xref: /dflybsd-src/sys/kern/kern_time.c (revision 65c62024e97be0964ff6de261081aec59a904f78)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <sys/msgport2.h>
57 #include <sys/thread2.h>
58 
59 struct timezone tz;
60 
61 /*
62  * Time of day and interval timer support.
63  *
64  * These routines provide the kernel entry points to get and set
65  * the time-of-day and per-process interval timers.  Subroutines
66  * here provide support for adding and subtracting timeval structures
67  * and decrementing interval timers, optionally reloading the interval
68  * timers when they expire.
69  */
70 
71 static int	nanosleep1(struct timespec *rqt, struct timespec *rmt);
72 static int	settime(struct timeval *);
73 static void	timevalfix(struct timeval *);
74 
75 static int     sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77 
78 static int
79 settime(struct timeval *tv)
80 {
81 	struct timeval delta, tv1, tv2;
82 	static struct timeval maxtime, laststep;
83 	struct timespec ts;
84 	int origcpu;
85 
86 	if ((origcpu = mycpu->gd_cpuid) != 0)
87 		lwkt_setcpu_self(globaldata_find(0));
88 
89 	crit_enter();
90 	microtime(&tv1);
91 	delta = *tv;
92 	timevalsub(&delta, &tv1);
93 
94 	/*
95 	 * If the system is secure, we do not allow the time to be
96 	 * set to a value earlier than 1 second less than the highest
97 	 * time we have yet seen. The worst a miscreant can do in
98 	 * this circumstance is "freeze" time. He couldn't go
99 	 * back to the past.
100 	 *
101 	 * We similarly do not allow the clock to be stepped more
102 	 * than one second, nor more than once per second. This allows
103 	 * a miscreant to make the clock march double-time, but no worse.
104 	 */
105 	if (securelevel > 1) {
106 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107 			/*
108 			 * Update maxtime to latest time we've seen.
109 			 */
110 			if (tv1.tv_sec > maxtime.tv_sec)
111 				maxtime = tv1;
112 			tv2 = *tv;
113 			timevalsub(&tv2, &maxtime);
114 			if (tv2.tv_sec < -1) {
115 				tv->tv_sec = maxtime.tv_sec - 1;
116 				kprintf("Time adjustment clamped to -1 second\n");
117 			}
118 		} else {
119 			if (tv1.tv_sec == laststep.tv_sec) {
120 				crit_exit();
121 				return (EPERM);
122 			}
123 			if (delta.tv_sec > 1) {
124 				tv->tv_sec = tv1.tv_sec + 1;
125 				kprintf("Time adjustment clamped to +1 second\n");
126 			}
127 			laststep = *tv;
128 		}
129 	}
130 
131 	ts.tv_sec = tv->tv_sec;
132 	ts.tv_nsec = tv->tv_usec * 1000;
133 	set_timeofday(&ts);
134 	crit_exit();
135 
136 	if (origcpu != 0)
137 		lwkt_setcpu_self(globaldata_find(origcpu));
138 
139 	resettodr();
140 	return (0);
141 }
142 
143 int
144 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
145 {
146 	int error = 0;
147 
148 	switch(clock_id) {
149 	case CLOCK_REALTIME:
150 		nanotime(ats);
151 		break;
152 	case CLOCK_MONOTONIC:
153 		nanouptime(ats);
154 		break;
155 	default:
156 		error = EINVAL;
157 		break;
158 	}
159 	return (error);
160 }
161 
162 /* ARGSUSED */
163 int
164 sys_clock_gettime(struct clock_gettime_args *uap)
165 {
166 	struct timespec ats;
167 	int error;
168 
169 	error = kern_clock_gettime(uap->clock_id, &ats);
170 	if (error == 0)
171 		error = copyout(&ats, uap->tp, sizeof(ats));
172 
173 	return (error);
174 }
175 
176 int
177 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
178 {
179 	struct thread *td = curthread;
180 	struct timeval atv;
181 	int error;
182 
183 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
184 		return (error);
185 	if (clock_id != CLOCK_REALTIME)
186 		return (EINVAL);
187 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
188 		return (EINVAL);
189 
190 	TIMESPEC_TO_TIMEVAL(&atv, ats);
191 	error = settime(&atv);
192 	return (error);
193 }
194 
195 /* ARGSUSED */
196 int
197 sys_clock_settime(struct clock_settime_args *uap)
198 {
199 	struct timespec ats;
200 	int error;
201 
202 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
203 		return (error);
204 
205 	return (kern_clock_settime(uap->clock_id, &ats));
206 }
207 
208 int
209 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
210 {
211 	int error;
212 
213 	switch(clock_id) {
214 	case CLOCK_REALTIME:
215 	case CLOCK_MONOTONIC:
216 		/*
217 		 * Round up the result of the division cheaply
218 		 * by adding 1.  Rounding up is especially important
219 		 * if rounding down would give 0.  Perfect rounding
220 		 * is unimportant.
221 		 */
222 		ts->tv_sec = 0;
223 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
224 		error = 0;
225 		break;
226 	default:
227 		error = EINVAL;
228 		break;
229 	}
230 
231 	return(error);
232 }
233 
234 int
235 sys_clock_getres(struct clock_getres_args *uap)
236 {
237 	int error;
238 	struct timespec ts;
239 
240 	error = kern_clock_getres(uap->clock_id, &ts);
241 	if (error == 0)
242 		error = copyout(&ts, uap->tp, sizeof(ts));
243 
244 	return (error);
245 }
246 
247 /*
248  * nanosleep1()
249  *
250  *	This is a general helper function for nanosleep() (aka sleep() aka
251  *	usleep()).
252  *
253  *	If there is less then one tick's worth of time left and
254  *	we haven't done a yield, or the remaining microseconds is
255  *	ridiculously low, do a yield.  This avoids having
256  *	to deal with systimer overheads when the system is under
257  *	heavy loads.  If we have done a yield already then use
258  *	a systimer and an uninterruptable thread wait.
259  *
260  *	If there is more then a tick's worth of time left,
261  *	calculate the baseline ticks and use an interruptable
262  *	tsleep, then handle the fine-grained delay on the next
263  *	loop.  This usually results in two sleeps occuring, a long one
264  *	and a short one.
265  */
266 static void
267 ns1_systimer(systimer_t info)
268 {
269 	lwkt_schedule(info->data);
270 }
271 
272 static int
273 nanosleep1(struct timespec *rqt, struct timespec *rmt)
274 {
275 	static int nanowait;
276 	struct timespec ts, ts2, ts3;
277 	struct timeval tv;
278 	int error;
279 	int tried_yield;
280 
281 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
282 		return (EINVAL);
283 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
284 		return (0);
285 	nanouptime(&ts);
286 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
287 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
288 	tried_yield = 0;
289 
290 	for (;;) {
291 		int ticks;
292 		struct systimer info;
293 
294 		ticks = tv.tv_usec / tick;	/* approximate */
295 
296 		if (tv.tv_sec == 0 && ticks == 0) {
297 			thread_t td = curthread;
298 			if (tried_yield || tv.tv_usec < sleep_hard_us) {
299 				tried_yield = 0;
300 				uio_yield();
301 			} else {
302 				crit_enter_quick(td);
303 				systimer_init_oneshot(&info, ns1_systimer,
304 						td, tv.tv_usec);
305 				lwkt_deschedule_self(td);
306 				crit_exit_quick(td);
307 				lwkt_switch();
308 				systimer_del(&info); /* make sure it's gone */
309 			}
310 			error = iscaught(td->td_lwp);
311 		} else if (tv.tv_sec == 0) {
312 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
313 		} else {
314 			ticks = tvtohz_low(&tv); /* also handles overflow */
315 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
316 		}
317 		nanouptime(&ts2);
318 		if (error && error != EWOULDBLOCK) {
319 			if (error == ERESTART)
320 				error = EINTR;
321 			if (rmt != NULL) {
322 				timespecsub(&ts, &ts2);
323 				if (ts.tv_sec < 0)
324 					timespecclear(&ts);
325 				*rmt = ts;
326 			}
327 			return (error);
328 		}
329 		if (timespeccmp(&ts2, &ts, >=))
330 			return (0);
331 		ts3 = ts;
332 		timespecsub(&ts3, &ts2);
333 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
334 	}
335 }
336 
337 /* ARGSUSED */
338 int
339 sys_nanosleep(struct nanosleep_args *uap)
340 {
341 	int error;
342 	struct timespec rqt;
343 	struct timespec rmt;
344 
345 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
346 	if (error)
347 		return (error);
348 
349 	error = nanosleep1(&rqt, &rmt);
350 
351 	/*
352 	 * copyout the residual if nanosleep was interrupted.
353 	 */
354 	if (error && uap->rmtp) {
355 		int error2;
356 
357 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
358 		if (error2)
359 			error = error2;
360 	}
361 	return (error);
362 }
363 
364 /* ARGSUSED */
365 int
366 sys_gettimeofday(struct gettimeofday_args *uap)
367 {
368 	struct timeval atv;
369 	int error = 0;
370 
371 	if (uap->tp) {
372 		microtime(&atv);
373 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
374 		    sizeof (atv))))
375 			return (error);
376 	}
377 	if (uap->tzp)
378 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
379 		    sizeof (tz));
380 	return (error);
381 }
382 
383 /* ARGSUSED */
384 int
385 sys_settimeofday(struct settimeofday_args *uap)
386 {
387 	struct thread *td = curthread;
388 	struct timeval atv;
389 	struct timezone atz;
390 	int error;
391 
392 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
393 		return (error);
394 	/* Verify all parameters before changing time. */
395 	if (uap->tv) {
396 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
397 		    sizeof(atv))))
398 			return (error);
399 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
400 			return (EINVAL);
401 	}
402 	if (uap->tzp &&
403 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
404 		return (error);
405 	if (uap->tv && (error = settime(&atv)))
406 		return (error);
407 	if (uap->tzp)
408 		tz = atz;
409 	return (0);
410 }
411 
412 static void
413 kern_adjtime_common(void)
414 {
415 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
416 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
417 		ntp_tick_delta = ntp_delta;
418 	else if (ntp_delta > ntp_big_delta)
419 		ntp_tick_delta = 10 * ntp_default_tick_delta;
420 	else if (ntp_delta < -ntp_big_delta)
421 		ntp_tick_delta = -10 * ntp_default_tick_delta;
422 	else if (ntp_delta > 0)
423 		ntp_tick_delta = ntp_default_tick_delta;
424 	else
425 		ntp_tick_delta = -ntp_default_tick_delta;
426 }
427 
428 void
429 kern_adjtime(int64_t delta, int64_t *odelta)
430 {
431 	int origcpu;
432 
433 	if ((origcpu = mycpu->gd_cpuid) != 0)
434 		lwkt_setcpu_self(globaldata_find(0));
435 
436 	crit_enter();
437 	*odelta = ntp_delta;
438 	ntp_delta = delta;
439 	kern_adjtime_common();
440 	crit_exit();
441 
442 	if (origcpu != 0)
443 		lwkt_setcpu_self(globaldata_find(origcpu));
444 }
445 
446 static void
447 kern_get_ntp_delta(int64_t *delta)
448 {
449 	int origcpu;
450 
451 	if ((origcpu = mycpu->gd_cpuid) != 0)
452 		lwkt_setcpu_self(globaldata_find(0));
453 
454 	crit_enter();
455 	*delta = ntp_delta;
456 	crit_exit();
457 
458 	if (origcpu != 0)
459 		lwkt_setcpu_self(globaldata_find(origcpu));
460 }
461 
462 void
463 kern_reladjtime(int64_t delta)
464 {
465 	int origcpu;
466 
467 	if ((origcpu = mycpu->gd_cpuid) != 0)
468 		lwkt_setcpu_self(globaldata_find(0));
469 
470 	crit_enter();
471 	ntp_delta += delta;
472 	kern_adjtime_common();
473 	crit_exit();
474 
475 	if (origcpu != 0)
476 		lwkt_setcpu_self(globaldata_find(origcpu));
477 }
478 
479 static void
480 kern_adjfreq(int64_t rate)
481 {
482 	int origcpu;
483 
484 	if ((origcpu = mycpu->gd_cpuid) != 0)
485 		lwkt_setcpu_self(globaldata_find(0));
486 
487 	crit_enter();
488 	ntp_tick_permanent = rate;
489 	crit_exit();
490 
491 	if (origcpu != 0)
492 		lwkt_setcpu_self(globaldata_find(origcpu));
493 }
494 
495 /* ARGSUSED */
496 int
497 sys_adjtime(struct adjtime_args *uap)
498 {
499 	struct thread *td = curthread;
500 	struct timeval atv;
501 	int64_t ndelta, odelta;
502 	int error;
503 
504 	if ((error = priv_check(td, PRIV_ADJTIME)))
505 		return (error);
506 	if ((error =
507 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
508 		return (error);
509 
510 	/*
511 	 * Compute the total correction and the rate at which to apply it.
512 	 * Round the adjustment down to a whole multiple of the per-tick
513 	 * delta, so that after some number of incremental changes in
514 	 * hardclock(), tickdelta will become zero, lest the correction
515 	 * overshoot and start taking us away from the desired final time.
516 	 */
517 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
518 	kern_adjtime(ndelta, &odelta);
519 
520 	if (uap->olddelta) {
521 		atv.tv_sec = odelta / 1000000000;
522 		atv.tv_usec = odelta % 1000000000 / 1000;
523 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
524 		    sizeof(struct timeval));
525 	}
526 	return (0);
527 }
528 
529 static int
530 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
531 {
532 	int64_t delta;
533 	int error;
534 
535 	if (req->newptr != NULL) {
536 		if (priv_check(curthread, PRIV_ROOT))
537 			return (EPERM);
538 		error = SYSCTL_IN(req, &delta, sizeof(delta));
539 		if (error)
540 			return (error);
541 		kern_reladjtime(delta);
542 	}
543 
544 	if (req->oldptr)
545 		kern_get_ntp_delta(&delta);
546 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
547 	return (error);
548 }
549 
550 /*
551  * delta is in nanoseconds.
552  */
553 static int
554 sysctl_delta(SYSCTL_HANDLER_ARGS)
555 {
556 	int64_t delta, old_delta;
557 	int error;
558 
559 	if (req->newptr != NULL) {
560 		if (priv_check(curthread, PRIV_ROOT))
561 			return (EPERM);
562 		error = SYSCTL_IN(req, &delta, sizeof(delta));
563 		if (error)
564 			return (error);
565 		kern_adjtime(delta, &old_delta);
566 	}
567 
568 	if (req->oldptr != NULL)
569 		kern_get_ntp_delta(&old_delta);
570 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
571 	return (error);
572 }
573 
574 /*
575  * frequency is in nanoseconds per second shifted left 32.
576  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
577  */
578 static int
579 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
580 {
581 	int64_t freqdelta;
582 	int error;
583 
584 	if (req->newptr != NULL) {
585 		if (priv_check(curthread, PRIV_ROOT))
586 			return (EPERM);
587 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
588 		if (error)
589 			return (error);
590 
591 		freqdelta /= hz;
592 		kern_adjfreq(freqdelta);
593 	}
594 
595 	if (req->oldptr != NULL)
596 		freqdelta = ntp_tick_permanent * hz;
597 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
598 	if (error)
599 		return (error);
600 
601 	return (0);
602 }
603 
604 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
605 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
606     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
607     sysctl_adjfreq, "Q", "permanent correction per second");
608 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
609     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
610     sysctl_delta, "Q", "one-time delta");
611 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
612     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
613     "threshold for fast adjustment");
614 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
615     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
616     "per-tick adjustment");
617 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
618     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
619     "default per-tick adjustment");
620 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
621     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
622     "next leap second");
623 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
624     &ntp_leap_insert, 0, "insert or remove leap second");
625 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
626     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
627     sysctl_adjtime, "Q", "relative adjust for delta");
628 
629 /*
630  * Get value of an interval timer.  The process virtual and
631  * profiling virtual time timers are kept in the p_stats area, since
632  * they can be swapped out.  These are kept internally in the
633  * way they are specified externally: in time until they expire.
634  *
635  * The real time interval timer is kept in the process table slot
636  * for the process, and its value (it_value) is kept as an
637  * absolute time rather than as a delta, so that it is easy to keep
638  * periodic real-time signals from drifting.
639  *
640  * Virtual time timers are processed in the hardclock() routine of
641  * kern_clock.c.  The real time timer is processed by a timeout
642  * routine, called from the softclock() routine.  Since a callout
643  * may be delayed in real time due to interrupt processing in the system,
644  * it is possible for the real time timeout routine (realitexpire, given below),
645  * to be delayed in real time past when it is supposed to occur.  It
646  * does not suffice, therefore, to reload the real timer .it_value from the
647  * real time timers .it_interval.  Rather, we compute the next time in
648  * absolute time the timer should go off.
649  */
650 /* ARGSUSED */
651 int
652 sys_getitimer(struct getitimer_args *uap)
653 {
654 	struct proc *p = curproc;
655 	struct timeval ctv;
656 	struct itimerval aitv;
657 
658 	if (uap->which > ITIMER_PROF)
659 		return (EINVAL);
660 	crit_enter();
661 	if (uap->which == ITIMER_REAL) {
662 		/*
663 		 * Convert from absolute to relative time in .it_value
664 		 * part of real time timer.  If time for real time timer
665 		 * has passed return 0, else return difference between
666 		 * current time and time for the timer to go off.
667 		 */
668 		aitv = p->p_realtimer;
669 		if (timevalisset(&aitv.it_value)) {
670 			getmicrouptime(&ctv);
671 			if (timevalcmp(&aitv.it_value, &ctv, <))
672 				timevalclear(&aitv.it_value);
673 			else
674 				timevalsub(&aitv.it_value, &ctv);
675 		}
676 	} else {
677 		aitv = p->p_timer[uap->which];
678 	}
679 	crit_exit();
680 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
681 	    sizeof (struct itimerval)));
682 }
683 
684 /* ARGSUSED */
685 int
686 sys_setitimer(struct setitimer_args *uap)
687 {
688 	struct itimerval aitv;
689 	struct timeval ctv;
690 	struct itimerval *itvp;
691 	struct proc *p = curproc;
692 	int error;
693 
694 	if (uap->which > ITIMER_PROF)
695 		return (EINVAL);
696 	itvp = uap->itv;
697 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
698 	    sizeof(struct itimerval))))
699 		return (error);
700 	if ((uap->itv = uap->oitv) &&
701 	    (error = sys_getitimer((struct getitimer_args *)uap)))
702 		return (error);
703 	if (itvp == 0)
704 		return (0);
705 	if (itimerfix(&aitv.it_value))
706 		return (EINVAL);
707 	if (!timevalisset(&aitv.it_value))
708 		timevalclear(&aitv.it_interval);
709 	else if (itimerfix(&aitv.it_interval))
710 		return (EINVAL);
711 	crit_enter();
712 	if (uap->which == ITIMER_REAL) {
713 		if (timevalisset(&p->p_realtimer.it_value))
714 			callout_stop(&p->p_ithandle);
715 		if (timevalisset(&aitv.it_value))
716 			callout_reset(&p->p_ithandle,
717 			    tvtohz_high(&aitv.it_value), realitexpire, p);
718 		getmicrouptime(&ctv);
719 		timevaladd(&aitv.it_value, &ctv);
720 		p->p_realtimer = aitv;
721 	} else {
722 		p->p_timer[uap->which] = aitv;
723 	}
724 	crit_exit();
725 	return (0);
726 }
727 
728 /*
729  * Real interval timer expired:
730  * send process whose timer expired an alarm signal.
731  * If time is not set up to reload, then just return.
732  * Else compute next time timer should go off which is > current time.
733  * This is where delay in processing this timeout causes multiple
734  * SIGALRM calls to be compressed into one.
735  * tvtohz_high() always adds 1 to allow for the time until the next clock
736  * interrupt being strictly less than 1 clock tick, but we don't want
737  * that here since we want to appear to be in sync with the clock
738  * interrupt even when we're delayed.
739  */
740 void
741 realitexpire(void *arg)
742 {
743 	struct proc *p;
744 	struct timeval ctv, ntv;
745 
746 	p = (struct proc *)arg;
747 	ksignal(p, SIGALRM);
748 	if (!timevalisset(&p->p_realtimer.it_interval)) {
749 		timevalclear(&p->p_realtimer.it_value);
750 		return;
751 	}
752 	for (;;) {
753 		crit_enter();
754 		timevaladd(&p->p_realtimer.it_value,
755 		    &p->p_realtimer.it_interval);
756 		getmicrouptime(&ctv);
757 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
758 			ntv = p->p_realtimer.it_value;
759 			timevalsub(&ntv, &ctv);
760 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
761 				      realitexpire, p);
762 			crit_exit();
763 			return;
764 		}
765 		crit_exit();
766 	}
767 }
768 
769 /*
770  * Check that a proposed value to load into the .it_value or
771  * .it_interval part of an interval timer is acceptable, and
772  * fix it to have at least minimal value (i.e. if it is less
773  * than the resolution of the clock, round it up.)
774  */
775 int
776 itimerfix(struct timeval *tv)
777 {
778 
779 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
780 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
781 		return (EINVAL);
782 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
783 		tv->tv_usec = tick;
784 	return (0);
785 }
786 
787 /*
788  * Decrement an interval timer by a specified number
789  * of microseconds, which must be less than a second,
790  * i.e. < 1000000.  If the timer expires, then reload
791  * it.  In this case, carry over (usec - old value) to
792  * reduce the value reloaded into the timer so that
793  * the timer does not drift.  This routine assumes
794  * that it is called in a context where the timers
795  * on which it is operating cannot change in value.
796  */
797 int
798 itimerdecr(struct itimerval *itp, int usec)
799 {
800 
801 	if (itp->it_value.tv_usec < usec) {
802 		if (itp->it_value.tv_sec == 0) {
803 			/* expired, and already in next interval */
804 			usec -= itp->it_value.tv_usec;
805 			goto expire;
806 		}
807 		itp->it_value.tv_usec += 1000000;
808 		itp->it_value.tv_sec--;
809 	}
810 	itp->it_value.tv_usec -= usec;
811 	usec = 0;
812 	if (timevalisset(&itp->it_value))
813 		return (1);
814 	/* expired, exactly at end of interval */
815 expire:
816 	if (timevalisset(&itp->it_interval)) {
817 		itp->it_value = itp->it_interval;
818 		itp->it_value.tv_usec -= usec;
819 		if (itp->it_value.tv_usec < 0) {
820 			itp->it_value.tv_usec += 1000000;
821 			itp->it_value.tv_sec--;
822 		}
823 	} else
824 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
825 	return (0);
826 }
827 
828 /*
829  * Add and subtract routines for timevals.
830  * N.B.: subtract routine doesn't deal with
831  * results which are before the beginning,
832  * it just gets very confused in this case.
833  * Caveat emptor.
834  */
835 void
836 timevaladd(struct timeval *t1, const struct timeval *t2)
837 {
838 
839 	t1->tv_sec += t2->tv_sec;
840 	t1->tv_usec += t2->tv_usec;
841 	timevalfix(t1);
842 }
843 
844 void
845 timevalsub(struct timeval *t1, const struct timeval *t2)
846 {
847 
848 	t1->tv_sec -= t2->tv_sec;
849 	t1->tv_usec -= t2->tv_usec;
850 	timevalfix(t1);
851 }
852 
853 static void
854 timevalfix(struct timeval *t1)
855 {
856 
857 	if (t1->tv_usec < 0) {
858 		t1->tv_sec--;
859 		t1->tv_usec += 1000000;
860 	}
861 	if (t1->tv_usec >= 1000000) {
862 		t1->tv_sec++;
863 		t1->tv_usec -= 1000000;
864 	}
865 }
866 
867 /*
868  * ratecheck(): simple time-based rate-limit checking.
869  */
870 int
871 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
872 {
873 	struct timeval tv, delta;
874 	int rv = 0;
875 
876 	getmicrouptime(&tv);		/* NB: 10ms precision */
877 	delta = tv;
878 	timevalsub(&delta, lasttime);
879 
880 	/*
881 	 * check for 0,0 is so that the message will be seen at least once,
882 	 * even if interval is huge.
883 	 */
884 	if (timevalcmp(&delta, mininterval, >=) ||
885 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
886 		*lasttime = tv;
887 		rv = 1;
888 	}
889 
890 	return (rv);
891 }
892 
893 /*
894  * ppsratecheck(): packets (or events) per second limitation.
895  *
896  * Return 0 if the limit is to be enforced (e.g. the caller
897  * should drop a packet because of the rate limitation).
898  *
899  * maxpps of 0 always causes zero to be returned.  maxpps of -1
900  * always causes 1 to be returned; this effectively defeats rate
901  * limiting.
902  *
903  * Note that we maintain the struct timeval for compatibility
904  * with other bsd systems.  We reuse the storage and just monitor
905  * clock ticks for minimal overhead.
906  */
907 int
908 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
909 {
910 	int now;
911 
912 	/*
913 	 * Reset the last time and counter if this is the first call
914 	 * or more than a second has passed since the last update of
915 	 * lasttime.
916 	 */
917 	now = ticks;
918 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
919 		lasttime->tv_sec = now;
920 		*curpps = 1;
921 		return (maxpps != 0);
922 	} else {
923 		(*curpps)++;		/* NB: ignore potential overflow */
924 		return (maxpps < 0 || *curpps < maxpps);
925 	}
926 }
927 
928