xref: /dflybsd-src/sys/kern/kern_time.c (revision 3412cacb5a88ff95d06808eeed783b8499b5256e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.11 2003/11/20 06:05:30 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/vnode.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <sys/msgport2.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1 (struct timespec *rqt,
68 		    struct timespec *rmt);
69 static int	settime (struct timeval *);
70 static void	timevalfix (struct timeval *);
71 static void	no_lease_updatetime (int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime) (int)  = no_lease_updatetime;
80 
81 static int
82 settime(tv)
83 	struct timeval *tv;
84 {
85 	struct timeval delta, tv1, tv2;
86 	static struct timeval maxtime, laststep;
87 	struct timespec ts;
88 	int s;
89 
90 	s = splclock();
91 	microtime(&tv1);
92 	delta = *tv;
93 	timevalsub(&delta, &tv1);
94 
95 	/*
96 	 * If the system is secure, we do not allow the time to be
97 	 * set to a value earlier than 1 second less than the highest
98 	 * time we have yet seen. The worst a miscreant can do in
99 	 * this circumstance is "freeze" time. He couldn't go
100 	 * back to the past.
101 	 *
102 	 * We similarly do not allow the clock to be stepped more
103 	 * than one second, nor more than once per second. This allows
104 	 * a miscreant to make the clock march double-time, but no worse.
105 	 */
106 	if (securelevel > 1) {
107 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 			/*
109 			 * Update maxtime to latest time we've seen.
110 			 */
111 			if (tv1.tv_sec > maxtime.tv_sec)
112 				maxtime = tv1;
113 			tv2 = *tv;
114 			timevalsub(&tv2, &maxtime);
115 			if (tv2.tv_sec < -1) {
116 				tv->tv_sec = maxtime.tv_sec - 1;
117 				printf("Time adjustment clamped to -1 second\n");
118 			}
119 		} else {
120 			if (tv1.tv_sec == laststep.tv_sec) {
121 				splx(s);
122 				return (EPERM);
123 			}
124 			if (delta.tv_sec > 1) {
125 				tv->tv_sec = tv1.tv_sec + 1;
126 				printf("Time adjustment clamped to +1 second\n");
127 			}
128 			laststep = *tv;
129 		}
130 	}
131 
132 	ts.tv_sec = tv->tv_sec;
133 	ts.tv_nsec = tv->tv_usec * 1000;
134 	set_timecounter(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	return (0);
140 }
141 
142 /* ARGSUSED */
143 int
144 clock_gettime(struct clock_gettime_args *uap)
145 {
146 	struct timespec ats;
147 
148 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
149 		return (EINVAL);
150 	nanotime(&ats);
151 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
152 }
153 
154 /* ARGSUSED */
155 int
156 clock_settime(struct clock_settime_args *uap)
157 {
158 	struct thread *td = curthread;
159 	struct timeval atv;
160 	struct timespec ats;
161 	int error;
162 
163 	if ((error = suser(td)) != 0)
164 		return (error);
165 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
166 		return (EINVAL);
167 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
168 		return (error);
169 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
170 		return (EINVAL);
171 	/* XXX Don't convert nsec->usec and back */
172 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
173 	if ((error = settime(&atv)))
174 		return (error);
175 	return (0);
176 }
177 
178 int
179 clock_getres(struct clock_getres_args *uap)
180 {
181 	struct timespec ts;
182 	int error;
183 
184 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
185 		return (EINVAL);
186 	error = 0;
187 	if (SCARG(uap, tp)) {
188 		ts.tv_sec = 0;
189 		/*
190 		 * Round up the result of the division cheaply by adding 1.
191 		 * Rounding up is especially important if rounding down
192 		 * would give 0.  Perfect rounding is unimportant.
193 		 */
194 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency + 1;
195 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
196 	}
197 	return (error);
198 }
199 
200 static int nanowait;
201 
202 static int
203 nanosleep1(struct timespec *rqt, struct timespec *rmt)
204 {
205 	struct timespec ts, ts2, ts3;
206 	struct timeval tv;
207 	int error;
208 
209 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
210 		return (EINVAL);
211 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
212 		return (0);
213 	getnanouptime(&ts);
214 	timespecadd(&ts, rqt);
215 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
216 	for (;;) {
217 		error = tsleep(&nanowait, PCATCH, "nanslp",
218 		    tvtohz(&tv));
219 		getnanouptime(&ts2);
220 		if (error != EWOULDBLOCK) {
221 			if (error == ERESTART)
222 				error = EINTR;
223 			if (rmt != NULL) {
224 				timespecsub(&ts, &ts2);
225 				if (ts.tv_sec < 0)
226 					timespecclear(&ts);
227 				*rmt = ts;
228 			}
229 			return (error);
230 		}
231 		if (timespeccmp(&ts2, &ts, >=))
232 			return (0);
233 		ts3 = ts;
234 		timespecsub(&ts3, &ts2);
235 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
236 	}
237 }
238 
239 static void nanosleep_done(void *arg);
240 static void nanosleep_copyout(union sysunion *sysun);
241 
242 /* ARGSUSED */
243 int
244 nanosleep(struct nanosleep_args *uap)
245 {
246 	int error;
247 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
248 
249 	error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
250 	if (error)
251 		return (error);
252 	/*
253 	 * YYY clean this up to always use the callout, note that an abort
254 	 * implementation should record the residual in the async case.
255 	 */
256 	if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
257 		quad_t ticks;
258 
259 		ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
260 		if (smsleep->rqt.tv_sec)
261 			ticks += (quad_t)smsleep->rqt.tv_sec * hz;
262 		if (ticks <= 0) {
263 			if (ticks == 0)
264 				error = 0;
265 			else
266 				error = EINVAL;
267 		} else {
268 			uap->sysmsg.copyout = nanosleep_copyout;
269 			callout_init(&smsleep->timer);
270 			callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
271 			error = EASYNC;
272 		}
273 	} else {
274 		/*
275 		 * Old synchronous sleep code, copyout the residual if
276 		 * nanosleep was interrupted.
277 		 */
278 		error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
279 		if (error && SCARG(uap, rmtp))
280 			error = copyout(&smsleep->rmt, SCARG(uap, rmtp), sizeof(smsleep->rmt));
281 	}
282 	return (error);
283 }
284 
285 /*
286  * Asynch completion for the nanosleep() syscall.  This function may be
287  * called from any context and cannot legally access the originating
288  * thread, proc, or its user space.
289  *
290  * YYY change the callout interface API so we can simply assign the replymsg
291  * function to it directly.
292  */
293 static void
294 nanosleep_done(void *arg)
295 {
296 	struct nanosleep_args *uap = arg;
297 
298 	lwkt_replymsg(&uap->sysmsg.lmsg, 0);
299 }
300 
301 /*
302  * Asynch return for the nanosleep() syscall, called in the context of the
303  * originating thread when it pulls the message off the reply port.  This
304  * function is responsible for any copyouts to userland.  Kernel threads
305  * which do their own internal system calls will not usually call the return
306  * function.
307  */
308 static void
309 nanosleep_copyout(union sysunion *sysun)
310 {
311 	struct nanosleep_args *uap = &sysun->nanosleep;
312 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
313 
314 	if (sysun->lmsg.ms_error && uap->rmtp) {
315 		sysun->lmsg.ms_error =
316 		    copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
317 	}
318 }
319 
320 /* ARGSUSED */
321 int
322 gettimeofday(struct gettimeofday_args *uap)
323 {
324 	struct timeval atv;
325 	int error = 0;
326 
327 	if (uap->tp) {
328 		microtime(&atv);
329 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
330 		    sizeof (atv))))
331 			return (error);
332 	}
333 	if (uap->tzp)
334 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
335 		    sizeof (tz));
336 	return (error);
337 }
338 
339 /* ARGSUSED */
340 int
341 settimeofday(struct settimeofday_args *uap)
342 {
343 	struct thread *td = curthread;
344 	struct timeval atv;
345 	struct timezone atz;
346 	int error;
347 
348 	if ((error = suser(td)))
349 		return (error);
350 	/* Verify all parameters before changing time. */
351 	if (uap->tv) {
352 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
353 		    sizeof(atv))))
354 			return (error);
355 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
356 			return (EINVAL);
357 	}
358 	if (uap->tzp &&
359 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
360 		return (error);
361 	if (uap->tv && (error = settime(&atv)))
362 		return (error);
363 	if (uap->tzp)
364 		tz = atz;
365 	return (0);
366 }
367 
368 int	tickdelta;			/* current clock skew, us. per tick */
369 long	timedelta;			/* unapplied time correction, us. */
370 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
371 
372 /* ARGSUSED */
373 int
374 adjtime(struct adjtime_args *uap)
375 {
376 	struct thread *td = curthread;
377 	struct timeval atv;
378 	long ndelta, ntickdelta, odelta;
379 	int s, error;
380 
381 	if ((error = suser(td)))
382 		return (error);
383 	if ((error =
384 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
385 		return (error);
386 
387 	/*
388 	 * Compute the total correction and the rate at which to apply it.
389 	 * Round the adjustment down to a whole multiple of the per-tick
390 	 * delta, so that after some number of incremental changes in
391 	 * hardclock(), tickdelta will become zero, lest the correction
392 	 * overshoot and start taking us away from the desired final time.
393 	 */
394 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
395 	if (ndelta > bigadj || ndelta < -bigadj)
396 		ntickdelta = 10 * tickadj;
397 	else
398 		ntickdelta = tickadj;
399 	if (ndelta % ntickdelta)
400 		ndelta = ndelta / ntickdelta * ntickdelta;
401 
402 	/*
403 	 * To make hardclock()'s job easier, make the per-tick delta negative
404 	 * if we want time to run slower; then hardclock can simply compute
405 	 * tick + tickdelta, and subtract tickdelta from timedelta.
406 	 */
407 	if (ndelta < 0)
408 		ntickdelta = -ntickdelta;
409 	s = splclock();
410 	odelta = timedelta;
411 	timedelta = ndelta;
412 	tickdelta = ntickdelta;
413 	splx(s);
414 
415 	if (uap->olddelta) {
416 		atv.tv_sec = odelta / 1000000;
417 		atv.tv_usec = odelta % 1000000;
418 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
419 		    sizeof(struct timeval));
420 	}
421 	return (0);
422 }
423 
424 /*
425  * Get value of an interval timer.  The process virtual and
426  * profiling virtual time timers are kept in the p_stats area, since
427  * they can be swapped out.  These are kept internally in the
428  * way they are specified externally: in time until they expire.
429  *
430  * The real time interval timer is kept in the process table slot
431  * for the process, and its value (it_value) is kept as an
432  * absolute time rather than as a delta, so that it is easy to keep
433  * periodic real-time signals from drifting.
434  *
435  * Virtual time timers are processed in the hardclock() routine of
436  * kern_clock.c.  The real time timer is processed by a timeout
437  * routine, called from the softclock() routine.  Since a callout
438  * may be delayed in real time due to interrupt processing in the system,
439  * it is possible for the real time timeout routine (realitexpire, given below),
440  * to be delayed in real time past when it is supposed to occur.  It
441  * does not suffice, therefore, to reload the real timer .it_value from the
442  * real time timers .it_interval.  Rather, we compute the next time in
443  * absolute time the timer should go off.
444  */
445 /* ARGSUSED */
446 int
447 getitimer(struct getitimer_args *uap)
448 {
449 	struct proc *p = curproc;
450 	struct timeval ctv;
451 	struct itimerval aitv;
452 	int s;
453 
454 	if (uap->which > ITIMER_PROF)
455 		return (EINVAL);
456 	s = splclock(); /* XXX still needed ? */
457 	if (uap->which == ITIMER_REAL) {
458 		/*
459 		 * Convert from absolute to relative time in .it_value
460 		 * part of real time timer.  If time for real time timer
461 		 * has passed return 0, else return difference between
462 		 * current time and time for the timer to go off.
463 		 */
464 		aitv = p->p_realtimer;
465 		if (timevalisset(&aitv.it_value)) {
466 			getmicrouptime(&ctv);
467 			if (timevalcmp(&aitv.it_value, &ctv, <))
468 				timevalclear(&aitv.it_value);
469 			else
470 				timevalsub(&aitv.it_value, &ctv);
471 		}
472 	} else
473 		aitv = p->p_stats->p_timer[uap->which];
474 	splx(s);
475 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
476 	    sizeof (struct itimerval)));
477 }
478 
479 /* ARGSUSED */
480 int
481 setitimer(struct setitimer_args *uap)
482 {
483 	struct itimerval aitv;
484 	struct timeval ctv;
485 	struct itimerval *itvp;
486 	struct proc *p = curproc;
487 	int s, error;
488 
489 	if (uap->which > ITIMER_PROF)
490 		return (EINVAL);
491 	itvp = uap->itv;
492 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
493 	    sizeof(struct itimerval))))
494 		return (error);
495 	if ((uap->itv = uap->oitv) &&
496 	    (error = getitimer((struct getitimer_args *)uap)))
497 		return (error);
498 	if (itvp == 0)
499 		return (0);
500 	if (itimerfix(&aitv.it_value))
501 		return (EINVAL);
502 	if (!timevalisset(&aitv.it_value))
503 		timevalclear(&aitv.it_interval);
504 	else if (itimerfix(&aitv.it_interval))
505 		return (EINVAL);
506 	s = splclock(); /* XXX: still needed ? */
507 	if (uap->which == ITIMER_REAL) {
508 		if (timevalisset(&p->p_realtimer.it_value))
509 			untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
510 		if (timevalisset(&aitv.it_value))
511 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
512 						tvtohz(&aitv.it_value));
513 		getmicrouptime(&ctv);
514 		timevaladd(&aitv.it_value, &ctv);
515 		p->p_realtimer = aitv;
516 	} else
517 		p->p_stats->p_timer[uap->which] = aitv;
518 	splx(s);
519 	return (0);
520 }
521 
522 /*
523  * Real interval timer expired:
524  * send process whose timer expired an alarm signal.
525  * If time is not set up to reload, then just return.
526  * Else compute next time timer should go off which is > current time.
527  * This is where delay in processing this timeout causes multiple
528  * SIGALRM calls to be compressed into one.
529  * tvtohz() always adds 1 to allow for the time until the next clock
530  * interrupt being strictly less than 1 clock tick, but we don't want
531  * that here since we want to appear to be in sync with the clock
532  * interrupt even when we're delayed.
533  */
534 void
535 realitexpire(arg)
536 	void *arg;
537 {
538 	struct proc *p;
539 	struct timeval ctv, ntv;
540 	int s;
541 
542 	p = (struct proc *)arg;
543 	psignal(p, SIGALRM);
544 	if (!timevalisset(&p->p_realtimer.it_interval)) {
545 		timevalclear(&p->p_realtimer.it_value);
546 		return;
547 	}
548 	for (;;) {
549 		s = splclock(); /* XXX: still neeeded ? */
550 		timevaladd(&p->p_realtimer.it_value,
551 		    &p->p_realtimer.it_interval);
552 		getmicrouptime(&ctv);
553 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
554 			ntv = p->p_realtimer.it_value;
555 			timevalsub(&ntv, &ctv);
556 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
557 			    tvtohz(&ntv) - 1);
558 			splx(s);
559 			return;
560 		}
561 		splx(s);
562 	}
563 }
564 
565 /*
566  * Check that a proposed value to load into the .it_value or
567  * .it_interval part of an interval timer is acceptable, and
568  * fix it to have at least minimal value (i.e. if it is less
569  * than the resolution of the clock, round it up.)
570  */
571 int
572 itimerfix(tv)
573 	struct timeval *tv;
574 {
575 
576 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
577 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
578 		return (EINVAL);
579 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
580 		tv->tv_usec = tick;
581 	return (0);
582 }
583 
584 /*
585  * Decrement an interval timer by a specified number
586  * of microseconds, which must be less than a second,
587  * i.e. < 1000000.  If the timer expires, then reload
588  * it.  In this case, carry over (usec - old value) to
589  * reduce the value reloaded into the timer so that
590  * the timer does not drift.  This routine assumes
591  * that it is called in a context where the timers
592  * on which it is operating cannot change in value.
593  */
594 int
595 itimerdecr(itp, usec)
596 	struct itimerval *itp;
597 	int usec;
598 {
599 
600 	if (itp->it_value.tv_usec < usec) {
601 		if (itp->it_value.tv_sec == 0) {
602 			/* expired, and already in next interval */
603 			usec -= itp->it_value.tv_usec;
604 			goto expire;
605 		}
606 		itp->it_value.tv_usec += 1000000;
607 		itp->it_value.tv_sec--;
608 	}
609 	itp->it_value.tv_usec -= usec;
610 	usec = 0;
611 	if (timevalisset(&itp->it_value))
612 		return (1);
613 	/* expired, exactly at end of interval */
614 expire:
615 	if (timevalisset(&itp->it_interval)) {
616 		itp->it_value = itp->it_interval;
617 		itp->it_value.tv_usec -= usec;
618 		if (itp->it_value.tv_usec < 0) {
619 			itp->it_value.tv_usec += 1000000;
620 			itp->it_value.tv_sec--;
621 		}
622 	} else
623 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
624 	return (0);
625 }
626 
627 /*
628  * Add and subtract routines for timevals.
629  * N.B.: subtract routine doesn't deal with
630  * results which are before the beginning,
631  * it just gets very confused in this case.
632  * Caveat emptor.
633  */
634 void
635 timevaladd(t1, t2)
636 	struct timeval *t1, *t2;
637 {
638 
639 	t1->tv_sec += t2->tv_sec;
640 	t1->tv_usec += t2->tv_usec;
641 	timevalfix(t1);
642 }
643 
644 void
645 timevalsub(t1, t2)
646 	struct timeval *t1, *t2;
647 {
648 
649 	t1->tv_sec -= t2->tv_sec;
650 	t1->tv_usec -= t2->tv_usec;
651 	timevalfix(t1);
652 }
653 
654 static void
655 timevalfix(t1)
656 	struct timeval *t1;
657 {
658 
659 	if (t1->tv_usec < 0) {
660 		t1->tv_sec--;
661 		t1->tv_usec += 1000000;
662 	}
663 	if (t1->tv_usec >= 1000000) {
664 		t1->tv_sec++;
665 		t1->tv_usec -= 1000000;
666 	}
667 }
668 
669 /*
670  * ratecheck(): simple time-based rate-limit checking.
671  */
672 int
673 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
674 {
675 	struct timeval tv, delta;
676 	int rv = 0;
677 
678 	getmicrouptime(&tv);		/* NB: 10ms precision */
679 	delta = tv;
680 	timevalsub(&delta, lasttime);
681 
682 	/*
683 	 * check for 0,0 is so that the message will be seen at least once,
684 	 * even if interval is huge.
685 	 */
686 	if (timevalcmp(&delta, mininterval, >=) ||
687 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
688 		*lasttime = tv;
689 		rv = 1;
690 	}
691 
692 	return (rv);
693 }
694 
695 /*
696  * ppsratecheck(): packets (or events) per second limitation.
697  *
698  * Return 0 if the limit is to be enforced (e.g. the caller
699  * should drop a packet because of the rate limitation).
700  *
701  * maxpps of 0 always causes zero to be returned.  maxpps of -1
702  * always causes 1 to be returned; this effectively defeats rate
703  * limiting.
704  *
705  * Note that we maintain the struct timeval for compatibility
706  * with other bsd systems.  We reuse the storage and just monitor
707  * clock ticks for minimal overhead.
708  */
709 int
710 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
711 {
712 	int now;
713 
714 	/*
715 	 * Reset the last time and counter if this is the first call
716 	 * or more than a second has passed since the last update of
717 	 * lasttime.
718 	 */
719 	now = ticks;
720 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
721 		lasttime->tv_sec = now;
722 		*curpps = 1;
723 		return (maxpps != 0);
724 	} else {
725 		(*curpps)++;		/* NB: ignore potential overflow */
726 		return (maxpps < 0 || *curpps < maxpps);
727 	}
728 }
729 
730