xref: /dflybsd-src/sys/kern/kern_time.c (revision 53e987cee557d989dbf172d8a3c2ade9ea6fc46f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.22 2005/04/18 13:27:44 joerg Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/vnode.h>
51 #include <sys/sysctl.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <sys/msgport2.h>
55 #include <sys/thread2.h>
56 
57 struct timezone tz;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	nanosleep1 (struct timespec *rqt,
70 		    struct timespec *rmt);
71 static int	settime (struct timeval *);
72 static void	timevalfix (struct timeval *);
73 static void	no_lease_updatetime (int);
74 
75 static int     sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77 
78 static void
79 no_lease_updatetime(deltat)
80 	int deltat;
81 {
82 }
83 
84 void (*lease_updatetime) (int)  = no_lease_updatetime;
85 
86 static int
87 settime(tv)
88 	struct timeval *tv;
89 {
90 	struct timeval delta, tv1, tv2;
91 	static struct timeval maxtime, laststep;
92 	struct timespec ts;
93 
94 	crit_enter();
95 	microtime(&tv1);
96 	delta = *tv;
97 	timevalsub(&delta, &tv1);
98 
99 	/*
100 	 * If the system is secure, we do not allow the time to be
101 	 * set to a value earlier than 1 second less than the highest
102 	 * time we have yet seen. The worst a miscreant can do in
103 	 * this circumstance is "freeze" time. He couldn't go
104 	 * back to the past.
105 	 *
106 	 * We similarly do not allow the clock to be stepped more
107 	 * than one second, nor more than once per second. This allows
108 	 * a miscreant to make the clock march double-time, but no worse.
109 	 */
110 	if (securelevel > 1) {
111 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 			/*
113 			 * Update maxtime to latest time we've seen.
114 			 */
115 			if (tv1.tv_sec > maxtime.tv_sec)
116 				maxtime = tv1;
117 			tv2 = *tv;
118 			timevalsub(&tv2, &maxtime);
119 			if (tv2.tv_sec < -1) {
120 				tv->tv_sec = maxtime.tv_sec - 1;
121 				printf("Time adjustment clamped to -1 second\n");
122 			}
123 		} else {
124 			if (tv1.tv_sec == laststep.tv_sec) {
125 				crit_exit();
126 				return (EPERM);
127 			}
128 			if (delta.tv_sec > 1) {
129 				tv->tv_sec = tv1.tv_sec + 1;
130 				printf("Time adjustment clamped to +1 second\n");
131 			}
132 			laststep = *tv;
133 		}
134 	}
135 
136 	ts.tv_sec = tv->tv_sec;
137 	ts.tv_nsec = tv->tv_usec * 1000;
138 	set_timeofday(&ts);
139 	lease_updatetime(delta.tv_sec);
140 	crit_exit();
141 	resettodr();
142 	return (0);
143 }
144 
145 /* ARGSUSED */
146 int
147 clock_gettime(struct clock_gettime_args *uap)
148 {
149 	struct timespec ats;
150 
151 	switch(uap->clock_id) {
152 	case CLOCK_REALTIME:
153 		nanotime(&ats);
154 		return (copyout(&ats, uap->tp, sizeof(ats)));
155 	case CLOCK_MONOTONIC:
156 		nanouptime(&ats);
157 		return (copyout(&ats, uap->tp, sizeof(ats)));
158 	default:
159 		return (EINVAL);
160 	}
161 }
162 
163 /* ARGSUSED */
164 int
165 clock_settime(struct clock_settime_args *uap)
166 {
167 	struct thread *td = curthread;
168 	struct timeval atv;
169 	struct timespec ats;
170 	int error;
171 
172 	if ((error = suser(td)) != 0)
173 		return (error);
174 	switch(uap->clock_id) {
175 	case CLOCK_REALTIME:
176 		if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
177 			return (error);
178 		if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
179 			return (EINVAL);
180 		/* XXX Don't convert nsec->usec and back */
181 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
182 		error = settime(&atv);
183 		return (error);
184 	default:
185 		return (EINVAL);
186 	}
187 }
188 
189 int
190 clock_getres(struct clock_getres_args *uap)
191 {
192 	struct timespec ts;
193 
194 	switch(uap->clock_id) {
195 	case CLOCK_REALTIME:
196 	case CLOCK_MONOTONIC:
197 		/*
198 		 * Round up the result of the division cheaply
199 		 * by adding 1.  Rounding up is especially important
200 		 * if rounding down would give 0.  Perfect rounding
201 		 * is unimportant.
202 		 */
203 		ts.tv_sec = 0;
204 		ts.tv_nsec = 1000000000 / cputimer_freq + 1;
205 		return(copyout(&ts, uap->tp, sizeof(ts)));
206 	default:
207 		return(EINVAL);
208 	}
209 }
210 
211 /*
212  * nanosleep1()
213  *
214  *	This is a general helper function for nanosleep() (aka sleep() aka
215  *	usleep()).
216  *
217  *	If there is less then one tick's worth of time left and
218  *	we haven't done a yield, or the remaining microseconds is
219  *	ridiculously low, do a yield.  This avoids having
220  *	to deal with systimer overheads when the system is under
221  *	heavy loads.  If we have done a yield already then use
222  *	a systimer and an uninterruptable thread wait.
223  *
224  *	If there is more then a tick's worth of time left,
225  *	calculate the baseline ticks and use an interruptable
226  *	tsleep, then handle the fine-grained delay on the next
227  *	loop.  This usually results in two sleeps occuring, a long one
228  *	and a short one.
229  */
230 static void
231 ns1_systimer(systimer_t info)
232 {
233 	lwkt_schedule(info->data);
234 }
235 
236 static int
237 nanosleep1(struct timespec *rqt, struct timespec *rmt)
238 {
239 	static int nanowait;
240 	struct timespec ts, ts2, ts3;
241 	struct timeval tv;
242 	int error;
243 	int tried_yield;
244 
245 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
246 		return (EINVAL);
247 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
248 		return (0);
249 	nanouptime(&ts);
250 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
251 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
252 	tried_yield = 0;
253 
254 	for (;;) {
255 		int ticks;
256 		struct systimer info;
257 
258 		ticks = tv.tv_usec / tick;	/* approximate */
259 
260 		if (tv.tv_sec == 0 && ticks == 0) {
261 			thread_t td = curthread;
262 			if (tried_yield || tv.tv_usec < sleep_hard_us) {
263 				tried_yield = 0;
264 				uio_yield();
265 			} else {
266 				crit_enter_quick(td);
267 				systimer_init_oneshot(&info, ns1_systimer,
268 						td, tv.tv_usec);
269 				lwkt_deschedule_self(td);
270 				crit_exit_quick(td);
271 				lwkt_switch();
272 				systimer_del(&info); /* make sure it's gone */
273 			}
274 			error = iscaught(td->td_proc);
275 		} else if (tv.tv_sec == 0) {
276 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
277 		} else {
278 			ticks = tvtohz_low(&tv); /* also handles overflow */
279 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
280 		}
281 		nanouptime(&ts2);
282 		if (error && error != EWOULDBLOCK) {
283 			if (error == ERESTART)
284 				error = EINTR;
285 			if (rmt != NULL) {
286 				timespecsub(&ts, &ts2);
287 				if (ts.tv_sec < 0)
288 					timespecclear(&ts);
289 				*rmt = ts;
290 			}
291 			return (error);
292 		}
293 		if (timespeccmp(&ts2, &ts, >=))
294 			return (0);
295 		ts3 = ts;
296 		timespecsub(&ts3, &ts2);
297 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
298 	}
299 }
300 
301 static void nanosleep_done(void *arg);
302 static void nanosleep_copyout(union sysunion *sysun);
303 
304 /* ARGSUSED */
305 int
306 nanosleep(struct nanosleep_args *uap)
307 {
308 	int error;
309 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
310 
311 	error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
312 	if (error)
313 		return (error);
314 	/*
315 	 * YYY clean this up to always use the callout, note that an abort
316 	 * implementation should record the residual in the async case.
317 	 */
318 	if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
319 		quad_t ticks;
320 
321 		ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
322 		if (smsleep->rqt.tv_sec)
323 			ticks += (quad_t)smsleep->rqt.tv_sec * hz;
324 		if (ticks <= 0) {
325 			if (ticks == 0)
326 				error = 0;
327 			else
328 				error = EINVAL;
329 		} else {
330 			uap->sysmsg.copyout = nanosleep_copyout;
331 			uap->sysmsg.lmsg.ms_flags &= ~MSGF_DONE;
332 			callout_init(&smsleep->timer);
333 			callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
334 			error = EASYNC;
335 		}
336 	} else {
337 		/*
338 		 * Old synchronous sleep code, copyout the residual if
339 		 * nanosleep was interrupted.
340 		 */
341 		error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
342 		if (error && uap->rmtp)
343 			error = copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
344 	}
345 	return (error);
346 }
347 
348 /*
349  * Asynch completion for the nanosleep() syscall.  This function may be
350  * called from any context and cannot legally access the originating
351  * thread, proc, or its user space.
352  *
353  * YYY change the callout interface API so we can simply assign the replymsg
354  * function to it directly.
355  */
356 static void
357 nanosleep_done(void *arg)
358 {
359 	struct nanosleep_args *uap = arg;
360 	lwkt_msg_t msg = &uap->sysmsg.lmsg;
361 
362 	lwkt_replymsg(msg, 0);
363 }
364 
365 /*
366  * Asynch return for the nanosleep() syscall, called in the context of the
367  * originating thread when it pulls the message off the reply port.  This
368  * function is responsible for any copyouts to userland.  Kernel threads
369  * which do their own internal system calls will not usually call the return
370  * function.
371  */
372 static void
373 nanosleep_copyout(union sysunion *sysun)
374 {
375 	struct nanosleep_args *uap = &sysun->nanosleep;
376 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
377 
378 	if (sysun->lmsg.ms_error && uap->rmtp) {
379 		sysun->lmsg.ms_error =
380 		    copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
381 	}
382 }
383 
384 /* ARGSUSED */
385 int
386 gettimeofday(struct gettimeofday_args *uap)
387 {
388 	struct timeval atv;
389 	int error = 0;
390 
391 	if (uap->tp) {
392 		microtime(&atv);
393 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
394 		    sizeof (atv))))
395 			return (error);
396 	}
397 	if (uap->tzp)
398 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
399 		    sizeof (tz));
400 	return (error);
401 }
402 
403 /* ARGSUSED */
404 int
405 settimeofday(struct settimeofday_args *uap)
406 {
407 	struct thread *td = curthread;
408 	struct timeval atv;
409 	struct timezone atz;
410 	int error;
411 
412 	if ((error = suser(td)))
413 		return (error);
414 	/* Verify all parameters before changing time. */
415 	if (uap->tv) {
416 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
417 		    sizeof(atv))))
418 			return (error);
419 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
420 			return (EINVAL);
421 	}
422 	if (uap->tzp &&
423 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
424 		return (error);
425 	if (uap->tv && (error = settime(&atv)))
426 		return (error);
427 	if (uap->tzp)
428 		tz = atz;
429 	return (0);
430 }
431 
432 static void
433 kern_adjtime_common(void)
434 {
435 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
436 	    (ntp_delta < 0 && ntp_delta > ntp_default_tick_delta))
437 		ntp_tick_delta = ntp_delta;
438 	else if (ntp_delta > ntp_big_delta)
439 		ntp_tick_delta = 10 * ntp_default_tick_delta;
440 	else if (ntp_delta < -ntp_big_delta)
441 		ntp_tick_delta = -10 * ntp_default_tick_delta;
442 	else if (ntp_delta > 0)
443 		ntp_tick_delta = ntp_default_tick_delta;
444 	else
445 		ntp_tick_delta = -ntp_default_tick_delta;
446 }
447 
448 void
449 kern_adjtime(int64_t delta, int64_t *odelta)
450 {
451 	int origcpu;
452 
453 	if ((origcpu = mycpu->gd_cpuid) != 0) {
454 		lwkt_setcpu_self(globaldata_find(0));
455 		cpu_mb1();
456 	}
457 
458 	crit_enter();
459 	*odelta = ntp_delta;
460 	ntp_delta += delta;
461 	kern_adjtime_common();
462 	crit_exit();
463 
464 	if (origcpu != 0) {
465 		lwkt_setcpu_self(globaldata_find(origcpu));
466 		cpu_mb1();
467 	}
468 }
469 
470 void
471 kern_reladjtime(int64_t delta)
472 {
473 	int origcpu;
474 
475 	if ((origcpu = mycpu->gd_cpuid) != 0) {
476 		lwkt_setcpu_self(globaldata_find(0));
477 		cpu_mb1();
478 	}
479 
480 	crit_enter();
481 	ntp_delta += delta;
482 	kern_adjtime_common();
483 	crit_exit();
484 
485 	if (origcpu != 0) {
486 		lwkt_setcpu_self(globaldata_find(origcpu));
487 		cpu_mb1();
488 	}
489 }
490 
491 static void
492 kern_adjfreq(int64_t rate)
493 {
494 	int origcpu;
495 
496 	if ((origcpu = mycpu->gd_cpuid) != 0) {
497 		lwkt_setcpu_self(globaldata_find(0));
498 		cpu_mb1();
499 	}
500 
501 	crit_enter();
502 	ntp_tick_permanent = rate;
503 	crit_exit();
504 
505 	if (origcpu != 0) {
506 		lwkt_setcpu_self(globaldata_find(origcpu));
507 		cpu_mb1();
508 	}
509 }
510 
511 /* ARGSUSED */
512 int
513 adjtime(struct adjtime_args *uap)
514 {
515 	struct thread *td = curthread;
516 	struct timeval atv;
517 	int64_t ndelta, odelta;
518 	int error;
519 
520 	if ((error = suser(td)))
521 		return (error);
522 	if ((error =
523 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
524 		return (error);
525 
526 	/*
527 	 * Compute the total correction and the rate at which to apply it.
528 	 * Round the adjustment down to a whole multiple of the per-tick
529 	 * delta, so that after some number of incremental changes in
530 	 * hardclock(), tickdelta will become zero, lest the correction
531 	 * overshoot and start taking us away from the desired final time.
532 	 */
533 	ndelta = atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
534 	kern_adjtime(ndelta, &odelta);
535 
536 	if (uap->olddelta) {
537 		atv.tv_sec = odelta / 1000000000;
538 		atv.tv_usec = odelta % 1000000 / 1000;
539 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
540 		    sizeof(struct timeval));
541 	}
542 	return (0);
543 }
544 
545 static int
546 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
547 {
548 	int64_t delta;
549 	int error;
550 
551 	if (req->oldptr != NULL) {
552 		delta = 0;
553 		error = SYSCTL_OUT(req, &delta, sizeof(delta));
554 		if (error)
555 			return (error);
556 	}
557 	if (req->newptr != NULL) {
558 		if (suser(curthread))
559 			return (EPERM);
560 		error = SYSCTL_IN(req, &delta, sizeof(delta));
561 		if (error)
562 			return (error);
563 		kern_reladjtime(delta);
564 	}
565 	return (0);
566 }
567 
568 static int
569 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
570 {
571 	int64_t freqdelta;
572 	int error;
573 
574 	if (req->oldptr != NULL) {
575 		freqdelta = ntp_tick_permanent * hz;
576 		error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
577 		if (error)
578 			return (error);
579 	}
580 	if (req->newptr != NULL) {
581 		if (suser(curthread))
582 			return (EPERM);
583 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
584 		if (error)
585 			return (error);
586 
587 		freqdelta /= hz;
588 		kern_adjfreq(freqdelta);
589 	}
590 	return (0);
591 }
592 
593 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
594 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
595     CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0,
596     sysctl_adjfreq, "LU", "permanent correction per second");
597 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, delta, CTLFLAG_RD,
598     &ntp_delta, sizeof(ntp_delta), "LU",
599     "one-time delta");
600 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
601     &ntp_big_delta, sizeof(ntp_big_delta), "LU",
602     "threshold for fast adjustment");
603 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
604     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
605     "per-tick adjustment");
606 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
607     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
608     "default per-tick adjustment");
609 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
610     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
611     "next leap second");
612 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
613     &ntp_leap_insert, 0, "insert or remove leap second");
614 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
615     CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0,
616     sysctl_adjtime, "", "relative adjust for delta");
617 
618 /*
619  * Get value of an interval timer.  The process virtual and
620  * profiling virtual time timers are kept in the p_stats area, since
621  * they can be swapped out.  These are kept internally in the
622  * way they are specified externally: in time until they expire.
623  *
624  * The real time interval timer is kept in the process table slot
625  * for the process, and its value (it_value) is kept as an
626  * absolute time rather than as a delta, so that it is easy to keep
627  * periodic real-time signals from drifting.
628  *
629  * Virtual time timers are processed in the hardclock() routine of
630  * kern_clock.c.  The real time timer is processed by a timeout
631  * routine, called from the softclock() routine.  Since a callout
632  * may be delayed in real time due to interrupt processing in the system,
633  * it is possible for the real time timeout routine (realitexpire, given below),
634  * to be delayed in real time past when it is supposed to occur.  It
635  * does not suffice, therefore, to reload the real timer .it_value from the
636  * real time timers .it_interval.  Rather, we compute the next time in
637  * absolute time the timer should go off.
638  */
639 /* ARGSUSED */
640 int
641 getitimer(struct getitimer_args *uap)
642 {
643 	struct proc *p = curproc;
644 	struct timeval ctv;
645 	struct itimerval aitv;
646 
647 	if (uap->which > ITIMER_PROF)
648 		return (EINVAL);
649 	crit_enter();
650 	if (uap->which == ITIMER_REAL) {
651 		/*
652 		 * Convert from absolute to relative time in .it_value
653 		 * part of real time timer.  If time for real time timer
654 		 * has passed return 0, else return difference between
655 		 * current time and time for the timer to go off.
656 		 */
657 		aitv = p->p_realtimer;
658 		if (timevalisset(&aitv.it_value)) {
659 			getmicrouptime(&ctv);
660 			if (timevalcmp(&aitv.it_value, &ctv, <))
661 				timevalclear(&aitv.it_value);
662 			else
663 				timevalsub(&aitv.it_value, &ctv);
664 		}
665 	} else {
666 		aitv = p->p_stats->p_timer[uap->which];
667 	}
668 	crit_exit();
669 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
670 	    sizeof (struct itimerval)));
671 }
672 
673 /* ARGSUSED */
674 int
675 setitimer(struct setitimer_args *uap)
676 {
677 	struct itimerval aitv;
678 	struct timeval ctv;
679 	struct itimerval *itvp;
680 	struct proc *p = curproc;
681 	int error;
682 
683 	if (uap->which > ITIMER_PROF)
684 		return (EINVAL);
685 	itvp = uap->itv;
686 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
687 	    sizeof(struct itimerval))))
688 		return (error);
689 	if ((uap->itv = uap->oitv) &&
690 	    (error = getitimer((struct getitimer_args *)uap)))
691 		return (error);
692 	if (itvp == 0)
693 		return (0);
694 	if (itimerfix(&aitv.it_value))
695 		return (EINVAL);
696 	if (!timevalisset(&aitv.it_value))
697 		timevalclear(&aitv.it_interval);
698 	else if (itimerfix(&aitv.it_interval))
699 		return (EINVAL);
700 	crit_enter();
701 	if (uap->which == ITIMER_REAL) {
702 		if (timevalisset(&p->p_realtimer.it_value))
703 			callout_stop(&p->p_ithandle);
704 		if (timevalisset(&aitv.it_value))
705 			callout_reset(&p->p_ithandle,
706 			    tvtohz_high(&aitv.it_value), realitexpire, p);
707 		getmicrouptime(&ctv);
708 		timevaladd(&aitv.it_value, &ctv);
709 		p->p_realtimer = aitv;
710 	} else {
711 		p->p_stats->p_timer[uap->which] = aitv;
712 	}
713 	crit_exit();
714 	return (0);
715 }
716 
717 /*
718  * Real interval timer expired:
719  * send process whose timer expired an alarm signal.
720  * If time is not set up to reload, then just return.
721  * Else compute next time timer should go off which is > current time.
722  * This is where delay in processing this timeout causes multiple
723  * SIGALRM calls to be compressed into one.
724  * tvtohz_high() always adds 1 to allow for the time until the next clock
725  * interrupt being strictly less than 1 clock tick, but we don't want
726  * that here since we want to appear to be in sync with the clock
727  * interrupt even when we're delayed.
728  */
729 void
730 realitexpire(arg)
731 	void *arg;
732 {
733 	struct proc *p;
734 	struct timeval ctv, ntv;
735 
736 	p = (struct proc *)arg;
737 	psignal(p, SIGALRM);
738 	if (!timevalisset(&p->p_realtimer.it_interval)) {
739 		timevalclear(&p->p_realtimer.it_value);
740 		return;
741 	}
742 	for (;;) {
743 		crit_enter();
744 		timevaladd(&p->p_realtimer.it_value,
745 		    &p->p_realtimer.it_interval);
746 		getmicrouptime(&ctv);
747 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
748 			ntv = p->p_realtimer.it_value;
749 			timevalsub(&ntv, &ctv);
750 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
751 				      realitexpire, p);
752 			crit_exit();
753 			return;
754 		}
755 		crit_exit();
756 	}
757 }
758 
759 /*
760  * Check that a proposed value to load into the .it_value or
761  * .it_interval part of an interval timer is acceptable, and
762  * fix it to have at least minimal value (i.e. if it is less
763  * than the resolution of the clock, round it up.)
764  */
765 int
766 itimerfix(tv)
767 	struct timeval *tv;
768 {
769 
770 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
771 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
772 		return (EINVAL);
773 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
774 		tv->tv_usec = tick;
775 	return (0);
776 }
777 
778 /*
779  * Decrement an interval timer by a specified number
780  * of microseconds, which must be less than a second,
781  * i.e. < 1000000.  If the timer expires, then reload
782  * it.  In this case, carry over (usec - old value) to
783  * reduce the value reloaded into the timer so that
784  * the timer does not drift.  This routine assumes
785  * that it is called in a context where the timers
786  * on which it is operating cannot change in value.
787  */
788 int
789 itimerdecr(itp, usec)
790 	struct itimerval *itp;
791 	int usec;
792 {
793 
794 	if (itp->it_value.tv_usec < usec) {
795 		if (itp->it_value.tv_sec == 0) {
796 			/* expired, and already in next interval */
797 			usec -= itp->it_value.tv_usec;
798 			goto expire;
799 		}
800 		itp->it_value.tv_usec += 1000000;
801 		itp->it_value.tv_sec--;
802 	}
803 	itp->it_value.tv_usec -= usec;
804 	usec = 0;
805 	if (timevalisset(&itp->it_value))
806 		return (1);
807 	/* expired, exactly at end of interval */
808 expire:
809 	if (timevalisset(&itp->it_interval)) {
810 		itp->it_value = itp->it_interval;
811 		itp->it_value.tv_usec -= usec;
812 		if (itp->it_value.tv_usec < 0) {
813 			itp->it_value.tv_usec += 1000000;
814 			itp->it_value.tv_sec--;
815 		}
816 	} else
817 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
818 	return (0);
819 }
820 
821 /*
822  * Add and subtract routines for timevals.
823  * N.B.: subtract routine doesn't deal with
824  * results which are before the beginning,
825  * it just gets very confused in this case.
826  * Caveat emptor.
827  */
828 void
829 timevaladd(t1, t2)
830 	struct timeval *t1, *t2;
831 {
832 
833 	t1->tv_sec += t2->tv_sec;
834 	t1->tv_usec += t2->tv_usec;
835 	timevalfix(t1);
836 }
837 
838 void
839 timevalsub(t1, t2)
840 	struct timeval *t1, *t2;
841 {
842 
843 	t1->tv_sec -= t2->tv_sec;
844 	t1->tv_usec -= t2->tv_usec;
845 	timevalfix(t1);
846 }
847 
848 static void
849 timevalfix(t1)
850 	struct timeval *t1;
851 {
852 
853 	if (t1->tv_usec < 0) {
854 		t1->tv_sec--;
855 		t1->tv_usec += 1000000;
856 	}
857 	if (t1->tv_usec >= 1000000) {
858 		t1->tv_sec++;
859 		t1->tv_usec -= 1000000;
860 	}
861 }
862 
863 /*
864  * ratecheck(): simple time-based rate-limit checking.
865  */
866 int
867 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
868 {
869 	struct timeval tv, delta;
870 	int rv = 0;
871 
872 	getmicrouptime(&tv);		/* NB: 10ms precision */
873 	delta = tv;
874 	timevalsub(&delta, lasttime);
875 
876 	/*
877 	 * check for 0,0 is so that the message will be seen at least once,
878 	 * even if interval is huge.
879 	 */
880 	if (timevalcmp(&delta, mininterval, >=) ||
881 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
882 		*lasttime = tv;
883 		rv = 1;
884 	}
885 
886 	return (rv);
887 }
888 
889 /*
890  * ppsratecheck(): packets (or events) per second limitation.
891  *
892  * Return 0 if the limit is to be enforced (e.g. the caller
893  * should drop a packet because of the rate limitation).
894  *
895  * maxpps of 0 always causes zero to be returned.  maxpps of -1
896  * always causes 1 to be returned; this effectively defeats rate
897  * limiting.
898  *
899  * Note that we maintain the struct timeval for compatibility
900  * with other bsd systems.  We reuse the storage and just monitor
901  * clock ticks for minimal overhead.
902  */
903 int
904 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
905 {
906 	int now;
907 
908 	/*
909 	 * Reset the last time and counter if this is the first call
910 	 * or more than a second has passed since the last update of
911 	 * lasttime.
912 	 */
913 	now = ticks;
914 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
915 		lasttime->tv_sec = now;
916 		*curpps = 1;
917 		return (maxpps != 0);
918 	} else {
919 		(*curpps)++;		/* NB: ignore potential overflow */
920 		return (maxpps < 0 || *curpps < maxpps);
921 	}
922 }
923 
924