xref: /dflybsd-src/sys/kern/kern_time.c (revision bf22d4c1f95f57623b2b3030738e116d3a547284)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.15 2004/04/10 20:55:23 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/vnode.h>
51 #include <sys/sysctl.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <sys/msgport2.h>
55 #include <sys/thread2.h>
56 
57 struct timezone tz;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	nanosleep1 (struct timespec *rqt,
70 		    struct timespec *rmt);
71 static int	settime (struct timeval *);
72 static void	timevalfix (struct timeval *);
73 static void	no_lease_updatetime (int);
74 
75 static int     sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77 
78 static void
79 no_lease_updatetime(deltat)
80 	int deltat;
81 {
82 }
83 
84 void (*lease_updatetime) (int)  = no_lease_updatetime;
85 
86 static int
87 settime(tv)
88 	struct timeval *tv;
89 {
90 	struct timeval delta, tv1, tv2;
91 	static struct timeval maxtime, laststep;
92 	struct timespec ts;
93 
94 	crit_enter();
95 	microtime(&tv1);
96 	delta = *tv;
97 	timevalsub(&delta, &tv1);
98 
99 	/*
100 	 * If the system is secure, we do not allow the time to be
101 	 * set to a value earlier than 1 second less than the highest
102 	 * time we have yet seen. The worst a miscreant can do in
103 	 * this circumstance is "freeze" time. He couldn't go
104 	 * back to the past.
105 	 *
106 	 * We similarly do not allow the clock to be stepped more
107 	 * than one second, nor more than once per second. This allows
108 	 * a miscreant to make the clock march double-time, but no worse.
109 	 */
110 	if (securelevel > 1) {
111 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 			/*
113 			 * Update maxtime to latest time we've seen.
114 			 */
115 			if (tv1.tv_sec > maxtime.tv_sec)
116 				maxtime = tv1;
117 			tv2 = *tv;
118 			timevalsub(&tv2, &maxtime);
119 			if (tv2.tv_sec < -1) {
120 				tv->tv_sec = maxtime.tv_sec - 1;
121 				printf("Time adjustment clamped to -1 second\n");
122 			}
123 		} else {
124 			if (tv1.tv_sec == laststep.tv_sec) {
125 				crit_exit();
126 				return (EPERM);
127 			}
128 			if (delta.tv_sec > 1) {
129 				tv->tv_sec = tv1.tv_sec + 1;
130 				printf("Time adjustment clamped to +1 second\n");
131 			}
132 			laststep = *tv;
133 		}
134 	}
135 
136 	ts.tv_sec = tv->tv_sec;
137 	ts.tv_nsec = tv->tv_usec * 1000;
138 	set_timeofday(&ts);
139 	lease_updatetime(delta.tv_sec);
140 	crit_exit();
141 	resettodr();
142 	return (0);
143 }
144 
145 /* ARGSUSED */
146 int
147 clock_gettime(struct clock_gettime_args *uap)
148 {
149 	struct timespec ats;
150 
151 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
152 		return (EINVAL);
153 	nanotime(&ats);
154 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
155 }
156 
157 /* ARGSUSED */
158 int
159 clock_settime(struct clock_settime_args *uap)
160 {
161 	struct thread *td = curthread;
162 	struct timeval atv;
163 	struct timespec ats;
164 	int error;
165 
166 	if ((error = suser(td)) != 0)
167 		return (error);
168 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
169 		return (EINVAL);
170 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
171 		return (error);
172 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
173 		return (EINVAL);
174 	/* XXX Don't convert nsec->usec and back */
175 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
176 	if ((error = settime(&atv)))
177 		return (error);
178 	return (0);
179 }
180 
181 int
182 clock_getres(struct clock_getres_args *uap)
183 {
184 	struct timespec ts;
185 	int error;
186 
187 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
188 		return (EINVAL);
189 	error = 0;
190 	if (SCARG(uap, tp)) {
191 		ts.tv_sec = 0;
192 		/*
193 		 * Round up the result of the division cheaply by adding 1.
194 		 * Rounding up is especially important if rounding down
195 		 * would give 0.  Perfect rounding is unimportant.
196 		 */
197 		ts.tv_nsec = 1000000000 / cputimer_freq + 1;
198 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
199 	}
200 	return (error);
201 }
202 
203 /*
204  * nanosleep1()
205  *
206  *	This is a general helper function for nanosleep() (aka sleep() aka
207  *	usleep()).
208  *
209  *	If there is less then one tick's worth of time left and
210  *	we haven't done a yield, or the remaining microseconds is
211  *	ridiculously low, do a yield.  This avoids having
212  *	to deal with systimer overheads when the system is under
213  *	heavy loads.  If we have done a yield already then use
214  *	a systimer and an uninterruptable thread wait.
215  *
216  *	If there is more then a tick's worth of time left,
217  *	calculate the baseline ticks and use an interruptable
218  *	tsleep, then handle the fine-grained delay on the next
219  *	loop.  This usually results in two sleeps occuring, a long one
220  *	and a short one.
221  */
222 static void
223 ns1_systimer(systimer_t info)
224 {
225 	lwkt_schedule(info->data);
226 }
227 
228 static int
229 nanosleep1(struct timespec *rqt, struct timespec *rmt)
230 {
231 	static int nanowait;
232 	struct timespec ts, ts2, ts3;
233 	struct timeval tv;
234 	int error;
235 	int tried_yield;
236 
237 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
238 		return (EINVAL);
239 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
240 		return (0);
241 	nanouptime(&ts);
242 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
243 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
244 	tried_yield = 0;
245 
246 	for (;;) {
247 		int ticks;
248 		struct systimer info;
249 
250 		ticks = tv.tv_usec / tick;	/* approximate */
251 
252 		if (tv.tv_sec == 0 && ticks == 0) {
253 			thread_t td = curthread;
254 			if (tried_yield || tv.tv_usec < sleep_hard_us) {
255 				tried_yield = 0;
256 				uio_yield();
257 			} else {
258 				crit_enter_quick(td);
259 				systimer_init_oneshot(&info, ns1_systimer,
260 						td, tv.tv_usec);
261 				lwkt_deschedule_self(td);
262 				crit_exit_quick(td);
263 				lwkt_switch();
264 				systimer_del(&info); /* make sure it's gone */
265 			}
266 			error = iscaught(td->td_proc);
267 		} else if (tv.tv_sec == 0) {
268 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
269 		} else {
270 			ticks = tvtohz_low(&tv); /* also handles overflow */
271 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
272 		}
273 		nanouptime(&ts2);
274 		if (error && error != EWOULDBLOCK) {
275 			if (error == ERESTART)
276 				error = EINTR;
277 			if (rmt != NULL) {
278 				timespecsub(&ts, &ts2);
279 				if (ts.tv_sec < 0)
280 					timespecclear(&ts);
281 				*rmt = ts;
282 			}
283 			return (error);
284 		}
285 		if (timespeccmp(&ts2, &ts, >=))
286 			return (0);
287 		ts3 = ts;
288 		timespecsub(&ts3, &ts2);
289 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
290 	}
291 }
292 
293 static void nanosleep_done(void *arg);
294 static void nanosleep_copyout(union sysunion *sysun);
295 
296 /* ARGSUSED */
297 int
298 nanosleep(struct nanosleep_args *uap)
299 {
300 	int error;
301 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
302 
303 	error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
304 	if (error)
305 		return (error);
306 	/*
307 	 * YYY clean this up to always use the callout, note that an abort
308 	 * implementation should record the residual in the async case.
309 	 */
310 	if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
311 		quad_t ticks;
312 
313 		ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
314 		if (smsleep->rqt.tv_sec)
315 			ticks += (quad_t)smsleep->rqt.tv_sec * hz;
316 		if (ticks <= 0) {
317 			if (ticks == 0)
318 				error = 0;
319 			else
320 				error = EINVAL;
321 		} else {
322 			uap->sysmsg.copyout = nanosleep_copyout;
323 			callout_init(&smsleep->timer);
324 			callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
325 			error = EASYNC;
326 		}
327 	} else {
328 		/*
329 		 * Old synchronous sleep code, copyout the residual if
330 		 * nanosleep was interrupted.
331 		 */
332 		error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
333 		if (error && SCARG(uap, rmtp))
334 			error = copyout(&smsleep->rmt, SCARG(uap, rmtp), sizeof(smsleep->rmt));
335 	}
336 	return (error);
337 }
338 
339 /*
340  * Asynch completion for the nanosleep() syscall.  This function may be
341  * called from any context and cannot legally access the originating
342  * thread, proc, or its user space.
343  *
344  * YYY change the callout interface API so we can simply assign the replymsg
345  * function to it directly.
346  */
347 static void
348 nanosleep_done(void *arg)
349 {
350 	struct nanosleep_args *uap = arg;
351 
352 	lwkt_replymsg(&uap->sysmsg.lmsg, 0);
353 }
354 
355 /*
356  * Asynch return for the nanosleep() syscall, called in the context of the
357  * originating thread when it pulls the message off the reply port.  This
358  * function is responsible for any copyouts to userland.  Kernel threads
359  * which do their own internal system calls will not usually call the return
360  * function.
361  */
362 static void
363 nanosleep_copyout(union sysunion *sysun)
364 {
365 	struct nanosleep_args *uap = &sysun->nanosleep;
366 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
367 
368 	if (sysun->lmsg.ms_error && uap->rmtp) {
369 		sysun->lmsg.ms_error =
370 		    copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
371 	}
372 }
373 
374 /* ARGSUSED */
375 int
376 gettimeofday(struct gettimeofday_args *uap)
377 {
378 	struct timeval atv;
379 	int error = 0;
380 
381 	if (uap->tp) {
382 		microtime(&atv);
383 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
384 		    sizeof (atv))))
385 			return (error);
386 	}
387 	if (uap->tzp)
388 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
389 		    sizeof (tz));
390 	return (error);
391 }
392 
393 /* ARGSUSED */
394 int
395 settimeofday(struct settimeofday_args *uap)
396 {
397 	struct thread *td = curthread;
398 	struct timeval atv;
399 	struct timezone atz;
400 	int error;
401 
402 	if ((error = suser(td)))
403 		return (error);
404 	/* Verify all parameters before changing time. */
405 	if (uap->tv) {
406 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
407 		    sizeof(atv))))
408 			return (error);
409 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
410 			return (EINVAL);
411 	}
412 	if (uap->tzp &&
413 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
414 		return (error);
415 	if (uap->tv && (error = settime(&atv)))
416 		return (error);
417 	if (uap->tzp)
418 		tz = atz;
419 	return (0);
420 }
421 
422 int	tickdelta;			/* current clock skew, us. per tick */
423 long	timedelta;			/* unapplied time correction, us. */
424 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
425 
426 /* ARGSUSED */
427 int
428 adjtime(struct adjtime_args *uap)
429 {
430 	struct thread *td = curthread;
431 	struct timeval atv;
432 	long ndelta, ntickdelta, odelta;
433 	int error;
434 
435 	if ((error = suser(td)))
436 		return (error);
437 	if ((error =
438 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
439 		return (error);
440 
441 	/*
442 	 * Compute the total correction and the rate at which to apply it.
443 	 * Round the adjustment down to a whole multiple of the per-tick
444 	 * delta, so that after some number of incremental changes in
445 	 * hardclock(), tickdelta will become zero, lest the correction
446 	 * overshoot and start taking us away from the desired final time.
447 	 */
448 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
449 	if (ndelta > bigadj || ndelta < -bigadj)
450 		ntickdelta = 10 * tickadj;
451 	else
452 		ntickdelta = tickadj;
453 	if (ndelta % ntickdelta)
454 		ndelta = ndelta / ntickdelta * ntickdelta;
455 
456 	/*
457 	 * To make hardclock()'s job easier, make the per-tick delta negative
458 	 * if we want time to run slower; then hardclock can simply compute
459 	 * tick + tickdelta, and subtract tickdelta from timedelta.
460 	 */
461 	if (ndelta < 0)
462 		ntickdelta = -ntickdelta;
463 	/*
464 	 * XXX not MP safe , but will probably work anyway.
465 	 */
466 	crit_enter();
467 	odelta = timedelta;
468 	timedelta = ndelta;
469 	tickdelta = ntickdelta;
470 	crit_exit();
471 
472 	if (uap->olddelta) {
473 		atv.tv_sec = odelta / 1000000;
474 		atv.tv_usec = odelta % 1000000;
475 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
476 		    sizeof(struct timeval));
477 	}
478 	return (0);
479 }
480 
481 /*
482  * Get value of an interval timer.  The process virtual and
483  * profiling virtual time timers are kept in the p_stats area, since
484  * they can be swapped out.  These are kept internally in the
485  * way they are specified externally: in time until they expire.
486  *
487  * The real time interval timer is kept in the process table slot
488  * for the process, and its value (it_value) is kept as an
489  * absolute time rather than as a delta, so that it is easy to keep
490  * periodic real-time signals from drifting.
491  *
492  * Virtual time timers are processed in the hardclock() routine of
493  * kern_clock.c.  The real time timer is processed by a timeout
494  * routine, called from the softclock() routine.  Since a callout
495  * may be delayed in real time due to interrupt processing in the system,
496  * it is possible for the real time timeout routine (realitexpire, given below),
497  * to be delayed in real time past when it is supposed to occur.  It
498  * does not suffice, therefore, to reload the real timer .it_value from the
499  * real time timers .it_interval.  Rather, we compute the next time in
500  * absolute time the timer should go off.
501  */
502 /* ARGSUSED */
503 int
504 getitimer(struct getitimer_args *uap)
505 {
506 	struct proc *p = curproc;
507 	struct timeval ctv;
508 	struct itimerval aitv;
509 
510 	if (uap->which > ITIMER_PROF)
511 		return (EINVAL);
512 	crit_enter();
513 	if (uap->which == ITIMER_REAL) {
514 		/*
515 		 * Convert from absolute to relative time in .it_value
516 		 * part of real time timer.  If time for real time timer
517 		 * has passed return 0, else return difference between
518 		 * current time and time for the timer to go off.
519 		 */
520 		aitv = p->p_realtimer;
521 		if (timevalisset(&aitv.it_value)) {
522 			getmicrouptime(&ctv);
523 			if (timevalcmp(&aitv.it_value, &ctv, <))
524 				timevalclear(&aitv.it_value);
525 			else
526 				timevalsub(&aitv.it_value, &ctv);
527 		}
528 	} else {
529 		aitv = p->p_stats->p_timer[uap->which];
530 	}
531 	crit_exit();
532 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
533 	    sizeof (struct itimerval)));
534 }
535 
536 /* ARGSUSED */
537 int
538 setitimer(struct setitimer_args *uap)
539 {
540 	struct itimerval aitv;
541 	struct timeval ctv;
542 	struct itimerval *itvp;
543 	struct proc *p = curproc;
544 	int error;
545 
546 	if (uap->which > ITIMER_PROF)
547 		return (EINVAL);
548 	itvp = uap->itv;
549 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
550 	    sizeof(struct itimerval))))
551 		return (error);
552 	if ((uap->itv = uap->oitv) &&
553 	    (error = getitimer((struct getitimer_args *)uap)))
554 		return (error);
555 	if (itvp == 0)
556 		return (0);
557 	if (itimerfix(&aitv.it_value))
558 		return (EINVAL);
559 	if (!timevalisset(&aitv.it_value))
560 		timevalclear(&aitv.it_interval);
561 	else if (itimerfix(&aitv.it_interval))
562 		return (EINVAL);
563 	crit_enter();
564 	if (uap->which == ITIMER_REAL) {
565 		if (timevalisset(&p->p_realtimer.it_value))
566 			untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
567 		if (timevalisset(&aitv.it_value))
568 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
569 						tvtohz_high(&aitv.it_value));
570 		getmicrouptime(&ctv);
571 		timevaladd(&aitv.it_value, &ctv);
572 		p->p_realtimer = aitv;
573 	} else {
574 		p->p_stats->p_timer[uap->which] = aitv;
575 	}
576 	crit_exit();
577 	return (0);
578 }
579 
580 /*
581  * Real interval timer expired:
582  * send process whose timer expired an alarm signal.
583  * If time is not set up to reload, then just return.
584  * Else compute next time timer should go off which is > current time.
585  * This is where delay in processing this timeout causes multiple
586  * SIGALRM calls to be compressed into one.
587  * tvtohz_high() always adds 1 to allow for the time until the next clock
588  * interrupt being strictly less than 1 clock tick, but we don't want
589  * that here since we want to appear to be in sync with the clock
590  * interrupt even when we're delayed.
591  */
592 void
593 realitexpire(arg)
594 	void *arg;
595 {
596 	struct proc *p;
597 	struct timeval ctv, ntv;
598 
599 	p = (struct proc *)arg;
600 	psignal(p, SIGALRM);
601 	if (!timevalisset(&p->p_realtimer.it_interval)) {
602 		timevalclear(&p->p_realtimer.it_value);
603 		return;
604 	}
605 	for (;;) {
606 		crit_enter();
607 		timevaladd(&p->p_realtimer.it_value,
608 		    &p->p_realtimer.it_interval);
609 		getmicrouptime(&ctv);
610 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
611 			ntv = p->p_realtimer.it_value;
612 			timevalsub(&ntv, &ctv);
613 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
614 			    tvtohz_low(&ntv));
615 			crit_exit();
616 			return;
617 		}
618 		crit_exit();
619 	}
620 }
621 
622 /*
623  * Check that a proposed value to load into the .it_value or
624  * .it_interval part of an interval timer is acceptable, and
625  * fix it to have at least minimal value (i.e. if it is less
626  * than the resolution of the clock, round it up.)
627  */
628 int
629 itimerfix(tv)
630 	struct timeval *tv;
631 {
632 
633 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
634 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
635 		return (EINVAL);
636 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
637 		tv->tv_usec = tick;
638 	return (0);
639 }
640 
641 /*
642  * Decrement an interval timer by a specified number
643  * of microseconds, which must be less than a second,
644  * i.e. < 1000000.  If the timer expires, then reload
645  * it.  In this case, carry over (usec - old value) to
646  * reduce the value reloaded into the timer so that
647  * the timer does not drift.  This routine assumes
648  * that it is called in a context where the timers
649  * on which it is operating cannot change in value.
650  */
651 int
652 itimerdecr(itp, usec)
653 	struct itimerval *itp;
654 	int usec;
655 {
656 
657 	if (itp->it_value.tv_usec < usec) {
658 		if (itp->it_value.tv_sec == 0) {
659 			/* expired, and already in next interval */
660 			usec -= itp->it_value.tv_usec;
661 			goto expire;
662 		}
663 		itp->it_value.tv_usec += 1000000;
664 		itp->it_value.tv_sec--;
665 	}
666 	itp->it_value.tv_usec -= usec;
667 	usec = 0;
668 	if (timevalisset(&itp->it_value))
669 		return (1);
670 	/* expired, exactly at end of interval */
671 expire:
672 	if (timevalisset(&itp->it_interval)) {
673 		itp->it_value = itp->it_interval;
674 		itp->it_value.tv_usec -= usec;
675 		if (itp->it_value.tv_usec < 0) {
676 			itp->it_value.tv_usec += 1000000;
677 			itp->it_value.tv_sec--;
678 		}
679 	} else
680 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
681 	return (0);
682 }
683 
684 /*
685  * Add and subtract routines for timevals.
686  * N.B.: subtract routine doesn't deal with
687  * results which are before the beginning,
688  * it just gets very confused in this case.
689  * Caveat emptor.
690  */
691 void
692 timevaladd(t1, t2)
693 	struct timeval *t1, *t2;
694 {
695 
696 	t1->tv_sec += t2->tv_sec;
697 	t1->tv_usec += t2->tv_usec;
698 	timevalfix(t1);
699 }
700 
701 void
702 timevalsub(t1, t2)
703 	struct timeval *t1, *t2;
704 {
705 
706 	t1->tv_sec -= t2->tv_sec;
707 	t1->tv_usec -= t2->tv_usec;
708 	timevalfix(t1);
709 }
710 
711 static void
712 timevalfix(t1)
713 	struct timeval *t1;
714 {
715 
716 	if (t1->tv_usec < 0) {
717 		t1->tv_sec--;
718 		t1->tv_usec += 1000000;
719 	}
720 	if (t1->tv_usec >= 1000000) {
721 		t1->tv_sec++;
722 		t1->tv_usec -= 1000000;
723 	}
724 }
725 
726 /*
727  * ratecheck(): simple time-based rate-limit checking.
728  */
729 int
730 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
731 {
732 	struct timeval tv, delta;
733 	int rv = 0;
734 
735 	getmicrouptime(&tv);		/* NB: 10ms precision */
736 	delta = tv;
737 	timevalsub(&delta, lasttime);
738 
739 	/*
740 	 * check for 0,0 is so that the message will be seen at least once,
741 	 * even if interval is huge.
742 	 */
743 	if (timevalcmp(&delta, mininterval, >=) ||
744 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
745 		*lasttime = tv;
746 		rv = 1;
747 	}
748 
749 	return (rv);
750 }
751 
752 /*
753  * ppsratecheck(): packets (or events) per second limitation.
754  *
755  * Return 0 if the limit is to be enforced (e.g. the caller
756  * should drop a packet because of the rate limitation).
757  *
758  * maxpps of 0 always causes zero to be returned.  maxpps of -1
759  * always causes 1 to be returned; this effectively defeats rate
760  * limiting.
761  *
762  * Note that we maintain the struct timeval for compatibility
763  * with other bsd systems.  We reuse the storage and just monitor
764  * clock ticks for minimal overhead.
765  */
766 int
767 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
768 {
769 	int now;
770 
771 	/*
772 	 * Reset the last time and counter if this is the first call
773 	 * or more than a second has passed since the last update of
774 	 * lasttime.
775 	 */
776 	now = ticks;
777 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
778 		lasttime->tv_sec = now;
779 		*curpps = 1;
780 		return (maxpps != 0);
781 	} else {
782 		(*curpps)++;		/* NB: ignore potential overflow */
783 		return (maxpps < 0 || *curpps < maxpps);
784 	}
785 }
786 
787