xref: /dflybsd-src/sys/kern/kern_time.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/sysproto.h>
41 #include <sys/resourcevar.h>
42 #include <sys/signalvar.h>
43 #include <sys/kernel.h>
44 #include <sys/sysent.h>
45 #include <sys/sysunion.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/sysctl.h>
51 #include <sys/kern_syscall.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 #include <sys/msgport2.h>
56 #include <sys/thread2.h>
57 #include <sys/mplock2.h>
58 
59 struct timezone tz;
60 
61 /*
62  * Time of day and interval timer support.
63  *
64  * These routines provide the kernel entry points to get and set
65  * the time-of-day and per-process interval timers.  Subroutines
66  * here provide support for adding and subtracting timeval structures
67  * and decrementing interval timers, optionally reloading the interval
68  * timers when they expire.
69  */
70 
71 int	nanosleep1(struct timespec *rqt, struct timespec *rmt);
72 static int	settime(struct timeval *);
73 static void	timevalfix(struct timeval *);
74 
75 static int     sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77 
78 static int
79 settime(struct timeval *tv)
80 {
81 	struct timeval delta, tv1, tv2;
82 	static struct timeval maxtime, laststep;
83 	struct timespec ts;
84 	int origcpu;
85 
86 	if ((origcpu = mycpu->gd_cpuid) != 0)
87 		lwkt_setcpu_self(globaldata_find(0));
88 
89 	crit_enter();
90 	microtime(&tv1);
91 	delta = *tv;
92 	timevalsub(&delta, &tv1);
93 
94 	/*
95 	 * If the system is secure, we do not allow the time to be
96 	 * set to a value earlier than 1 second less than the highest
97 	 * time we have yet seen. The worst a miscreant can do in
98 	 * this circumstance is "freeze" time. He couldn't go
99 	 * back to the past.
100 	 *
101 	 * We similarly do not allow the clock to be stepped more
102 	 * than one second, nor more than once per second. This allows
103 	 * a miscreant to make the clock march double-time, but no worse.
104 	 */
105 	if (securelevel > 1) {
106 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107 			/*
108 			 * Update maxtime to latest time we've seen.
109 			 */
110 			if (tv1.tv_sec > maxtime.tv_sec)
111 				maxtime = tv1;
112 			tv2 = *tv;
113 			timevalsub(&tv2, &maxtime);
114 			if (tv2.tv_sec < -1) {
115 				tv->tv_sec = maxtime.tv_sec - 1;
116 				kprintf("Time adjustment clamped to -1 second\n");
117 			}
118 		} else {
119 			if (tv1.tv_sec == laststep.tv_sec) {
120 				crit_exit();
121 				return (EPERM);
122 			}
123 			if (delta.tv_sec > 1) {
124 				tv->tv_sec = tv1.tv_sec + 1;
125 				kprintf("Time adjustment clamped to +1 second\n");
126 			}
127 			laststep = *tv;
128 		}
129 	}
130 
131 	ts.tv_sec = tv->tv_sec;
132 	ts.tv_nsec = tv->tv_usec * 1000;
133 	set_timeofday(&ts);
134 	crit_exit();
135 
136 	if (origcpu != 0)
137 		lwkt_setcpu_self(globaldata_find(origcpu));
138 
139 	resettodr();
140 	return (0);
141 }
142 
143 /*
144  * MPSAFE
145  */
146 int
147 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
148 {
149 	int error = 0;
150 
151 	switch(clock_id) {
152 	case CLOCK_REALTIME:
153 		nanotime(ats);
154 		break;
155 	case CLOCK_MONOTONIC:
156 		nanouptime(ats);
157 		break;
158 	default:
159 		error = EINVAL;
160 		break;
161 	}
162 	return (error);
163 }
164 
165 /*
166  * MPSAFE
167  */
168 int
169 sys_clock_gettime(struct clock_gettime_args *uap)
170 {
171 	struct timespec ats;
172 	int error;
173 
174 	error = kern_clock_gettime(uap->clock_id, &ats);
175 	if (error == 0)
176 		error = copyout(&ats, uap->tp, sizeof(ats));
177 
178 	return (error);
179 }
180 
181 int
182 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
183 {
184 	struct thread *td = curthread;
185 	struct timeval atv;
186 	int error;
187 
188 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
189 		return (error);
190 	if (clock_id != CLOCK_REALTIME)
191 		return (EINVAL);
192 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
193 		return (EINVAL);
194 
195 	TIMESPEC_TO_TIMEVAL(&atv, ats);
196 	error = settime(&atv);
197 	return (error);
198 }
199 
200 /*
201  * MPALMOSTSAFE
202  */
203 int
204 sys_clock_settime(struct clock_settime_args *uap)
205 {
206 	struct timespec ats;
207 	int error;
208 
209 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
210 		return (error);
211 
212 	get_mplock();
213 	error = kern_clock_settime(uap->clock_id, &ats);
214 	rel_mplock();
215 	return (error);
216 }
217 
218 /*
219  * MPSAFE
220  */
221 int
222 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
223 {
224 	int error;
225 
226 	switch(clock_id) {
227 	case CLOCK_REALTIME:
228 	case CLOCK_MONOTONIC:
229 		/*
230 		 * Round up the result of the division cheaply
231 		 * by adding 1.  Rounding up is especially important
232 		 * if rounding down would give 0.  Perfect rounding
233 		 * is unimportant.
234 		 */
235 		ts->tv_sec = 0;
236 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
237 		error = 0;
238 		break;
239 	default:
240 		error = EINVAL;
241 		break;
242 	}
243 
244 	return(error);
245 }
246 
247 /*
248  * MPSAFE
249  */
250 int
251 sys_clock_getres(struct clock_getres_args *uap)
252 {
253 	int error;
254 	struct timespec ts;
255 
256 	error = kern_clock_getres(uap->clock_id, &ts);
257 	if (error == 0)
258 		error = copyout(&ts, uap->tp, sizeof(ts));
259 
260 	return (error);
261 }
262 
263 /*
264  * nanosleep1()
265  *
266  *	This is a general helper function for nanosleep() (aka sleep() aka
267  *	usleep()).
268  *
269  *	If there is less then one tick's worth of time left and
270  *	we haven't done a yield, or the remaining microseconds is
271  *	ridiculously low, do a yield.  This avoids having
272  *	to deal with systimer overheads when the system is under
273  *	heavy loads.  If we have done a yield already then use
274  *	a systimer and an uninterruptable thread wait.
275  *
276  *	If there is more then a tick's worth of time left,
277  *	calculate the baseline ticks and use an interruptable
278  *	tsleep, then handle the fine-grained delay on the next
279  *	loop.  This usually results in two sleeps occuring, a long one
280  *	and a short one.
281  *
282  * MPSAFE
283  */
284 static void
285 ns1_systimer(systimer_t info, int in_ipi __unused,
286     struct intrframe *frame __unused)
287 {
288 	lwkt_schedule(info->data);
289 }
290 
291 int
292 nanosleep1(struct timespec *rqt, struct timespec *rmt)
293 {
294 	static int nanowait;
295 	struct timespec ts, ts2, ts3;
296 	struct timeval tv;
297 	int error;
298 
299 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
300 		return (EINVAL);
301 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
302 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
303 		return (0);
304 	nanouptime(&ts);
305 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
306 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
307 
308 	for (;;) {
309 		int ticks;
310 		struct systimer info;
311 
312 		ticks = tv.tv_usec / ustick;	/* approximate */
313 
314 		if (tv.tv_sec == 0 && ticks == 0) {
315 			thread_t td = curthread;
316 			if (tv.tv_usec < sleep_hard_us) {
317 				lwkt_user_yield();
318 			} else {
319 				crit_enter_quick(td);
320 				systimer_init_oneshot(&info, ns1_systimer,
321 						td, tv.tv_usec);
322 				lwkt_deschedule_self(td);
323 				crit_exit_quick(td);
324 				lwkt_switch();
325 				systimer_del(&info); /* make sure it's gone */
326 			}
327 			error = iscaught(td->td_lwp);
328 		} else if (tv.tv_sec == 0) {
329 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
330 		} else {
331 			ticks = tvtohz_low(&tv); /* also handles overflow */
332 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
333 		}
334 		nanouptime(&ts2);
335 		if (error && error != EWOULDBLOCK) {
336 			if (error == ERESTART)
337 				error = EINTR;
338 			if (rmt != NULL) {
339 				timespecsub(&ts, &ts2);
340 				if (ts.tv_sec < 0)
341 					timespecclear(&ts);
342 				*rmt = ts;
343 			}
344 			return (error);
345 		}
346 		if (timespeccmp(&ts2, &ts, >=))
347 			return (0);
348 		ts3 = ts;
349 		timespecsub(&ts3, &ts2);
350 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
351 	}
352 }
353 
354 /*
355  * MPSAFE
356  */
357 int
358 sys_nanosleep(struct nanosleep_args *uap)
359 {
360 	int error;
361 	struct timespec rqt;
362 	struct timespec rmt;
363 
364 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
365 	if (error)
366 		return (error);
367 
368 	error = nanosleep1(&rqt, &rmt);
369 
370 	/*
371 	 * copyout the residual if nanosleep was interrupted.
372 	 */
373 	if (error && uap->rmtp) {
374 		int error2;
375 
376 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
377 		if (error2)
378 			error = error2;
379 	}
380 	return (error);
381 }
382 
383 /*
384  * MPSAFE
385  */
386 int
387 sys_gettimeofday(struct gettimeofday_args *uap)
388 {
389 	struct timeval atv;
390 	int error = 0;
391 
392 	if (uap->tp) {
393 		microtime(&atv);
394 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
395 		    sizeof (atv))))
396 			return (error);
397 	}
398 	if (uap->tzp)
399 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
400 		    sizeof (tz));
401 	return (error);
402 }
403 
404 /*
405  * MPALMOSTSAFE
406  */
407 int
408 sys_settimeofday(struct settimeofday_args *uap)
409 {
410 	struct thread *td = curthread;
411 	struct timeval atv;
412 	struct timezone atz;
413 	int error;
414 
415 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
416 		return (error);
417 	/* Verify all parameters before changing time. */
418 	if (uap->tv) {
419 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
420 		    sizeof(atv))))
421 			return (error);
422 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
423 			return (EINVAL);
424 	}
425 	if (uap->tzp &&
426 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
427 		return (error);
428 
429 	get_mplock();
430 	if (uap->tv && (error = settime(&atv))) {
431 		rel_mplock();
432 		return (error);
433 	}
434 	rel_mplock();
435 	if (uap->tzp)
436 		tz = atz;
437 	return (0);
438 }
439 
440 static void
441 kern_adjtime_common(void)
442 {
443 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
444 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
445 		ntp_tick_delta = ntp_delta;
446 	else if (ntp_delta > ntp_big_delta)
447 		ntp_tick_delta = 10 * ntp_default_tick_delta;
448 	else if (ntp_delta < -ntp_big_delta)
449 		ntp_tick_delta = -10 * ntp_default_tick_delta;
450 	else if (ntp_delta > 0)
451 		ntp_tick_delta = ntp_default_tick_delta;
452 	else
453 		ntp_tick_delta = -ntp_default_tick_delta;
454 }
455 
456 void
457 kern_adjtime(int64_t delta, int64_t *odelta)
458 {
459 	int origcpu;
460 
461 	if ((origcpu = mycpu->gd_cpuid) != 0)
462 		lwkt_setcpu_self(globaldata_find(0));
463 
464 	crit_enter();
465 	*odelta = ntp_delta;
466 	ntp_delta = delta;
467 	kern_adjtime_common();
468 	crit_exit();
469 
470 	if (origcpu != 0)
471 		lwkt_setcpu_self(globaldata_find(origcpu));
472 }
473 
474 static void
475 kern_get_ntp_delta(int64_t *delta)
476 {
477 	int origcpu;
478 
479 	if ((origcpu = mycpu->gd_cpuid) != 0)
480 		lwkt_setcpu_self(globaldata_find(0));
481 
482 	crit_enter();
483 	*delta = ntp_delta;
484 	crit_exit();
485 
486 	if (origcpu != 0)
487 		lwkt_setcpu_self(globaldata_find(origcpu));
488 }
489 
490 void
491 kern_reladjtime(int64_t delta)
492 {
493 	int origcpu;
494 
495 	if ((origcpu = mycpu->gd_cpuid) != 0)
496 		lwkt_setcpu_self(globaldata_find(0));
497 
498 	crit_enter();
499 	ntp_delta += delta;
500 	kern_adjtime_common();
501 	crit_exit();
502 
503 	if (origcpu != 0)
504 		lwkt_setcpu_self(globaldata_find(origcpu));
505 }
506 
507 static void
508 kern_adjfreq(int64_t rate)
509 {
510 	int origcpu;
511 
512 	if ((origcpu = mycpu->gd_cpuid) != 0)
513 		lwkt_setcpu_self(globaldata_find(0));
514 
515 	crit_enter();
516 	ntp_tick_permanent = rate;
517 	crit_exit();
518 
519 	if (origcpu != 0)
520 		lwkt_setcpu_self(globaldata_find(origcpu));
521 }
522 
523 /*
524  * MPALMOSTSAFE
525  */
526 int
527 sys_adjtime(struct adjtime_args *uap)
528 {
529 	struct thread *td = curthread;
530 	struct timeval atv;
531 	int64_t ndelta, odelta;
532 	int error;
533 
534 	if ((error = priv_check(td, PRIV_ADJTIME)))
535 		return (error);
536 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
537 	if (error)
538 		return (error);
539 
540 	/*
541 	 * Compute the total correction and the rate at which to apply it.
542 	 * Round the adjustment down to a whole multiple of the per-tick
543 	 * delta, so that after some number of incremental changes in
544 	 * hardclock(), tickdelta will become zero, lest the correction
545 	 * overshoot and start taking us away from the desired final time.
546 	 */
547 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
548 	get_mplock();
549 	kern_adjtime(ndelta, &odelta);
550 	rel_mplock();
551 
552 	if (uap->olddelta) {
553 		atv.tv_sec = odelta / 1000000000;
554 		atv.tv_usec = odelta % 1000000000 / 1000;
555 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
556 	}
557 	return (0);
558 }
559 
560 static int
561 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
562 {
563 	int64_t delta;
564 	int error;
565 
566 	if (req->newptr != NULL) {
567 		if (priv_check(curthread, PRIV_ROOT))
568 			return (EPERM);
569 		error = SYSCTL_IN(req, &delta, sizeof(delta));
570 		if (error)
571 			return (error);
572 		kern_reladjtime(delta);
573 	}
574 
575 	if (req->oldptr)
576 		kern_get_ntp_delta(&delta);
577 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
578 	return (error);
579 }
580 
581 /*
582  * delta is in nanoseconds.
583  */
584 static int
585 sysctl_delta(SYSCTL_HANDLER_ARGS)
586 {
587 	int64_t delta, old_delta;
588 	int error;
589 
590 	if (req->newptr != NULL) {
591 		if (priv_check(curthread, PRIV_ROOT))
592 			return (EPERM);
593 		error = SYSCTL_IN(req, &delta, sizeof(delta));
594 		if (error)
595 			return (error);
596 		kern_adjtime(delta, &old_delta);
597 	}
598 
599 	if (req->oldptr != NULL)
600 		kern_get_ntp_delta(&old_delta);
601 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
602 	return (error);
603 }
604 
605 /*
606  * frequency is in nanoseconds per second shifted left 32.
607  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
608  */
609 static int
610 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
611 {
612 	int64_t freqdelta;
613 	int error;
614 
615 	if (req->newptr != NULL) {
616 		if (priv_check(curthread, PRIV_ROOT))
617 			return (EPERM);
618 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
619 		if (error)
620 			return (error);
621 
622 		freqdelta /= hz;
623 		kern_adjfreq(freqdelta);
624 	}
625 
626 	if (req->oldptr != NULL)
627 		freqdelta = ntp_tick_permanent * hz;
628 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
629 	if (error)
630 		return (error);
631 
632 	return (0);
633 }
634 
635 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
636 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
637     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
638     sysctl_adjfreq, "Q", "permanent correction per second");
639 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
640     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
641     sysctl_delta, "Q", "one-time delta");
642 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
643     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
644     "threshold for fast adjustment");
645 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
646     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
647     "per-tick adjustment");
648 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
649     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
650     "default per-tick adjustment");
651 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
652     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
653     "next leap second");
654 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
655     &ntp_leap_insert, 0, "insert or remove leap second");
656 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
657     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
658     sysctl_adjtime, "Q", "relative adjust for delta");
659 
660 /*
661  * Get value of an interval timer.  The process virtual and
662  * profiling virtual time timers are kept in the p_stats area, since
663  * they can be swapped out.  These are kept internally in the
664  * way they are specified externally: in time until they expire.
665  *
666  * The real time interval timer is kept in the process table slot
667  * for the process, and its value (it_value) is kept as an
668  * absolute time rather than as a delta, so that it is easy to keep
669  * periodic real-time signals from drifting.
670  *
671  * Virtual time timers are processed in the hardclock() routine of
672  * kern_clock.c.  The real time timer is processed by a timeout
673  * routine, called from the softclock() routine.  Since a callout
674  * may be delayed in real time due to interrupt processing in the system,
675  * it is possible for the real time timeout routine (realitexpire, given below),
676  * to be delayed in real time past when it is supposed to occur.  It
677  * does not suffice, therefore, to reload the real timer .it_value from the
678  * real time timers .it_interval.  Rather, we compute the next time in
679  * absolute time the timer should go off.
680  *
681  * MPALMOSTSAFE
682  */
683 int
684 sys_getitimer(struct getitimer_args *uap)
685 {
686 	struct proc *p = curproc;
687 	struct timeval ctv;
688 	struct itimerval aitv;
689 
690 	if (uap->which > ITIMER_PROF)
691 		return (EINVAL);
692 	lwkt_gettoken(&p->p_token);
693 	if (uap->which == ITIMER_REAL) {
694 		/*
695 		 * Convert from absolute to relative time in .it_value
696 		 * part of real time timer.  If time for real time timer
697 		 * has passed return 0, else return difference between
698 		 * current time and time for the timer to go off.
699 		 */
700 		aitv = p->p_realtimer;
701 		if (timevalisset(&aitv.it_value)) {
702 			getmicrouptime(&ctv);
703 			if (timevalcmp(&aitv.it_value, &ctv, <))
704 				timevalclear(&aitv.it_value);
705 			else
706 				timevalsub(&aitv.it_value, &ctv);
707 		}
708 	} else {
709 		aitv = p->p_timer[uap->which];
710 	}
711 	lwkt_reltoken(&p->p_token);
712 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
713 }
714 
715 /*
716  * MPALMOSTSAFE
717  */
718 int
719 sys_setitimer(struct setitimer_args *uap)
720 {
721 	struct itimerval aitv;
722 	struct timeval ctv;
723 	struct itimerval *itvp;
724 	struct proc *p = curproc;
725 	int error;
726 
727 	if (uap->which > ITIMER_PROF)
728 		return (EINVAL);
729 	itvp = uap->itv;
730 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
731 	    sizeof(struct itimerval))))
732 		return (error);
733 	if ((uap->itv = uap->oitv) &&
734 	    (error = sys_getitimer((struct getitimer_args *)uap)))
735 		return (error);
736 	if (itvp == 0)
737 		return (0);
738 	if (itimerfix(&aitv.it_value))
739 		return (EINVAL);
740 	if (!timevalisset(&aitv.it_value))
741 		timevalclear(&aitv.it_interval);
742 	else if (itimerfix(&aitv.it_interval))
743 		return (EINVAL);
744 	lwkt_gettoken(&p->p_token);
745 	if (uap->which == ITIMER_REAL) {
746 		if (timevalisset(&p->p_realtimer.it_value))
747 			callout_stop(&p->p_ithandle);
748 		if (timevalisset(&aitv.it_value))
749 			callout_reset(&p->p_ithandle,
750 			    tvtohz_high(&aitv.it_value), realitexpire, p);
751 		getmicrouptime(&ctv);
752 		timevaladd(&aitv.it_value, &ctv);
753 		p->p_realtimer = aitv;
754 	} else {
755 		p->p_timer[uap->which] = aitv;
756 	}
757 	lwkt_reltoken(&p->p_token);
758 	return (0);
759 }
760 
761 /*
762  * Real interval timer expired:
763  * send process whose timer expired an alarm signal.
764  * If time is not set up to reload, then just return.
765  * Else compute next time timer should go off which is > current time.
766  * This is where delay in processing this timeout causes multiple
767  * SIGALRM calls to be compressed into one.
768  * tvtohz_high() always adds 1 to allow for the time until the next clock
769  * interrupt being strictly less than 1 clock tick, but we don't want
770  * that here since we want to appear to be in sync with the clock
771  * interrupt even when we're delayed.
772  */
773 void
774 realitexpire(void *arg)
775 {
776 	struct proc *p;
777 	struct timeval ctv, ntv;
778 
779 	p = (struct proc *)arg;
780 	lwkt_gettoken(&p->p_token);
781 	ksignal(p, SIGALRM);
782 	if (!timevalisset(&p->p_realtimer.it_interval)) {
783 		timevalclear(&p->p_realtimer.it_value);
784 		lwkt_reltoken(&p->p_token);
785 		return;
786 	}
787 	for (;;) {
788 		timevaladd(&p->p_realtimer.it_value,
789 			   &p->p_realtimer.it_interval);
790 		getmicrouptime(&ctv);
791 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
792 			ntv = p->p_realtimer.it_value;
793 			timevalsub(&ntv, &ctv);
794 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
795 				      realitexpire, p);
796 			lwkt_reltoken(&p->p_token);
797 			return;
798 		}
799 	}
800 	lwkt_reltoken(&p->p_token);
801 }
802 
803 /*
804  * Check that a proposed value to load into the .it_value or
805  * .it_interval part of an interval timer is acceptable, and
806  * fix it to have at least minimal value (i.e. if it is less
807  * than the resolution of the clock, round it up.)
808  *
809  * MPSAFE
810  */
811 int
812 itimerfix(struct timeval *tv)
813 {
814 
815 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
816 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
817 		return (EINVAL);
818 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
819 		tv->tv_usec = ustick;
820 	return (0);
821 }
822 
823 /*
824  * Decrement an interval timer by a specified number
825  * of microseconds, which must be less than a second,
826  * i.e. < 1000000.  If the timer expires, then reload
827  * it.  In this case, carry over (usec - old value) to
828  * reduce the value reloaded into the timer so that
829  * the timer does not drift.  This routine assumes
830  * that it is called in a context where the timers
831  * on which it is operating cannot change in value.
832  */
833 int
834 itimerdecr(struct itimerval *itp, int usec)
835 {
836 
837 	if (itp->it_value.tv_usec < usec) {
838 		if (itp->it_value.tv_sec == 0) {
839 			/* expired, and already in next interval */
840 			usec -= itp->it_value.tv_usec;
841 			goto expire;
842 		}
843 		itp->it_value.tv_usec += 1000000;
844 		itp->it_value.tv_sec--;
845 	}
846 	itp->it_value.tv_usec -= usec;
847 	usec = 0;
848 	if (timevalisset(&itp->it_value))
849 		return (1);
850 	/* expired, exactly at end of interval */
851 expire:
852 	if (timevalisset(&itp->it_interval)) {
853 		itp->it_value = itp->it_interval;
854 		itp->it_value.tv_usec -= usec;
855 		if (itp->it_value.tv_usec < 0) {
856 			itp->it_value.tv_usec += 1000000;
857 			itp->it_value.tv_sec--;
858 		}
859 	} else
860 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
861 	return (0);
862 }
863 
864 /*
865  * Add and subtract routines for timevals.
866  * N.B.: subtract routine doesn't deal with
867  * results which are before the beginning,
868  * it just gets very confused in this case.
869  * Caveat emptor.
870  */
871 void
872 timevaladd(struct timeval *t1, const struct timeval *t2)
873 {
874 
875 	t1->tv_sec += t2->tv_sec;
876 	t1->tv_usec += t2->tv_usec;
877 	timevalfix(t1);
878 }
879 
880 void
881 timevalsub(struct timeval *t1, const struct timeval *t2)
882 {
883 
884 	t1->tv_sec -= t2->tv_sec;
885 	t1->tv_usec -= t2->tv_usec;
886 	timevalfix(t1);
887 }
888 
889 static void
890 timevalfix(struct timeval *t1)
891 {
892 
893 	if (t1->tv_usec < 0) {
894 		t1->tv_sec--;
895 		t1->tv_usec += 1000000;
896 	}
897 	if (t1->tv_usec >= 1000000) {
898 		t1->tv_sec++;
899 		t1->tv_usec -= 1000000;
900 	}
901 }
902 
903 /*
904  * ratecheck(): simple time-based rate-limit checking.
905  */
906 int
907 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
908 {
909 	struct timeval tv, delta;
910 	int rv = 0;
911 
912 	getmicrouptime(&tv);		/* NB: 10ms precision */
913 	delta = tv;
914 	timevalsub(&delta, lasttime);
915 
916 	/*
917 	 * check for 0,0 is so that the message will be seen at least once,
918 	 * even if interval is huge.
919 	 */
920 	if (timevalcmp(&delta, mininterval, >=) ||
921 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
922 		*lasttime = tv;
923 		rv = 1;
924 	}
925 
926 	return (rv);
927 }
928 
929 /*
930  * ppsratecheck(): packets (or events) per second limitation.
931  *
932  * Return 0 if the limit is to be enforced (e.g. the caller
933  * should drop a packet because of the rate limitation).
934  *
935  * maxpps of 0 always causes zero to be returned.  maxpps of -1
936  * always causes 1 to be returned; this effectively defeats rate
937  * limiting.
938  *
939  * Note that we maintain the struct timeval for compatibility
940  * with other bsd systems.  We reuse the storage and just monitor
941  * clock ticks for minimal overhead.
942  */
943 int
944 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
945 {
946 	int now;
947 
948 	/*
949 	 * Reset the last time and counter if this is the first call
950 	 * or more than a second has passed since the last update of
951 	 * lasttime.
952 	 */
953 	now = ticks;
954 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
955 		lasttime->tv_sec = now;
956 		*curpps = 1;
957 		return (maxpps != 0);
958 	} else {
959 		(*curpps)++;		/* NB: ignore potential overflow */
960 		return (maxpps < 0 || *curpps < maxpps);
961 	}
962 }
963 
964