr();
263 	++ipiq_fifofull;
264 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
265 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
266 	    lwkt_process_ipiq();
267 	}
268 	write_eflags(eflags);
269     }
270 
271     /*
272      * Queue the new message
273      */
274     windex = ip->ip_windex & MAXCPUFIFO_MASK;
275     ip->ip_func[windex] = (ipifunc2_t)func;
276     ip->ip_arg[windex] = arg;
277     cpu_sfence();
278     ++ip->ip_windex;
279     --gd->gd_intr_nesting_level;
280 
281     /*
282      * Do not signal the target cpu, it will pick up the IPI when it next
283      * polls (typically on the next tick).
284      */
285     crit_exit();
286     return(ip->ip_windex);
287 }
288 
289 /*
290  * Send an IPI request without blocking, return 0 on success, ENOENT on
291  * failure.  The actual queueing of the hardware IPI may still force us
292  * to spin and process incoming IPIs but that will eventually go away
293  * when we've gotten rid of the other general IPIs.
294  */
295 int
296 lwkt_send_ipiq_nowait(globaldata_t target, ipifunc_t func, void *arg)
297 {
298     lwkt_ipiq_t ip;
299     int windex;
300     struct globaldata *gd = mycpu;
301 
302     logipiq(send_nbio, func, arg, gd, target);
303     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
304     if (target == gd) {
305 	func(arg);
306 	return(0);
307     }
308     ++ipiq_count;
309     ip = &gd->gd_ipiq[target->gd_cpuid];
310 
311     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
312 	logipiq(send_fail, func, arg, gd, target);
313 	return(ENOENT);
314     }
315     windex = ip->ip_windex & MAXCPUFIFO_MASK;
316     ip->ip_func[windex] = (ipifunc2_t)func;
317     ip->ip_arg[windex] = arg;
318     cpu_sfence();
319     ++ip->ip_windex;
320 
321     /*
322      * This isn't a passive IPI, we still have to signal the target cpu.
323      */
324     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
325 	cpu_send_ipiq(target->gd_cpuid);
326     } else {
327 	if (ipiq_optimized == 0)
328 	    cpu_send_ipiq(target->gd_cpuid);
329 	else
330 	    ++ipiq_avoided;
331     }
332     return(0);
333 }
334 
335 /*
336  * deprecated, used only by fast int forwarding.
337  */
338 int
339 lwkt_send_ipiq_bycpu(int dcpu, ipifunc_t func, void *arg)
340 {
341     return(lwkt_send_ipiq(globaldata_find(dcpu), func, arg));
342 }
343 
344 /*
345  * Send a message to several target cpus.  Typically used for scheduling.
346  * The message will not be sent to stopped cpus.
347  */
348 int
349 lwkt_send_ipiq_mask(u_int32_t mask, ipifunc_t func, void *arg)
350 {
351     int cpuid;
352     int count = 0;
353 
354     mask &= ~stopped_cpus;
355     while (mask) {
356 	cpuid = bsfl(mask);
357 	lwkt_send_ipiq(globaldata_find(cpuid), func, arg);
358 	mask &= ~(1 << cpuid);
359 	++count;
360     }
361     return(count);
362 }
363 
364 /*
365  * Wait for the remote cpu to finish processing a function.
366  *
367  * YYY we have to enable interrupts and process the IPIQ while waiting
368  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
369  * function to do this!  YYY we really should 'block' here.
370  *
371  * MUST be called from a critical section.  This routine may be called
372  * from an interrupt (for example, if an interrupt wakes a foreign thread
373  * up).
374  */
375 void
376 lwkt_wait_ipiq(globaldata_t target, int seq)
377 {
378     lwkt_ipiq_t ip;
379     int maxc = 100000000;
380 
381     if (target != mycpu) {
382 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
383 	if ((int)(ip->ip_xindex - seq) < 0) {
384 	    unsigned int eflags = read_eflags();
385 	    cpu_enable_intr();
386 	    while ((int)(ip->ip_xindex - seq) < 0) {
387 		crit_enter();
388 		lwkt_process_ipiq();
389 		crit_exit();
390 		if (--maxc == 0)
391 			printf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
392 		if (maxc < -1000000)
393 			panic("LWKT_WAIT_IPIQ");
394 		/*
395 		 * xindex may be modified by another cpu, use a load fence
396 		 * to ensure that the loop does not use a speculative value
397 		 * (which may improve performance).
398 		 */
399 		cpu_lfence();
400 	    }
401 	    write_eflags(eflags);
402 	}
403     }
404 }
405 
406 int
407 lwkt_seq_ipiq(globaldata_t target)
408 {
409     lwkt_ipiq_t ip;
410 
411     ip = &mycpu->gd_ipiq[target->gd_cpuid];
412     return(ip->ip_windex);
413 }
414 
415 /*
416  * Called from IPI interrupt (like a fast interrupt), which has placed
417  * us in a critical section.  The MP lock may or may not be held.
418  * May also be called from doreti or splz, or be reentrantly called
419  * indirectly through the ip_func[] we run.
420  *
421  * There are two versions, one where no interrupt frame is available (when
422  * called from the send code and from splz, and one where an interrupt
423  * frame is available.
424  */
425 void
426 lwkt_process_ipiq(void)
427 {
428     globaldata_t gd = mycpu;
429     globaldata_t sgd;
430     lwkt_ipiq_t ip;
431     int n;
432 
433 again:
434     for (n = 0; n < ncpus; ++n) {
435 	if (n != gd->gd_cpuid) {
436 	    sgd = globaldata_find(n);
437 	    ip = sgd->gd_ipiq;
438 	    if (ip != NULL) {
439 		while (lwkt_process_ipiq1(sgd, &ip[gd->gd_cpuid], NULL))
440 		    ;
441 	    }
442 	}
443     }
444     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
445 	if (lwkt_process_ipiq1(gd, &gd->gd_cpusyncq, NULL)) {
446 	    if (gd->gd_curthread->td_cscount == 0)
447 		goto again;
448 	    need_ipiq();
449 	}
450     }
451 }
452 
453 #ifdef _KERNEL
454 void
455 lwkt_process_ipiq_frame(struct intrframe frame)
456 {
457     globaldata_t gd = mycpu;
458     globaldata_t sgd;
459     lwkt_ipiq_t ip;
460     int n;
461 
462 again:
463     for (n = 0; n < ncpus; ++n) {
464 	if (n != gd->gd_cpuid) {
465 	    sgd = globaldata_find(n);
466 	    ip = sgd->gd_ipiq;
467 	    if (ip != NULL) {
468 		while (lwkt_process_ipiq1(sgd, &ip[gd->gd_cpuid], &frame))
469 		    ;
470 	    }
471 	}
472     }
473     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
474 	if (lwkt_process_ipiq1(gd, &gd->gd_cpusyncq, &frame)) {
475 	    if (gd->gd_curthread->td_cscount == 0)
476 		goto again;
477 	    need_ipiq();
478 	}
479     }
480 }
481 #endif
482 
483 static int
484 lwkt_process_ipiq1(globaldata_t sgd, lwkt_ipiq_t ip, struct intrframe *frame)
485 {
486     int ri;
487     int wi;
488     void (*copy_func)(void *data, struct intrframe *frame);
489     void *copy_arg;
490 
491     /*
492      * Obtain the current write index, which is modified by a remote cpu.
493      * Issue a load fence to prevent speculative reads of e.g. data written
494      * by the other cpu prior to it updating the index.
495      */
496     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
497     wi = ip->ip_windex;
498     cpu_lfence();
499 
500     /*
501      * Note: xindex is only updated after we are sure the function has
502      * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
503      * function may send an IPI which may block/drain.
504      */
505     while ((ri = ip->ip_rindex) != wi) {
506 	ri &= MAXCPUFIFO_MASK;
507 	copy_func = ip->ip_func[ri];
508 	copy_arg = ip->ip_arg[ri];
509 	cpu_mfence();
510 	++ip->ip_rindex;
511 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) == ((ri + 1) & MAXCPUFIFO_MASK));
512 	logipiq(receive, copy_func, copy_arg, sgd, mycpu);
513 	copy_func(copy_arg, frame);
514 	cpu_sfence();
515 	ip->ip_xindex = ip->ip_rindex;
516     }
517 
518     /*
519      * Return non-zero if there are more IPI messages pending on this
520      * ipiq.  ip_npoll is left set as long as possible to reduce the
521      * number of IPIs queued by the originating cpu, but must be cleared
522      * *BEFORE* checking windex.
523      */
524     atomic_poll_release_int(&ip->ip_npoll);
525     return(wi != ip->ip_windex);
526 }
527 
528 #else
529 
530 /*
531  * !SMP dummy routines
532  */
533 
534 int
535 lwkt_send_ipiq(globaldata_t target, ipifunc_t func, void *arg)
536 {
537     panic("lwkt_send_ipiq: UP box! (%d,%p,%p)", target->gd_cpuid, func, arg);
538     return(0); /* NOT REACHED */
539 }
540 
541 void
542 lwkt_wait_ipiq(globaldata_t target, int seq)
543 {
544     panic("lwkt_wait_ipiq: UP box! (%d,%d)", target->gd_cpuid, seq);
545 }
546 
547 #endif
548 
549 /*
550  * CPU Synchronization Support
551  *
552  * lwkt_cpusync_simple()
553  *
554  *	The function is executed synchronously before return on remote cpus.
555  *	A lwkt_cpusync_t pointer is passed as an argument.  The data can
556  *	be accessed via arg->cs_data.
557  *
558  *	XXX should I just pass the data as an argument to be consistent?
559  */
560 
561 void
562 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *data)
563 {
564     struct lwkt_cpusync cmd;
565 
566     cmd.cs_run_func = NULL;
567     cmd.cs_fin1_func = func;
568     cmd.cs_fin2_func = NULL;
569     cmd.cs_data = data;
570     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
571     if (mask & (1 << mycpu->gd_cpuid))
572 	func(&cmd);
573     lwkt_cpusync_finish(&cmd);
574 }
575 
576 /*
577  * lwkt_cpusync_fastdata()
578  *
579  *	The function is executed in tandem with return on remote cpus.
580  *	The data is directly passed as an argument.  Do not pass pointers to
581  *	temporary storage as the storage might have
582  *	gone poof by the time the target cpu executes
583  *	the function.
584  *
585  *	At the moment lwkt_cpusync is declared on the stack and we must wait
586  *	for all remote cpus to ack in lwkt_cpusync_finish(), but as a future
587  *	optimization we should be able to put a counter in the globaldata
588  *	structure (if it is not otherwise being used) and just poke it and
589  *	return without waiting. XXX
590  */
591 void
592 lwkt_cpusync_fastdata(cpumask_t mask, cpusync_func2_t func, void *data)
593 {
594     struct lwkt_cpusync cmd;
595 
596     cmd.cs_run_func = NULL;
597     cmd.cs_fin1_func = NULL;
598     cmd.cs_fin2_func = func;
599     cmd.cs_data = NULL;
600     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
601     if (mask & (1 << mycpu->gd_cpuid))
602 	func(data);
603     lwkt_cpusync_finish(&cmd);
604 }
605 
606 /*
607  * lwkt_cpusync_start()
608  *
609  *	Start synchronization with a set of target cpus, return once they are
610  *	known to be in a synchronization loop.  The target cpus will execute
611  *	poll->cs_run_func() IN TANDEM WITH THE RETURN.
612  *
613  *	XXX future: add lwkt_cpusync_start_quick() and require a call to
614  *	lwkt_cpusync_add() or lwkt_cpusync_wait(), allowing the caller to
615  *	potentially absorb the IPI latency doing something useful.
616  */
617 void
618 lwkt_cpusync_start(cpumask_t mask, lwkt_cpusync_t poll)
619 {
620     globaldata_t gd = mycpu;
621 
622     poll->cs_count = 0;
623     poll->cs_mask = mask;
624 #ifdef SMP
625     poll->cs_maxcount = lwkt_send_ipiq_mask(
626 		mask & gd->gd_other_cpus & smp_active_mask,
627 		(ipifunc_t)lwkt_cpusync_remote1, poll);
628 #endif
629     if (mask & gd->gd_cpumask) {
630 	if (poll->cs_run_func)
631 	    poll->cs_run_func(poll);
632     }
633 #ifdef SMP
634     if (poll->cs_maxcount) {
635 	++ipiq_cscount;
636 	++gd->gd_curthread->td_cscount;
637 	while (poll->cs_count != poll->cs_maxcount) {
638 	    crit_enter();
639 	    lwkt_process_ipiq();
640 	    crit_exit();
641 	}
642     }
643 #endif
644 }
645 
646 void
647 lwkt_cpusync_add(cpumask_t mask, lwkt_cpusync_t poll)
648 {
649     globaldata_t gd = mycpu;
650 #ifdef SMP
651     int count;
652 #endif
653 
654     mask &= ~poll->cs_mask;
655     poll->cs_mask |= mask;
656 #ifdef SMP
657     count = lwkt_send_ipiq_mask(
658 		mask & gd->gd_other_cpus & smp_active_mask,
659 		(ipifunc_t)lwkt_cpusync_remote1, poll);
660 #endif
661     if (mask & gd->gd_cpumask) {
662 	if (poll->cs_run_func)
663 	    poll->cs_run_func(poll);
664     }
665 #ifdef SMP
666     poll->cs_maxcount += count;
667     if (poll->cs_maxcount) {
668 	if (poll->cs_maxcount == count)
669 	    ++gd->gd_curthread->td_cscount;
670 	while (poll->cs_count != poll->cs_maxcount) {
671 	    crit_enter();
672 	    lwkt_process_ipiq();
673 	    crit_exit();
674 	}
675     }
676 #endif
677 }
678 
679 /*
680  * Finish synchronization with a set of target cpus.  The target cpus will
681  * execute cs_fin1_func(poll) prior to this function returning, and will
682  * execute cs_fin2_func(data) IN TANDEM WITH THIS FUNCTION'S RETURN.
683  *
684  * If cs_maxcount is non-zero then we are mastering a cpusync with one or
685  * more remote cpus and must account for it in our thread structure.
686  */
687 void
688 lwkt_cpusync_finish(lwkt_cpusync_t poll)
689 {
690     globaldata_t gd = mycpu;
691 
692     poll->cs_count = -1;
693     if (poll->cs_mask & gd->gd_cpumask) {
694 	if (poll->cs_fin1_func)
695 	    poll->cs_fin1_func(poll);
696 	if (poll->cs_fin2_func)
697 	    poll->cs_fin2_func(poll->cs_data);
698     }
699 #ifdef SMP
700     if (poll->cs_maxcount) {
701 	while (poll->cs_count != -(poll->cs_maxcount + 1)) {
702 	    crit_enter();
703 	    lwkt_process_ipiq();
704 	    crit_exit();
705 	}
706 	--gd->gd_curthread->td_cscount;
707     }
708 #endif
709 }
710 
711 #ifdef SMP
712 
713 /*
714  * helper IPI remote messaging function.
715  *
716  * Called on remote cpu when a new cpu synchronization request has been
717  * sent to us.  Execute the run function and adjust cs_count, then requeue
718  * the request so we spin on it.
719  */
720 static void
721 lwkt_cpusync_remote1(lwkt_cpusync_t poll)
722 {
723     atomic_add_int(&poll->cs_count, 1);
724     if (poll->cs_run_func)
725 	poll->cs_run_func(poll);
726     lwkt_cpusync_remote2(poll);
727 }
728 
729 /*
730  * helper IPI remote messaging function.
731  *
732  * Poll for the originator telling us to finish.  If it hasn't, requeue
733  * our request so we spin on it.  When the originator requests that we
734  * finish we execute cs_fin1_func(poll) synchronously and cs_fin2_func(data)
735  * in tandem with the release.
736  */
737 static void
738 lwkt_cpusync_remote2(lwkt_cpusync_t poll)
739 {
740     if (poll->cs_count < 0) {
741 	cpusync_func2_t savef;
742 	void *saved;
743 
744 	if (poll->cs_fin1_func)
745 	    poll->cs_fin1_func(poll);
746 	if (poll->cs_fin2_func) {
747 	    savef = poll->cs_fin2_func;
748 	    saved = poll->cs_data;
749 	    atomic_add_int(&poll->cs_count, -1);
750 	    savef(saved);
751 	} else {
752 	    atomic_add_int(&poll->cs_count, -1);
753 	}
754     } else {
755 	globaldata_t gd = mycpu;
756 	lwkt_ipiq_t ip;
757 	int wi;
758 
759 	ip = &gd->gd_cpusyncq;
760 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
761 	ip->ip_func[wi] = (ipifunc2_t)lwkt_cpusync_remote2;
762 	ip->ip_arg[wi] = poll;
763 	cpu_sfence();
764 	++ip->ip_windex;
765     }
766 }
767 
768 #endif
769