xref: /dflybsd-src/sys/kern/kern_synch.c (revision f8c7a42d831dbc6ff46a5448591fd28de34b649b)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.68 2006/11/07 18:50:06 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 
64 #include <machine/cpu.h>
65 #include <machine/smp.h>
66 
67 TAILQ_HEAD(tslpque, thread);
68 
69 static void sched_setup (void *dummy);
70 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
71 
72 int	hogticks;
73 int	lbolt;
74 int	lbolt_syncer;
75 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76 int	ncpus;
77 int	ncpus2, ncpus2_shift, ncpus2_mask;
78 int	safepri;
79 
80 static struct callout loadav_callout;
81 static struct callout schedcpu_callout;
82 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
83 
84 #if !defined(KTR_TSLEEP)
85 #define KTR_TSLEEP	KTR_ALL
86 #endif
87 KTR_INFO_MASTER(tsleep);
88 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter", 0);
89 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 0, "tsleep exit", 0);
90 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 0, "wakeup enter", 0);
91 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 0, "wakeup exit", 0);
92 #define logtsleep(name)	KTR_LOG(tsleep_ ## name)
93 
94 struct loadavg averunnable =
95 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
96 /*
97  * Constants for averages over 1, 5, and 15 minutes
98  * when sampling at 5 second intervals.
99  */
100 static fixpt_t cexp[3] = {
101 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
102 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
103 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
104 };
105 
106 static void	endtsleep (void *);
107 static void	unsleep_and_wakeup_thread(struct thread *td);
108 static void	loadav (void *arg);
109 static void	schedcpu (void *arg);
110 
111 /*
112  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
113  * Note that 'tick' is in microseconds per tick.
114  */
115 static int
116 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
117 {
118 	int error, new_val;
119 
120 	new_val = sched_quantum * tick;
121 	error = sysctl_handle_int(oidp, &new_val, 0, req);
122         if (error != 0 || req->newptr == NULL)
123 		return (error);
124 	if (new_val < tick)
125 		return (EINVAL);
126 	sched_quantum = new_val / tick;
127 	hogticks = 2 * sched_quantum;
128 	return (0);
129 }
130 
131 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
132 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
133 
134 /*
135  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
136  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
137  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
138  *
139  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
140  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
141  *
142  * If you don't want to bother with the faster/more-accurate formula, you
143  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
144  * (more general) method of calculating the %age of CPU used by a process.
145  *
146  * decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
147  */
148 #define CCPU_SHIFT	11
149 
150 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
151 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
152 
153 /*
154  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
155  */
156 static int     fscale __unused = FSCALE;
157 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
158 
159 /*
160  * Recompute process priorities, once a second.
161  *
162  * Since the userland schedulers are typically event oriented, if the
163  * estcpu calculation at wakeup() time is not sufficient to make a
164  * process runnable relative to other processes in the system we have
165  * a 1-second recalc to help out.
166  *
167  * This code also allows us to store sysclock_t data in the process structure
168  * without fear of an overrun, since sysclock_t are guarenteed to hold
169  * several seconds worth of count.
170  *
171  * WARNING!  callouts can preempt normal threads.  However, they will not
172  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
173  */
174 static int schedcpu_stats(struct proc *p, void *data __unused);
175 static int schedcpu_resource(struct proc *p, void *data __unused);
176 
177 static void
178 schedcpu(void *arg)
179 {
180 	allproc_scan(schedcpu_stats, NULL);
181 	allproc_scan(schedcpu_resource, NULL);
182 	wakeup((caddr_t)&lbolt);
183 	wakeup((caddr_t)&lbolt_syncer);
184 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
185 }
186 
187 /*
188  * General process statistics once a second
189  */
190 static int
191 schedcpu_stats(struct proc *p, void *data __unused)
192 {
193 	crit_enter();
194 	p->p_swtime++;
195 	if (p->p_stat == SSLEEP)
196 		p->p_slptime++;
197 
198 	/*
199 	 * Only recalculate processes that are active or have slept
200 	 * less then 2 seconds.  The schedulers understand this.
201 	 */
202 	if (p->p_slptime <= 1) {
203 		p->p_usched->recalculate(&p->p_lwp);
204 	} else {
205 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
206 	}
207 	crit_exit();
208 	return(0);
209 }
210 
211 /*
212  * Resource checks.  XXX break out since ksignal/killproc can block,
213  * limiting us to one process killed per second.  There is probably
214  * a better way.
215  */
216 static int
217 schedcpu_resource(struct proc *p, void *data __unused)
218 {
219 	u_int64_t ttime;
220 
221 	crit_enter();
222 	if (p->p_stat == SIDL ||
223 	    (p->p_flag & P_ZOMBIE) ||
224 	    p->p_limit == NULL ||
225 	    p->p_thread == NULL
226 	) {
227 		crit_exit();
228 		return(0);
229 	}
230 
231 	ttime = p->p_thread->td_sticks + p->p_thread->td_uticks;
232 
233 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
234 	case PLIMIT_TESTCPU_KILL:
235 		killproc(p, "exceeded maximum CPU limit");
236 		break;
237 	case PLIMIT_TESTCPU_XCPU:
238 		if ((p->p_flag & P_XCPU) == 0) {
239 			p->p_flag |= P_XCPU;
240 			ksignal(p, SIGXCPU);
241 		}
242 		break;
243 	default:
244 		break;
245 	}
246 	crit_exit();
247 	return(0);
248 }
249 
250 /*
251  * This is only used by ps.  Generate a cpu percentage use over
252  * a period of one second.
253  *
254  * MPSAFE
255  */
256 void
257 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
258 {
259 	fixpt_t acc;
260 	int remticks;
261 
262 	acc = (cpticks << FSHIFT) / ttlticks;
263 	if (ttlticks >= ESTCPUFREQ) {
264 		lp->lwp_pctcpu = acc;
265 	} else {
266 		remticks = ESTCPUFREQ - ttlticks;
267 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
268 				ESTCPUFREQ;
269 	}
270 }
271 
272 /*
273  * We're only looking at 7 bits of the address; everything is
274  * aligned to 4, lots of things are aligned to greater powers
275  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
276  */
277 #define TABLESIZE	128
278 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
279 
280 static cpumask_t slpque_cpumasks[TABLESIZE];
281 
282 /*
283  * General scheduler initialization.  We force a reschedule 25 times
284  * a second by default.  Note that cpu0 is initialized in early boot and
285  * cannot make any high level calls.
286  *
287  * Each cpu has its own sleep queue.
288  */
289 void
290 sleep_gdinit(globaldata_t gd)
291 {
292 	static struct tslpque slpque_cpu0[TABLESIZE];
293 	int i;
294 
295 	if (gd->gd_cpuid == 0) {
296 		sched_quantum = (hz + 24) / 25;
297 		hogticks = 2 * sched_quantum;
298 
299 		gd->gd_tsleep_hash = slpque_cpu0;
300 	} else {
301 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
302 					    M_TSLEEP, M_WAITOK | M_ZERO);
303 	}
304 	for (i = 0; i < TABLESIZE; ++i)
305 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
306 }
307 
308 /*
309  * General sleep call.  Suspends the current process until a wakeup is
310  * performed on the specified identifier.  The process will then be made
311  * runnable with the specified priority.  Sleeps at most timo/hz seconds
312  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
313  * before and after sleeping, else signals are not checked.  Returns 0 if
314  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
315  * signal needs to be delivered, ERESTART is returned if the current system
316  * call should be restarted if possible, and EINTR is returned if the system
317  * call should be interrupted by the signal (return EINTR).
318  *
319  * Note that if we are a process, we release_curproc() before messing with
320  * the LWKT scheduler.
321  *
322  * During autoconfiguration or after a panic, a sleep will simply
323  * lower the priority briefly to allow interrupts, then return.
324  */
325 int
326 tsleep(void *ident, int flags, const char *wmesg, int timo)
327 {
328 	struct thread *td = curthread;
329 	struct proc *p = td->td_proc;		/* may be NULL */
330 	globaldata_t gd;
331 	int sig;
332 	int catch;
333 	int id;
334 	int error;
335 	int oldpri;
336 	struct callout thandle;
337 
338 	/*
339 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
340 	 * even in stable.  Just scrap it for now.
341 	 */
342 	if (cold || panicstr) {
343 		/*
344 		 * After a panic, or during autoconfiguration,
345 		 * just give interrupts a chance, then just return;
346 		 * don't run any other procs or panic below,
347 		 * in case this is the idle process and already asleep.
348 		 */
349 		splz();
350 		oldpri = td->td_pri & TDPRI_MASK;
351 		lwkt_setpri_self(safepri);
352 		lwkt_switch();
353 		lwkt_setpri_self(oldpri);
354 		return (0);
355 	}
356 	logtsleep(tsleep_beg);
357 	gd = td->td_gd;
358 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
359 
360 	/*
361 	 * NOTE: all of this occurs on the current cpu, including any
362 	 * callout-based wakeups, so a critical section is a sufficient
363 	 * interlock.
364 	 *
365 	 * The entire sequence through to where we actually sleep must
366 	 * run without breaking the critical section.
367 	 */
368 	id = LOOKUP(ident);
369 	catch = flags & PCATCH;
370 	error = 0;
371 	sig = 0;
372 
373 	crit_enter_quick(td);
374 
375 	KASSERT(ident != NULL, ("tsleep: no ident"));
376 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
377 		ident, wmesg, p->p_stat));
378 
379 	/*
380 	 * Setup for the current process (if this is a process).
381 	 */
382 	if (p) {
383 		if (catch) {
384 			/*
385 			 * Early termination if PCATCH was set and a
386 			 * signal is pending, interlocked with the
387 			 * critical section.
388 			 *
389 			 * Early termination only occurs when tsleep() is
390 			 * entered while in a normal SRUN state.
391 			 */
392 			if ((sig = CURSIG(p)) != 0)
393 				goto resume;
394 
395 			/*
396 			 * Causes ksignal to wake us up when.
397 			 */
398 			p->p_flag |= P_SINTR;
399 		}
400 
401 		/*
402 		 * Make sure the current process has been untangled from
403 		 * the userland scheduler and initialize slptime to start
404 		 * counting.
405 		 */
406 		if (flags & PNORESCHED)
407 			td->td_flags |= TDF_NORESCHED;
408 		p->p_usched->release_curproc(&p->p_lwp);
409 		p->p_slptime = 0;
410 	}
411 
412 	/*
413 	 * Move our thread to the correct queue and setup our wchan, etc.
414 	 */
415 	lwkt_deschedule_self(td);
416 	td->td_flags |= TDF_TSLEEPQ;
417 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
418 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
419 
420 	td->td_wchan = ident;
421 	td->td_wmesg = wmesg;
422 	td->td_wdomain = flags & PDOMAIN_MASK;
423 
424 	/*
425 	 * Setup the timeout, if any
426 	 */
427 	if (timo) {
428 		callout_init(&thandle);
429 		callout_reset(&thandle, timo, endtsleep, td);
430 	}
431 
432 	/*
433 	 * Beddy bye bye.
434 	 */
435 	if (p) {
436 		/*
437 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
438 		 */
439 		KKASSERT((p->p_flag & P_ONRUNQ) == 0);
440 		p->p_stat = SSLEEP;
441 		p->p_stats->p_ru.ru_nvcsw++;
442 		lwkt_switch();
443 
444 		/*
445 		 * And when we are woken up, put us back in SRUN.  If we
446 		 * slept for over a second, recalculate our estcpu.
447 		 */
448 		p->p_stat = SRUN;
449 		if (p->p_slptime)
450 			p->p_usched->recalculate(&p->p_lwp);
451 		p->p_slptime = 0;
452 	} else {
453 		lwkt_switch();
454 	}
455 
456 	/*
457 	 * Make sure we haven't switched cpus while we were asleep.  It's
458 	 * not supposed to happen.  Cleanup our temporary flags.
459 	 */
460 	KKASSERT(gd == td->td_gd);
461 	td->td_flags &= ~TDF_NORESCHED;
462 
463 	/*
464 	 * Cleanup the timeout.
465 	 */
466 	if (timo) {
467 		if (td->td_flags & TDF_TIMEOUT) {
468 			td->td_flags &= ~TDF_TIMEOUT;
469 			if (sig == 0)
470 				error = EWOULDBLOCK;
471 		} else {
472 			callout_stop(&thandle);
473 		}
474 	}
475 
476 	/*
477 	 * Since td_threadq is used both for our run queue AND for the
478 	 * tsleep hash queue, we can't still be on it at this point because
479 	 * we've gotten cpu back.
480 	 */
481 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
482 	td->td_wchan = NULL;
483 	td->td_wmesg = NULL;
484 	td->td_wdomain = 0;
485 
486 	/*
487 	 * Figure out the correct error return
488 	 */
489 resume:
490 	if (p) {
491 		p->p_flag &= ~(P_BREAKTSLEEP | P_SINTR);
492 		if (catch && error == 0 && (sig != 0 || (sig = CURSIG(p)))) {
493 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
494 				error = EINTR;
495 			else
496 				error = ERESTART;
497 		}
498 	}
499 	logtsleep(tsleep_end);
500 	crit_exit_quick(td);
501 	return (error);
502 }
503 
504 /*
505  * This is a dandy function that allows us to interlock tsleep/wakeup
506  * operations with unspecified upper level locks, such as lockmgr locks,
507  * simply by holding a critical section.  The sequence is:
508  *
509  *	(enter critical section)
510  *	(acquire upper level lock)
511  *	tsleep_interlock(blah)
512  *	(release upper level lock)
513  *	tsleep(blah, ...)
514  *	(exit critical section)
515  *
516  * Basically this function sets our cpumask for the ident which informs
517  * other cpus that our cpu 'might' be waiting (or about to wait on) the
518  * hash index related to the ident.  The critical section prevents another
519  * cpu's wakeup() from being processed on our cpu until we are actually
520  * able to enter the tsleep().  Thus, no race occurs between our attempt
521  * to release a resource and sleep, and another cpu's attempt to acquire
522  * a resource and call wakeup.
523  *
524  * There isn't much of a point to this function unless you call it while
525  * holding a critical section.
526  */
527 static __inline void
528 _tsleep_interlock(globaldata_t gd, void *ident)
529 {
530 	int id = LOOKUP(ident);
531 
532 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
533 }
534 
535 void
536 tsleep_interlock(void *ident)
537 {
538 	_tsleep_interlock(mycpu, ident);
539 }
540 
541 /*
542  * Interlocked spinlock sleep.  An exclusively held spinlock must
543  * be passed to msleep().  The function will atomically release the
544  * spinlock and tsleep on the ident, then reacquire the spinlock and
545  * return.
546  *
547  * This routine is fairly important along the critical path, so optimize it
548  * heavily.
549  */
550 int
551 msleep(void *ident, struct spinlock *spin, int flags,
552        const char *wmesg, int timo)
553 {
554 	globaldata_t gd = mycpu;
555 	int error;
556 
557 	crit_enter_gd(gd);
558 	_tsleep_interlock(gd, ident);
559 	spin_unlock_wr_quick(gd, spin);
560 	error = tsleep(ident, flags, wmesg, timo);
561 	spin_lock_wr_quick(gd, spin);
562 	crit_exit_gd(gd);
563 
564 	return (error);
565 }
566 
567 /*
568  * Implement the timeout for tsleep.
569  *
570  * We set P_BREAKTSLEEP to indicate that an event has occured, but
571  * we only call setrunnable if the process is not stopped.
572  *
573  * This type of callout timeout is scheduled on the same cpu the process
574  * is sleeping on.  Also, at the moment, the MP lock is held.
575  */
576 static void
577 endtsleep(void *arg)
578 {
579 	thread_t td = arg;
580 	struct proc *p;
581 
582 	ASSERT_MP_LOCK_HELD(curthread);
583 	crit_enter();
584 
585 	/*
586 	 * cpu interlock.  Thread flags are only manipulated on
587 	 * the cpu owning the thread.  proc flags are only manipulated
588 	 * by the older of the MP lock.  We have both.
589 	 */
590 	if (td->td_flags & TDF_TSLEEPQ) {
591 		td->td_flags |= TDF_TIMEOUT;
592 
593 		if ((p = td->td_proc) != NULL) {
594 			p->p_flag |= P_BREAKTSLEEP;
595 			if ((p->p_flag & P_STOPPED) == 0)
596 				setrunnable(p);
597 		} else {
598 			unsleep_and_wakeup_thread(td);
599 		}
600 	}
601 	crit_exit();
602 }
603 
604 /*
605  * Unsleep and wakeup a thread.  This function runs without the MP lock
606  * which means that it can only manipulate thread state on the owning cpu,
607  * and cannot touch the process state at all.
608  */
609 static
610 void
611 unsleep_and_wakeup_thread(struct thread *td)
612 {
613 	globaldata_t gd = mycpu;
614 	int id;
615 
616 #ifdef SMP
617 	if (td->td_gd != gd) {
618 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
619 		return;
620 	}
621 #endif
622 	crit_enter();
623 	if (td->td_flags & TDF_TSLEEPQ) {
624 		td->td_flags &= ~TDF_TSLEEPQ;
625 		id = LOOKUP(td->td_wchan);
626 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
627 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
628 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
629 		lwkt_schedule(td);
630 	}
631 	crit_exit();
632 }
633 
634 /*
635  * Make all processes sleeping on the specified identifier runnable.
636  * count may be zero or one only.
637  *
638  * The domain encodes the sleep/wakeup domain AND the first cpu to check
639  * (which is always the current cpu).  As we iterate across cpus
640  *
641  * This call may run without the MP lock held.  We can only manipulate thread
642  * state on the cpu owning the thread.  We CANNOT manipulate process state
643  * at all.
644  */
645 static void
646 _wakeup(void *ident, int domain)
647 {
648 	struct tslpque *qp;
649 	struct thread *td;
650 	struct thread *ntd;
651 	globaldata_t gd;
652 #ifdef SMP
653 	cpumask_t mask;
654 	cpumask_t tmask;
655 	int startcpu;
656 	int nextcpu;
657 #endif
658 	int id;
659 
660 	crit_enter();
661 	logtsleep(wakeup_beg);
662 	gd = mycpu;
663 	id = LOOKUP(ident);
664 	qp = &gd->gd_tsleep_hash[id];
665 restart:
666 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
667 		ntd = TAILQ_NEXT(td, td_threadq);
668 		if (td->td_wchan == ident &&
669 		    td->td_wdomain == (domain & PDOMAIN_MASK)
670 		) {
671 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
672 			td->td_flags &= ~TDF_TSLEEPQ;
673 			TAILQ_REMOVE(qp, td, td_threadq);
674 			if (TAILQ_FIRST(qp) == NULL) {
675 				atomic_clear_int(&slpque_cpumasks[id],
676 						 gd->gd_cpumask);
677 			}
678 			lwkt_schedule(td);
679 			if (domain & PWAKEUP_ONE)
680 				goto done;
681 			goto restart;
682 		}
683 	}
684 
685 #ifdef SMP
686 	/*
687 	 * We finished checking the current cpu but there still may be
688 	 * more work to do.  Either wakeup_one was requested and no matching
689 	 * thread was found, or a normal wakeup was requested and we have
690 	 * to continue checking cpus.
691 	 *
692 	 * The cpu that started the wakeup sequence is encoded in the domain.
693 	 * We use this information to determine which cpus still need to be
694 	 * checked, locate a candidate cpu, and chain the wakeup
695 	 * asynchronously with an IPI message.
696 	 *
697 	 * It should be noted that this scheme is actually less expensive then
698 	 * the old scheme when waking up multiple threads, since we send
699 	 * only one IPI message per target candidate which may then schedule
700 	 * multiple threads.  Before we could have wound up sending an IPI
701 	 * message for each thread on the target cpu (!= current cpu) that
702 	 * needed to be woken up.
703 	 *
704 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
705 	 * should be ok since we are passing idents in the IPI rather then
706 	 * thread pointers.
707 	 */
708 	if ((domain & PWAKEUP_MYCPU) == 0 &&
709 	    (mask = slpque_cpumasks[id]) != 0
710 	) {
711 		/*
712 		 * Look for a cpu that might have work to do.  Mask out cpus
713 		 * which have already been processed.
714 		 *
715 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
716 		 *        ^        ^           ^
717 		 *      start   currentcpu    start
718 		 *      case2                 case1
719 		 *        *        *           *
720 		 * 11111111111111110000000000000111	case1
721 		 * 00000000111111110000000000000000	case2
722 		 *
723 		 * case1:  We started at start_case1 and processed through
724 		 *  	   to the current cpu.  We have to check any bits
725 		 *	   after the current cpu, then check bits before
726 		 *         the starting cpu.
727 		 *
728 		 * case2:  We have already checked all the bits from
729 		 *         start_case2 to the end, and from 0 to the current
730 		 *         cpu.  We just have the bits from the current cpu
731 		 *         to start_case2 left to check.
732 		 */
733 		startcpu = PWAKEUP_DECODE(domain);
734 		if (gd->gd_cpuid >= startcpu) {
735 			/*
736 			 * CASE1
737 			 */
738 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
739 			if (mask & tmask) {
740 				nextcpu = bsfl(mask & tmask);
741 				lwkt_send_ipiq2(globaldata_find(nextcpu),
742 						_wakeup, ident, domain);
743 			} else {
744 				tmask = (1 << startcpu) - 1;
745 				if (mask & tmask) {
746 					nextcpu = bsfl(mask & tmask);
747 					lwkt_send_ipiq2(
748 						    globaldata_find(nextcpu),
749 						    _wakeup, ident, domain);
750 				}
751 			}
752 		} else {
753 			/*
754 			 * CASE2
755 			 */
756 			tmask = ~((gd->gd_cpumask << 1) - 1) &
757 				 ((1 << startcpu) - 1);
758 			if (mask & tmask) {
759 				nextcpu = bsfl(mask & tmask);
760 				lwkt_send_ipiq2(globaldata_find(nextcpu),
761 						_wakeup, ident, domain);
762 			}
763 		}
764 	}
765 #endif
766 done:
767 	logtsleep(wakeup_end);
768 	crit_exit();
769 }
770 
771 /*
772  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
773  */
774 void
775 wakeup(void *ident)
776 {
777     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
778 }
779 
780 /*
781  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
782  */
783 void
784 wakeup_one(void *ident)
785 {
786     /* XXX potentially round-robin the first responding cpu */
787     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
788 }
789 
790 /*
791  * Wakeup threads tsleep()ing on the specified ident on the current cpu
792  * only.
793  */
794 void
795 wakeup_mycpu(void *ident)
796 {
797     _wakeup(ident, PWAKEUP_MYCPU);
798 }
799 
800 /*
801  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
802  * only.
803  */
804 void
805 wakeup_mycpu_one(void *ident)
806 {
807     /* XXX potentially round-robin the first responding cpu */
808     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
809 }
810 
811 /*
812  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
813  * only.
814  */
815 void
816 wakeup_oncpu(globaldata_t gd, void *ident)
817 {
818 #ifdef SMP
819     if (gd == mycpu) {
820 	_wakeup(ident, PWAKEUP_MYCPU);
821     } else {
822 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
823     }
824 #else
825     _wakeup(ident, PWAKEUP_MYCPU);
826 #endif
827 }
828 
829 /*
830  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
831  * only.
832  */
833 void
834 wakeup_oncpu_one(globaldata_t gd, void *ident)
835 {
836 #ifdef SMP
837     if (gd == mycpu) {
838 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
839     } else {
840 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
841     }
842 #else
843     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
844 #endif
845 }
846 
847 /*
848  * Wakeup all threads waiting on the specified ident that slept using
849  * the specified domain, on all cpus.
850  */
851 void
852 wakeup_domain(void *ident, int domain)
853 {
854     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
855 }
856 
857 /*
858  * Wakeup one thread waiting on the specified ident that slept using
859  * the specified  domain, on any cpu.
860  */
861 void
862 wakeup_domain_one(void *ident, int domain)
863 {
864     /* XXX potentially round-robin the first responding cpu */
865     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
866 }
867 
868 /*
869  * setrunnable()
870  *
871  * Make a process runnable.  The MP lock must be held on call.  This only
872  * has an effect if we are in SSLEEP.  We only break out of the
873  * tsleep if P_BREAKTSLEEP is set, otherwise we just fix-up the state.
874  *
875  * NOTE: With the MP lock held we can only safely manipulate the process
876  * structure.  We cannot safely manipulate the thread structure.
877  */
878 void
879 setrunnable(struct proc *p)
880 {
881 	crit_enter();
882 	ASSERT_MP_LOCK_HELD(curthread);
883 	p->p_flag &= ~P_STOPPED;
884 	if (p->p_stat == SSLEEP && (p->p_flag & P_BREAKTSLEEP)) {
885 		unsleep_and_wakeup_thread(p->p_thread);
886 	}
887 	crit_exit();
888 }
889 
890 /*
891  * The process is stopped due to some condition, usually because P_STOPPED
892  * is set but also possibly due to being traced.
893  *
894  * NOTE!  If the caller sets P_STOPPED, the caller must also clear P_WAITED
895  * because the parent may check the child's status before the child actually
896  * gets to this routine.
897  *
898  * This routine is called with the current process only, typically just
899  * before returning to userland.
900  *
901  * Setting P_BREAKTSLEEP before entering the tsleep will cause a passive
902  * SIGCONT to break out of the tsleep.
903  */
904 void
905 tstop(struct proc *p)
906 {
907 	wakeup((caddr_t)p->p_pptr);
908 	p->p_flag |= P_BREAKTSLEEP;
909 	tsleep(p, 0, "stop", 0);
910 }
911 
912 /*
913  * Yield / synchronous reschedule.  This is a bit tricky because the trap
914  * code might have set a lazy release on the switch function.   Setting
915  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
916  * switch, and that we are given a greater chance of affinity with our
917  * current cpu.
918  *
919  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
920  * run queue.  lwkt_switch() will also execute any assigned passive release
921  * (which usually calls release_curproc()), allowing a same/higher priority
922  * process to be designated as the current process.
923  *
924  * While it is possible for a lower priority process to be designated,
925  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
926  * round-robin back to us and we will be able to re-acquire the current
927  * process designation.
928  */
929 void
930 uio_yield(void)
931 {
932 	struct thread *td = curthread;
933 	struct proc *p = td->td_proc;
934 
935 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
936 	if (p) {
937 		p->p_flag |= P_PASSIVE_ACQ;
938 		lwkt_switch();
939 		p->p_flag &= ~P_PASSIVE_ACQ;
940 	} else {
941 		lwkt_switch();
942 	}
943 }
944 
945 /*
946  * Compute a tenex style load average of a quantity on
947  * 1, 5 and 15 minute intervals.
948  */
949 static int loadav_count_runnable(struct proc *p, void *data);
950 
951 static void
952 loadav(void *arg)
953 {
954 	struct loadavg *avg;
955 	int i, nrun;
956 
957 	nrun = 0;
958 	allproc_scan(loadav_count_runnable, &nrun);
959 	avg = &averunnable;
960 	for (i = 0; i < 3; i++) {
961 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
962 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
963 	}
964 
965 	/*
966 	 * Schedule the next update to occur after 5 seconds, but add a
967 	 * random variation to avoid synchronisation with processes that
968 	 * run at regular intervals.
969 	 */
970 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
971 		      loadav, NULL);
972 }
973 
974 static int
975 loadav_count_runnable(struct proc *p, void *data)
976 {
977 	int *nrunp = data;
978 	thread_t td;
979 
980 	switch (p->p_stat) {
981 	case SRUN:
982 		if ((td = p->p_thread) == NULL)
983 			break;
984 		if (td->td_flags & TDF_BLOCKED)
985 			break;
986 		/* fall through */
987 	case SIDL:
988 		++*nrunp;
989 		break;
990 	default:
991 		break;
992 	}
993 	return(0);
994 }
995 
996 /* ARGSUSED */
997 static void
998 sched_setup(void *dummy)
999 {
1000 	callout_init(&loadav_callout);
1001 	callout_init(&schedcpu_callout);
1002 
1003 	/* Kick off timeout driven events by calling first time. */
1004 	schedcpu(NULL);
1005 	loadav(NULL);
1006 }
1007 
1008